
Time-redundancy Transformations for
Adaptive Fault-Tolerant Circuits

Dmitry Burlyaev
Univ. Grenoble Alpes / INRIA

Grenoble, France
dmitry.burlyaev@inria.fr

Pascal Fradet
INRIA / Univ. Grenoble Alpes

Grenoble, France
pascal.fradet@inria.fr

Alain Girault
INRIA / Univ. Grenoble Alpes

Grenoble, France
alain.girault@inria.fr

Abstract—We present a novel logic-level circuit transformation
technique for the automatic insertion of fault-tolerance prop-
erties. The transformations, based on time-redundancy, allow
dynamically changes of the level of redundancy without in-
terrupting the computation. The proposed concept of dynamic
time redundancy permits adaptive circuits whose fault-tolerance
properties can be ”on-the-fly” traded-off for throughput. The
approach is technologically independent and does not require any
specific hardware support. Experimental results on the ITC’99
benchmark suite indicate that the benefits of our method grow
with the combinational size of the circuit. Dynamic double and
triple time redundant transformations generate circuits 1.7 to
2.9 times smaller than full Triple-Modular Redundancy (TMR).
This transformation is a good alternative to TMR for logic-
intensive safety-critical circuits where low hardware overhead
or only temporary fault-tolerance guarantees are needed.

I. INTRODUCTION

Fault-tolerance is an important research topic in safety-
critical systems [1], [2]. While schemes for hardware redun-
dancy techniques have been proposed early [3] and are widely-
used in existing synthesis tools [4], [5], time redundancy is
much less investigated in circuits and not integrated in EDA
tools. However, time redundancy has specific advantages that
make its addition within synthesis tools worthwhile. Indeed,
if time redundancy trades off throughput for a low hardware
overhead, it is also more adaptive than space redundancy
(e.g., TMR). It is possible for circuits to operate at full speed
and to dynamically switch to a redundancy mode. Different
reasons can motivate the change of the redundancy level
(and by consequence the fault-tolerance level): (i) occasional
processing of critical data, (ii) sporadic changes in radiation
environment (e.g., high solar activity, entering or leaving
specific areas like the South Atlantic Anomaly (SAA) [6]).

We propose the automatic insertion of dynamic time-
redundant mechanisms at post-synthesis phase. This signifi-
cantly reduces design efforts and correctness validation. By
dynamic, we mean that the resulting circuit can switch be-
tween different operating modes, each mode with a different
redundancy level (possibly null). We write DyTRn for the Dy-
namic Time Redundancy transformation where the maximum
redundancy level is n. For instance, the dynamic triple time
redundant transformation DyTR3 produces a circuit with three
redundancy modes: a triple redundancy mode that masks any
Single-Event Transient (SET) but operates at one third of the
nominal throughput, a double redundancy mode that detects

any SET but operates at half of the nominal throughput, and a
no redundancy mode that operates at the nominal throughput
but without any fault-tolerant properties. In conjunction with
frequency and power scaling, the proposed approach provides
adaptive design options not available before.

The transformations are performed at the gate level,
i.e., netlists of AND, OR, NOT gates plus memory cells (flip-
flops (FFs)). This level has two main advantages:

• gate-level netlists can be described by an elementary
language, which simplifies correctness proofs1;

• it is easier to prevent synthesis tools from optimizing
(undo) our transformations at this late stage, as well as
to integrate the circuit transformation in commercial
logic synthesis tools.

We consider fault models of the form “at most M SETs
within K clock cycles”, denoted by SET (M ,K). SET sub-
sumes Single-Event Upset (SEU). Even in environments with
high levels of ionizing radiations (e.g., space, particle acceler-
ators), this parameter K is considered to be larger than 10 10

for modern high-frequency electronics [7]. With appropriate
redundancy, the proposed technique can mask M errors. How-
ever, the most common and realistic fault-model is of the
form SET (1 ,K), which only requires double redundancy (for
fault detection) or triple (for fault masking). In this article, we
present informally the general approach and focus on double
and triple dynamic time redundancy transformations. Each
dynamic time-redundancy transformation consists in replacing
each memory cell by a memory block that supports the dynamic
redundancy and implements the voting/detection. A global
control block is also added to the circuit to provide signals for
controlling the voting and the switching between the available
redundancy modes.

Section II presents the notations used in the rest of
the paper. We describe the principles of our approach in
Section III. We describe the transformation for triple dynamic
time-redundancy, DyTR3, in Section IV and sketch DyTR2 in
Section V. Experimental results using the ITC’99 benchmark
suite [8] are presented in Section VI. Section VII surveys the
related work on time-redundancy for circuit fault-tolerance.
Finally, we summarize our contributions and sketch future
research directions in Section VIII.

1In this paper, we provide only informal proofs but we have already used
that language to prove related transformations using the Coq proof-assistant.978-1-4673-7501-6/15/$31.00 c© 2015 European Union

II. CONTEXT AND NOTATIONS

Any digital circuit can be represented in the most general
way as in Figure 1. The circuit, which consists of a com-
binational part and a sequential part, takes a primary input
bit vector ~PI and returns a primary output bit vector ~PO at
each clock cycle. The combinational part implements some
memoryless boolean function ϕ.

Sequential Part

Combinational Part

clk

CI COPI

SO SI

φ

si so
ini:C2FF

D Q

PO

so

Fig. 1. Digital circuit before the transformation.

We denote the input (resp. output) bit vector of the combi-
national part by ~CI (resp. ~CO) and the input (resp. output) bit
vector of the sequential part by ~SI (resp. ~SO). They satisfy the
following equalities:

~CO = ϕ(~CI) ~CI = ~PI ⊕ ~SO ~CO = ~PO⊕ ~SI (1)

where ⊕ denotes vector concatenation. We will use lower
case (e.g., ~pi, ~co, etc.) to denote the corresponding signals
in the transformed circuits; they satisfy the same equalities.
Throughout the paper, we write ~vi for the value of the bit
vector ~v at the ith clock cycle (the numbering starts at i=1).
Values and outputs of memory cells are denoted by the same
names. For instance, the memory cell in Figure 1 with output
so is itself denoted so.

An SET can occur on any wire of the circuit and is
non-deterministically latched. An SET in a combinational
circuit can lead to the arbitrary corruption of any memory
cell connected by a purely combinational path to the place
where it occurred. A corrupted vector, written †~v, represents
the vector ~v with an arbitrary number of corrupted bits. An
SET in the combinational circuit of Figure 1 at some cycle i
can lead to the corruption of several outputs † ~COi. This, in turn,
can corrupt part of the primary outputs († ~POi) and of several
circuit’s memory cells. This last corruption will propagate at
their outputs (i.e., in the † ~SOi+1 vector) during the next clock
cycle. Note that SETs subsumes the SEUs fault-model since
any SEU of a cell can be modeled by a SET occurring at the
cell’s input and latched.

III. CONCEPT OF DYNAMIC TIME REDUNDANCY

Our dynamic time-redundancy transformations DyTRn

transform any circuit at the netlist level according to the
following steps:

1) choice of the fault-tolerance properties and of the
corresponding operating modes ;

2) substitution of each original memory cell with a
memory block;

3) addition of a global control block;
4) adjusting the design of input-output interfaces .

The original combinational part of the circuit is kept
unchanged.

Due to space limitations, we do not present the generic
transformation (i.e., DyTRn for all n). In this section, we just
outline the main transformation steps. They will be presented
in details for the two most common (and useful) instantiations:
dynamic triple redundancy (Section IV) and dynamic double
redundancy (Section V).

A. Choice of fault-tolerance level and modes

A designer can choose (i) the set of needed redundancy
levels or operating modes, and (ii) the error-detection/masking
properties of each mode. For example, an application may ask
for either running at full speed (hence no fault-tolerance) or
being able to detect up to two simultaneous faults. Thus, only
two operation modes (mode 1 and mode 4) are needed. In
general, mode 4 may detect one or two faults and mask one
fault. In our example, masking is not needed and the design
of the mode (and the transformed circuit) can be tuned and
simplified.

To match the required fault-tolerance properties, we allo-
cate control signals which, set by the surrounding circuit, will
define the current operating mode and support switches.

B. Memory Block

Memory blocks implement the core of the dynamic time-
redundant mechanism. They record recomputed results and
organize the voting and comparison procedures.

Each memory cell of the original circuit is replaced by
a memory block with the same data input and output. The
input (resp. output) signals of the sequential part ~si (resp.
~so) correspond to the inputs (resp. outputs) of all memory
blocks. Memory blocks produce a fail signal whenever an error
is detected. Memory blocks also require additional control
signals to organize voting and dynamic switches. These signals
are produced by a small global Finite State Machine (FSM):
the control block.

C. Control Block

The control block is a centralized FSM that provides the
control signals used by memory blocks. It can be seen as
a collection of circular automata, one for each mode (see
Figure 2). The automaton for mode n (n ∈ [1 . . . N]) sets

noRed

tt r3 t t r1

t t r2

n-tr1 n-tr2

n-trN

mode 1

mode 3 mode Nmod

mod

mod

... ...

... modmod...

Fig. 2. Control block for the generic DyTRn transformed circuit

the control signals to select the relevant bits at each step of
the n steps of voting/comparison. The control block allocates

special inputs mod used by the surrounding circuit to switch
between operating modes. They are used to pass the control
from one automaton sub-part to another at specific cycles.
In Figure 2, the corresponding states for these cycles are
grayed. The control block is itself protected using hardware
redundancy, which does not entail a big hardware overhead
since it is a small circuit.

D. Input-Output Interface

The environment (or surrounding circuit) should also dy-
namically upsample and downsample the input/output bits
streams of the transformed circuit to support the changes of
redundant modes. This requirement can be fulfilled through
frequency scaling/division. In particular, when the mode n is
chosen, the surrounding circuit should adapt its frequency to
produce (resp. consume) n upsampled inputs (resp. outputs).

In many cases, redundancy of inputs and outputs can also
be handled by a circuit interface. Assuming a circuit operating
in mode n, if the inputs are read from memory, the interface
would read a new value every n cycles and duplicate it n
times.

IV. DYNAMIC TRIPLE-TIME REDUNDANCY

Dynamic triple-time redundancy DyTR3 is an instance
of the general transformation scheme. It demonstrates all
features of the transformations, including error-masking, error-
detection, and dynamic modes switch. DyTR3 offers the fol-
lowing operating modes:

1) no time redundancy and no fault tolerance properties
(mode 1).

2) double-time redundancy with a single error detection
(mode 2).

3) triple-time redundancy with a single error masking
(and an error detection output signal) (mode 3).

A. Memory Block

The memory block for DyTR3 is represented in Figure 3.
It consists of the following components:

• three cells d, d′, and d′′ form the data bits to save
redundant information for voting if modeS = 3 and
comparison if modeS = 2. This pipeline is controlled
by the global signal modeS: if modeS = 1, the cell d
is by-passed. This allows to dynamically change the
pipeline length and to organize a dynamic delay;

• the cell s (saving line) is needed to have enough
redundancy to perform majority voting during three
cycles;

• the majority voter VotA along with the multiplexers
MuxA and MuxC performs error masking and/or error
detection. The proper subset of bits for voting/compar-
ison is selected from the delay and saving lines using
global control signals modeS and fetchA.

The majority voter VotA takes three inputs and returns
so, the output signal of the memory block. The Vot/Detect
component also outputs the result of the comparison between
d and d′ as the fail signal.

Q
d

init:C

D Q Q
d'

init:C

D Qsi dCdA

MuxA

MuxB

Q
d''

init:C

D QdA'

V

Q

init:C

D Q

0

1C

so

fail

fetchA

modeS

dB dB'

0

1 C

VotA

Dynamic/Delay Saving/Line

Vot/Detect

s

MuxC0

1C

dA''

Fig. 3. Memory block for DyTR3

The internal structure of the VotA voter is presented in
Figure 4: the fail signal is the result of the comparison between
a and b. This signal also serves to implement the majority vote
by selecting the correct output (c if a 6= b; b if a = b).

0

1

C

fail
EQ

≠
a

b

c
so

Fig. 4. Voter with detection capability

Hereafter, we describe the functionality of the memory
block in each of the three operating modes.

Mode 3

In normal execution (i.e., without SET), the behavior of all
memory blocks is described by the following equalities.

In mode 3, the dynamic delay results in:

∀i ∈ N∗. ~sii = ~di+1 = ~d′i+2 = ~d′′i+3 = ~si+4 = ~soi+3 (2)

As described in Section II, the upsampled input/output
signals satisfy the same equations as Eq. (1), that is:

∀i ∈ N∗,

~coi = ϕ(~cii)
~cii = ~pii ⊕ ~soi
~coi = ~poi ⊕ ~sii

(3)

The original input stream ~PI is upsampled three times in
this operating mode:

∀i ∈ N∗. ~pi3i−2 = ~pi3i−1 = ~pi3i = ~PIi (4)

From Eqs. (2), (3), and (4), we derive that the output bit
stream of the combinational part after the circuit transforma-
tion ~co is a three-times upsampled bit stream ~CO of the original
circuit.

∀i ∈ N∗. ~co3i−2 = ~co3i−1 = ~co3i = ~COi (5)

In mode 3, the three cells d, d′, and d′′ are equal each
(3i− 2)th cycles as formalized by Eq. (6):

∀i ∈ N∗. ~d3i−2 = ~d′3i−2 = ~d′′3i−2 (6)

Voting on (d, d′, d′′) at these specific cycles will mask a
single error. The result of the vote is forwarded through ~so

to the rest of the combinational circuit. The memory cell s
is used to save the value d′′ for the two subsequent votes.
Assuming that d, d′, and d′′ hold a correct value (say a), the
first vote will be between (a, a, a) (stored in (d, d′, d′′)) and
the second between (a, a, a) (stored in (d′, d′′, s)). In this
cycle, d contains the next value of the stream (say b), which
will propagate to d′. So, the third vote will be between (b, a, a)
(stored in (d′, d′′, s)). So, if d′′ or s is corrupted the vote
may return a wrong value, which will be propagated to the
next block. Fortunately, this incorrect value is preceded by
two correct ones and can be corrected by a special recovery
procedure described in details in Section IV-C. As we will see,
such an error is corrected within the next six clock cycles.

To support this functionality, the global control signal
fetchA is generated by the control block according to Eq.(7).

fetchA = 0 at cycles 3i and 3i− 1

fetchA = 1 at cycles 3i− 2.
(7)

Mode 3 also implements error detection. In particular, a
single bit-flip can be detected each (3i−2) and (3i−1) clock
cycles. If no error occurs, the values of d′ and d′′ memory cells
in each memory block must be equal (see Eq. (6)). Otherwise
a single bit-flip is detected and the fail signal is raised.

It can be shown that any single SET (even on global control
signals) will be eventually be masked (see Section IV-C).

Mode 2
The double-time redundant mode is supported by the global

control signals modeS = 0 and fetchA = 1. In normal
execution (i.e., without errors), the behavior of the memory
block is described by the following equalities:

∀i ∈ N∗. ~sii = ~di+1 = ~d′i+2 = ~d′′i+3 = ~si+4 = ~soi+2 (8)

The original input stream ~PI is upsampled twice:

∀i ∈ N∗. ~pi2i−1 = ~pi2i = ~PIi (9)

As a result, the output stream ~co is the output stream ~CO
of the original circuit upsampled twice (see Eq. (10)):

∀i ∈ N∗. ~co2i−1 = ~co2i = ~COi (10)

Error detection properties are based on Eq. (11):

∀i ∈ N∗. ~d′2i−1 = ~d′′2i−1 (11)

In mode 2, the memory cell s does not participate in com-
putation. The vote is performed at each cycle on (d, d′, d′′).
Consider, for example, an upsampled value a1 and a2. After
two cycles, we have (d, d′, d′′) = (a2, a1, ?) and after three
cycles (d, d′, d′′) = (?, a2, a1). Consequently, two votes on
(d, d′, d′′) will produce the expected result twice. Of course,
an SET may lead to an error propagation but masking is not
guaranteed in mode 2. Note, however, that this mode does
perform some (incomplete) masking through voting.

Error detection is organized through the comparison of d′

and d′′ at odd cycles. If no errors occurs, their values should
be equal according to Eq. (11). If the values are not equal,
the fail signal will be raised to indicate the error detection to
the control block. Note that an SET at any wire can corrupt at
most one bit in a memory block.

TABLE 1. SWITCHING PROCESS 1 7→ 3.

clk ~si ~d ~d′ ~d′′ ~s mS fA ~so

1 ~c1 ~b1 ~b1 ~a1 ~z1 1 1 ~bv
2 ~d1 ~c1 ~c1 ~b1 ~a1 1 1 ~cv
3 ~e1 ~d1

~d1 ~c1 ~b1 0 1 ~dv

4 ~e2 ~e1 ~d1
~d1 ~c1 0 0 ~dv

5 ~e3 ~e2 ~e1 ~d1
~d1 0 0 ~dv

6 ~f1 ~e3 ~e2 ~e1 ~d1 0 1 ~ev
7 ~f2 ~f1 ~e3 ~e2 ~e1 0 0 ~ev
8 ~f3 ~f2 ~f1 ~e3 ~e2 0 0 ~ev
9 ~g1 ~f3 ~f2 ~f1 ~e3 0 1 ~fv

xv is the result of voting on the values marked in grey at this clock cycle;
mS = modeS ; fA = fetchA.

Mode 1

Mode 1 is supported by the global control signals modeS =
1 and fetchA = 1. The multiplexer MuxB is used to duplicate
the input data in d and d′ at each cycle. In normal execution
(i.e., without errors), the behavior of all memory blocks is
described by the following equalities:

∀i ∈ N∗. ~sii = ~di+1 = ~d′i+1 = ~d′′i+2 = ~si+3 = ~soi+1 (12)

The operating with no time redundancy implies that the
input streams are not upsampled (see Eq. (13)):

n = 1 : ∀i ∈ N∗. ~pii = ~PIi (13)

The output of the combinatorial circuit ~co is equivalent to
the output of the circuit before the transformation:

∀i ∈ N∗. ~coi = ~COi (14)

From Eq. (12), if no errors occur, d equals to d′ each clock
cycle. Consequently, voting on three values (d, d′, s) returns
the value of d (and d′) at each cycle. The mode has neither
SET masking nor detection properties, but its throughput is
comparable to the original circuit before transformation. If d
and/or d′ is corrupted, then the vote on (d, d′, s) may return
a wrong value (without raising the fail signal).

B. Control block and mode switch

Dynamic triple-time redundancy has three operating
modes. In the most general implementation, it can switch from
any mode to any other one. The control block governing these
switches in presented in Figure 5. We present here only two
possible switches.

1 7→ 3

Switching from the operating mode 1 to triple-time redun-
dancy is performed by setting modeS to 0 and up-sampling
the input stream three times. The fetchA signal is raised every
three cycles specified by Eq. (7). Table 1 shows such a switch
starting from the third clock cycle. The error masking and
detection properties are guaranteed only three cycles later (6)
when the delay line is filled by three independent redundant
bits (~e1, ~e2, ~e3).

TABLE 2. SWITCHING PROCESS 3 7→ 1.

clk ~si ~d ~d′ ~d′′ ~s mS fA ~so

1 ~h2
~h1 ~g3 ~g2 ~g1 0 0 ~gv

2 ~h3
~h2

~h1 ~g3 ~g2 0 0 ~gv
3 ~j1 ~h3

~h2
~h1 ~g3 0 1 ~hv

4 ~j2 ~j1 ~h3
~h2

~h1 0 0 ~hv

5 ~j3 ~j2 ~j1 ~h3
~h2 0 0 ~hv

6 ~k1
~j3 ~j2 ~j1 ~h3 0 1 ~jv

7 ~l1 ~k1
~k1

~j2 ~j1 1 1 ~kv

8 ~m1
~l1 ~l1 ~k1

~j2 1 1 ~lv
9 ~n1 ~m2 ~m1

~l1 ~k1 1 1 ~mv

xv is the result of voting on the values marked in grey at this clock cycle;
mS = modeS ; fA = fetchA.

3 7→ 1

Switching from three times redundancy to non-redundant
mode triples the circuit throughput but eliminates error detec-
tion and masking. In Table 2, the switch is performed at the
seventh clock cycle by raising signals modeS and fetchA.

All other switching scenarios are supported by the DyTR3

control block as shown in Figure 5. Each circular automaton
corresponds to one of the three available operating modes.

t t r3

t t r1

t t r2

dtr1 dtr2

mode 2
fetchA =1

fetchA =1

mode 3

'2'mod

'1'mod

noRed

mode 1

modeS
fetchA

=1
=1

'3'mod

'2'mod

'3'mod

'1'mod
fetchA =1

'0'err

err1

err4

err3

'1'err

err2

fetchA =1

modeS =1

Fig. 5. Control block for DyTR3.

The labels specify the values of the global control signals
(when absent from a node they supposed to be 0). The guard
mod is the primary input bus that the environment may use
to indicate which mode switch must be performed. In each
operating mode, there is only one state allowing a switch.
This state ensures that the output stream is consistent (i.e., is
not cut in the middle of a redundant series). For example,
when switching from mode 3 to 1, the output stream has only
triplicated values (when in mode 3) followed by single ones
(when in mode 1).

The automaton corresponding to mode 3 has two circular
sub-parts: ttr1− ttr2− ttr3 and ttr1− ttr2− err1− err2−
err3 − err4. The former corresponds to the functionality if
no soft errors have been detected. The latter is used if the
fail signal is raised by Vot/Detect during any 3i − 1 clock
cycles indicating a data corruption. The recovery procedure
corresponding to this case is described in the next section.

C. Fault tolerance guarantees

In this section, we show that a DyTR3 circuit in triple-time
redundant operating mode (mode 3) is able to mask the effect

TABLE 3. RECOVERY PROCEDURE - DYTR3 , MODE 3.

clk st. ~si ~d ~d′ ~d′′ ~s mS fA ~so

1 ttr1 ~b1 †~a3 ~a2 ~a1 ~z1 0 1 ~av

2 ttr2 ~b2 ~b1 †~a3 ~a2 ~a1 0 0 ~av

3 err1 †~b3 ~b2 ~b1 †~a3 ~a2 0 0 ~†av

4 err2 ~c1 †~b3 ~b2 ~b1 ~a3 0 1 ~bv
5 err3 ~c2 ~c1 †~b3 ~b2 ~b1 0 0 ~bv
6 err4 ~c3 ~c2 ~c1 †~b3 ~b2 1 0 ~bv
7 ttr1 ~d1 ~c3 ~c2 ~c1 †~b3 0 1 ~cv
8 ttr2 ~d2

~d1 ~c3 ~c2 ~c1 0 0 ~cv
xv is the result of voting on the values marked in grey at this clock cycle;

mS = modeS ; fA = fetchA.

of any SET within six cycles after its occurrence. In other
words, it is fault-tolerant w.r.t. the SET (1, 7) fault model. The
fault-tolerance properties of mode 2 can be checked with the
same reasoning and mode 1 does not have any.

The error-masking properties are again based on the fact
that, even if a single SET can corrupt several memory blocks, it
can corrupt only one cell in a given memory block. Hereafter,
we consider all possible SET occurrence scenarios.

1 An SET occurring in the combinational part ϕ, the signals
~pi, ~so, ~si, or within the Vot/Detect may only corrupt d cells
(potentially in all memory blocks). Since in mode 3, before an
error detection, modeS = 0, any SET is logically masked at
the multiplexer MuxB and cannot corrupt simultaneously d′

and d. Three cases can be distinguished depending on which
redundant bit vector is corrupted (e.g., ~e1, ~e2, or ~e3 as in
Table 1):

1) If the first redundant bit vector ~e1 is corrupted,
then the voting masks the error within three cycles.
According to Table 1, the voting is performed on
(~e3, ~e2, †~e1), next on (~e3, ~e2, †~e1), and finally on
(~f1, ~e3, ~e2). In all these votes, †~e1 is masked by the
majority voting.

2) If ~e2 is corrupted, †~e2 is masked only during the
first two votes on (~e3, †~e2, ~e1). The third vote
(~f1, ~e3, †~e2) does not guarantee masking †~e2. Since
the result of the third vote may be incorrect, a
corrupted third redundant bit vector propagates. Thus,
the error migrates from the 2nd redundant recalcula-
tion to the third one. We describe in the third case
how an error in the third redundant bit vector is
masked.

3) The third redundant bit vector can be corrupted by an
SET or, as we just showed, by an error propagation
from the second redundant recalculation. In both
cases, the fail signal will be raised during a 3i − 1
clock cycle, which indicates that either ~e2 or ~e3 is
corrupted. Such case triggers the recovery procedure
described below.

The recovery procedure is organized by the DyTR3 control
block (Figure 5). If no error is detected, the control block
goes through the ttr1 − ttr2 − ttr3 states of its automaton.
However, if an error has been detected at a (3i−1) clock cycle
(automaton state ttr2), then the FSM takes the edge ttr2 →
err1 to start the recovery procedure illustrated in Table 3.

Table 3 presents the detection of a corruption of the third
bit vector ~a3 and its recovery. The comparison is done between

d′ and d′′, so the corrupted vector †~a3 is detected at cycle 2
(Table 3). At cycle 3, the control block goes to state err1. As
explained above, cycles 1 and 2 produce a correct result ~av at
so, but cycle 3 may produce a corrupted bit vector †~av . Since
the †~av propagates through the combinatorial circuit, the input
vector of the sequential part †~b3 at the same cycle may be
corrupted. On the other hand, we know that already computed
vectors ~b2 and ~b1 are correct.

At cycle 6, the control block is in state err4. It raises the
modeS signal, which substitutes the usual vote on (d′, d′′, s)
with a vote on (d′, s, s) ignoring the incorrect †~b3 in d′′. As
a result, the third redundant bit vector ~c3 is correct and the
corrupted †~b3 disappears from the circuit at cycle 8.

2 An SET at the global control wire fetchA can corrupt only
one of the inputs of the majority voter. In the worst case, it
would corrupt the computation of the third redundant bit vector
(during cycles 3i). Indeed, instead of voting on (d′, d′′, s), the
memory block will vote on (d, d′, d′′), producing possibly a
wrong value. This single error will be detected and corrected
as explained in case 1 . In the two other cases, the voting
produces the correct result because two inputs of the voter
remain correct.

3 An SET at the global wire modeS may corrupt the outputs
of the multiplexers MuxB and MuxC. The corruption of MuxC
substitutes d′′ with s or vice versa. However, such substitution
alone cannot influence the majority voting at any cycle. During
3i−2th cycles, the other two redundant bits are correct and, at
the other cycles, d′′ = s. The corruption of MuxB is equivalent
to a corruption of d′. This has been treated in case 1 .

4 Any SET in the centralized control block will be masked
within one clock cycle due to its TMR protection.

Other options of SET injection (e.g., inside dynamic delay)
lead to the error masking scenarios described above.

V. DYNAMIC DOUBLE-TIME REDUNDANCY

Dynamic double-time redundancy can be seen as a sim-
plified version of DyTR3. Here, we just sketch its main
components and features.

A. Memory Block

Each memory cell in the original circuit (with input si and
output so) is substituted with the memory block presented in
Figure 6. In dynamic double-time redundancy, error masking
is fundamentally impossible because there is not enough
redundancy. Consequently, the memory blocks perform only
error detection using a comparator.

The memory block for DyTR2 consists of the following
components:

• cells d and d′ save redundant information for com-
parison in mode 2; in this operating mode, the input
stream is upsampled twice and d and d′ contain the
same value each odd cycle;

Dynamic Delay

Q
d

D Q Q
d'

D Qsi

modeS

fail

1

0
C

soMUX

EQ

≠

Vot/Detect

Fig. 6. Memory block for DyTR2.

• a comparator EQ which raises the fail signal if d and
d′ differ; in mode 2, if this signal is raised during an
odd cycle, it indicates an error detection;

• a multiplexer MUX that allows to switch between the
double-time redundancy (mode 2 when modeS=0) and
no redundancy (mode 1 when modeS=1).

B. Control block and mode switch

The global control signal modeS is set by the control block
represented as the FSM in Figure 7.

noRed

mode 1

dtr1 dtr2

mode 2

modeS=1

mod '2'

'1'mod

modeS=0 modeS=0

Fig. 7. Control block for DyTR2.

This FSM is made of two sub-automata, each one repre-
sents an operating mode. The single state automaton notRed
corresponds to the non-redundant mode 1, while the two state
automaton {dtr1 , dtr2} corresponds to mode 2. The label on
each state defines the value of the global control signal modeS
set by the control block. The transition between the two sub-
automata models the switches between modes. They depend
on the primary input mod, which is represented as a guard.

VI. EXPERIMENTAL RESULTS

The proposed transformations have been applied to the
ITC’99 benchmark suite [8]. We considered three transforma-
tions: TMR (with triplicated voters after each memory cell),
dynamic double (DyTR2) and triple (DyTR3) time redundancy
as described before. Each transformed circuit was synthesized
for Field-Programmable Gate Array (FPGA) using Synplify
Pro. We chose the Flash-based ProASIC3 FPGA family as
a synthesis target. We protect its data memory with one of
the above transformations, whereas its configuration memory
is immune to soft errors [9].

Figure 8 illustrates the relative hardware overhead intro-
duced by TMR, DyTR2, and DyTR3. The source circuit b21
(first bar) consists of a large combinational part (bottom part:
7737 core cells of Flash-based FPGA) and a small sequential
part (top part: 490 core cells). In the TMR version of b21
(second bar), the triplicated combinational part is dominant.
The triplicated voters after each memory cell (for protection
against SET) occupy 13.3% of the whole circuit. The DyTR3

and DyTR2 circuits (third and fourth bars) reuse the combina-
tional part. For DyTR3, we explicitly indicated the size of the
dynamic delay, the Vot/Detect component, and the saving line.

The DyTR2 circuit has an even smaller area overhead coming
from the smaller size of its dynamic delay and the absence
of saving line. In DyTR2 and DyTR3, the size of the control
block is negligible in comparison with the rest of the circuit
(< 1%).

ysavingylinen

Vot/Detect

H
ar

dw
ar

ey
(c

or
ey

ce
lls

)

30

25

20

15

10

5

0

sequential
combin.

voters

Dyn.Delay
Ctr.Block

DyTR DyTRTMRorig 23

x10
3

Fig. 8. Transformed circuits profiling (circuit b21).

In the following experiments, the circuits of the ITC’99
benchmark suite are sorted according to the ratio between
the sizes of combinational and sequential parts in the original
circuit (written COM/SEQ). Figure 9 shows the circuit size
growth (relatively to the original one) after the transformation
for highly combinational circuits (COM/SEQ > 8, i.e., more
than 8 combinational core cells per memory cell).

70
x10

2

b05 b15 b17 b22 b20 b21

x10
3

original
TMR
DyTR
DyTR

0
10
20
30
40
50
60

6

14

0
2
4

12

8
10

3
2

Fig. 9. Circuit size (in core cells) after transformation (COM/SEQ > 8).

Figure 9 shows that the DyTR2 circuits are 1.18 to 1.37
times larger than the original ones, whereas DyTR3 circuits are
1.46 to 2.17 times larger. For comparison, TMR circuits are 3.4
to 3.65 times larger than the original ones. As a result, DyTR2

and DyTR3 circuits are 2.7 to 2.9 and 1.7 to 2.4 smaller than
TMR ones.

original
TMR

x10
2

0
1
2
3
4
5
6 x10

2

0
5

10
15
20
25
30
35

b02 b01 b06 b03 b09 b08 b13 b10 b04 b07 b12 b11

DyTR
DyTR3

2

Fig. 10. Circuit size (in core cells) after transformation (COM/SEQ < 8).

Figure 10 shows that when the combinational part is small,
DyTR2 and DyTR3 are still 2.4 to 2.8 and 1.36 to 1.71
smaller on average than TMR. But the attractiveness of time
redundancy schemes are lower for circuits that have a small

combinational part (e.g., b02, b01, b06, and b03). For such
circuits, lower hardware benefits and loss in throughput could
make the non-adaptive TMR a better option.

The figures do not explicitly represent the overhead of
the input/output interface, which are responsible for streams
upsampling/dowsampling respectively. Since such interfaces
need to be tuned to the surrounding circuit, we do not propose
a particular design here. The overall overhead of such interface
depends on the number of inputs/outputs wires since a small
upsampling/downsampling FSM may have to be inserted for
each of them. For several circuits, we have evaluated the
overhead to be around 5%.

The DyTR3 and DyTR2 fault-tolerance techniques yields
adaptive fault-tolerant circuit with a significantly smaller hard-
ware overhead than TMR. As they keep the combinational part
unchanged, their hardware benefits compared to TMR grow
with the size of the combinational sub-circuit. On the other
hand, they decrease the throughput in time-redundant operating
modes (> 1). Since a mode n requires an n-upsampling of the
input stream, the corresponding throughput is divided by n.
This loss is inherent to any time-redundant technique.

We also investigated the relative loss of the maximum
synthesizable frequency for the transformed circuits relatively
to one of the original circuit. The TMR voters clearly slow
down the circuit. The maximum frequency decrease varies
from 3-10% for large circuits (b05, b17, b20− b22) to 25-35%
for small ones (b02, b03, b06,). In the best case (b15, b21−b22),
the maximum frequency of DyTR2 circuits is lower than the
original one by 1-5%. The control block and the multiplexers
in the memory blocks introduce an overhead and the Vot/Detect
component makes the critical path longer. This is especially
visible in circuits with a small combinational part and con-
sequently with low flexibility in combinational optimization
(b13, b06, b03). In such cases, the loss in maximum frequency
can reach 25-30% which comes close to the loss observed
with TMR. A similar behavior is observed for DyTR3. The
Vot/Detect circuit is more complex than the one in DyTR2.
The maximum frequency loss is also a bit higher: 1-10% for
circuits with a large combinational part (b15, b21 − b22) and
up to 35-44% for small circuits (b02, b06, b13).

VII. RELATED WORK

Automatic insertion of fault-tolerance in hardware has been
considered mostly for techniques such as TMR and error-
correcting codes. The use of time-redundancy is much less
standard and usually has an ad-hoc character. It has been
used, for instance, to create fault-tolerant designs of arithmetic
units [10] or CPUs [11].

Nicolaidis et al. [12], [13] presented a related time-
redundant Integrated Circuit (IC) transformation. Their fault-
tolerant mechanism relies on latching-window masking when
an SET glitch is not latched by memory cells since it does not
satisfy setup and hold time conditions. A similar technique has
been presented in [14]. In comparison with our technique, it
requires a strong control of the clock lines. It has been used
only with a special hardware support in Application-Specific
Integrated Circuit (ASIC) designs and expensive radiation-
hardened Xilinx FPGAs.

A specific form of time-redundancy has been widely used
in ASIC CPU pipelines [15], [16]. A “shadow” latch is
annexed to each original memory cell to implement an error
detection mechanism. However, as in the previous cases, the
error-detection mechanism cannot be implemented without a
dedicated clock line and precise time properties tuning.

The standard synthesis tools for commercial off-the-shelf
FPGAs cannot provide the strong clock timing control required
by all observed related techniques due to the build-in clock
trees. Consequently, such techniques are not applicable for
FPGAs, the technology we are mainly aiming for. In addi-
tion, previous works consider the effect of sub-critical supply
voltages as the main source of soft errors and, as a result, do
not take into account all possible fault scenarios (as we do)
caused by natural radiation.

Other hardware-based time-redundant techniques rely on
check-pointing mechanisms which can be automatically in-
serted at register-transfer level [17]. The insertion of check-
points makes such transformation complex while the interface
to the surrounding circuit has to be tuned too. We have
recently proposed a time-redundant transformation with micro
checkpointing and rollback [18] where a kind of dynamic time
redundancy is used to speed up the recovery phase and make it
transparent for the surrounding circuit. In this paper, we have
generalized that principle as a separate technique to produce
adaptive fault-tolerant circuits.

VIII. CONCLUSION

We proposed a novel general logic-level circuit transfor-
mation to automatically introduce time-redundancy operating
modes for fault-tolerance. As any time-redundant technique,
the transformation trades-off the throughput for low hardware
overhead. An important novelty is that transformed circuit
may dynamically adapt the throughput/fault-tolerance trade-
off by changing its operating mode. Therefore, time-redundant
modes can be used only in critical situations (e.g., above South
Atlantic Anomaly (SAA), Earth poles for satellites), during
the processing of crucial data (e.g., encryption of selected
data), or critical processes (e.g., satellite computers reboot).
When hardware size is limited and fault-tolerance is only
occasionally needed, the proposed scheme is a better choice
than static TMR, which incurs a constant high area overhead.

After an intuitive presentation of the general dynamic
time-redundancy transformation, we have detailed two useful
instances (DyTR2 and DyTR3) which can detect and/or mask
an SET. We have applied the proposed transformations
to the ITC ′99 benchmark suite. The synthesis results for
Flash-based FPGA show that DyTR3 and DyTR2 circuits are
respectively 1.7–2.4 and 2.7–2.9 times smaller than TMR for
circuits with big combinatorial part (at least 8 cores cells per
memory cell). The hardware overhead of DyTR3 and DyTR2

is respectively up to 5.3 and 13.4 times smaller compared to
TMR. A comparable loss of maximum synthesizable frequency
has been observed for all three circuit transformations (TMR,
DyTR3, DyTR2).

As in software, time redundancy is only suited to appli-
cations that do not always require maximum throughput. A
particular target is flash-based FPGA designs (where hardware
size is crucial) for embedded systems used in safety critical

domains (e.g., physical device controllers, power supply se-
quencers, crypto cores). Existing FPGA synthesis tools can
easily be enriched with our technique. While we focused in
this paper on FPGA applications, our technique can also be
used for fault-tolerant designs in ASICs.

As future work, we are looking at protecting the clock tree
from the effects of SETs and at optimizing the technique with
retiming. In addition, we have already proved several related
transformations (TMR, simple triple time redundancy and
double time redundancy with checkpointing and rollback [18])
using the Cop proof assistant. A formal certification of DyTR
would also be needed for complete confidence.

REFERENCES

[1] S. Mitra, N. Seifert, M. Zhang, Q. Shi, and K. S. Kim, “Robust system
design with built-in soft-error resilience,” IEEE Computer, vol. 38,
no. 2, pp. 43–52, Feb. 2005.

[2] P. Shivakumar, M. Kistler, S. Keckler, D. Burger, and L. Alvisi,
“Modeling the effect of technology trends on the soft error rate of
combinational logic,” in DSN, 2002, pp. 389–398.

[3] J. von Neumann, “Probabilistic logic and the synthesis of reliable
organisms from unreliable components,” Automata Studies, Princeton
Univ. Press, pp. 43–98, 1956.

[4] B. Bridgford, C. Carmichael, and C. W. Tseng, “Single-event upset
mitigation selection guide,” Xilinx Application Note XAPP987, vol. 1,
2008.

[5] A. Sutton, “Creating highly reliable FPGA designs,”
Military&Aerospace Technical Bullentin, vol. Issue 1, pp. 5–7,
2013.

[6] E. J. Daly, J. Lemaire, D. Heynderickx, and D. J. Rodgers, “Problems
with models of the radiation belts,” IEEE Transactions on Nuclear
Science, vol. 43, no. 2, pp. 403–415, Apr 1996.

[7] A. Bogorad et al., “On-orbit error rates of RHBD SRAMs: Compar-
ison of calculation techniques and space environmental models with
observed performance,” IEEE Trans. on Nuclear Science, pp. 2804–
2806, 2011.

[8] F. Corno, M. Reorda, and G. Squillero, “RT-level ITC’99 benchmarks
and first ATPG results,” Design Test of Computers, pp. 44–53, 2000.

[9] “Neutron-induced single event upset SEU,” Microsemi Corporation, no.
55800021-0/8.11, August 2011.

[10] Y.-M. Hsu, V. Piuri, and E. Swartzlander, “Efficient time redundancy for
error correcting units and convolvers,” in IEEE International Workshop
on Defect and Fault Tolerance in VLSI Systems, 1995, pp. 198–206.

[11] K. Makoto, A. Masayuki, F. Satoshi, and I. Kazuhiko, “Time re-
dundancy processor with a tolerance to transient faults caused by
electromagnetic waves,” DSN, 2007.

[12] M. Nicolaidis, “Time redundancy based soft-error tolerance to rescue
nanometer technologies,” in 17th IEEE VLSI Test Symposium, 1999, pp.
86–94.

[13] L. Anghel, D. Alexandrescu, and M. Nicolaidis, “Evaluation of a soft
error tolerance technique based on time and/or space redundancy,” in
13th Symposium on Integrated Circuits and Systems Design, 2000, pp.
237–242.

[14] F. L. Kastensmidt, C. Luigi, and R. Reis, “Fault-Tolerance Techniques
for SRAM-based FPGAs,” Springer, Frontiers in Electronic Testing,
2006.

[15] D. Ernst et al., “Razor: a low-power pipeline based on circuit-level tim-
ing speculation,” in 36th Annual IEEE/ACM International Symposium
on Microarchitecture, Dec 2003, pp. 7–18.

[16] N. Avirneni, V. Subramanian, and A. Somani, “Low overhead soft error
mitigation techniques for high-performance and aggressive systems,” in
DSN, June 2009, pp. 185–194.

[17] C. Chan, D. Schwartz-Narbonne, D. Sethi, and S. Malik, “Specification
and synthesis of hardware checkpointing and rollback mechanisms,”
Design Automation Conference, pp. 1222–1228, June 2012.

[18] D. Burlyaev, P. Fradet, and A. Girault, “Automatic time-redundancy
transformation for fault-tolerant circuits,” International Symposium on
Field-Programmable Gate Arrays, February 2015.

