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1 Common Aspect Semantics Base
In a previous Milestone [DB05] we have reviewed the different formal semantics for AOP. All of
them provide a semantics as a whole but do not isolate the different features of aspect languages.
This document gradually introduces formal semantic descriptions of aspect mechanisms.

Most of previous semantics consider object oriented base programs [JJR03a, JJR03b, JJR05]
[Läm02] [DT04] [WKD04] [CLW03]. Some other work also consider functional languages (call-
by-value λ-calculus, ML, Scheme, . . . ) [WZL03, DWWW], as well as process calculi[BJJR04].
In this deliverable, we present minimal requirements on the base language semantics. Then, we
consider the weaving of a single aspect, in particular before, after and around aspects. We extend
the model with multiple aspects, cflow pointcuts, aspects on exceptions, aspect deployment,
aspect instantiation and stateful aspects.

We do our best to describe aspects as independently as possible from the base language. For
each aspect feature, we introduce the minimal constructions of the base language necessary to
plug aspects in. For example, a before aspect does not require any special mechanism: the base
language semantics should only respect the common requirements of Section 2. Aspects using
cflow-like pointcuts assume the base language to have a call & return instructions (e.g. proce-
dures, functions or methods).

Most of related work are restricted to a subset of AspectJ’s semantics. In our deliverable,
many features and examples are inspired from AspectJ but our descriptions are usually more
general. For example, our description of around aspects applies to a larger class of instructions
than just method calls. Usually we introduce only the minimum constraints on the base language
so that the aspectual feature described makes sense. In many cases, our descriptions could be
applied to many different types of programming languages (object-oriented, imperative, func-
tional, logic, assembly, . . . ). As an illustration of our technique, we describe the semantics of an
AspectJ-like core aspect language (around aspects + cflow + aspect association/instantiation) for
a core Java language (Featherweight Java with assignments).

Most formal work are described in term of small step semantics (SOS). A few express se-
mantics differently: big step (a.k.a. natural) [Läm02], denotational [WKD04], and finite state
automata (and sos) [CF00]. We also use a small step semantics here because it precisely models
the implementation and can be seen as an abstract machine or a compiler.

2 Hypotheses on the base language semantics
The base language semantics must be described in terms of a small-step semantics (aka SOS),
formalized through a binary relation →b on configurations made of a program and a state (C,Σ).

A program C is a sequence of basic instructions i terminated by the empty instruction ε:

C ::= i : C | ε

We will abuse the notation and write, for example, C1 : C2 to denote the concatenation of two
programs. The operator ":" is supposed associative and, implicitly, programs are supposed to be
of the form i1 : (i2 : . . . : (in : ε) . . .).
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States Σ are kept as abstract as possible. They may contain environments (e.g. associating
variables to values, procedure names to code, etc.), stacks (e.g. evaluation stack), heaps (e.g. dy-
namically allocated memory), etc.

A single reduction step of the base language semantics is written

(i : C,Σ)→b (C′,Σ′)

Intuitively, i represents the current instruction and C the continuation. The component i : C can
be seen as a control stack. The operator ":" sequences the execution of instructions. We rely on
this property to define before and after aspects. Final configurations are of the form (ε,Σ).

EXAMPLE 1 The semantics of the small arithmetic language

E ::= k | E1 +E2

can be described in this setting as:

(E1 +E2 : C,S) →b (E1 : E2 : + : C,S)
(+ : C,k1 : k2 : S) →b (C,k1 + k2 : S)
(k : C,S) →b (C,k : S)

The state is made of an evaluation stack. Evaluating an expression E1 +E2 amounts to evaluating
E1 and E2 before performing the addition. The three instructions corresponding to these tasks
are placed into the control stack. The evaluation of an integer pushes it onto the evaluation stack.
An addition replaces the top integers on top of the evaluation stack by their sum.

EXAMPLE 2 The semantics of the small imperative language

S ::= S1;S2 | f = S | call f

can be described in this setting as:

(S1;S2 : C,ρ) →b (S1 : S2 : C,ρ)
( f = S : C,ρ) →b (C,ρ[ f 7→ S])
(call f : C,ρ) →b (C′ : C,ρ) if ρ( f ) = C′

The state is made of an environment (a function) ρ associating identifiers ( f ) to their code (ρ( f )).
Evaluating a sequence S1;S2 amounts to evaluate S1 and S2 in turn. A definition f = S updates
the environment so that it associates the name f to the code S. A call to f pushes the associated
code in the control stack.

Another possibility could be to compile the language by translating every sequence ";" (a
source language sequencing operator) by ":" (the semantic constructor representing sequenc-
ing). The first semantics rule would disappear.

Most instructions executes without deleting nor referring to their continuation. We say that
such instructions respect sequencing. Formally:
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DEFINITION 3 An instruction i respects sequencing if

(i : ε,Σ)→b (C′,Σ′)⇒ (i : C,Σ)→b (C′ : C,Σ′)

All instructions seen in the examples above respect sequencing whereas jumps, call/cc or
exceptions would not.

It is sometimes useful to retain some structure within the program being evaluated. We extend
programs with the notion of block to represent sub-programs.

C ::= i : C | {C1} : C2 | ε

With this extension, an instruction can be a block of instructions. such as {i1 : . . . : in : ε}. The
reduction rule for blocks is just

({C1} : C2,Σ)→b (C1 : C2,Σ)

EXAMPLE 4 Blocks can be useful to distinguish return addresses. If we consider again the small
imperative language above then the reduction of the program

( f = call g; i3);(g = i1; i2);call f

will lead to the configuration (i1 : i2 : i3 : ε,ρ) where it is impossible to distinguish the continua-
tions of calls to f and g. If we use blocks in the rule for calls as follows

(call f : C,ρ)→b (C′ : {C},ρ) if ρ( f ) = C′

then, the previous configuration will be (i1 : i2 : {i3 : ε},ρ) which makes clear that i1 : i2 are
instructions of the current function and i3 is a return address.

3 Weaving a single aspect
The semantics represents an aspect as a function ψ to be applied to the current instruction i that
returns a pair of a function φ and a type t (= before,after,around, . . .) that denotes the kind of
aspect. The function φ takes the state Σ as parameter and returns an advice a (supposed to be
written in the same language as the base program) to be inserted

ψ(i) = (φ, t) and φ(Σ) = a

These two functions ψ and φ can be seen as two steps to decide which joinpoints are woven.
The first function ψ takes only static information (e.g. syntax) into account, while the second one
φ uses dynamic information (e.g. runtime values). The function ψ returns ε when the aspect does
not match the current instruction. When there is no advice for the current state, the function φ

returns ε if the kind of the aspect is before or after and returns proceed if the kind of the aspect
is around.
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In AspectJ, the function ψ can be interpreted as the compiler that instruments the code with
an advice that starts with dynamic checks (i.e. the function φ).

The semantics of weaving is described in terms of a relation → on configurations. The
rule NOADVICE below executes the current instruction i if no advice is to be executed.

NOADVICE
ψ(i) = ε (i : C,Σ)→b (C′,Σ′)

(i : C,Σ)→ (C′,Σ′)

In order, to prevent an instruction i to be matched, we introduce the notion of tagged instructions
(written i). A tagged instruction i has exactly the same semantics as i except that it is not subject
to weaving. Formally

∀(i,C,Σ) (i : C,Σ)→b (C′,Σ′)⇒ (i : C,Σ)→ (C′,Σ′)

∀i ψ(i) = ε

Some aspect oriented languages consider only the weaving of the base program and rule out the
weaving of advice code. This can be represented by tagging all advice instructions.

In the following subsections we present the semantics rules for before, after and around
aspects. Our semantic descriptions always consider that advice is subject to weaving.

3.1 Before aspect
When a before aspect matches the current instruction, its advice is executed before reducing this
instruction. If the before aspect ψ matches the current instruction, the rule BEFORE tags the
current instruction and inserts test φ before.

BEFORE
ψ(i) = (φ,before)

(i : C,Σ)→ (test φ : i : C,Σ)

When test φ is the current instruction, the rule ADVICE applies φ it to the current state Σ in order
to insert the corresponding advice (or the empty advice ε).

ADVICE
(test φ : C,Σ)→ (φ(Σ) : C,Σ)

Note that the instructions of the advice are subject to be matched by an aspect.

3.2 After aspect
The intuition behind an after aspect is to execute the advice after the current instruction has
completed. To make sense, it should be applied to instructions which respect sequencing.

The rule AFTER inserts the advice function after the current instruction and tags the current
instruction if the after aspect ψ matches the current instruction. If an advice has to be executed
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after i, the configuration (i : C,Σ) is transformed into (i : test φ : C,Σ). The instruction i cannot
be matched again and the next reduction step of the configuration will be done using →b.

AFTER
ψ(i) = (φ,after)

(i : C,Σ)→ (i : test φ : C,Σ)

If the instruction does not respect sequencing (e.g. it can throw exceptions) then the advice might
not be executed. If the instruction is a procedure call, the advice will be executed when the
procedure returns.

3.3 Around aspect
In order to accommodate around aspect, the base language must contain an additional instruction
(proceed) which can be used in the code of an around advice.

Typically, an around aspect starts by executing its advice before the current instruction. The
advice code may proceed by executing the instruction matched by the around aspect (using the
instruction proceed). The advice may also terminate without executing the current instruction:
the advice has completely replaced the instruction. As indicated before, if the dynamic part of
the pointcut does not match the current state, the aspect is not applied and the current instruction
is executed. This is formalized by the fact that, when it does not match the dynamic state, the
function φ of an around aspect returns proceed (and not ε). This behavior (taken by AspectJ)
implies that the dynamic checks in the pointcut (e.g. if x = 0) are not interpreted as a conditional
expression in the advice code (e.g. if x = 0 then advice else skip). Another option (maybe less
reasonable) could have been to interpret dynamic checks in the pointcut as a conditional expres-
sion in the advice. This would ensure the equivalence of identical advices with identical tests
regardless of their location (pointcut or advice). To implement this option, the function φ should
return ε when it does not match the current state.

In general, an around advice may contain several proceed resulting in multiple executions of
the instruction matched by the around aspect. The advice of an around aspect may be matched
by another around aspect and one has to keep track to which instruction each proceed is referring
to.

To represent the behavior of around aspects we introduce the following additional semantic
components:

◦ a special stack P called the proceed stack,
◦ the semantic function pushp i which pushes the instruction i in the proceed stack,
◦ the semantic function popp which removes the top of the proceed stack.

The rule AROUND inserts the advice function followed by popp and pushes the current in-
struction in the proceed stack so that it can be possibly executed by a proceed.

The rule PROCEED executes the instruction placed on top of the proceed stack. This instruc-
tion is removed (i may be the code of an enclosing around aspect whose proceed would refer to
the top of the stack P not i) and replaced after completion (using pushp i) since the advice may
contain other proceeds.
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The rule POP terminates the current advice by removing the instruction on top of the proceed
stack.

AROUND
ψ(i) = (φ,around)

(i : C,Σ,P)→ (test φ : popp : C,Σ, i : P)

PROCEED
(proceed : C,Σ, i : P)→ (i : pushp i : C,Σ,P)

POP
(popp : C,Σ, i : P)→ (C,Σ,P)

EXAMPLE 5 Let us consider the previous small imperative language and an aspect ψ such that

ψ(call f oo) = (φ,around)

φ(Σ) = call bar; proceed;call baz

This aspect inserts a call to bar (resp. baz) before (resp. after) each call to f oo. An example of
reduction is:

(call f oo : ε,ρ,ε)
→ (test φ : popp : ε, ρ, call f oo : ε)
→ (call bar; proceed;call baz : popp : ε, ρ, call f oo : ε)
→∗ (proceed : call baz : popp : ε, ρ′, call f oo : ε)
→ (call f oo : pushp(call f oo) : call baz : popp : ε, ρ′, ε)
→∗ (pushp(call f oo) : call baz : popp : ε, ρ′′, ε)
→∗ (call baz : popp : ε, ρ′′, call f oo : ε)
→∗ (popp : ε, ρ′′′, call f oo : ε)
→ (ε, ρ′′′, ε)

Note that our rules for around aspects can be applied to any instructions, not only to calls. We
also assumed also that the advice of an around aspect could be matched by another around aspect
and that we could have imbricated proceeds. AspectJ prevents this case by syntactic restrictions.
So our around aspects are more general than AspectJ’s. To describe precisely AspectJ, we should
restrict our rules to method calls. Assuming that proceeds cannot be imbricated would also
permit to simplify the rule PROCEED (the instruction does not have to be removed and pushed at
each proceed).
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4 Weaving several aspects
We now consider the weaving of several aspects at the same join point. We first consider the
weaving of several aspects of the same kind. Then we consider the general case of weaving
before,after and around aspects at the same join point.

4.1 Aspects of the same kind
The aspects matching an instruction i are represented by a tuple of advice functions and a kind

ψ(i) = ((φ1 . . .φn), t)

with t = before,after or around.
The order of execution of the advices is made by the function ψ. It is the order of occurrence

of the advice functions in the tuple.

Before aspects

When before aspects match an instruction, their advices are executed before reducing this cur-
rent instruction. As the rule BEFORE, the rule BEFORE* tags the current instruction to prevent
matching it again and inserts the advice functions before.

BEFORE*
ψ(i) = ((φ1 . . .φn),before)

(i : C,Σ)→ (test φ1 : . . . : test φn : i : C,Σ)

After aspects

When after aspects match an instruction, their advices are executed after reducing the current
instruction. As the rule AFTER, the rule AFTER* inserts the advice functions after this current
instruction and tags this current instruction.

AFTER*
ψ(i) = ((φ1 . . .φn),after)

(i : C,Σ)→ (i : test φ1 : . . . : test φn : C,Σ)

Around aspects

The rule AROUND* inserts the first function and pushes all the other advice functions and the
current instruction in the proceed stack. As before, advice can perform 0, 1, or several proceeds.
If n advices (a1, . . . ,an) match a instruction i and each advice is of the form a′i : proceed : a′′i then
the execution will be of the form

a′1 → a′2 → . . .→ a′n → i → a′′n → . . .→ a′′2 → a′′1

If we change a1 to a′1 : proceed : a′′1 : proceed : a′′′1 the execution will look like

a′1 → . . .→ a′n → i → a′′n . . .a′′2 → a′′1 → a′2 . . .→ a′n → i → a′′n . . .a′′2 → a′′′1
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If we further remove the proceed of a2 the reduction will look like

a′1 → a2 → a′′1 → a2 → a′′′1

The rule AROUND* inserts the first advice function followed by popp n which is responsible
to remove the other advice functions and the instruction after completion.

The rule PROCEED* executes the next advice or instruction placed on top of the proceed
stack. It is the same rule as before. If the instruction execution is an advice it will possibly
execute the next instruction in the proceed stack and will eventually terminate by reintroducing
itself in the proceed stack.

The rule POP* terminates the current advice by removing the top n instructions (the n− 1
advices and the matched instruction) of the proceed stack.

AROUND*
ψ(i) = ((φ1 . . .φn),around)

(i : C,Σ,P)→ (test φ1 : popp n : C,Σ, test φ2 : . . . : test φn : i : P)

PROCEED*
(proceed : C,Σ,x : P)→ (x : pushp x : C,Σ,P)

POP*
(popp n : C,Σ,x1 : . . . : xn : P)→ (C,Σ,P)

4.2 Before, After and Around aspects
We now consider that the more general case of several aspects of different kinds matching a join
point. The aspects matching an instruction i are represented by a function ψ returning a tuple of
pairs made of an advice function and a kind:

ψ(i) = ((φ1, t1) . . .(φn, tn))

with ti = before,after or around. By default, in AspectJ for example, this tuple is sorted in the
order before,after and around of ti. But the programmer can modify it by the use of declare
precedence.

The function γ translates such a tuple in an equivalent tuple of around only aspects using the
two following rules:

(φ,before) 7−→ (λΣ.(test φ : proceed),around)

(φ,after) 7−→ (λΣ.(proceed : test φ),around)
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A before aspect is translated in a around aspect that possibly inserts the advice (i.e. test φ) before
it proceeds with the next aspect. Symmetrically, an after aspect is translated in a around aspect
that possibly inserts the advice after the next aspect is executed. Remember the function φ takes
the state as a parameter, so the translations have to start with λΣ. Here, test φ at the beginning
of the translated before aspects inspects the current state (see the rule ADVICE). In the translated
after aspect, test φ inspects the state after the other aspects execution (i.e. proceed).

The new AROUND* rule is similar to the previous one, but it calls γ.

AROUND*
ψ(i) = ((φ1, t1) . . .(φn, tn)) γ((φ1, t1) . . .(φn, tn)) = ((φ′1,around) . . .(φ′n,around))

(i : C,Σ,P)→ (test φ
′
1 : popp n : C,Σ, test φ

′
2 : . . . : test φ

′
n : i : P)

5 Pointcuts
An aspect is made of a pointcut selecting some join points, an advice (i.e. a code to execute)
and a kind (e.g. before,after,around). Until now, we have abstracted aspects in a function ψ. In
this section, we make more precise the structure of this function and consider several types of
pointcuts.

If we represent pointcuts by patterns, the function ψ can be written as follow:
ψ(i) = i f match(P, i) then (σ(φ), type) else ε

with σ such that σ(P) = i

The aspect selects a join point i by matching it against a pattern (pointcut) P. We represent
the matching process by the function match which takes a pattern, an instruction and returns a
boolean.

match : P× Instruction → bool

where Instruction is the set of instructions. In case of a match, the advice and its type is returned.
Information (names, types, etc.) can be passed from the instruction to the advice using the
substitution (σ) unifying the pattern with the instruction.

The pattern P can be a term with variables matching an instruction, or disjunction, conjunc-
tion and negation of patterns. Thus, during the execution of the program, an aspect matches an
instruction, if the pattern of that aspect matches this instruction. Standard patterns are described
by the following grammar:

P ::= Ti | P1∧P2 | P1∨P2 | ¬P

The term Ti follows the grammar of instructions (left unspecified here) but includes pattern vari-
ables to match arbitrary instructions. The boolean function match is defined as follows:

match(Ti, i) = true if ∃ σ such that σ(Ti) = i
= f alse otherwise

match(P1∧P2, i) = match(P1, i)∧match(P2, i)
match(P1∨P2, i) = match(P1, i)∨match(P2, i)
match(¬P, i) = ¬match(P, i)
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Boolean operators (especially the negation) may lead to complications. For example, a pattern
can match an instruction but according to several substitutions (consider for example the pointcut
¬call x matching all instructions different from a call). In these cases, no pattern variables should
occur in the advice.

5.1 Cflow(below) pointcuts
cflow(B), is a pointcut which intuitively represents all the join points which are in the control
flow of a method/procedure call B including the join point represented by B. cflowbelow(B) is
similar but excludes the join point represented by B. To describe the semantic of such pointcuts
we introduce new instructions, namely method definition and call:

Prog ::= (T id(){S})∗ S

T ::= void | int | . . .

S ::= call id() | . . .

In this grammar, T id() {S} represents the declaration of the procedure/method id and T (void,
int, etc) its return type. A program consists in a collection of procedures/methods declarations
followed by a main command. Commands include instructions call id() which are calls to id.
The semantic of those instructions are expressed by the rules below. Configurations are extended
with an environment ρ and a stack F . The environment ρ is a function which associates to each
id of a procedure its body and return type. The stack F contains the signature of all the calls
which have not returned yet. The program is in the control flow of all calls whose signatures are
contained in F . A call to a procedure inserts a block representing its return address and the body
of the procedure contained in the environment. It also pushes the signature corresponding of the
procedure call on F . Blocks, which represent a return instruction, will remove that signature on
exit.

CALL
ρ(id) = (C′, t)

(call id() : C,Σ,ρ,F)→b (C′ : {C},Σ,ρ,(t)id : F)

RET
({C},Σ,ρ,(t)id : F)→b (C,Σ,ρ,F)

The pointcut cflow(B) selects all the join points which are in the control flow of the pointcut
B. Thus, cflow(B) matches a signature of an instruction, if this instruction is in the control flow
of B. Every signature is a pair (id, t). If the instruction is a procedure call, id is the name of
the procedure and t its return type. For other instructions, id is the instruction and the type void
will be returned. The semantic of cflow and cflowbelow is described by extending the matching
function match to take into account the stack F . The boolean function match f takes a pattern, a
signature and a stack of signatures.

match f : P×Sig×Sig∗→ bool
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where P is the set of pointcuts, Sig is the set of signatures and Sig∗ is a stack of signatures
corresponding to procedure calls. The pointcuts have the following syntax:

P ::= (PT )PI | cflow(P) | P1∧P2 | P1∨P2 | ¬ P

PT ::= x | void | int | . . .

PI ::= x | id

In this grammar, (PT )PI is a pattern matching any signature whose identifier is matched by PI .
The optional type pattern PT matches the return type. The patterns PT (resp. PI) are either a type
(resp. an identifier) or a pattern variable x. The matching function match f taking into account
cflow(below) pointcuts is defined as follows:

match f (cflow(P), i,ε) = False
match f ((PT )PI, i,F) = match(PT , t)

∧match(PI, id) i f i = (id, t)
match f (cflow(P), i, i

′
: F

′
) = match f (P, i, i

′
: F

′
)

∨match f (cflow(P), i
′
,F

′
)

match f (cflowbelow(P), i,ε) = False
match f (cflowbelow(P), i, i

′
: F

′
) = match f (cflow(P), i

′
,F

′
)

match f (P1∧P2, i,F) = match f (P1, i,F)∧match f (P2, i,F)
match f (P1∨P2, i,F) = match f (P1, i,F)∨match f (P2, i,F)
match f (¬P, i,F) = ¬match f (P, i,F)

A join point is in the control flow of pointcut P if P matches either the signature of the current
instruction or a procedure call which precedes this join point is in the control flow of P. A join
point is below the control flow of a pointcut P is that a procedure call which precedes this join
point is in the control flow of P.

6 Aspects on specific linguistic features
In this section, we describe several aspectual features taken from AspectJ: aspects on exceptions
(around throws, after throwing and handler) and aspect instantiation. They involve to introduce
special instructions on the base language. For example, to specify aspects on exceptions, we in-
troduce exception mechanisms (try-catch blocks and a throw instruction). For the sake of clarity,
aspectual features are described in isolation. We believe that these descriptions provide hints
useful enough to establish the semantics of complete AO language.

6.1 Exceptions
We introduce exceptions on the base language using the following instructions:

S ::= try S1 catch ex S2 | throw ex | . . .
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The instruction try S1 catch ex S2 declares a new exception ex which can be thrown within S1 and
is handled by S2. The instruction throw ex raises an exception ex.

The store remains as abstract as possible but we need to introduce a stack E recording the
exceptions declared. Every element of E is a pair of type I × C where I represents an exception
identifier and C a code. A pair (ex,C) of E provides the code C to execute when the exception ex
is raised. These pairs are pushed in the order of the try-catch block declarations in the program.
When an exception ex is thrown, the current continuation is replaced by the code associated with
ex in E. If an exception cannot be found in E it is a dynamic error "uncaught exception".

The semantic of exceptions in the base program is described in terms of the relation →b on
configurations extended with the stack E. The execution of a try S1 catch ex S2 block pushes in E
the pair constituted of the exception name and the code to execute in that case (i.e. (ex,S2 : C)),
execute the block S1. The instruction pope removes the pair from E after completion of S1.
When an exception ex is raised, the current continuation C is replaced by the code C′ associated
with (the first occurrence of) ex in E. All the exceptions stacked after ex are removed from E;
indeed the exception escapes from all the try catch blocks encountered between its declaration
and raise.

TRY
(try S1 catch ex S2 : C, Σ, E) →b (S1 : pope : C, Σ,(ex, S2 : C) : E)

POPe (pope : C, Σ, X : E) →b (C, Σ, E)

THROW
(throw ex : C, Σ, (ex0,C0) : . . . : (exk,Ck) : (ex,C′) : E)

→b (C′, Σ, E) with exi 6= ex ∧ 0 ≤ i ≤ k

UNCAUGHT
(throw ex : C, Σ, (ex0,C0) : . . . : (exk,Ck) : ε)

→b Uncaught exception with exi 6= ex ∧ 0 ≤ i ≤ k

We now present the semantics rules of aspects and pointcuts taking exceptions into account.
We consider three aspectual features inspired from AspectJ: around throws, after throwing and
handler.

Around throws Aspects

The aspect around throws P Pex matches an instruction which can match P and which can also
raise an exception matching the pattern Pex. The execution is an around aspect but the definition
of pointcut has to be adapted. We have to define patterns matching exceptions. For example, we
can used

Pex ::= ∗ | id

where ∗ represents any exceptions and id is a specific exception identifier. We use the function
excep which takes the current instruction and returns the list of exceptions lex this join point
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might raise. Then, the function matchex returns true if it exists at least one exception in the list of
exception matching the pattern of exception (matchex(lex,∗) = true). Therefore, around throws
aspects are taken into account by redefining ψ to associate instructions with the list of exceptions
they may raise. The aspect around throws P Pex is defined by a function ψ of the form:

ψ(i) = i f match(P, i)∧matchex(excep(i),Pex) then (σ(φ),around) else ε

with σ such that σ(P) = i

After throwing Aspects

After throwing aspects apply on procedure returning by propagating an exception. We assume
that calls and returns are formalized using the stack F in configurations as in section 5.1. The
stack F contains the signatures corresponding to the calls which have not returned yet. First to
in order to find which calls propagate an exception the current stack F must be memorized with
the exception and the current continuation when entering a try - catch block. The two rules TRY

and POPe are refined as follows:
TRY

(try S1 catch ex S2 : C, Σ, F, E) →b (S1 : pope : C, Σ, F,(ex, S2 : C,F) : E)

POPe (pope : C, Σ, F, X : E) →b (C, Σ, F, E)

When an exception is thrown, the program is replaced by the code C′ associated with this
exception and the exception stack is reset as before. Instead of replacing immediately F by the
stack recorded with the exception, this will be done iteratively by the instruction Retid .

THROW
(throw ex : C, Σ, F, (ex0,C0,F0) : . . . : (exk,Ck,Fk) : (ex,C′,F ′) : E)

→b (Retid ex F ′ : C′, Σ, F, E) with exi 6= ex ∧ 0 ≤ i ≤ k

The function Retid ex F ′ recursively pops the signatures of the stack F until it is the same as
during the try-catch corresponding to the exception ex. Each instruction popped corresponds to a
return propagating the exception therefore a candidate for inserting an afterthrowing advice. The
rule RET1

id pops the top signature of F and tries to match call id(), the call instruction denoting a
return propagating the exception ex. In that case, the advice corresponding to the afterthrowing
aspect is inserted. We consider here that if no afterthrowing aspect matches the instruction, the
function ψ will return (ε, afterthrowing). The rule RET2

id ends this process when the F stack
is back to its correct state. The execution proceeds with the exception continuation (i.e. the
handler).

RET1
id

(t)id : F 6= F ′ ∧ ψ(call id()) = (φ, afterthrowing)
(Retid ex F ′ : C,Σ,(t)id : F,E) → (Retid ex F ′ : test φ : C,Σ,F,E)

RET2
id (Retid ex F : C,Σ,F,E) → (C,Σ,F,E)
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EXAMPLE 6 Consider the program Prog and the aspect ψ defined as follows:

Prog = try call f oo() catch ex ε

void f oo() ex = call goo()
void goo() ex = throw ex
ψ(∗,∗) = (φ, afterthrowing)
φ(Σ) = call baz
void baz() = ε

The declaration of procedures is extended to include the exceptions they might throw (or prop-
agate). Prog call the procedure f oo in a try - catch block. The procedure f oo, which can
propagate the exception ex, calls the procedure goo which raises the exception ex. The aspect ψ

matches any return exiting abruptly by throwing any exception. It inserts a call to the procedure
baz.

The execution of Prog proceeds as follows:

(try call f oo() catch ex ε : ε,Σ,ε,ε)
→ (call f oo() : pope : ε,Σ,ε,(ex,ε,ε) : ε)
→ (call goo() : {pope : ε},Σ,(void) f oo : ε,(ex,ε,ε) : ε)
→ (throw ex : {{pope : ε}},Σ,(void) goo : (void) f oo : ε,(ex,ε,ε) : ε)
→ (Retid ex ε : ε,Σ,(void) goo : (void) f oo : ε,ε)
→ (Retid ex ε : test φ : ε,Σ,(void) f oo : ε,ε)
→ (Retid ex ε : test φ : test φ : ε,Σ,ε,ε)
→ (test φ : test φ : ε,Σ,ε,ε)
→ (call baz : test φ : ε,Σ,ε,ε)
→ ({test φ : ε},Σ,(void) baz : ε,ε)
→ (test φ : ε,Σ,ε,ε)
→ (call baz : ε,Σ,ε,ε)
→ ({ε},Σ,(void) baz : ε,ε)
→ (ε,Σ,ε,ε)

When the exception is thrown, the current continuation is replaced by the handler code (here ε)
and the instruction Retid ex. It removes iteratively the two signatures in the stack F inserting
each time a call to the procedure baz.

Handler

The pointcut handler Pex matches any join point which catches an exception ex matching the
pattern Pex. It is supported only by aspects of kind before. Since the entry of the handler is not
distinguished in our semantics of exceptions, we model the rule HANDLER when the exception
is thrown.

HANDLER
ψ(throw ex) = (φ, beforehandler)

(throw ex : C, Σ, (ex0,C0) : . . . : (exk,Ck) : (ex,C
′
) : E)

→ (test φ : C
′
, Σ, E) with exi 6= ex ∧ 0 ≤ i ≤ k
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6.2 Aspect deployment
Like classes, aspects can also be instantiated dynamically. For example, an instance can be
activated on entry in a block and deactivated on exit. This is a dynamic aspects deployment
which is opposed to the static aspect deployment where the aspects are instantiated once and for
all. We describe here the semantic of a dynamic aspect deployment similar to the feature deploy
of CaesarJ.

We consider the instruction deploy id S in the base language. By this instruction, the aspect
named id is activated within the block S and deactivated after the execution of S. We introduce
in the configurations a stack Ψ recording all the current active aspects. The stack Ψ contains
the aspects which are dynamically activated by the instruction deploy but also those which are
statically instantiated. These global aspects are supposed to be at the bottom of the stack. When
the instruction deploy id S is executed, the new aspect ψid is pushed on Ψ and the block S followed
by the instruction popΨ are executed. After the execution of S, the instruction popΨ deactivates
the aspect which is on the top of Ψ by removing it.

DEPLOY
(deploy id S : C, Σ, Ψ) → (S : popΨ : C, Σ, ψid : Ψ)

PopΨ (popΨ : C, Σ, ψid : Ψ) → (C, Σ, Ψ)

During the execution, trying to match a join point i amounts to apply the stack of active
aspects to i. As usual, the application of each aspect to i returns pair made of an advice and a
kind. These pairs must be sorted with respect to their relative priorities. We suppose that such
priorities are given by the global function priority. This function can be explicitly defined by
the programmer using declarations such as declare precedence in AspectJ. So, matching a join
point i by a stack of aspects (ψ1 : . . . : ψn : ε) is described as follows:

(ψ1 : . . . : ψn : ε)(i) = priority(ψ1(i), . . . ,ψn(i))
= ((φ j1, t j1), . . . ,(φ jn, t jn)) with 1 ≤ ji ≤ n

Aspect deployment can be seen as a simple and restricted form of aspect instantiation that we
consider in the following section.

6.3 Aspect Association
Aspect association designates the mechanism that associates a peculiar aspect to an instruction.
In our model, this association is performed by a function ψ taking an instruction as an argument
and returning a dynamic test function φ with a type (before, after, around), see Rule BEFORE

page 5 for instance. In this section, we refine the model so that aspects can be associated to dy-
namic entities, along the lines of perTarget and variants in AspectJ. In order to keep the presenta-
tion simple, we consider the single aspect case. Generalization to multiple aspects is orthogonal,
and the technique exposed in Section 4 can be used.
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In opposition to aspects that are instantiated once and for all (also called singleton aspects),
some aspects are meant to be associated to dynamic entities, such as objects. Thus, several
instances of the same aspect may exist at run-time, for example one aspect being associated to
each object instance of a given class. Each instance has its own private state, stored in Σ, that
may evolve over time. Since in general the number of instances of a given class is not known
statically, neither is (in general) the number of instances of a given aspect. This is why aspects
have to be instantiated dynamically.

Aspect Instantiation
Since new aspect instances may be generated at run-time, the association function ψ has to evolve
dynamically to take account of all aspect instances. To this end, we decompose ψ into elementary
association functions ψid , where id is a unique aspect identifier. This leads to the definition of an
aspect environment:

DEFINITION 7 The aspect environment is a mapping Ψ that maps aspect identifiers (id) to ele-
mentary aspects ψid .

At a given time, the domain of Ψ, written dom(Ψ), is the set of identifiers of all existing aspects.
The composition of all elementary aspects ψid in Ψ is written (◦Ψ) and formally defined as
ψid1 ◦ ..◦ψidn for dom(Ψ) = {id1, .., idn}.

We modify the semantics so that the aspect environment Ψ may evolve over reductions. Thus,
the general form of a reduction is now the following:

(C,Σ,Ψ)→ (C′,Σ′,Ψ′)

Like pointcuts, aspect instantiation is governed by instructions. More precisely, each time an
instruction is executed, the function Ψ is possibly updated with new aspects, thanks to a function
update. We show a new version of Rule BEFORE that takes aspect instantation into account.
Other rules can be updated likewise, in particular rules NOADVICE, AFTER, and AROUND.

BEFORE
update(Ψ, i,Σ) = (Ψ′,Σ′) (◦Ψ

′)(i) = (φ,be f ore)
(i : C,Σ,Ψ)→ (test φ : ī : C,Σ′,Ψ′)

Intuitively, the function update checks if the instruction i should trigger an aspect instantia-
tion. If this is the case, and if the aspect does not already exist, it is created. Since the state of the
new aspect instance is stored in Σ, it also takes Σ as an argument and returns a new state Σ′. As
a possible effect, update can also remove aspect instances from the context once their associated
entity has disappeared (garbage collection).

The function update must be idempotent: if update(Ψ, i,Σ)= (Ψ′,Σ′), then update(Ψ′, i,Σ′)=
(Ψ′,Σ′). Additionally, tagged instructions must not introduce new aspects: update(Ψ, ī,Σ) =
(Ψ,Σ).
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Example (perTarget)

We illustrate aspect instantiation by associating an aspect counter to each instance of a given
class Point, like perTarget in AspectJ. Each aspect counter advises the calls to a method m in
Point, by counting the number of times the method is invoked. At first, we describe only the
association and instantation mechanisms. Then, we provide the details of updating the value of
the counter.

We have two options: either we create new instances of counter each time a new object of
class Point is created, either instances of counter are created by need, that is, only when the
method m is invoked on an object for the first time. We consider the second case, although the
other option fits in our model as well.

New aspect instances are created using an aspect template, called a generator, and written
G. In the perTarget case, a generator is a function expecting an object x and a store Σ and
returning a new elementary aspect as well as a new store Σ′ which holds the private state of the
elementary aspect. The elementary aspect is a function ψid . By convention, in the perTarget
case, the identifier id is of the form aspectNamex, that is, the name of the aspect tagged by a
reference to the object it is associated to. In short, G(x,Σ) is a pair (ψid,Σ

′).
To pursue the example, update is defined as follows, where x.m() is the invocation of method

m on object x.

update(Ψ,x.m(),Σ) ∆= (Ψ′,Σ′) if counterx /∈ dom(Ψ)
with G(x,Σ) = (ψid,Σ

′)
and Ψ′ = Ψ{id → ψid}

update(Ψ, i,Σ) ∆= (Ψ,Σ) otherwise

In the first case, an aspect instance is created by invoking the generator G and adding ψid to
the current environment Ψ. The global state Σ is extended with private aspect state and becomes
Σ′. In the second case, the instruction does not trigger aspect instantiation, and so Ψ is not
modified.

The generalization to other classes and aspects is immediate.
To exemplify the introduction of new state in Σ, we now provide the details of counter. To this

end, we assume that Σ is an environment associating a value (such as an integer) to identifiers
(variables). We assume given a function incr that increments its argument, which must be a
variable. Formally, the generator G associated to the aspect counter is defined as

G(x,Σ) ∆= (ψid,Σ
′) with id ∆= counterx

where ψid
∆=

{
x.m() 7→ ((λΣ.incr z),be f ore) if classOf(x) = Point
i 7→ ε

and Σ′
∆= Σ{z 7→ 0} with z /∈ dom(Σ)

The new environment Σ′ is defined as Σ{z 7→ 0}, that is, the environment Σ extended with
a new variable z initialized with 0 (note the side-condition z /∈ dom(Σ) that avoids capture of
existing variables). The association function ψid is defined as x.m() 7→ ((λΣ.incr z),be f ore).
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Example of per-control-flow aspects (percflow)

Let Pe be a pointcut definition, as defined in Section 5.1. In this example, we formalize the
meaning of per-cflow(Pe), which states that the corresponding aspect is instantiated each time a
“new cflow” is considered.

Let us first describe more precisely the intuitive meaning. In Section 5.1, a stack of enclosing
calls written F was introduced in the program state. Thus, each time a procedure (or function,
method) call occurs, its signature (t)id is pushed onto the stack. Conversely, each time a pro-
cedure calls ends, the last element of the stack is popped. The pointcut cflow(Pe) matches the
current joinpoint if and only if a signature satisfying Pe is in the stack or if the current instruction
is a call to a method whose signature matches Pe. Informally, we say that the program is in the
cflow of Pe.

When the program steps from a state where it is not in the cflow of Pe into a state where it is
in the cflow of Pe, we say that the program enters the cflow of Pe. Conversely, the program may
leave a cflow of Pe. The qualifier per-cflow(Pe) states that a new aspect instance must be created
each time the program enters the cflow of Pe.

Formally, we assume given an aspect generator G that takes two arguments: the state Σ and
the instruction i that caused the program to step into the cflow of Pe. The generator returns an
elementary aspect ψid , where id is the (unique) aspect name, and a possibly new state Σ′.

G(i,Σ) = (ψid,Σ
′)

New aspects are created each time the program enters the cflow of Pe, which happens only
when the current instruction i is a call to a method whose signature is matched by Pe while the
program was not in the cflow of Pe. Conversely, aspects are deleted each time the program leaves
the cflow of Pe, which occurs in Rule RET defined in Section 5.1. In order to take the call stack
into account, the function update, defined in the previous section, gets F as an extra argument.

The function update that implements per-cflow(Pe) is defined as follows (the name id is the
unique name of the aspect being considered):

update(Ψ, i,Σ,F) ∆= (Ψ,Σ′)
if match f (Pe, i,F) and id /∈ dom(Ψ)
with G(i,Σ) = (ψid,Σ

′)
and Ψ′ = Ψ{id → ψid}

update(Ψ,{C},Σ,F) ∆= (Ψ− id,Σ)
if not match f (Pe,{C},F)

update(Ψ, i,Σ,F) ∆= (Ψ,Σ)
if not match f (Pe, i,F) or id ∈ dom(Ψ)

The first case correspond to a program entering the cflow of Pe. The function match f is for-
mally defined page 12, in the definition of cflow. The second case captures the return instruction
(Rule RET). It removes the aspect instance id from the aspect environment Ψ if the reduction
steps out of the cflow of Pe.
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Note that it is also acceptable to consider per cflow for individual threads. To this end, it
suffices to mark the identifier of the aspect (id in ψid) with the thread identifier. Thus, a new
aspect instance will be created each time a thread enters the cflow of Pe. This requires that the
current thread id is made explicit in the reduction rules.

6.4 Stateful Aspects
An aspect inserts an advice when it matches an instruction. A stateful aspect inserts an advice
when it matches a sequence of instructions. So, it has a state that evolves and specifies the next
instruction to be matched. Our semantics rules must take into account the evolutions of ψ as the
weaving progresses. For instance, the rule BEFORE becomes:

BEFORE
ψ(i) = (φ,before,ψ′)

(i : C,Σ,ψ)→ (test φ : i : C,Σ,ψ′)

We introduce a grammar for stateful aspects:
A ::= µa.(P1 .a1;A12 . . .2Pn .an;An)

| a
The base case P . a;A inserts the advice a when the pattern P matches the current instruction,
then it weaves A. The choice operator 2 defines branches in sequences of instructions. Finally,
the recursion operator enables sequences of arbitrary length. Such an aspect definition can be
translated into a function ψ as follows:

T1 :: A → ψ

T1[[µa.(P1 .a1;A12 . . .2Pn .an;An)]] = µa.λi.
if match(P1, i) then (λΣ.a1,before,T1[[A1]]) else
. . .
if match(Pn, i) then (λΣ.an,before,T1[[An]]) else
a

T1[[a]] = a

The recursion is translated directly. A function ψ takes the current instruction in parameter
(i.e. λi.). Then it performs pattern matching and returns the corresponding advice (or check the
next instruction if no pattern matches). The function returns a triplet (φ,before,ψ′) where ψ′ is a
kind of continuation for the aspect (i.e. the function to be applied to the next instruction).

7 Aspects for Java
In this section, we define the semantics of a core of Java and AspectJ. First, we give a semantics
for a subset of Java, basically Featherweight Java with assignments (AFJ). Then, we define the
semantics of an AspectJ-like language with around aspects, control flow pointcuts (cflow) as well
as associations (pertarget, percflow) for the programming language AFJ.
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7.1 Assignment Featherweight Java
Assignment Featherweight Java (AFJ) [MP05] is Featherweight Java (FJ), a purely functional
subset of Java, extended with field assignments. The syntax of Featherweight Java is extended
with a new kind of expression, e. f = e, representing assignments. Compared to AJF [MP05],
our version does not have the syntactic category of constructor nor the return instruction which
are useless for our purpose.

Prog ::= L; e
L ::= class X extends X {X̄ f̄ M}
M ::= Xm(Xx){e}
e ::= x | e. f | e.m(e) | new X(e) | (X)e | e. f = e

A program is a sequence of classes (L) followed by a main expression (e). The identifier X
represents a class identifier. Every class has a sequence of fields associated with a type which is
a class identifier (X f̄ ). A class also defines methods (M). A method takes a sequence of objects
as parameters (Xx) and returns an object which is the result of the computation of the method
body (e). An expression e can be a variable (x), an access to a field (e. f ), a call to a method with
a sequence of expression as parameters (e.m(e)), a construction of a class with a sequence of
expressions as parameter (new X(e)), a cast of an expression ((X)e) or an assignment (e. f = e).
The evaluation of an assignment e1. f = e2 assigns to the field of the object obtained by evaluating
e1 the object obtained by evaluating e2. Apart from that side effect, the result of the assignment
e1. f = e2 is the result of the evaluation of e2.

Expressions do not include sequences. A Java program with a sequence of Java statements
can be transformed into a AFJ program with a longer list of method arguments. For instance, the
following Java program

class Moo {
Object o;

Moo(Object o) {
this.o = o;

}
Moo foo(Moo m) {
this.o = m;
return this.bar().bar();

}
Moo bar() {
return (Moo)(this.o);

}
public static void main(String[] args) {
new Moo(new Object()).foo(new Moo(new Moo(new Object()))).bar();

}
}
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can be transformed into the following AFJ program

class Moo extends Object {
Object o;

Moo foo(Moo m) {
this.foo1(this.o=m,m)

}
Moo foo1(Object o1, Moo m) {

this.bar().bar()
}
Moo bar() {

(Moo)(this.o)
}

}
new Moo(new Object()).foo(new Moo(new Moo(new Object()))).bar()

The semantics of AFJ updates a store component in order to take into account assignment.
The original semantics [MP05] relies on congruence rules to define redexes. We slightly modify
the semantics and replace the congruence rules by rules that sequentialise the computation using
the continuation component C. The semantics of AFJ is defined as follows. First, we define some
auxilary functions.

Σ : Ob ject → X ×Fd
Fd : Identifier → Ob ject
mbody : Identifier×X → e
FieldName : X → Identifier× Identifier
init : L×mbody×FieldName → mbody×FieldName

init(class X extends B {T f̄ M} L′
, mbody, FieldName)

= init(L′
, mbody[(m0, X) 7→ e0, . . . , (mn, X) 7→ en],

FieldName[X 7→ (T, f )∪FieldName(B)])
init(ε, mbody, FieldName) = (mbody, FieldName)

The function Σ represents the store (i.e. the heap, or memory). It takes an Ob ject (i.e., a refer-
ence) as a parameter and returns an instance and its type. The function Fd takes a field identifier
as a parameter and returns its current value (i.e., a reference). The function mbody takes the sig-
nature of a method and returns the list of its parameters and its body. The function FieldName
returns the list of fields and their types for a given class. The function init builds the initial envi-
ronments mbody and FieldName for a given program. The initial call is of the form init(L,⊥,⊥)
with L the list of classes of the program.

The semantics of a program is given by a transition system and summarized by the following
equation:
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JL; eK = (e : ε, ε, ⊥, ε)→∗
b (ε, v : ε, Σ,ε) with init(L, ⊥, ⊥) = (mbody, FieldName)

The transition system itself is defined by the following inference rules:

CAST 1
((X)e : C, S, Σ, F) →b (e : CASTX : C, S, Σ, F)

CAST 2
Σ(v) = (X , Fd) X <: D

(CASTD : C, v : S, Σ, F) →b (C, v : S, Σ, F)

GET 1
(e. fi : C, S, Σ, F) →b (e : get fi : C, S, Σ, F)

GET 2
Σ(v) = (X , Fd) Fd( fi) = v2

(get fi : C, v : S, Σ, F) →b (C, v2 : S, Σ, F)

SET 1
(e0. fi = e : C, S, Σ, F) →b (e : e0 : set fi : C, S, Σ, F)

SET 2
Σ(v0) = (X , Fd)

(set fi : C, v0 : v : S, Σ, F) →b (C, v : S, Σ[v0 7→ (X , Fd[ fi 7→ v])], F)

CALL1
(e0.m(e1, . . . , en) : C, S, Σ, F) →b (e1 : . . . : en : e0 : call mn : C, S, Σ, F)

CALL2
Σ(v0) = (X , Fd) mbody(m, X) = (x1, . . . , xn).e

(call mn : C, v0 : v1 : . . . : vn : S, Σ, F)
→b (e[x1/v1, . . . , xn/vn, this/v0] : {C}, S, Σ,((X)m,v0) : F)

NEW1
(new X(e1, . . . , en) : C, S, Σ, F) →b (e1 : . . . : en : Newn

X : C, S, Σ, F)

NEW2
v /∈ dom(Σ) FieldName(X) = (T1, f1), . . . ,(Tn, fn) Fd = [ f1, . . . , fn 7→ v1, . . . , vn]

(Newn
X : C, v1 : . . . : vn : S, Σ, F) →b (v : C, S, Σ[v 7→ (X , Fd)], F)

RET
({C}, S, Σ, ((X)m,v0) : F) →b (C, S, Σ, F)
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PUSHOBJ
(v : C, S, Σ, F) →b (C, v : S, Σ, F)

In all rules, S represents the evaluation stack which contains the result of the evaluation of
an expression. The stack F contains the signatures of the methods calls which have not returned
yet (like in the rules CALL and RET of page 11). Here, every element of F is not only the
signature but a pair ((t)id,r) which contains also the receiver r needed to bind variables (needed
by the AspectJ-like pointcut target).

Most semantics rules comes as a pair. Rules indexed by 1 sequentialize the computation by
decomposing the current expression into a sequence of continuation expressions. Rules indexed
by 2 perform the actual computation. For instance,

◦ The rule CAST1 builds a continuation that first evaluates the expression e, then performs
the cast. The rule CAST2 actually performs the cast by verifying subtyping constraints on
the dynamic type of the value v.

◦ The rules GET evaluate the receiver and access one of its fields.
◦ The rules SET evaluate the right hand side, the left hand side, and performs an assignment.
◦ The rules CALL evaluate the arguments of a method from left to right, then the receiver.

The call itself pushed te signature and receiver in F , substitutes the parameters and evalu-
ates the body.

◦ The rules NEW evaluate the arguments of a constructor from left to right and build an
instance using a fresh reference.

◦ The single rule RET which represents the return instruction (end of a block) pops a pair
from F . The rule PUSHOBJ pops a reference from the continuation stack and pushes it
on the value stack S.

EXAMPLE 8 In this example, we consider the previous AFJ program (page 22) that we call
Prog. For the clearness, the stack of more than one elements x1, . . . ,xn is noted x1 : . . . : xn, of
one element x is x : ε and the empty stack is ε.

The execution of Prog according to our semantic rules begins by the execution of init which
initializes the program environments:

init(class Moo extends Ob ject {. . .}ε, ⊥, ⊥)
= (ε, mbody[( f oo,Moo) 7→ this. f oo1(this.o = m,m),( f oo1,Moo) 7→ this.bar().bar(),
(bar,Moo) 7→ (Moo)(this.o)], FieldName[Moo 7→ (Ob ject,o)])

= (mbody[( f oo,Moo) 7→ this. f oo1(this.o = m,m),( f oo1,Moo) 7→ this.bar().bar(),
(bar,Moo) 7→ (Moo)(this.o)], FieldName[Moo 7→ (Ob ject,o)])
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Then

JProgK
= (new Moo(new Ob ject()). f oo(new Moo(new Moo(new Ob ject()))).call bar() : ε, ε, ⊥, ε)
→b (new Moo(new Ob ject()). f oo(new Moo(new Moo(new Ob ject()))) : call bar0, ε, ⊥, ε)
→b (new Moo(new Moo(new Ob ject())) : new Moo(new Ob ject()) : call f oo1 : call bar0, ε, ⊥, ε)
→b (new Moo(new Ob ject()) : New1

Moo : new Moo(new Ob ject()) : call f oo1 : call bar0, ε, ⊥, ε)
→b (new Ob ject() : New1

Moo : New1
Moo : new Moo(new Ob ject()) : call f oo1 : call bar0, ε, ⊥, ε)

→b (New0
Ob ject : New1

Moo : New1
Moo : new Moo(new Ob ject()) : call f oo1 : call bar0, ε, ⊥, ε)

→b (v0 : New1
Moo : New1

Moo : new Moo(new Ob ject()) : call f oo1 : call bar0, ε, Σ[v0 7→ (Ob ject, ⊥)], ε)
→b (New1

Moo : New1
Moo : new Moo(new Ob ject()) : call f oo1 : call bar0, v0 : ε, Σ[v0 7→ (Ob ject, ⊥)], ε)

→b (v1 : New1
Moo : new Moo(new Ob ject()) : call f oo1 : call bar0, ε, Σ[v1 7→ (Moo, o 7→ v0)], ε)

→b (New1
Moo : new Moo(new Ob ject()) : call f oo1 : call bar0, v1 : ε, Σ[v1 7→ (Moo, o 7→ v0)], ε)

→b (v2 : new Moo(new Ob ject()) : call f oo1 : call bar0, ε, Σ[v2 7→ (Moo, o 7→ v1)], ε)

→b (new Moo(new Ob ject()) : call f oo1 : call bar0, v2 : ε, Σ[v2 7→ (Moo, o 7→ v1)], ε)
→b (new Ob ject() : New1

Moo : call f oo1 : call bar0, v2 : ε, Σ[v2 7→ (Moo, o 7→ v1)], ε)
→b (New0

Ob ject : New1
Moo : call f oo1 : call bar0, v2 : ε, Σ[v2 7→ (Moo, o 7→ v1)], ε)

→b (v3 : New1
Moo : call f oo1 : call bar0, v2 : ε, Σ[v3 7→ (Ob ject, ⊥], ε)

→b (New1
Moo : call f oo1 : call bar0, v3 : v2, Σ[v3 7→ (Ob ject, ⊥], ε)

→b (v4 : call f oo1 : call bar0, v2 : ε, Σ[v4 7→ (Moo, o 7→ v3], ε)

→b (call f oo1 : call bar0, v4 : v2, Σ, ε)
wiht Σ = [v0 7→ (Ob ject,⊥),v1 7→ (Moo,o 7→ v0),v2 7→ (Moo,o 7→ v1),
v3 7→ (Ob ject,⊥),v4 7→ (Moo,o 7→ v3)]
→b (v4. f oo1(v4.o = v2, v2) : {call bar0}, ε, Σ, ((Moo) f oo,v4) : ε)
→b (v4.o = v2 : v2 : v4 : call f oo12 : {call bar0}, ε, Σ, ((Moo) f oo,v4) : ε)
→b (v2 : v4 : set o : v2 : v4 : call f oo12 : {call bar0}, ε, Σ, ((Moo) f oo,v4) : ε)
→b (v4 : set o : v2 : v4 : call f oo12 : {call bar0}, v2 : ε, Σ, ((Moo) f oo,v4) : ε)
→b (set o : v2 : v4 : call f oo12 : {call bar0}, v4 : v2, Σ, ((Moo) f oo,v4) : ε)
→b (v2 : v4 : call f oo12 : {call bar0}, v2 : ε, Σ[v4 7→ (Moo, o 7→ v2], ((Moo) f oo,v4) : ε)
→b (v4 : call f oo12 : {call bar0}, v2 : v2, Σ[v4 7→ (Moo, o 7→ v2], ((Moo) f oo,v4) : ε)
→b (call f oo12 : {call bar0}, v4 : v2 : v2, Σ[v4 7→ (Moo, o 7→ v2], ((Moo) f oo,v4) : ε)

→b (v4.bar().bar() : {{call bar0}}, ε, Σ, ((Moo) f oo1,v4) : F)
wiht Σ = [v0 7→ (Ob ject,⊥),v1 7→ (Moo,o 7→ v0),v2 7→ (Moo,o 7→ v1),
v3 7→ (Ob ject,⊥),v4 7→ (Moo,o 7→ v2)]

F = ((Moo) f oo,v4) : ε

→b (v4.bar() : call bar0 : {{call bar0}}, ε, Σ, ((Moo) f oo1,v4) : F)
→b (v4 : call bar0 : call bar0 : {{call bar0}}, ε, Σ, ((Moo) f oo1,v4) : F)
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→b (call bar0 : call bar0 : {{call bar0}}, v4 : ε, Σ, ((Moo) f oo1,v4) : F)
→b ((Moo)v4.o : {call bar0 : {{call bar0}}}, ε, Σ, ((Moo)bar,v4) : F)

with F = ((Moo) f oo1,v4) : ((Moo) f oo,v4)
→b (v4.o : CASTMoo : {call bar0 : {{call bar0}}}, ε, Σ, ((Moo)bar,v4) : F)
→b (v4 : get o : CASTMoo : {call bar0 : {{call bar0}}}, ε, Σ, ((Moo)bar,v4) : F)
→b (get o : CASTMoo : {call bar0 : {{call bar0}}}, v4 : ε, Σ, ((Moo)bar,v4) : F)
→b (CASTMoo : {call bar0 : {{call bar0}}}, v2 : ε, Σ, ((Moo)bar,v4) : F) with Σ(v4) = (_, o 7→ v2)

→b ({call bar0 : {{call bar0 :}}}, v2 : ε, Σ, ((Moo)bar,v4) : F) with Σ(v2) = (Moo, _)∧Moo <: Moo
→b (call bar0 : {{call bar0}}, v2 : ε, Σ, F)
→b ((Moo)v2.o : {{{call bar0}}}, ε, Σ, ((Moo)bar,v2) : F)
→b (v2.o : CASTMoo : {{{call bar0}}}, ε, Σ, ((Moo)bar,v2) : F)
→b (v2 : get o : CASTMoo : {{{call bar0}}}, ε, Σ, ((Moo)bar,v2) : F)
→b (get o : CASTMoo : {{{call bar0}}}, v2 : ε, Σ, ((Moo)bar,v2) : F)
→b (CASTMoo : {{{call bar0}}}, v1 : ε, Σ, ((Moo)bar,v2) : F) with Σ(v2) = (_, o 7→ v1)

→b ({{{call bar0 : ε}}}, v1 : ε, Σ, ((Moo)bar,v2) : F) with Σ(v1) = (Moo, _) ∧ Moo <: Moo
→b ({{call bar0 : ε}}, v1 : ε, Σ, F)

with F = ((Moo) f oo1,v4) : ((Moo) f oo,v4)
→b ({call bar0 : ε}, v1 : ε, Σ, ((Moo) f oo,v4) : ε)
→b (call bar0 : ε, v1 : ε, Σ, ε)
→b ((Moo)v1.o : {ε}, ε, Σ, ((Moo)bar,v1) : ε)
→b (v1.o : CASTMoo : {ε}, ε, Σ, ((Moo)bar,v1) : ε)
→b (v1 : get o : CASTMoo : {ε}, ε, Σ, ((Moo)bar,v1) : ε)
→b (get o : CASTMoo : {ε}, v1 : ε, Σ, ((Moo)bar,v1) : ε)
→b (CASTMoo : {ε}, v0 : ε, Σ, ((Moo)bar,v1) : ε) with Σ(v1) = (_, o 7→ v0)
→b ({ε}, v0 : ε, Σ, ((Moo)bar,v1) : ε) with Σ(v0) = (Ob ject, _)∧Ob ject <: Moo
→b (ε, v0 : ε, Σ, ε)
wiht Σ = [v0 7→ (Ob ject,⊥),v1 7→ (Moo,o 7→ v0),v2 7→ (Moo,o 7→ v1),
v3 7→ (Ob ject,⊥),v4 7→ (Moo,o 7→ v2)]

7.2 Featherweight AspectJ
The grammar below represents a subset of AspectJ. In this grammar, an aspect is represented by
a set of fields, a pointcut P, an advice Ad and its identifier Y . The advice, of the around kind,
takes a sequence of objects as parameters and returns an object. An advice body is an expression
e like in AFJ in which proceed can be a subexpression. The pointcut P is a pattern which can
represent either

◦ a call to a method (PT )PI where PT or PI are either an identifier (class or method) or a
wildcard ∗,
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◦ the reference of the receiver target(x) where x is a variable which will be bound to the
receiver,

◦ the cflow pointcut,
◦ a disjunction, conjunction or negation of these patterns.

An aspect can optionally be either a percflow or a pertarget aspect. In the case of a percflow,
an instance of the aspect is created each time the program enters the cflow of (PT )PI and for a
pertarget, an instance of the aspect is created each time (PT )PI is accessed by a new object.

A ::= aspect [perc f low((PT )PI) | pertarget((PT )PI)] Y {X̄ f̄ P Ad} |
Ad ::= X around(X̄ x̄){e}
P ::= (PT )PI | target(x) | P1∧P2 | P1∨P2 | ¬ P | cflow(P)
PT ::= id | ∗
PI ::= id | ∗

In the previous sections, we used Ψ as aspect environment. In definition 7 (page 17), Ψ

maps aspect identifiers to elementary aspects ψid and (◦Ψ) represents the composition of all
elementary aspects in Ψ.

Here we define the (◦Ψ) function returning advice of matching aspects. We suppose to have
the following functions:

Fields : id → id× id
Advice : id → e
Pointcut : id → P

returning for each aspect identifier its corresponding fields, advice and pointcut respectively. The
function (◦Ψ) takes the current instruction but also the top of the evaluation stack (for target) and
the control flow stack (for cflow).

(◦Ψ)(i, t,F) = ψid1(i, t,F)◦ . . .◦ψidn(i, t,F)
for dom(Ψ) = {id1, . . . , idn}

= (ψid1(i, t,F), . . . ,ψidn(i, t,F))
= ((σ(φid j1

),around), . . . ,(σ(φid jn
),around))

with 1 ≤ ji ≤ n
Because for each id ∈ dom(Ψ)

ψid(i, t,F) = i f matchG(Pointcut(id), i,F, t) = σ

then (σ(φid),around) else ε

with φid = Advice(id)

The function (◦Ψ) evaluates the function ψ corresponding to each elementary aspect and
returns a n-uplet. Each ψid function returns the pair (σ(φ(id)),around) if the pointcut in the
current aspect identifier id match the current instruction else it returns ε. In this pair, σ is a
mapping (substitution) that maps each variable in a pointcut to an object. Here it binds the
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variable in target to the correspondent object which could be the top of the evaluation stack
or a receiver in the control flow stack. Because we do not have a dynamic information in a
pointcut, φid does not take Σ as parameter like in Section 3 and returns the advice of the aspect
id. Therefore σ(φid) returns the advice in which the variables in the pointcut used in this advice
body are substituted by the correspondent values in σ. The substitution σ is returned by the
function matchG which represents the process of matching a pointcut P to an instruction (but also
according to the control stack and the object on the top of the evaluation stack). The matching
process has the following signature

matchG : P× Instruction×F ×Ob ject → σ∪{Fail}

where Ob ject is the set of objects, Instruction the set of instructions and F is the control flow
stack. The function matchG returns a substitution σ if the pointcut matches and returns Fail oth-
erwise. matchG is defined as follows:

matchG(target(x), i, F, t) = {x → t}

matchG((PT )PI, i, F, t) = i f i = (T )∧ (PT = T ∨PT = ∗)∧ (PI = I∨PI = ∗)
then /0

else Fail

matchG(P1∧P2, i, F, t) = i f matchG(P1, i, F, t) = σ1
∧ matchG(P2, i, F, t) = σ2
then σ1∪σ2
else Fail

matchG(¬P, i, F, t) = i f matchG(P, i, F, t) = /0 then /0

else Fail

matchG(P1∨P2, i, F, t) = i f matchG(P1, i, F, t) = σ then σ

else matchG(P2, i, F, t)

matchG(cflow(P), i, (i
′
,r) : F

′
, t) = i f matchG(P, i,F, t) = σ then σ

else i f F = (i
′
,r) : F

′
then matchG(cflow(P), i

′
, F

′
, r)

else Fail

Matching the pointcut target(x) against an instruction consists in binding x with the object passed
to matchG (i.e. the receiver linked to this instruction). Matching (PT )PI returns the empty sub-
stitution ( /0) in case of success (the pointcut does not contain variables) or Fail. For the pointcut
cflow(P), we first try to match P against the current instruction, if this process failed then we try
to match against the first method call in the call stack F and its corresponding receiver (r).

In the following subsections and sections, we will consider only the aspects which respect
the above grammar.
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7.3 Around aspects
Like in AspectJ, in featherweight AspectJ around aspects are applied only at method calls. Like
before, the rule NOADVICE below executes the current instruction i if no advice is to be executed.
Note that, the component Σ is refined and an evaluation stack S appears. The proceed stack P is
used only by the woven program (→). Additionally, we call the function update to check if new
aspects should be created at run-time(see subsection 7.5 for the definition of update).

NOADVICE

update(Ψ, i, t : S,Σ) = (Ψ′,Σ′)
(◦Ψ

′)(i, t,F) = ε (i : C, t : S,Σ′,F)→b (C′,S′,Σ′′,F ′)
(i : C, t : S,Σ,F,P,Ψ)→ (C′,S′,Σ′′,F ′,P,Ψ′)

Because S is a stack shared by the evaluation of expressions, the values in the top of S could
not be correspond to the arguments of the current method call at the execution of proceed. To
avoid this problem, we modify the AROUND rule as follows

AROUND

Σ(v0) = (X ,Fd) mbody(m,X) = (x1, . . . ,xn).e
update(Ψ,call mn,S,Σ) = (Ψ′,Σ′) (◦Ψ

′)(call mn,v0,F) = (σ(φ),around)
(call mn : C,v0 : v1 : . . . : vn : S,Σ,F,P,Ψ)

→ (σ(φ) : popp : C,S,Σ′,F,(e[x1/v1, . . . , xn/vn, this/v0],((X)m,v0)) : P,Ψ′)

PROCEED
(proceed : C,S,Σ,F,(e,((X)m,v0)) : P,Ψ)

→ (e : {pushp (e,((X)m,v0)) : C},S,Σ,((X)m,v0) : F,P,Ψ)

POP
(popp : C,S,Σ,F,Z : P,Ψ)→ (C,S,Σ,F,P,Ψ)

In those rules, it is not the current instruction (call mn) which is pushed in the proceed stack
but the body of this method call in which its arguments are substituted by the corresponding
values and its signature. That permits to resolve the problem of values which do not correspond
to the arguments of the current method call at the execution of proceed. Like in the general
rules of around aspects, the rule PROCEED executes the expression on top of the proceed stack.
Because this expression is the body of the method of which the signature is on top of P, PROCEED

pushes also this signature in F and inserts a block representing the return address of this method.
Also, we do not have to tag e[x1/v1, . . . , xn/vn, this/v0] because it could be match by an aspect.
Another modification is the replacement of test φ by φ because in featherweight AspectJ, φ does
not depend on Σ.

Let us now consider a simple around Aspectj aspect A1 that assigns the field o with this
before proceeding with bar.
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aspect A1 {

Moo around(Moo r): call(Moo Moo.bar()) && target(r) {
r.o = r;
proceed();

}
}

One way to express this aspect as a featherweight aspectj aspect is:

◦ to add the following class in the base program

class A1 {

Moo advice(Moo r) {
return this.advice2(r.o = r,proceed());

}
Moo advice2(Object o, Moo e) {
return e;

}
}

the methods advice and advice2 permits to transform the statements in the advice into
an expression similarly to the AFJ transformation of a java program.

◦ after that, we transform the aspect A1 into a featherweight aspectj aspect A1’ as follows

aspect A1’ {

((Moo)bar) /\ target(r)
Moo around(Moo r) {
(new A1()).advice(r)

}
}

In this transformation, we create an object of A1 to access to the method advice of this class.
We apply the AROUND rules above to A1’ in the following example

EXAMPLE 9 In this example, we weave the aspect A1’ and execute the result woven program of
the base program executed at the EXAMPLE 8 page 24. After the build of program and aspect
environments, we have:
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mbody = [( f oo,Moo) 7→ this. f oo1(this.o = m,m),( f oo1,Moo) 7→ this.bar().bar(),
(bar,Moo) 7→ (Moo)(this.o),(advice,A1) 7→ this.advice2(r.o = r, proceed()),
(advice2,A1) 7→ e]

FieldName = [Moo 7→ (Ob ject,o)]
Ψ = {A1′→ ψA1′}
Pointcut = [A1′ 7→ ((Moo)bar)∧ target(r)]
Advice = [A1′ 7→ (new A1()).advice(r)]
Field = ⊥

The execution of the woven program without matching an instruction by an aspect is like the
execution of the base program by applying the rule NOADVICE. Then,

(new Moo(new Ob ject()). f oo(new Moo(new Moo(new Ob ject()))).call bar() : ε, ε, ⊥, ε, ε, Ψ)
→∗ (call bar0 : call bar0 : {{call bar0}}, v4 : ε, Σ, F, ε, Ψ)
wiht Σ = [v0 7→ (Ob ject,⊥),v1 7→ (Moo,o 7→ v0),v2 7→ (Moo,o 7→ v1),
v3 7→ (Ob ject,⊥),v4 7→ (Moo,o 7→ v2)]

F = ((Moo) f oo1,v4) : ((Moo) f oo,v4)
Ψ = {A1′→ ψA1′}

Because
update(Ψ,call bar0,v4 : ε,Σ) = (Ψ,Σ)

(◦Ψ)(call bar0,v4,F) = ψA1′(call bar0,v4,F)
= (σ(φA1′),around) with σ = {r → v4}

Because
matchG(Pointcut(A1′),call bar0,F,v4) = matchG((Moo)bar∧ target(r),call bar0,F,v4)
= matchG((Moo)bar,call bar0,F,v4) ∧ matchG(target(r),call bar0,F,v4)
= /0∪{r → v4}= {r → v4}
then σ(φA1′) = σ(Advice(A1′))

= σ((new A1()).advice(r))
= (new A1()).advice(v4)

then
(call bar0 : call bar0 : {{call bar0}}, v4 : ε, Σ, F, ε, Ψ)
→ (σ(φA1′) : popp : call bar0 : {{call bar0}}, ε, Σ, F, P, Ψ)
with P = ((Moo)v4.o,((Moo)bar,v4)) : ε

→ ((new A1()).advice(v4) : popp : call bar0 : {{call bar0}}, ε, Σ, F, P, Ψ)
→ (v4 : new A1() : call advice1 : popp : call bar0 : {{call bar0}}, ε, Σ, F, P, Ψ)
→ (new A1() : call advice1 : popp : call bar0 : {{call bar0}}, v4 : ε, Σ, F, P, Ψ)
→ (New0

A1 : call advice1 : popp : call bar0 : {{call bar0}}, v4 : ε, Σ, F, P, Ψ)
→ (v5 : call advice1 : popp : call bar0 : {{call bar0}}, v4 : ε, Σ[v5 7→ (A1,⊥)], F, P, Ψ)
→ (call advice1 : popp : call bar0 : {{call bar0}}, v5 : v4, Σ[v5 7→ (A1,⊥)], F, P, Ψ)
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→ (v5.advice2(v4.o = v4, proceed()) : {popp : call bar0 : {{call bar0}}}, ε, Σ, F, P, Ψ)
with F = ((Moo)advice1,v5) : ((Moo) f oo1,v4) : ((Moo) f oo,v4)

Σ = [v0 7→ (Ob ject,⊥),v1 7→ (Moo,o 7→ v0),v2 7→ (Moo,o 7→ v1),
v3 7→ (Ob ject,⊥),v4 7→ (Moo,o 7→ v2),v5 7→ (A1,⊥)]
→ (v4.o = v4 : proceed() : v5 : call advice22 : {popp : call bar0 : {{call bar0}}}, ε,Σ,F, P,Ψ)
→∗ (proceed() : v5 : call advice22 : {popp : call bar0 : {{call bar0}}}, v4 : ε, Σ, F, P, Ψ)
with Σ = [v0 7→ (Ob ject,⊥),v1 7→ (Moo,o 7→ v0),v2 7→ (Moo,o 7→ v1),
v3 7→ (Ob ject,⊥),v4 7→ (Moo,o 7→ v4),v5 7→ (A1,⊥)]

→ ((Moo)v4.o : {push ((Moo)v4.o,((Moo)bar,v4)) : v5 : call advice22

: {popp : call bar0 : {{call bar0}}}}, v4 : ε, Σ, F, ε, Ψ)
with F = ((Moo)bar,v4) : ((Moo)advice1,v5) : ((Moo) f oo1,v4) : ((Moo) f oo,v4)
→∗ (call advice22 : {popp : call bar0 : {{call bar0}}}, v5 : v4 : v4, Σ, F, P, Ψ)
with P = ((Moo)v4.o,((Moo)bar,v4)) : ε

F = ((Moo)advice1,v5) : ((Moo) f oo1,v4) : ((Moo) f oo,v4)
→ (v4 : {{popp : call bar0 : {{call bar0}}}}, ε, Σ, F, P, Ψ)
with F = ((Moo)advice2,v5) : ((Moo)advice1,v5) : ((Moo) f oo1,v4) : ((Moo) f oo,v4)
→ ({{popp : call bar0 : {{call bar0}}}}, v4 : ε, Σ, F, P, Ψ)
→∗ (popp : call bar0 : {{call bar0}, v4 : ε, Σ, F, P, Ψ)
with F = ((Moo) f oo1,v4) : ((Moo) f oo,v4)
→ (call bar0 : {{call bar0}}, v4 : ε, Σ, F, ε, Ψ)
at this state also
(◦Ψ)(call bar0,v4,F) = (σ(phiA1′),around) with σ = {r → v4} then

(call bar0 : {{call bar0}}, v4 : ε, Σ, F, ε, Ψ)
→∗ ({{call bar0 : ε}}, v4 : ε, Σ, F, ε, Ψ)
with F = ((Moo) f oo1,v4) : ((Moo) f oo,v4)

Σ = [v0 7→ (Ob ject,⊥),v1 7→ (Moo,o 7→ v0),v2 7→ (Moo,o 7→ v1),v3 7→ (Ob ject,⊥),
v4 7→ (Moo,o 7→ v4),v5 7→ (A1,⊥),v6 7→ (A1,⊥)]
→∗ (call bar0 : ε, v4 : ε, Σ, ε, ε, Ψ)
this state is also match by the aspect

→∗ (ε, v4 : ε, Σ, ε, ε, Ψ)
with Σ = [v0 7→ (Ob ject,⊥),v1 7→ (Moo,o 7→ v0),v2 7→ (Moo,o 7→ v1),v3 7→ (Ob ject,⊥),
v4 7→ (Moo,o 7→ v4),v5 7→ (A1,⊥),v6 7→ (A1,⊥),v7 7→ (A1,⊥)]

Ψ = {A1′→ ψA1′}

7.4 Control flow pointcuts
Here, we want to illustrate the weaving of an aspect with the cflow pointcut. For that we consider
the following aspect A2’. This aspect crosscuts calls to bar which are in the control flow of foo1.
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It assigns the field o of the receiver of foo1 with the value of this receiver before proceeding with
bar.

aspect A2’{

((Moo)bar) /\ cflow((Moo)foo1 /\ target(r))
Moo around(Moo r){
(new A1()).advice(r)
}

}

The weaving of this aspect and the execution of the woven program is as follows

EXAMPLE 10 The base program environments mbody and FieldName is as in the EXAMPLE 9.
The aspects environments are:

Ψ = {A2′→ ψA2′}
P = [A2′ 7→ ((Moo)bar)∧ c f low((Moo) f oo1∧ target(r))]
Advice = [A2′ 7→ (newA1()).advice(r)]
Field = ⊥

then,
(new Moo(new Ob ject()). f oo(new Moo(new Moo(new Ob ject()))).call bar() : ε, ε, ⊥, ε, ε, Ψ)
→∗ (call bar0 : call bar0 : {{call bar0}}, v4 : ε, Σ, F, ε, Ψ)
wiht Σ = [v0 7→ (Ob ject,⊥),v1 7→ (Moo,o 7→ v0),v2 7→ (Moo,o 7→ v1),
v3 7→ (Ob ject,⊥),v4 7→ (Moo,o 7→ v2)]

F = ((Moo) f oo1,v4) : ((Moo) f oo,v4)
Ψ = {A2′→ ψA2′}

Because
(◦Ψ)(call bar0,v4,F) = ψA2′(call bar0,v4,F)

= (σ(φA2′),around) with σ = {r → v4}
Because
matchG(Pointcut(A2′),call bar0,F,v4)
= matchG(((Moo)bar)∧ cflow((Moo) f oo1∧ target(r)),call bar0,F,v4)
= matchG((Moo)bar,call bar0,F,v4)∧matchG(cflow((Moo) f oo1∧ target(r)),call bar0,F,v4)
= matchG((Moo)bar,call bar0,F,v4)∧matchG(cflow((Moo) f oo1∧ target(r)),call f oo12,F

′
,v4)

with matchG((Moo) f oo1∧ target(r),call bar0,F,v4) = Fail
F
′
= ((Moo) f oo,v4) : ε

= matchG((Moo)bar,call bar0,F,v4)∧matchG((Moo) f oo1∧ target(r),call f oo12,F
′
,v4)

= /0∪{r → v4}
= {r → v4}
then σ(φA2′) = σ(Advice(A2′))

= σ((new A1()).advice(r))
= (new A1()).advice(v4)
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then
(call bar0 : call bar0 : {{call bar0}}, v4 : ε, Σ, F, ε, Ψ)
→∗ (call bar0 : {{call bar0}}, v4 : ε, Σ, F, ε, Ψ)
with F = ((Moo) f oo1,v4) : ((Moo) f oo,v4)

Σ = [v0 7→ (Ob ject,⊥),v1 7→ (Moo,o 7→ v0),v2 7→ (Moo,o 7→ v1),
v3 7→ (Ob ject,⊥),v4 7→ (Moo,o 7→ v4),v5 7→ (A1,⊥)]

Ψ = {A2′→ ψA2′}
as we have compute at the above state, at this state also
(◦Ψ)(call bar0,v4,F) = ψA2′(call bar0,v4,F)

= (σ(φA2′),around) with σ = {r → v4}

then
(call bar0 : {{call bar0}}, v4 : ε, Σ, F, ε, Ψ)
→∗ (call bar0 : ε, v4 : ε, Σ, ε, ε, Ψ)
with Σ = [v0 7→ (Ob ject,⊥),v1 7→ (Moo,o 7→ v0),v2 7→ (Moo,o 7→ v1),v3 7→ (Ob ject,⊥),
v4 7→ (Moo,o 7→ v4),v5 7→ (A1,⊥),v6 7→ (A1,⊥)]
at this state
(◦Ψ)(call bar0,v4,ε) = ε

Because
matchG(Pointcut(A2′),call bar0,ε,v4)
= matchG(((Moo)bar)∧ cflow((Moo) f oo1∧ target(r)),call bar0,ε,v4)
= Fail because matchG(cflow((Moo) f oo1∧ target(r)),call bar0,ε,v4) = Fail

then
(call bar0 : ε, v4 : ε, Σ, ε, ε, Ψ)
→∗ (ε, v4 : ε, Σ, ε, ε, Ψ)
with Σ = [v0 7→ (Ob ject,⊥),v1 7→ (Moo,o 7→ v0),v2 7→ (Moo,o 7→ v1),v3 7→ (Ob ject,⊥),
v4 7→ (Moo,o 7→ v4),v5 7→ (A1,⊥),v6 7→ (A1,⊥)]

Ψ = {A2′→ ψA2′}

7.5 Association
As seen in section 6.3, we deal with association by defining the function update. Initially, update
simply returns its arguments as such, that is, by default update(Ψ, i,S,Σ) = (Ψ,Σ), meaning that
no aspect association is defined yet. As expected, each aspect that needs dynamic instantiation
(pertarget and percflow) modifies update by creating a new instance when needed. Let us look at
an example.

aspect A3 pertarget((Moo)bar) {
((Moo)bar) /\ cflow((Moo)foo1 /\ target(r))

34



Moo around(Moo r){
(new A1()).advice(r)
}

}

For A3, the update function is modified as follows:

update(Ψ,call bar,v : S,Σ) ∆= (Ψ′,Σ′) if A3v /∈ dom(Ψ)
with G3(v,Σ) = (ψid,Σ

′)
and Ψ′ = Ψ{id → ψid}

Here G3(v,Σ) is the generator for this aspect. Given the object v that triggered aspect instantiation
and the current store Σ, it creates a new aspect instance, that is, a new function ψid and a new
object av in Σ′.

G3(v,Σ) = (ψid,Σ
′) Σ

′ = Σ[av 7→ (A3,Fd)]]

where Fd is defined as in Rule NEW2. For ψid , we suppose to have the function

PertargetPc : id → P

returning for each aspect identifier the pointcut (PT )PI of the syntactic expression pertarget((PT )PI)
which is in the definition of a pertarget aspect. Then, ψid is defined as in page 27 in which
Pointcut(id) is replaced by PertargetPc(id)

Comparison with the single instance case In summary, the changes to the default case are
the following:

◦ Interpreting a pertarget or a percflow aspect does not modify the global environment, but
modifies the update function, as shown above.

◦ The function ψ associated to the aspect is similar to the default case, except that it refers
to an instance av that depends on the current target v.

◦ The aspect is not instantiated initially (in function init), but rather dynamically, when
needed by the function update.

8 Conclusion
In this note, we have defined a small step semantics for the major mechanisms of AspectJ, EAOP
and Caesar. They have been defined in isolation. These mechanisms are not fully orthogonal,
for instance, both aspect association and stateful aspects update Ψ. We have illustrated the in-
tegration of several features into a core AspectJ language with around aspects, cflow and aspect
association. In the future, we plan to use our semantics in order to explore the analysis and/or
verification of aspect oriented programs. In particular, we would like to verify that a specific
aspect ensures some properties in the woven program or preserves some properties of the base
program.
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Appendix
As requested by an email of Alessandro Garcia on february 13th, this appendix list new terms
for our ontology.

◦ stateful aspect: a stateful aspect has a control flow, hence a state. This state evolves when
joinpoints are matched and their corresponding advice executed. This can be used to match
sequences of pointcuts.

◦ aspect association/instantiation: when an aspect has a state (e.g. fields in AspectJ) it can
have several instances. Each instance is usually associated with dynamic values of join-
points (e.g. an instance per object).
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