
Towards a Generic Framework for AOP

Pascal Fradet1 and Mario Südholt2

1 IRISA/INRIA, Campus de Beaulieu, 35042 Rennes cedex, fradet@irisa.fr
2 École des Mines de Nantes, 4 rue A. Kastler, 44307 Nantex cedex 3,

sudholt@emn.fr

1 Introduction

During the 1st workshop on AOP [AOP97] several fundamental questions were
raised: What exactly are aspects? How to weave? What are the join points used
to anchor aspects into the component program? Is there a general purpose as-
pect language? In this position paper, we address these questions for a particular
class of aspects: aspects expressible as static, source-to-source program transfor-
mations. An aspect is defined as a collection of program transformations acting
on the abstract syntax tree of the component program. We discuss the design of
a generic framework to express these transformations as well as a generic weaver.
The coupling of component and aspect definitions can be defined formally using
operators matching subtrees of the component program. The aspect weaver is
simply a fixpoint operator taking as parameters the component program and a
set of program transformations. In many cases, program transformations based
solely on syntactic criteria are not satisfactory and one would like to be able
to use semantic criteria in aspect definitions. We show how this can be done
using properties expressed on the semantics of the component program and im-
plemented using static analysis techniques. One of our main concerns is to keep
weaving predictable. This raises several questions about the semantics (termi-
nation, convergence) of weaving.

2 Aspects and aspect definitions

Component language and program transformations. We advocate using a single
powerful and flexible transformation language for the definition of aspects. First,
our framework should be generic with respect to the component language. To
this aim, the abstract syntax of the component language is described by a tree
data type. The component program is seen and manipulated as a tree. Then,
defining aspects for a specific component language can be done on the basis of
the abstract syntax definition. A transformation is just a function which maps
the tree representing the component program to a new tree. Any programming
language could be used; there exist, however, powerful and executable special-
ized languages which permit to express concisely such transformations. These
languages are based on patterns and tree matching operators. TrafoLa-H [HS93]
is such a language where transformations are of the form pat =⇒ TreeExpr.



Applied to a source program, it transforms a subtree matching pat into the re-
sult of the evaluation of TreeExpr. The variables occurring in pat are bound to
subtrees and TreeExpr is a functional expression which is evaluated with these
bindings.

Aspects. The features of TrafoLa-H make it easy to specify join points, both
generic ones or join points which are specific to a particular program. For ex-
ample, assuming an imperative component language, patterns matching “each
program point”, “each assignment containing a division”, or “all calls to the
function f” can be described succinctly. In this setting, an aspect is simply a
set of transformations specifying how code should be transformed at join points.
The order of declaration of transformations is not relevant and transformations
can be applied in any order. A fundamental question is whether the transfor-
mations are semantics-preserving or not. We believe that restricting ourselves
to semantics-preserving transformations would be too strong a limitation. The
class of expressible aspects would boil down to optimization aspects. On the
other hand, transformations which are not semantics-preserving may be much
too general because it is absolutely crucial to keep control over the semantics of
woven programs. Each aspect language has to include appropriate restrictions
on the transformations.

Generic weaving. The generic aspect weaver is defined in this setting using re-
peated applications of program transformations to the component program until
a fixpoint is reached. The weaver is therefore parameterized with a component
program P and a set of transformations T :

Weaver(P , T ) = if ∃τ ∈ T : τ(P) 6≡ P then Weaver(τ(P), T ) else P (1)

This definition raises several interesting issues. First, in general, this definition
does not describe a terminating algorithm because of the fixpoint computation.
So, one has to make sure that the rewriting system specified by the program
transformations is terminating. While this problem is undecidable in general,
it is often trivial to solve for practically relevant transformations. A second
problem arises from transformations which are not semantics-preserving. Since
no application order is specified, two different weavings of the same component
program and aspects may lead to programs whose semantics differ. In some
cases, this might be acceptable. Otherwise, one would also have to make sure
that the rewriting system is confluent.

3 Integrating program analyses

Property-based aspects. In many cases, purely syntactic criteria are not com-
pletely satisfactory to define aspects. As an illustration, let us consider a specific
aspect dealing with program robustness. Intuitively, such an aspect specifies in-
variants which must be verified by a program. After weaving, the program either
respects the invariants or invokes an exception. For instance, if the invariant to



check is V ≤ 5 a naive solution would be to insert the statement if V > 5
then error after all assignments to V . But there is no point in generating such
a test after the assignment V := V −1. We would like to check the invariant only
when it may be violated. This means, we need a way to define and use semantic
criteria in aspects. This is achieved by extending the syntax of aspect-defining
transformations as follows

pat =⇒ if Prop then T1 else T2 (2)

where Prop is a property of the component program defined using its standard
semantics. Intuitively, this can be read “for each part of the component program
matching pat, if Prop can be proven then produce the tree T1 else produce T2”.
Assuming an axiomatic semantics, an example of a transformation (which can
be implemented using a local analysis) is

pat =⇒ if {V ≤ 5}V := E {V ≤ 5} thenV := E else V := E; if V > 5 then error;

which avoids inserting tests when the invariant holds after the assignment as-
suming that it holds before. Note that we could achieve even better results with
a global analysis. In this case, inserted tests augment the precision of the analysis
because it proceeds on the transformed programs.

Since we consider only static and automatic weaving, the properties occurring
in aspects are meant to be inferred by a static analyzer. Thus, we can only expect
safe approximations of these properties. Furthermore, one is not supposed to
have any knowledge about the precision of the analyses. In order to have control
on the semantics of the produced programs, it is important to enforce that each
transformation of the form (2) satisfies the following semantic equality

Prop ⇒ [[T1]] = [[T2]]

In the case of semantics-preserving transformations this condition trivially holds.
Otherwise, the condition ensures that the precision of the analyzer cannot have
any impact on the meaning of the woven program. Indeed, if Prop does not hold
then the analyzer will not be able to infer it (it infers only safe approximations)
and T2 will be produced otherwise T1 and T2 are semantically equivalent and
the result of the analyzer does not semantically matter. Thus, the properties are
best seen as filters to optimize weaving. In our previous example, it is clear that

{V ≤ 5}V := E {V ≤ 5} ⇒ [[V := E]] = [[V := E; if V > 5 thenerror;]]

Generic weaving of property-based aspects. Since we are interested in a generic
description of aspects and the aspect weaver, we need a framework allowing the
definition of the component language semantics, the description of properties
and the derivation of static analyzers. The automatic derivation of an analyzer
from a semantics and a property is still an open research issue. At the mo-
ment, we are only working on a common formulation for different analyzers.
The weaver remains essentially the same as defined in (1) but each application



of a transformation may require a program analysis to be performed. In general,
properties or transformations can be global so the component program must be
re-analyzed after each transformation. In the common case of local properties
and transformations, a one-pass analyzer can be integrated into the weaver.

Hypotheses. The usability of the approach as described hitherto may depend
too much on the analyses. For example, the aspect of robustness described below
would not be realistic without program analysis. This does not quite fit the spirit
of AOP (i.e. “no smart compilers”). We address this problem by extending the
language of aspects with so-called hypotheses. An hypothesis is of the form
pat =⇒! Prop. It is not checked by the analyzer but integrated as a new piece
of information. Through hypotheses, the user can help and control the analyzer.
Of course, false hypotheses may lead to unexpected results but they are at least
documented and the user has explicitly acknowledged her or his responsibility.

4 Conclusion

Until now, aspects have always been described and implemented in a rather ad
hoc way. Here, we have sketched a generic framework based on program trans-
formation and analysis which accommodates a large class of aspects. It is generic
with respect to the component programming language: different languages can be
incorporated by changing the abstract syntax. Once the syntax is described, the
framework provides a pattern-based language to describe aspects and a generic
weaver. Aspects can refer to semantic properties of the component program. In
order to implement property-based aspects the framework provides a common
format to express static analyzers.

At the moment, the main weakness of the framework is semantic. When
transformations which are not semantics-preserving are to be taken into account,
the framework does not provide much help to reason about the semantics of
weaving. For this reason, the framework does not come close to a theoretical
foundation at the moment. However, it does provide useful tools as well as simple
answers to the questions asked in the introduction.

In the near future, we intend to complete the description and formalization
of the framework. We see robustness and exceptions as a paradigmatic example
of an aspect. They are largely independent from the component program but
their introduction crosscuts large parts of it. We are designing a comprehensive
aspect of robustness and plan to implement it for a small imperative language.

References

[AOP97] K. Mens, C. Lopes, B. Tekinerdogan, G. Kiczales. “Aspect-Oriented Pro-
gramming Workshop Report”, 1st Int. Workshop on AOP, ECOOP, 1997.

[HS93] R. Heckmann, G. Sander: “TrafoLa-H Reference Manual”, LNCS 680, ch. 8,
1993.

[Kic+97b] G. Kiczales et al.: “Aspect-Oriented Programming”, collection of technical
reports no. SPL-97-007 – 010, Xerox Palo Alto Research Center, 1997.


