
An aspect language for robust programming

Pascal Fradet
IRISA/INRIA-Rennes

www.irisa.fr/lande/fradet

Mario Südholt
École des mines de Nantes

www.emn.fr/sudholt

1 Introduction

Robust programs should satisfy two basic conditions. First, compute well-defined output val-
ues from well-defined sets of input values, henceforth called the program’s standard domain.
Second, input values from the complement of the standard domain, henceforth called the pro-
gram’s exceptional domain, should result in well-defined error situations. Most real programs,
however, are not robust. While the first condition is the subject of almost all programming
methodologies and most programming efforts, the second is violated in most non-trivial pro-
grams which often yield incorrect results once an erroneous situation has appeared. Worse,
the incorrect results are frequently not recognized as such, for instance, because they approx-
imate correct values quite well or they are immediately used in subsequent computations. In
this position paper, we advocate the use of an aspect language for robust programming. AOP
is particularly appealing for this task because robustness crosscuts traditional structuring
means. Consider, for instance, the problem of ensuring that a global index remains in a given
range. The code needed to check such an invariant is typically scattered all over the program.

The paper is structured as follows: Section 2 presents an example-driven introduction of
the proposed aspect language for program robustness; Section 3 discusses its semantics and
implementation; Section 4 suggests extensions and concludes.

2 An aspect language for robustness

int mean(int x[99], int i) {
int n = 0;
int j = 0;
while (i != 0) {
i := i - 1;
j := j + 1;
n := n + x[i];

}
n = n / j;
return n;

}

Figure 1: C-like program calculat-
ing arithmetic means

Conceptually, an aspect language for robustness
must provide means for two kinds of information: the
standard/exceptional domains of variables and the han-
dling of exceptional situations. We focus here on nu-
merical domains and fix component programs to be im-
perative programs [4, 1].

Consider the program shown in Figure 1 which cal-
culates the arithmetic means of an initial segment of
length i of an array x. The example program is not
robust for at least three reasons: 1. since i is used to
index x it must lie within the array bounds; 2. j must
not be zero in the dividing statement; 3. the calculation
of the sum in the while-loop may overflow.

Our robustness aspect allows these three robustness
conditions to be formulated as follows:

1

1. INVARIANT (0 <= i <= 99) HANDLE abort "index i out of range"

An invariant directive enforces its condition on the whole component. It refers to
syntactic entities of the component entities by means of patterns, such as pattern i for
“the program variable i”. Definition 1 states that the standard domain of i must be
[0, 99]. In general, a condition can be any linear constraint involving numerical variables.
Definition 1 stipulates that program execution has to be aborted with the given error
message if this invariant is violated. It would cause no semantic difficulties to generalize
the handling to arbitrary closed programs (i.e. where the component execution is not
resumed) instead of a simple abort.

2. DOMAIN (V:var != 0) IN (/ V) HANDLE abort "division by V == 0"

A domain directive enforces its condition of a set of program points specified using pat-
terns. Here, V is an aspect variable of type var denoting component program variables.
The pattern (/ V) matches all dividing statements whose divisor is a single program
variable. The aspect language offers several high-level patterns to select, for example,
name spaces (scopes), regions between two specific statements, the enclosing block of a
specific statement, etc. Definition 2 states that, for each program point where a divi-
sion by a variable occurs, this variable must be different from zero. In other words, it
requires the standard domain to exclude divisions by null variables. It applies to the
division using j in the example program.

3. OVERFLOW IN (while(,);) HANDLE extend(n)

An overflow directive specifies a set of regions where overflow exceptions must be caught
and treated by a specific handling. For overflows (and underflows) the handling is
more sophisticated and returns to the component code for a retry. The semantics
remains manageable because we restrict ourselves to a standard and controlled handling.
extend(vars) doubles the number of bits used to represent the variables vars by two
before a retry (and so on until no overflow occurs). Definition 3 specifies that overflow
has to be treated in the statement sequence containing the while-loop and the statement
following the loop. This overflow will be handled by extending the representation of
the component variable n in the region comprising the while-loop and the following
statement.

3 Semantics and implementation

The standard domain is defined as part of the robustness specifications: invariant directives
impose restrictions on the whole program, domain directives allow restrictions to be imposed
on specific parts of the program (such as all division statements) and overflow directives
impose restrictions on numerical calculations. The semantics of the woven program is the same
as the original program on the standard domain. The semantics on the exceptional domain
is more complicated since there is no insurance that all possible overflows or underflows are
captured by the aspect. On the exceptional domain, the woven program yields either an
error message (e.g. an invariant directive has been violated), the same value as the standard
semantics of the original program over arbitrary-precision values (overflows/underflows have
been handled) or, as the standard semantics of the original program, an ill-defined result (an
overflow/underflow has not been captured).

2

Let us point out that the semantics of the aspect-oriented program has been specified
without consideration of the implementation, the aspect weaver or the actual woven program.
We believe this to be a crucial property of an aspect language.

The implementation is based on a generic analysis and transformation based framework for
AOP [3]. In this framework, an aspect is just a collection of source-to-source transformations
whereas join points are defined using patterns over abstract syntax trees. Join points and
transformations are specified using TrafoLa-H [5], a language designed to express program
transformations. The generic aspect weaver is defined simply as a fixpoint applying the
transformations to the component program. Transformation application is done exhaustively
(i.e. as long as one of the transformations can still be applied) and can be done in any order.

In this setting, the implementation of our robustness aspect amounts to translating its
directives into TrafoLa-H expressions. Invariant and domain directives are translated into
transformations which introduce tests in the component program ensuring that program ex-
ecution is aborted if the corresponding conditions are violated. The overflow directive trans-
lates to a transformation which encapsulates the code it matches into a while-loop executing
this code on values of higher and higher precision. This loop will be executed until no over-
flow occurs anymore. On exit of this code, extended variables are cast back to their original
precision (an overflow at this point would entail an abort).

Since weaving is a repeated application of the transformations in no specific order, the
translation must ensure termination and confluence. In our case, this amounts to making
sure that transformations do not overlap and cannot insert repeatedly the same test at the
same program point.

Up to now, we said that conditional statements are inserted before any statement matching
the code pattern of invariant and domain directives. Obviously this approach is not very
efficient because many superfluous tests may be inserted. Static analysis techniques should
be used to eliminate many of these useless tests without changing the semantics of the woven
code. For numerical constraints, we rely on standard analysis techniques to infer linear
constraints among program variables [2]. The analysis annotates the abstract syntax tree
with properties. Invariant and domain directives are translated into transformations which
insert tests only if the property inferred by the analyzer at the current program point does
not imply the condition. For example, the domain directive

DOMAIN (V:var != 0) IN (/ V) HANDLE abort "division by V == 0"
is translated into

stmt && contains(:expr / V:var) =⇒
if 6` V 6= 0 and !precedes(ifStmt, match) then ifStmt; match

where ifStmt = if (V == 0) abort "division by V == 0"

For each statement where a division by a variable V occurs, if the analysis is not able
to prove that V is different from 0 (i.e. 6` V 6= 0) then a test is inserted. The pattern
!precedes(ifStmt, match) ensures that the same test is not inserted twice at the same
program point and guarantees termination of weaving.

Actually, our language offers a fourth kind of directive to add knowledge and eliminate
tests. ASSUME directives allow the analysis to make the hypothesis that a property holds
at a specific set of program points. If we know that the procedure mean of Figure 1 is always
called with a strictly positive i, we could add the directive ASSUME i>0 IN int n = 0;.
Fewer tests will be generated to check the invariant directive. Furthermore, the analysis will

3

infer that j is always greater than 0 (the loop is executed at least once) and no test needs to
be inserted to check division by zero. For the example, a single test (if i>99 then abort
"index i out of range") has to be inserted at the entry of mean to enforce the invariant
and domain directives.

4 Conclusion

Our approach to AOP separates issues in three levels. An implementation (or generic) level
which provides tools (a generic transformation language and a generic weaver) to implements
all kinds of aspect languages. A linguistic level defining a domain specific aspect language;
semantics issues are addressed at this level. An application (or user) level where aspects for
specific components are written. Here, we focused on the linguistic level and proposed an
aspect language for robustness. The aspect language was restricted/designed to provide a
clear semantics for aspect oriented programs. Its implementation consists in a translation in
terms of basic program transformations of the generic level and a static analysis to optimize
weaving. Up to now, we have a completely formal definition of the robustness aspect, its
translation to source code transformations and the generic aspect weaver. We are working on
the integration of an analyzer to complete a prototype implementation.

We are considering two directions for further research. First, we focused on numerical
calculations in this paper because robustness is particularly important in this field. The
robustness aspect should be extended to be able to express directives on the other data types.
If booleans are a trivial extension, a proper treatment of pointer-based data structures implies
the integration of an alias (or points-to) analysis. Second, we are investigating the application
of the generic framework to other aspects, in particular a debugging and a security aspect.
The former should allow the definition of debugging properties such as “trace the value of
variable x in procedure p as soon as y becomes null”. A first approach to the latter is the
integration of resource-based security schemes such as “deny access to I/O port 123 from
processes belonging to process group pg”.

References

[1] E. Best, F. Cristian: “Systematic Detection of Exception Occurrences”, Science of Computer
Programming, 1(1-2), 1981

[2] P. Cousot, N. Halbwachs:“Automatic discovery of linear restraints among variables of a program”;
Proc. of 5th ACM Symp. on Principles of Programming Languages, 1978.

[3] P. Fradet, M. Südholt: “AOP: towards a generic framework using program transformation and
analysis”; Proc. Workshop on AOP, ECOOP’98

[4] J. R. Hauser: “Handling floating-point exceptions in numeric programs”; ACM Transactions on
Programming Languages and Systems, 18(2), 1996

[5] R. Heckmann, G. Sander: “TrafoLa-H Reference Manual”, LNCS 680, ch. 8, 1993.

4

