Trace-based Aspects

Réemi Douencé’, Pascal Fradét Mario Sidholt:”

1Ecole des Mines de Nantesk1A, Nantes, France
www. emm. fr/ {douence, sudhol t }
2|RISA/INRIA, Rennes, France
ww. i risa.fr/lande/fradet

Abstract

In this article, we present trace-based aspects which tz@ccount the
history of program executions. They are defined in terms etetion traces
and may express relations between different events. Wgévimodeled by
an execution monitor which modifies the base program exactais defined
by the aspects. We motivate trace-based aspects and erplivas within
the trade-off between expressiveness and property emiertianalysis.

More concretely, we first present a very expressive modebottbased
aspects enabling proofs of aspect properties by equatieaabning. Using
a restriction of the aspect language to regular expresswashow that it
becomes possible to address the difficult problem of intemas between
conflicting aspects. Finally, by restricting the actionsf@ened by aspects,
we illustrate how to keep the semantic impact of aspectsnoatdrol and to
implement weaving statically.

1 Introduction

Aspect-Oriented Programming (AOP) is concerned with providing progrdimma
means to modularize crosscutting functionalities of complex applications. By en-
capsulating such functionalities into aspects, AOP intends to facilitate develop-
ment, understanding and maintenance of programs. An important chatacser

of aspects is that they are built frocnrosscutgpointcuts in AsPECW), which de-

fine where an aspect modifies an application, arserts(advice in ASPECTW),
which define the modifications to be applied. Typically, crosscuts denotefsets o

*Partially funded by the EU project “EasyCompiwv. easyconp. or g), no. IST-1999-014191.

program points or execution points of the base application and insertgaessed
in a traditional programming language. For instance, an aspect forsacoesol
could be defined in terms of crosscuts denoting sets of access methddsents!
performing the necessary tests. However, because aspect lasguwagather re-
stricted, it is often necessary to use inserts to pass information from osgcait to
another one. Consider, for instance, an aspect performing sonssawgrol after
some login event. When the aspect language cannot take into accourgttrg h
of computation, an insert must be used to set a flag when a login takes Blace.
testing the flag, further crosscuts know whether access control sheplerformed
or not.

The fact that inserts are unrestricted and that their role overlaps witloliée r
of crosscuts, makes reasoning on aspects and woven programsltdifficthis
article, we present an approach which — by means of expressivetdapguages
and restrictions on inserts — enable reasoning about different gajpperties.

Trace-Based Aspectse defined on traces of events occurring during program
execution. Trace-based aspects are more expressive than thegeobaatomic
points because relations between execution events — possibly involvimghaxfo
tion from the corresponding execution states — can be expressedx&uoplke,
an aspect for access control could express that a user has to logj in firder to
pass an access check later. Such aspects are stdiedul their implementation
must use some kind of state to represent their evolution according to thieegwven
countered. Conceptually, weaving is modeled by an execution monitor wtaiee s
evolves according the history of program execution and which, in desenatch,
triggers the execution of the corresponding action. By strictly separatisgcuts
and inserts by means of two different, well-defined languages, we saltlre for-
malization of aspects and weaving. Restrictions on these languages allow us to
design static analysis of aspect properties as well as an optimized implementation
of aspect weaving.

We first (Section 2) introduce informally the main features of trace-bagiet A
observable execution traces, stateful aspects (composed of ¢soardunserts),
and weaving (based on execution monitoring). In Sections 3-5, we exthlme
different options within the trade-off between expressiveness amkpy enforce-
ment/analysis. The first option provides a very expressive crossuiidge and
does not impose restrictions on the inserts. Due to its expressive paweayér,
only manual proofs of aspect properties, e.g. equivalence of &sjaee supported
in this case. The second option is characterized by more restricted, batattH
ful, aspects corresponding to regular expressions over execut@sir@ecause
of this restriction it is possible to statically detect whether several aspectadhte
(e.qg, testing whether an encryption aspect interacts with a system loggingyaspec
We also suggest operators for the resolution of such interactions. $thepiton

2

is characterized by a very restricted insert language where aspedie ceen as
formal (safety) properties. We present how these aspects/propeatidse stati-
cally and efficiently woven. An application of this technique is the securization
of mobile code upon receipt. Finally, we discuss related work and condtude
Section 6.

This article is a unified presentation of three distinct studies [DMS01, DFS02
CF00] sharing a trace-based approach to AOP. In order to make thenpa&on
more intuitive, we have deliberately omitted many extensions and technical details
The interested reader may find them in the original conference papers.

2 Characteristics of Trace-Based Aspects

Trace-based aspects have two main characteristics. First, aspectsiaee dver
sequences of observable execution states. Second, weaving ismeetfon execu-
tions rather than program code. The weaver can be seen as a monitoairiteyle
the execution of the base program and execution of inserts

2.1 Observable execution trace

The base program execution is modeled by a sequence of observablgiex
states (a.k.a. join points). This trace can be formally defined on the basis of th
small-step semantics [NN92] of the programming language. Each join point is an
abstraction of the execution state. Join points may denote syntactic information
(e.g., instructions) but also semantic one (e.g., dynamic values). For example
when the user Bob logs, the functibngi n() is called in the base program with
"Bob" as a parameter. This join point of the execution can be represented by the
terml ogi n(" Bob") .

2.2 Aspect language

The basic form of an aspect is a rule of the fa@m | whereC is a crosscut antl
is an insert. The inseftis executed whenever the crossCumatches the current
join point. Basic aspects can be combined using operators (sequepettion,
choice, etc.) to form stateful aspects.

Crosscuts. A crosscut defines execution points where an aspect should perform
an action. In general, a cross€liis a function that takes a join point as a parame-
ter. This function returns eithéei | when the join point does not satisfy the cross-

INote that this model does not prevent weaving to be a compile-time pr¢ses Section 5)

cut definition, or a substitution that captures values of the join point. Fanpbea

we can define a crosscisLoginthat matches session logins and captures the cor-
responding user name. It would returai | when it is applied to the join point

| ogout () and the substitutionid = " Bob" when it is applied td ogi n(" Bob").

Inserts. An insert is an executable program fragment with free variables. For
instance, the inseaddLog(uid + "I ogged in") prints the name of alogged user
when itis executed. In thisinsert, the name of the user is representedvayitiae

uid to be bound by a crosscut. In the remainder of the paper, the specidbikise
represents an instruction doing nothing.

Stateful aspects. The intuition behind a basic aspét- | is that wherC matches
the current join point and yields a substitutipnthe prograny | is executed. For
example, we can define a basic security aspect which logs sessiotisas:fo

isLoginc>addLog(uid + "l ogged in")

In order to build stateful aspects, basic aspects can be combined ustng con
operators. Using a C-like syntax, we can define an aspect which logssaiions
as follows:

while(true) { isLogin>addLog(uid + "l ogged in"); }

This definition applies the basic security aspect again and again. Cop&el o
ators allow us to define sophisticated aspects on execution traces. Foc@)stee
following aspect tracks sequences of sessibngi(n followed byl ogout).

while(true) { isLogin>addLog(uid + "l ogged in");
isLogout>addLog(uid + "l ogged out"); }

2.3 Weaving

In general, several aspects addressing different issues (e.gggiety and profil-
ing) can be composed (using a parallel oper@}@nd woven together. The weaver
takes a parallel composition nfaspectd\ | . .. || A, and tries to apply each of them
(in no specific order) at each join point of the execution trace.

Conceptually, the weaver is an execution monitor that selects the curmat ba
aspects ofg, ..., A, and tries to apply them at each join point. When a crosscut
matches the current join point, the corresponding insert is executed.afiftasic
aspects have been considered, the base program execution is resuhpedceeds
until the next join point.

When a basic aspect of a stateful asp&chas been applied and its insert
executed, the state @ evolves. The control structure & (e.g. repetition or
sequence) specifies which basic aspect must be considered nexinstemce,
the previous security aspect remains in its initial state until a login occursr Afte
the aspect has matched agi n event, it waits to match hogout event before
returning to its initial state.

In the remainder of this article, this framework is instantiated in form of dif-
ferent definitions of crosscuts, inserts and stateful aspects. We ltais differ-
ent aspect languages which can be used to reason about aspeteebpigrams
(manually or using static analysis techniques).

3 Expressive aspects and equational reasoning

We now present a first instantiation of the general framework for AOBduired
in the previous section. This instantiation, which is inspired by the work ptede
in [DMSO01], is intended to illustrate two main points:

e The usefulness of expressive aspect definitions.

e The application of general proof techniques for the analysis and tnanaf
tion of AO programs.

Crosscuts In this section we instantiate the general framework by allowing cross-
cutsC to be arbitrary predicates. For instance, a predicséeakPasswordould
discriminate events occurring when a password should be changed td ahich
belongs to a dictionary. Note that we do not define the crosscuts we use seda
tion; they are supposed to be defined using some general-purposadangu

Stateful Aspects. Since one of our main interests lies in the definitiostaiteful
crosscuts, we base aspect definitions on the following grammar:

A = Cpl ; basic aspect
| A A2 ; sequence
| ALOA ; choice Q)
| paA ; recursive definition
| a : recursive call

This grammar allows us to compose complex aspects by recursion, sequential-
ization and deterministic choic&{OA, choosed\; if both aspect?\; andA; are
applicable at the current join point). Using composed aspects, we cae diefi

example, an aspect trying to apgB> | only on the current join point and doing
nothing afterward as

(Cr>1; (paisAny>ski p; a)) O (paisAny>skip; a)

If C matches the current join point, the weaver chooses the first branatytegze
the insertl and the aspect becompa.isAnyr>ski p; a that keeps doing nothing.
Otherwise, the weaver chooses the second branch which keeps dttimggrright
from the start.

In order to illustrate how such expressive aspects may be used cotisder
following definition:

logNestedLogin- pa .isLoginc> ski p;
(M&p.isLogin>addLog(uid) ; ap; isLogout>> ski p
O isLogoutr>ski p) ; a;

The aspecdiogNestedLogironsiders sessions starting with a call tolthgi n
function with the user identifier as a parameter (as defined by the craslsogin)
and ending with a call to the functidrogout (as defined by the crossdat.ogou).
This aspect logs nested (i.e. non top-level) calls to the login function becagh
a call may login into a non-local network and be therefore dangeroute tRat
there is no need of a stack or an integer counter in inserts to take into doested
sessions. The recursive definition of the aspect is responsibleiforglagins and
logouts, thus detecting non top-level calld twi n.

Now, let us consider the following aspect:

initAtFirstLogin = isLogint>i ni t Net wor kI nf o() ; paisLogine>ski p; a

This aspecinitAtFirstLogin detects the first call to login in order to initialize net-
work information. Then the following calls to login are ignored. Note that we
chose simple examples for demonstration purposes.

Itis easy to prove that the two aspelttgNestedLogimndinitAtFirstLoginare
equivalent to a single sequential aspect. Basically, this can be provanfdiging
of recursive definitions and induction principles [DMS01]. The prdafts with a
parallel compositiomogNestedLogir initAtFirstLoginand eliminates the parallel
operator by producing all the possible pairs of crosscuts from the tpecadefin-
itions and by folding. The resulting sequential aspect can be simplified if apair
crosscut has no solution. In our example we get the following sequesfiata

initAndLog= isLoginc>i ni t Net wor kI nfo() ;
(M&p.isLogin>addLog(uid) ; a; isLogout> ski p
O isLogoutr>ski p);
Mag.isLogine>ski p;
(Haq.isLogin>addLog(uid) ; a4; isLogout>> ski p
O isLogoutr>ski p) ; ag

By restricting the expressiveness of our aspect language (while Stiiriag
to statefulaspects), it is possible to automatically prove (certain) aspect properties.
This is the subject of the following section.

4 Detection and resolution of aspect interactions

In this section we consider a second instantiation of the general frametairk
supports a more restrictive yet expressive crosscut language ih staitic check-
ing of interactions is feasible.

Crosscuts. A crosscut is defined by conjunctions, disjunctions and negations of
terms:

CZZ:T‘Cl/\Cz‘Cl\/Cﬂ—'C (2)

whereT denotes terms with variables. The formulas used to express these tsosscu
belong to the so-called quantifier-free equational formulas [Com91].thehsuch
a formula has a solution is decidable. This is one of the key properties making th
analysis in this section feasible.

We can define, for example, a crosscut matching logins performed byéhe us
root on any machine, or by any non-root user on any machine bigaiheer as
follows:

| ogi n(root, m) V(I ogin(u, m A-login(u, server))

In this context, checking whether the current join point (which is repitesk
remember by a term) matches the crosscut definition is computed by a gemkralize
version of the unification algorithm.

Note that, for the sake of decidability (i.e. static analyses) the crosscutedefi
by Equation 2 are less expressive than those considered in the preeicticn.
They can only denote join points as term patterns (as opposed to arbitnary te
predicates).

Stateful aspects. The main idea of the aspect language presented in this section
is to restrict stateful aspects to regular expressions using the followamgrgar:

A = paA ; recursive definition
| CrI;A ; sequence
| Crl;a ; end of sequence
| ALOA : choice

Using this aspect language a security aspect that logs file accesbggtdca
r ead) during a non-nested session (from a callégi n until a call tol ogout) can
be expressed as

logAccess
M&g.login(u,m)>skip; 3)
(Map-(Logout() > ski p; a;) O (read(x) > addLog(X); a))

wherex matches the name of the accessed file.

4.1 Aspect interactions

Remember that a parallel compositionodispectsy || . . . || A, does not define any
specific order of application of aspects; so the result of the weavirggpsaonay be
non-deterministic. This situation arises when aspects interact, that is to sy wh
at least two inserts must be executed at the same join point. For instance, let u
consider the following aspect:

cryptRead= paread(X) > crypt(x); a

This aspect states that the reads should be encrypted. It obviouskcister
with the aspects defined in Equation 3 which describes logging for all.uaérsn
a user logs in and accesses a file, this access must be lagd#tk file name must
be encrypted.

The algorithm to check aspects interaction is similar to the algorithm for finite-
state product automata. It terminates due to the finite-state nature of ogtsaspe
Starting with a compositioA||A’, the algorithm eliminates the parallel operator by
producing all the possible pairs (conjunction) of crosscuts floemdA’. A pair
of crosscuts is a solvable formula and we can check if it has a solution theng
algorithm of [Com91]. A pair of crosscuts with no solution cannot match aimy jo
point and can be removed from the aspect (for details see [DFS@2helcase of
the previous example@gAccesd| cryptRead we get:

logAccesg| cryptRead=
M&g.login(u,m)>skip;
(M&p.(logout()>skip; a1)
O (read(X) > (addLog(X)Mcrypt(X)) ; a2)
O read(X) > crypt(X); a1

Conflicts are represented using the non-deterministic fungtignl,) which
returns eithety;l> or Ip;l;. Here, we havedaddLog(x) Xcrypt (X)), so the two
aspects are not independent. Note that spurious conflicts have abreaelimi-
nated with the help of the rul@ski p) = (ski pXI) =1.

This analysis does not depend on the base program to be woven. Wnen th
is no (X) in the resulting sequential aspect, the two aspects are independent for
all programs. This property does not have to be checked again aftepeagram
modification. However, this property is a sufficient but not a necessamglition.

A more precise analysis is possible by taking into account the possiblersegue
of join points generated by the base program to be woven (see [DES02])

4.2 Support for conflict resolution

When no conflict have been detected, the parallel composition of asjectsec
woven without modifications. Otherwise, the programmer must get rid of the no
determinism by making the composition more precise. We present in the following
some linguistic support aimed at resolving interactions.

The occurrences of rules of the for@r (11Xl,) indicate all potential in-
teractions. They can be resolved one by one. For €ch(11Xl;), the pro-
grammer may replace each rue> (11Xl12) by C> I3 wherels is a new insert
which combined; andl, in some way. For instance, in the previous example,
(addLog(x) Xcrypt (x)) can be replaced bgrypt (X); addLog(x) in order to
generate encrypted logs.

This option is flexible but can be tedious. Instead of writing a new insert for
each conflict, the programmer may indicate how to compose inserts at thé aspec
level. We propose a parallel operateqto indicate that whenever a conflict oc-
curs,(11Xl2) must be replaced bly;l> (where “;” denotes the sequencing operator
of the programming language). Other parallel operators are usefi, a8j@st
which replacegl1Xl5) by 15 only.

Let us reconsider the two aspeligAccesandcryptRead

¢ logAccesg|seqCryptReadyenerates plaintext logs for super users,

e cryptRead||seqlogAccesgenerates logs for users by logging (possibly en-
crypted) accesses,

5 Static weaving of safety properties

The previous restrictions allowed us to detect interactions during weakiogy-

ever, they are not sufficient to detect semantic interactions. The coelgeiddy
an aspect may still influence the application of another independenttaspec
notion of independence only ensures that aspects can be woven imdary

order to prevent semantic interactions and, more generally, to contra inengic
impact of weaving, one has to restrict the language of inserts. Herepnader
the same aspect language as the previous section, except for theganfusserts
which becomes

| :=skip | abort

Even if this restriction is quite drastic (aspects can only abort the execitiber)
esting aspects can still be expressed. The expressive crossauddangllows us
to specify safety properties (properties stating that no “bad thing” hepgering
the execution). Aspects can be used to rule out unwanted executios fnadeo
express security policies [CF0O].

This restriction has several benefits:

e Aspects are semantic properties and the impact of weaving is clear.

¢ Inserts always commute; there are no interactions between aspects which
can be composed in parallel.

The woven program satisfies the property/aspect: for executionsandzrce
with the property, it has the same behavior as the base program; othetise,
duces an exception and terminates just before violating the property.

The main drawback of execution monitors is their runtime cost. They are not
specialized to the program and each program instruction may involve a runtime
check. In the remainder of this section we present how to weave suehlissed
aspects statically and efficiently.

5.1 Example

Consider the following aspect

paaccountant () t>skip; (manager () >skip;critical () >skip;a
Ocritical () >abort ;a)

O manager () o skip; (accountant () >skip;critical () >skip;a
Ocritical () >abort ;a)

Ocritical () >abort ;a

10

The property defined by the aspect states that a critical action caneqiltale
before the clearance of the manager and the accountant (at leasteeneathger
and toaccount ant must occur before each call toi ti cal).

Fig. 1 illustrates weaving of this property,

on avery simple imperative base program. Si é/fiﬁo
the property is specify by a finite state aspect, \m~O*/a(
can be encoded as an automaton with alphalfe&nager) —m ¢. C;’;’C

{m a, c}corresponding tothe calls tmna- | eealy o '@ abort

ger, accountant andcritical respectively. [BASE PROG.
Notice that the base program may violate thiSmanager(;

if(...) accountant();

property whenever the condition of the first || i) { critical;
statement is false. The woven program, whegccoun{;‘ﬁ{gigero;}
two assignments and a conditional have beefc0:
inserted, satisfies the property (i.e. aborts wh
ever the property is about to be violated).

An important challenge is to make this dy
namic enforcement as inexpensive as possib
In particular, if we are able to detect staticall
that the base program satisfies the property, then

no transformation should be performed. Figure 1:A simple example

int state = 0;

manager();

if(...) { state =1;
accountant(); }

if(...) { if(state == 0) abort();
critical();
manager(); }

accountant();

critical();

5.2 Weaving phases

Our aspects define a regular set of allowed finite executions. An aipect
encoded as a finite state automaton over events. The language recdgnihed
automaton is the set of all authorized sequences of events.

The weaver is a completely automatic tool which takes the automaton, the base
program and produces an instrumented program [CF00]. We now oiiflidd-
ferent phases (depicted in Fig. 2).

Base Program annotation.

The first phase is to locate and annotate the instructions of the basemrogra
corresponding to events (crosscuts). Depending on the propertyanetw en-
force, the events can be calls to specific methods, assignments to spetifites
opening of files, etc. A key constraint is that an instruction of the basgrpmo
must be associated with at most one event. This is easy to ensure wh&nareen
specified solely based on the syntax. In order to take semantic crosdoussin
count, the base program must be transformed beforehand. Consdsfetht X is
assigned the valu@”, it cannot be statically decided whether an assignment
will generate this event or not. A solution is to transform each assignmemnt

11

into the statemeritf e=0 then x: =e el se x:=e where each instruction is now
associated with a single event. Such pre-transformations rely on stati@aprog

analyses to avoid insertion of useless tests.
[S— “\\
\ &
graph
pect is a trace property, the abstraction is tj \\\\\\\\
control-flow graph of the base program. In o y instrumentati
grap prog ’ \ o :

der to produce a precise abstraction, this pha

relies on a control-flow analysis. \\
Instrumentation. The next phase is to trans R %\\

form the graph in order to rule out the forbidde

sequences of events. We integrate the auto \\
ton by instrumenting the graph with additiona \\\

structures (states and transition functions) that
mimic the evolution of the automaton. Intu- !
itively, this instrumentation corresponds to the -—
insertion of an assignment (to implement the

state transition of the underlying automaton) and Figure 2:Weaving phases

atest (to check whether the property is about to be violated) beforeeganh This
naive weaving is optimized by the next phase.

Base Program abstraction.
The base program is abstracted into a gra

represent instructions (events). The abstracti
makes the next two phases independent of
specific programming language. Since the a

Optimizations. The instrumented graph is refined in three steps. First, the automa-
ton specifies a general property independent of any particulargrogrhe first
step is tospecializethe automaton with respect to the base program. Second, the
second step yields a normalized instrumented graph using a transformation simi-
lar to the classical automataninimization Finally, the last optimization removes
useless state transitions using static analyses.

The graph after optimization represents a program where at most one test
and/or assignment (state transition) have been inserted at artdwhi | e state-
ment.

Concretization. The optimized graph must be translated back into a program. The
graph has remained close to the base program since its nodes andtiidggses

sent the same program points and instructions. We just need a way tdfstoine,
and test a value (the automaton state) without affecting the normal execlitiisn.
can be done by local transformations (e.g. inserting assignments aniticroald

12

on a fresh global variable).
5.3 Just-in-time weaving

The most interesting application of this technique is the securization of mobile
code upon receipt. The local security policy is declared as a propepect to

be enforced on incoming applets. The just-in time weaver securizes (itea@bs
instruments, optimizes, and concretizes) an applet before loading it. Simze so
steps are potentially costly, our implementation uses simple heuristics that make
the time complexity of weaving linear in the size of the program.

There are several benefits to this separation of security concerrs, iFis
easier to express the policy declaratively as a property. Second, pheaah is
flexible and can accommodate customized properties. This feature is dgpecia
important in a security context where it is impossible to foresee all possibtkatta
and where policies may have to be modified quickly to respond to new threats.

6 Conclusion

In this article, we have presented a model (and three instantiations) fobASd?
on execution traces. We have focused on the following points:

e Expressive and stateful aspect definitions.
e A model conceptually based on weaving of executions.

e Reasoning about and analysis of aspect properties, in particulat asjee-
action.

e Enforcement of properties by program transformation, i.e. static weaving

We now briefly consider these contributions in turn and compare our agipsith
related work.

We have advocated and presented expressive (i.e. stateful) asprcides.
The crosscut language ofSRECT [K*01] consists mostly irsingle instruction
patternsmatching events such as a method calls or field accesss®E@I’s
patterns are very similar to our basic aspétts |. Expressingstatefulaspects
in AspeECW requires book-keeping code in advice to pass information between
crosscuts (e.g., increment a counter in an advice to check for the coahber
later). The AspecT constructiorcf | ow is the only exception allowing the def-
inition of a form of stateful aspect. For examptd,| ow(cal | (critical)) &&
cal | (read) matches join points wheread is called whenever there is a pending
calltocritical inthe execution stack.

13

Our model is conceptually based on a monitor observing and weaving-execu
tion traces. Other techniques can be related to execution monitors. Compaitation
reflection is a general technique used to modify the execution mechanisms of a
programming language. Restricted approaches to reflection have bysrsed
in order to support AOP. For instance, the composition filter model [BAO&] pr
poses method wrappers in order to filter method calls and returns. De\élder
[Vol99] propose a meta-programming framework based on Prolog. Uinfztety,
these approaches do not allow stateful aspects.

By appropriate restrictions of the aspect language we have proposedso-
lutions to the difficult problem of aspect interactions. Recent releas@sPECT
provide limited support for aspect interaction analysis using IDE integratfon
base program is annotated with crosscutting aspects. This graphicahation
can be used to detect conflicting aspects. However, the simple (i.e. statetsss
cut model of AspPECT would entail an analysis detecting numerous spurious con-
flicts because the book-keeping code cannot be taken into accouisdrotreal
conflicts, AspPECT] programmers must resolve conflicts by reordering aspects us-
ing the keywordloni nat e. When two aspects are unrelatgatt. the domination
or hierarchy relations, the ordering of inserts is undefined.

In order to define static interaction analysis we had to formally define aspects
and weaving (see [DFS02] for a formal treatment of Section 4). Thereeveral
approaches to the formalization of AOP. Wagtdal. [WKDO02] propose a denota-
tional semantics for a subset ofsRECT. Lammel [LamO02] formalizes method-
call interception with big-step semantics. Andrews’ model [And01] reliealga-
braic processes. He focuses on equivalence of processesragctimess (termina-
tion) of the weaving algorithm.

Finally, we have shown in Section 5 that by restricting the insert language,
aspects can be seen as formal properties which can be enforceddogimrtrans-
formation. Dynamic monitors (such as VeriSoft [God97] andds [CFNF97])
or “security kernels” (such as Schneider’s security automata [Sth@@E been
used to enforce security properties. By contrast, our programming dgegap-
proach permits many optimizations and avoids to extend the runtime system or the
language semantics.

The different aspect languages presented suggest severadierenFor ex-
ample, allowing crosscuts of the same aspect to share variables would reake th
aspect language more expressive. The possibility of associating ancesthan
aspect with a run-time entity (e.g. each instance of a class in a Java progoaid)
facilitate the application of our model to object-oriented languages. It wozéd b
interesting to characterize a larger class of inserts (begbad) allowing to keep
the semantic impact of weaving under strict control. More generally, weveelie
that an important avenue for further AOP research is to provide moegsafds in

14

terms of static analyses and specially-tailored aspect languages.

References

[And01]

[BAO1]

[CFO0]

J. H. Andrews. Process-algebraic foundations of aspreetied pro-
gramming. InReflectionpages 187-209, 2001.

L. Bergmans and M. Aksit. Composing crosscutting concernsgusin
composition filters.Communications of the ACM4(10):51-57, Oc-
tober 2001.

T. Colcombet and P. Fradet. Enforcing trace properties bgrano
transformation. InProceedings of the 27th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL’00)
pages 54-66, N.Y., January 19-21 2000. ACM Press.

[CFNF97] D. Cohen, M. S. Feather, K. Narayanaswamy, and S. as.icAu-

[Com91]

[DFS02]

[DMSO01]

[God97]

[K+01]

tomatic monitoring of software requirements. Pnoceedings of the
1997 International Conference on Software Engineeripages 602—
603. ACM Press, 1997.

H. Comon. Disunification: A survey. Bomputational Logic - Essays
in Honor of Alan Robinsorpages 322-359, 1991.

R. Douence, P. Fradet, and MidBolt. A framework for the detection
and resolution of aspect interactions.Rroceedings of the ACM SIG-
PLAN/SIGSOFT Conference on Generative Programming and Compo-
nent Engineering (GPCE’02)Dctober 2002.

R. Douence, O. Motelet, and Mu8holt. A formal definition of cross-
cuts. InProceedings of the 3rd International Conference on Met-
alevel Architectures and Separation of Crosscutting Concerns (Reflec
tion’01), volume 2192 o NCS Springer Verlag, September 2001.

P. Godefroid. Model checking for programming languagesgus
VeriSoft. In Conference Record of POPL '97: The 24th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guagespages 174-186, Paris, France, 15-17 January 1997.

G. Kiczales et al. An overview of Aspect]J. BCOOP, pages 327-353,
2001.

15

[Lam02]

[NN92]

[Scho0]

[Vol99]

[WKDO02]

R. lAmmel. A semantics for method-call interceptionl1st Int. Conf.
on Aspect-Oriented Software Development (AOSD’Agjil 2002.

F. Nielson and H. R. NielsorSemantics with Applications - A Formal
Introduction John Wiley and Sons, New York, NY, 1992.

Fred B. Schneider. Enforceable security polici@&M Transactions
on Information and System Securigf1):30-50, February 2000.

K. De Volder. Aspect-oriented logic meta programming. In Pierre
Cointe, editorMeta-Level Architectures and Reflection, Second Inter-
national Conference, Reflection’98lume 1616 oLNCS pages 250—
272. Springer Verlag, 1999.

M. Wand, G. Kiczales, and C. Dutchyn. A semantics for adviue dy-
namic join points in aspect-oriented programmingFBOL 9 pages
67-88, January 2002.

16

