
RDF: Reconfigurable Dataflow

Pascal Fradet † Alain Girault † Ruby Krishnaswamy ‡ Xavier Nicollin † Arash Shafiei∗†‡

Abstract—Dataflow Models of Computation (MoCs) are widely
used in embedded systems, including multimedia processing,
digital signal processing, telecommunications, and automatic
control. In a dataflow MoC, an application is specified as a
graph of actors connected by FIFO channels. One of the most
popular dataflow MoCs, Synchronous Dataflow (SDF), provides
static analyses to guarantee boundedness and liveness, which are
key properties for embedded systems. However, SDF (and most of
its variants) lacks the capability to express the dynamism needed
by modern streaming applications. In particular, the applications
mentioned above have a strong need for reconfigurability to
accommodate changes in the input data, the control objectives,
or the environment.

We address this need by proposing a new MoC called Recon-
figurable Dataflow (RDF). RDF extends SDF with transformation
rules that specify how the topology and actors of the graph may
be reconfigured. Starting from an initial RDF graph and a set of
transformation rules, an arbitrary number of new RDF graphs
can be generated at runtime. A key feature of RDF is that it
can be statically analyzed to guarantee that all possible graphs
generated at runtime will be consistent and live. We introduce
the RDF MoC, describe its associated static analyses, and outline
its implementation.

Index Terms—Models of computation; Synchronous dataflow;
Reconfigurable systems; Static analyses; Boundedness; Liveness.

I. INTRODUCTION

Dataflow Models of Computation (MoCs) are convenient for
multimedia processing and digital signal processing since they
model the application as a network of processing units which
is very natural for applications in these domains [1]. One of
the most popular dataflow MoCs is Synchronous Dataflow
(SDF) [2]. In a nutshell, an SDF graph consists of so-called
actors connected by FIFO channels. When it is executed (or
fired), an SDF actor consumes a fixed number of data (tokens)
on each of its input edges, performs some computation and
produces a fixed number of tokens on each of its output
edges. These numbers of consumed and produced tokens are
static, which allows static analyses to check boundedness and
liveness of SDF graphs.

Being able to check statically the boundedness and the
liveness is a strong advantage, but it comes at the price
of forbidding any dynamic changes of the SDF graph. For
this reason, several extensions of SDF have been explored
such as the parametric production and consumption rates
(e.g., PSDF [3], BPDF [4], PiSDF [5]), or allowing limited
changes of the topology using scenarios (e.g., SADF [6]).

† : Univ. Grenoble Alpes, Inria, CNRS, Grenoble INP, LIG, 38000
Grenoble, France. first.last@inria.fr
‡ : Orange, France. first.last@orange.com
∗ : Corresponding author

The common points of these variants is to remain statically
analyzable [7], a crucial feature for embedded systems. Other
MoCs have gone further along the road towards dynamicity
(e.g., BDF [8] or DDF [9]), but properties such as boundedness
or liveness become undecidable.

One aspect of dataflow MoCs that has not been explored
is the dynamic changes to the graph topology. For example,
this would be very useful for telecommunication applications
(to allocate more pipelines when the number of IP packets
increases), embedded computer vision (to change the frame
decomposition), automatic control (to change the control law
depending on stability criteria).

We propose in this paper a variant of SDF called Recon-
figurable Dataflow (RDF). RDF allows dynamic changes to
the graph topology thanks to transformation rules (expressed
as graph rewrite rules) and to a controller that applies these
rules depending on runtime conditions or measurements. In
RDF, the number of graphs that can be produced using trans-
formation rules is potentially unbounded. This contrasts with
SADF where the number of scenarios is fixed and, in practice,
rather small.We show that RDF remains statically analyzable
and we propose algorithms to ensure that the connectivity,
boundedness, and liveness of RDF graphs.

The paper is organized as follows. We start by recalling
the basic notions of SDF in section II. RDF is introduced in
section III. Section IV presents the static analyses ensuring that
RDF reconfigurations preserve the connectivity, consistency,
and liveness properties. We outline in section V the main
features of the implementation of RDF. Finally, section VI
presents related work and section VII concludes.

Proofs of the theorems stated in this paper as well as some
additional material can be found in a companion research
report [10].

II. SYNCHRONOUS DATAFLOW

An SDF graph [2] is a directed graph, where vertices –
called actors – are functional units. Actors are connected by
edges, which are FIFO channels. The atomic execution of a
given actor – called actor firing – consumes data tokens from
all its incoming edges (its inputs) and produces data tokens
to all its outgoing edges (its outputs). The number of tokens
consumed (resp. produced) on a given edge at each firing
is called the consumption (resp. production) rate. An actor
can fire only when all its input edges contain enough tokens
(i.e., at least the number specified by the consumption rate of
the corresponding edge). In SDF, all rates are constant integers
known at compile time.



Formally, an SDF graph is defined by a 4-tuple G =
(V,E, ρ, ι) where:
• V is a finite set of actors; among those, we distinguish

source actors that have no incoming edges, and sink
actors that have no outgoing edges;

• E is a finite set of directed edges (E ⊆ V × V );
• ρ : E → N\{0} × N\{0} is a function that returns for

each edge a pair (x, y), where x is the production rate of
its origin actor (producer) and y is the consumption rate
of its destination actor (consumer);

• ι : E → N is a function that returns for each edge the
number of its initial tokens (possibly 0).

When necessary, we will use VG instead of V to refer to
the set of vertices of graph G (and similarly for the other
constituents).

Fig. 1 shows a simple SDF graph G1 with 5 actors. The edge
between A1 and B1 has a production (resp. consumption) rate
of 2 (resp. 3).

S1 A1 B1 C1 D1
1 1 2 3 1 1 2 1

Fig. 1: The SDF graph G1.

Each edge carries zero or more tokens at any moment. The
state of a dataflow graph is the vector of the number of tokens
present on each edge. The initial state of a graph is the vector
of the number of initial tokens on its edges. For instance, the
initial state of G1 is the vector [0; 0; 0; 0].

The minimal iteration of an SDF graph is a smallest set
of firings of its actors such that (1) all actors fire at least
once, and (2) the graph is returned to its initial state. For
instance, the minimal iteration of G1 is {S3

1 , A
3
1, B

2
1 , C

2
1 , D

4
1},

where Xi means that X is fired i times. We note solG(X)
the number of firings of X in the iteration of the graph G,
or sol(X) when no ambiguity can arise. The basic repetition
vector ~Z indicates the number of firings of actors per minimal
iteration. For G1, it is ~ZG1

= [3, 3, 2, 2, 4] (for actors’ ordering
[S1, A1, B1, C1, D1]).

An SDF graph is said to be consistent if it admits a repe-
tition vector. The repetition vector is obtained by solving the
following system of balance equations: each edge X

p q−→ Y
is associated with the balance equation sol(X).p = sol(Y ).q,
which states that all produced tokens during an iteration must
be consumed within the same iteration. The graph is consistent
if and only if this system of equations admits a non-null
solution [2] (an easy check). An important consequence is
that a consistent graph can be executed infinitely with bounded
memory: all produced tokens are eventually consumed.

The next step is to determine a static order, a schedule, in
which the firings of the repetition vector can be executed. It
is obtained by an abstract computation where an actor is fired
only when it has enough input tokens. Such a schedule ensures
that the graph returns to its initial state and that each actor is
eventually fired. An consistent SDF graph is said to be live if
it admits a schedule [2].

Among all admissible schedules, we distinguish single
appearance schedules (SAS) where, once factorized (i.e., any
sequence X; ...;X of n consecutive firings of X is replaced
by Xn), each actor appears exactly once. For instance, G1 ad-
mits only one SAS: S3

1 ;A
3
1;B

2
1 ;C

2
1 ;D

4
1 .

An acyclic SDF graph always admits an SAS, while a cyclic
SDF graph admits an SAS if and only if each cycle includes at
least one saturated edge, that is, an edge (X,Y ) that contains
enough initial tokens to fire Y at least sol(Y ) times. Any SAS
S induces a total order relation between actors, noted ≺S ,
such that X ≺S Y if and only if X appears before Y in S.
In the context of this paper, we only consider SAS, but RDF
can also operate with general schedules.

An SAS can be executed on a single-core chip or on a
multi-core chip. On a single-core, it suffices to fire the actors
sequentially as specified in the SAS. On a multi-core, each
actor must first be allocated to a core, and then on each core
an ordering must be chosen among all the actors allocated
to it. Actor allocation and ordering have been the topic of
much work. In this paper, we adopt a simple solution called
As Soon As Possible (ASAP) scheduding, where each actor
X is embedded in a private thread th_X consisting of the
periodic execution loop presented in Fig. 2.

thread th_X {
while (true) {

consume_input_tokens();
fire_X();
produce_output_tokens();

}
}

Fig. 2: Periodic execution loop for actor X .

The consume_input_tokens instruction blocks when
(at least) one of the input buffers of X does not contain enough
tokens, while the produce_output_tokens instruction
blocks when (at least) one of the output buffers of X is
full. On each core, one such thread th_X is started for each
actor X allocated to it. This multi-threaded ASAP execution
guarantees that the graph can be executed in bounded memory
and without deadlock, provided that each buffer has at least
the minimal size required for liveness [11].

III. RDF: A RECONFIGURABLE DATAFLOW MOC

The RDF MoC extends SDF with actor types and transfor-
mation rules. Formally, an RDF application is a pair (G,C)
where:
• G is a dataflow graph, basically an SDF graph where

each actor is equipped with a type;
• C is a reconfiguration controller, a sequence of transfor-

mation programs that specify how an RDF graph may be
reconfigured, triggered by conditions that specify when
the transformations should be applied.

An RDF application can be seen as an initial graph and
transformation rules which specify the (potentially infinite) set
of possible graphs that can be produced dynamically from the
initial graph.



A. RDF graph

RDF graphs extend SDF graphs with a set of actor types T .
A type can be seen as a class of actors. Types allow trans-
formation rules to introduce new actors in the graph as
new type instances. An RDF graph is defined as a tuple
G = (V,E, T, ρ, ι, τ) where V , E, ρ, and ι denote the same
items as the ones in SDF (see section II), T is the finite
set of actor types, and τ : V → T returns the type of an
actor. Although not formally expressed above, it is implicit that
actors of the same type have the same numbers of incoming
and outgoing edges, the same production and consumption
rates, and perform the same computations.

To alleviate the notation, we write C1, C2... for actors of
type C. The graph of Fig. 1 can be considered as an RDF
graph where S1, A1, B1, C1, and D1 are actors of types S,
A, B, C, and D respectively. It has the same repetition vector
and schedules as the SDF version.

B. RDF Controller

The controller is specified by a sequence of pairs (condition:
transformation program): [cond1 : P1; . . . ; condn : Pn].

If one condition condi is satisfied, then the controller stops
the execution of the RDF graph at the end of the current
iteration, applies the transformation specified by Pi, and
finally resumes the execution. Only one (condi, Pi) is selected.
If the conditions are not mutually exclusive, the first true
condition in the sequence is chosen. Typically, the conditions
depend on dynamic non-functional properties (e.g., buffer size,
throughput, quality of the input signal, etc.). The language for
describing these non-functional properties is not part of the
MoC nor is it in the scope of this paper.

A transformation program is a combination of transforma-
tion rules with the following syntax:

P ::= tr Transformation rule
| P1 B P2 : P3 Choice
| P ∗ Iteration

Individual transformation rules (and their analysis) is the tech-
nical heart of RDF. They are presented in the next subsection.

The application of a transformation rule on a given RDF
graph G is said to be successful if it has matched part of G. By
extension, an application of a program is considered successful
if at least one of the transformation rules it tries to apply
has been successful. The choice construction P1 B P2 : P3

tries to apply P1; if it was successful then P2 is applied next,
otherwise P3 is applied. The iteration P ∗ applies P as long
as it is successful. We write P1;P2 for the program P1 B
P2 : P2 which applies P1 and P2 in sequence regardless P1

is successful or not.
To ensure that a controller always preserves the consistency

and liveness of the dataflow graphs it transforms, it is sufficient
to verify that the initial graph satisfies these two properties
and that each individual transformation rule preserves them
(see section IV).

Another issue, however, is that an iteration P ∗ may loop
infinitely. To guarantee the termination of such iterations, a

solution could be to enforce that P decreases some measure
(e.g., the number of actors of type T in the graph).

C. Transformation rules

An RDF transformation rule is a graph rewrite rule of the
form

tr : lhs V rhs

which selects a sub-graph matching lhs , and replaces it by
the graph specified by rhs . We use the set-theoretic approach
of [12] to graph rewriting: the terms lhs and rhs are seen as
sets of edges possibly with pattern variables matching either
types, actor indices, or rates.

As it is standard in programming languages, pattern match-
ing amounts to finding a variable substitution identifying the
pattern with a sub-term. In RDF, a pattern lhs matches a sub-
graph of G if there is a substitution σ mapping types (resp. in-
dices, rates) variables to actual types (resp. indices, rates) such
that the set of edges σ(lhs) belongs to G: i.e., σ(lhs) ⊆ G.
The rule removes that sub-graph and replaces it by rhs after
substituting its variables by their matches, i.e., σ(rhs).

In all examples, we note α, β, . . . the pattern variables
matching types, x, y, . . . the pattern variables matching
indices, and r1, r2, . . . the pattern variables matching rates.

As an example, consider the transformation rule tr1 de-
picted in Fig. 3.

Ax βy Cz V

Ax

Fw

βy

βt

Js

Cz

2 r1 r2 1

2
1

1

1

r1

r1

r2

r2

1

1
1

1

Fig. 3: The transformation rule tr1.

The term βy matches any actor of any type β, whereas the
term Ax matches any actor of type A. When applied to the
graph of Fig. 1, the rule matches

A1
2−→3 B1

1−→1 C1

and yields the substitution

σ = {x 7→ 1, β 7→ B, y 7→ 1, z 7→ 1, r1 7→ 3, r2 7→ 1}

As a consequence, the rule tr1 replaces the actor B1 by a new
sub-graph made of B1 and three new actors of types F , B and
J . It transforms the graph of Fig. 1 into the graph of Fig. 4.

S1 A1

F1

B1

B2

J1

C1 D1
1 1

2
1

1

1

3

3

1

1

1

1
1

1
2 1

Fig. 4: The resulting graph G2 after applying tr1 to G1.



The following facts should be pointed out:

• An actor occurring in the lhs but not in the rhs is sup-
pressed. However, to be valid, all incoming and outgoing
edges of that actor should occur in the lhs . Otherwise,
suppressing an actor would create dangling edges. To
verify this point, we request the type of removed actors
to appear explicitly in the rule. Indeed, when the type is
known, the numbers of incoming and outgoing edges are
also known and the rule can be checked statically. In the
rule tr1, no actor is suppressed since all matched actors
occur in the rhs .

• When an actor index variable occurs in the rhs but
not in the lhs , then it yields a new actor (instance
of the given type) that must therefore be created. In
contrast, type variables occurring in the rhs must always
occur (i.e., be defined) in the lhs . Indeed, it would be
ambiguous to create new instances of unknown types.
In the transformation rule tr1, the terms Fw, βt and Js
illustrate this case: w, t and s yield new actors, whose
types are known because they are either explicit (F , J),
or defined in the lhs (β).

• Rates and number of incoming and outgoing edges must
be consistent with types. This property is easy to check.
For instance, no other rate than 2 could decorate the
outgoing edge of Ax in tr1. Rate variables are often
superfluous since they are fixed by the type of the actor
they are attached to. In such cases, they can be omitted.

A transformation rule tr : lhs V rhs applied to a graph G
can be seen as the set rewrite rule

X ∪ σ(lhs)︸ ︷︷ ︸
G

−→ X ∪ σ(rhs)︸ ︷︷ ︸
G′

(1)

The graph G is seen as the set of edges X∪σ(lhs) where σ is
the substitution returned by the matching. When applied to a
fresh actor index variable in the rhs , σ produces a new actor
index for the necessarily known type, i.e., a new instance of
this type. E.g., this is the case of J1 or B2 in Fig. 4. Finally,
we write G′ = tr(G).

Initial tokens raise semantic issues. For instance, if a trans-
formation has a rhs with initial tokens, we would need a way
to specify the origin or values of these tokens. To keep things
simple, we allow the initial RDF graph to have tokens but
impose that transformations do not match nor return edges
with initial tokens.

IV. RDF STATIC ANALYSES

The ability to guarantee consistency and liveness is
paramount for embedded systems. Hence, improving the ex-
pressivity and dynamicity of SDF should not come at the
price of loosing these static analyses. We present here how
connectivity, consistency, and liveness can be analyzed and
guaranteed for RDF programs. It is sufficient:

• to check these three properties on the initial graph (SDF
static analyses can be reused for that matter);

• to check for each individual transformation rule that,
assuming that the considered property holds on the source
graph, it still holds on the transformed graph.

An RDF transformation program is said to be valid if
all its rules satisfy these checks. Therefore, a valid RDF
application transforms, produces, and runs only connected,
consistent, and live graphs. We present in turn the conditions
that a transformation rule must satisfy to preserve connectivity,
consistency, and liveness.

A. Connectivity

SDF graphs are always connected, that is, there is an undi-
rected path between every pair of vertices. We write x ∗←→

G
y

to state that there is an undirected path between vertices x
and y in graph G. In RDF, a rule removing edges could easily
transform a connected graph into several disconnected ones.

Theorem 1 states that, in order to guarantee that connectivity
is preserved by the transformation rule tr : lhs V rhs , it is
sufficient to ensure that rhs is a connected graph.

Theorem 1. Let G be a connected graph and tr : lhs V rhs
be a transformation rule such that ∀x, y ∈ rhs, x

∗←→
rhs

y.

Then tr(G) is a connected graph.

The proof of theorem 1, as well as proofs of theorems 2
and 3, can be found in [10].

Clearly, the transformation tr1 preserves connectivity, but
the following one

Ax By V Ax Dz Sw By
r1 r2 1 1r1 r2

is invalid. Its right-hand term is not connected. Applying this
transformation to G1 would produce two disconnected graphs.

B. Consistency

The resulting graph after applying a transformation rule
must remain consistent: its system of balance equations should
have non-zero solutions. Our condition for consistency en-
forces a stronger property, stated in Theorem 2: all actors
remaining in the graph after a transformation must keep their
original solution.

For each transformation rule tr : lhs V rhs , we check that
both graphs lhs and rhs are consistent and we compute the
(possibly symbolic) solutions of their actors. Actors occurring
both in lhs and rhs should have the same solution. New actors
(i.e., occurring only in rhs) only need to have a solution.

Theorem 2. Let G be a consistent graph and let tr : lhs V
rhs be a transformation rule such that lhs and rhs are
consistent. tr(G) is a consistent graph if

∀x ∈ lhs ∩ rhs, sol lhs(x) = solrhs(x).

Example: The transformation rule tr1 of Fig. 3 preserves
consistency. Both the lhs and rhs are consistent graphs and
their common actors have the same symbolic solutions. Indeed,
the solutions of actors in the lhs are

sol(x) sol(y) =
2.sol(x)

r1
sol(z) =

2.r2.sol(x)

r1



and those of actors in rhs are: sol(x) sol(w) = 2.sol(x)

sol(y) = sol(t) =
2.sol(x)

r1
sol(s) = sol(z) =

2.r2.sol(x)

r1

The common actors x, y and z keep their solutions and the
fresh actors w, s, t have also solutions. This rule applied to the
graph G1 yields the consistent graph G2 (Fig. 4). The actors
S1, A1, B1, C1, and D1 keep their solutions (3, 3, 2, 2, and 4,
respectively) and the solutions of the new actors F1, B2 and
J1 are 6, 2 and 2, respectively.

On the other hand, the transformation tr2 in Fig. 5 is invalid.
The reason is that, even though rhs is consistent, the solution
of actor z changes from 2.r1.sol(x)

r2
to r1.sol(x)

3.r2
. We cannot be

sure that this solution is a natural number. The transformation
applied to G1 produces a consistent graph but all solutions
change (sol(S1) = 9, sol(B1) = 1, etc.).

αx Ay βz V αx Bw βz
r1 1 2 r2 r1 3 1 r2

Fig. 5: The transformation rule tr2.

In general, such rules can produce inconsistent graphs. For
instance, when applied to the graph of Fig. 6a, tr2 would pro-
duce the inconsistent graph of Fig. 6b. We have sol(H) = 2 in
the initial graph, and yet H has no solution in the transformed
graph. The reason is to be found in the edge (E,H) which
enforces a constraint on the solution of H that cannot be seen
in the transformation rule.

E1

A1

H1

1
1 2

1

2 1

(a)

E1

B1

H1

1
3 1

1

2 1

(b)

Fig. 6: Consistent (a) and inconsistent (b) graphs.

C. Liveness

A consistent graph is live if it can be scheduled. We present
here conditions to preserve liveness for graphs with single
appearance schedules (SAS). The general case (i.e., a schedule
exists, but is not an SAS) can also be dealt with, but it is more
involved and would require more space to present.

For each transformation rule tr : lhs V rhs , Theorem 3
checks that, for each SAS of lhs , there is an SAS of rhs such
that the actors common to lhs and rhs appear in the same
order (see ≺ in Section II) in both schedules.

Theorem 3. Let G be a live graph with an SAS and tr :
lhs V rhs be a transformation rule. tr(G) is live and admits
an SAS if, for each SAS S of lhs , there is an SAS S′ of rhs
such that

∀x, y ∈ lhs ∩ rhs, x ≺S y ⇒ x ≺S′ y.

The transformation rule tr1 of Fig. 3 preserves liveness.
The lhs has a single SAS Aa

x;β
b
y;C

c
z and the rhs has the

SAS Aa
x;F

f
w;β

b
y;β

b
t ; J

j
s ;C

c
z . The actors x, y and z appear in

the same order in both schedules so the liveness condition is
satisfied.

On the other hand, the transformation tr3 in Fig. 7 is invalid.
The lhs has two SAS X1

x;Y
1
y ;Z

1
z ;T

1
t and X1

x;Z
1
z ;Y

1
y ;T

1
t and

the rhs has a single SAS X1
x;Y

1
y ;Z

1
z ;T

1
t . The first SAS of

the lhs has no corresponding SAS in the rhs . Therefore, if
the only SAS in the initial graph was one were Zz needed to
be fired before Yy , then rule tr3 would produce a deadlocked
(i.e., non live) graph.

Xx

Yy

Zz

Tt V Xx

Yy
Zz

Tt

Fig. 7: The transformation rule tr3 (all rates are 1).

Such a case is shown in Fig. 8. The rule tr3 would transform
the live graph of Fig. 8a into the deadlocked graph of Fig. 8b.

X1

Y1

Z1

T1W1

(a)

X1

Y1

Z1

T1

W1

(b)

Fig. 8: Live (a) and deadlocked (b) graphs (all rates are 1).

V. IMPLEMENTATION

Actors are executed according to an as soon as possible
(ASAP) policy. An actor can fire as soon as it has enough
tokens on its incoming edges (see Section. II and Fig. 2).
Actors can therefore execute in parallel independently of each
other. Synchronization is ensured by communication buffers.
New actors introduced by reconfigurations just need to know
their input and output buffers and to follow the execution loop
pattern of Fig. 2.

Yet, reconfigurations cannot be performed at any moment.
Transforming the dataflow graph in the middle of an iteration
or when actors are not in the same iteration would raise many
semantic issues. A reconfiguration should only occur in a
consistent state, that is, after an iteration has completed and
the graph has returned into its initial state.

To simplify the presentation, we suppose (i) that the initial
graph has no initial tokens (they could be taken into account
but the implementation is more involved), (ii) that it has a
single source and sink actor (every dataflow graph can be
transformed to meet this criterion by adding a dummy source
and sink actor), and (iii) that none of the transformation rules
change these two actors.

The controller (which runs inside its own thread) contin-
uously watches whether one of its reconfiguration condition
is satisfied (see Section III-B). Whenever this occurs, before



applying the associated transformation, the graph must return
its initial state and all actors must have completed the same
iteration. To do this, the source and sink actor keep track of
their iteration number and of their number of firings in the
current iteration. The controller requests the source actor to
answer with its current iteration number k and to stop at the
end of that iteration. Then, the controller requests the sink
actor to stop at the end of its kth iteration and afterwards, to
answer with an acknowledgment. At this point, the controller
knows that the graph is in its initial state. All actors have
completed their kth iteration; the source actor waits for a signal
to resume whereas all others actors are blocked on empty
input buffers. The controller performs the reconfiguration and
resumes the execution of the source actor (and therefore of
the transformed graph altogether). The execution proceeds as
before, each actor firing as soon as its incoming edges have
enough tokens.

VI. RELATED WORK

To the best of our knowledge, no existing dataflow MoC
allows both the dynamic reconfiguration (in the general sense)
of the graph topology and static analyses for boundedness and
liveness. Still, several dataflow MoCs allow a limited form of
topology changes, including SADF [6] and BPDF [4], while
still remaining statically analyzable.

SADF [6] models reconfigurability as a set of pre-
defined configurations (called scenarios), coupled with a non-
deterministic finite-state machine that specifies the transitions
between scenarios. The number of available topologies is
statically fixed and specified in the source model. Analyzing
an SADF model consists in applying the standard analyses of
SDF to each scenario.

BPDF [4] models reconfigurability by adding Boolean
conditions to FIFO channels. When a condition switches to
false (resp. true) the channel is disabled (resp. enabled).
Boundedness and liveness remain statically analyzable, and
static or quasi-static schedules can be produced [13].

Reconfigurability using rewriting rules has also been studied
for Petri nets (see [14] for a recent overview). In the general
case, reconfigurable Petri nets do not preserve properties such
as liveness, boundedness, or reversibility. In [15], a restricted
class of transformations (called INRS) is proposed that pre-
serves these properties. It has been applied to design Petri net
controllers for the supervision of reconfigurable manufacturing
systems. Model checking of reconfigurable Petri nets has been
considered by converting the net and the set of rewriting rules
into a Maude specification [16]. This approach allows the
absence of deadlocks to be verified.

VII. CONCLUSION

In this paper, we addressed the question of dynamic re-
configurations of SDF graphs. To this aim, we introduced
the RDF MoC consisting in a dataflow graph (an SDF graph
with typed actors) and a controller (a sequence of transfor-
mation programs triggered by conditions). The transformation
programs determine how the RDF graph is reconfigured and

the conditions specify when these reconfigurations take place.
Our RDF MoC provides static analyses to guarantee that
reconfigurations preserve boundedness and liveness properties.
Finally, we outlined the main characteristics of an RDF
implementation.

Further work is needed in two directions. Firstly, a useful
application of reconfigurations would be to duplicate lines of
computation (e.g., to increase parallelism when computational
demand grows). This requires to extend RDF with variable
arity actors able of (de)multiplexing inputs and outputs for a
varying number of computation lines. Secondly, a reconfigura-
tion entails to stop the pipelined execution, to remove or create
actors and communication links and, finally, to restart the
execution. These costs should be evaluated by implementing
RDF on a multi-core platform and using realistic use cases.
This knowledge would be particularly useful to tune the
conditions for reconfigurations.

REFERENCES

[1] G. Kahn, “The semantics of a simple language for parallel program-
ming,” Information Processing, vol. 74, pp. 471–475, 1974.

[2] E. A. Lee and D. G. Messerschmitt, “Synchronous data flow,” Proceed-
ings of the IEEE, vol. 75, no. 9, pp. 1235–1245, 1987.

[3] B. Bhattacharya and S. S. Bhattacharyya, “Parameterized dataflow
modeling for DSP systems,” IEEE Trans. on Signal Processing (TSP),
vol. 49, no. 10, pp. 2408–2421, 2001.

[4] V. Bebelis, P. Fradet, A. Girault, and B. Lavigueur, “BPDF: A statically
analyzable dataflow model with integer and boolean parameters,” in
International Conference on Embedded Software, EMSOFT’13, 2013,
pp. 1–10.

[5] K. Desnos, M. Pelcat, J.-F. Nezan, S. Bhattacharyya, and S. Aridhi,
“PiMM: Parameterized and interfaced dataflow meta-model for MP-
SoCs runtime reconfiguration,” in International Conference on Em-
bedded Computer Systems: Architectures, Modeling, and Simulation,
SAMOS’13. Samos Island, Greece: IEEE, Jul. 2013, pp. 41–48.

[6] M. Geilen, “Synchronous dataflow scenarios,” ACM Trans. on Embedded
Computing Systems (TECS), vol. 10, no. 2, p. 16, 2010.

[7] A. Bouakaz, P. Fradet, and A. Girault, “A survey of parametric dataflow
models of computation,” ACM Trans. on Design Automation of Elec-
tronic Systems (TODAES), vol. 22, no. 2, Mar. 2017.

[8] J. Buck and E. Lee, “Scheduling dynamic data-flow graphs with bounded
memory using the token flow model,” in International Conference on
Acoustics, Speech, and Signal Processing, ICASSP’93, vol. I. Min-
neapolis (MN), USA: IEEE, Apr. 1993, pp. 429–432.

[9] E. Lee, S. Neuendorffer, and G. Zhou, System Design, Modeling, and
Simulation using Ptolemy II, 2014.

[10] P. Fradet, A. Girault, R. Krishnaswamy, X. Nicollin, and A. Shafiei,
“Rdf: Reconfigurable dataflow (extended version),” Inria - Grenoble -
Rhône-Alpes, Research Report 9227, Nov. 2018.

[11] O. Moreira, T. Basten, M. Geilen, and S. Stuijk, “Buffer sizing for
rate-optimal single-rate data-flow scheduling revisited,” IEEE Trans. on
Computer, vol. 59, no. 2, pp. 188–201, 2010.

[12] J.-C. Raoult and F. Voisin, “Set-theoretic graph rewriting,” in Graph
Transformations in Computer Science. Springer, 1994, pp. 312–325.

[13] V. Bebelis, P. Fradet, and A. Girault, “A framework to schedule para-
metric dataflow applications on many-core platforms,” in International
Conference on Languages, Compilers and Tools for Embedded Systems,
LCTES’14. Edinburgh, UK: ACM, Jun. 2014.

[14] J. Padberg and L. Kahloul, “Overview of reconfigurable Petri nets,” in
Graph Transformation, Specifications, and Nets - In Memory of Hartmut
Ehrig, 2018, pp. 201–222.

[15] J. Li, X. Dai, Z. Meng, and L. Xu, “Improved net rewriting systems-
extended Petri nets supporting dynamic changes,” Journal of Circuits,
Systems, and Computers, vol. 17, no. 6, pp. 1027–1052, 2008.

[16] J. Padberg and A. Schulz, “Model checking reconfigurable Petri nets
with Maude,” in Graph Transformation - 9th International Conference,
ICGT, 2016, pp. 54–70.


