
Appeared in Proc.of 5th ESOP, LNCS Vol. 788, pp. 211-224, 1994.

Compilation of Head and Strong Reduction

Pascal Fradet

Inria/Irisa
Campus de Beaulieu, 35042 Rennes Cedex, France

fradet@irisa.fr

Abstract

 Functional language compilers implement only weak-head reduction. However,
there are cases where head normal forms or full normal forms are needed. Here, we
study how to use cps conversion for the compilation of head and strong reductions.
We apply cps expressions to a special continuation so that their head or strong normal
form can be obtained by the usual weak-head reduction. We remain within the func-
tional framework and no special abstract machine is needed. Used as a preliminary
step our method allows a standard compiler to evaluate underλ’s.

1 Introduction

Functional language compilers consider only weak-head reduction and the evaluation stops when a
weak head normal form (whnf), that is a constant or aλ-abstraction, is reached. In practice, whnf’s
are considered sufficient because printable results belong to basic domains. However, there are cases
where one would like to reduce underλ’s to get head normal forms (hnf) or even (strong) normal
forms (nf). Specifically, head/strong reduction can be of interest in:

• program transformations (like partial evaluation) which need to reduce underλ’s,

• higher order logic programming likeλ-prolog [15] where unification involves reducingλ-terms to
normal forms,

• evaluating data structures coded inλ-expressions,

• compiling more efficient evaluation strategies.

A well known tool used to compile (weak) evaluation strategies of functional programs is con-
tinuation-passing style (cps) conversion [6][16]. This program transformation makes the evaluation
ordering explicit. We see it as a compiling tool since cps expressions can be reduced without any dy-
namic search for the next redex. Its main advantage is that it stays within the functional framework
and thus does not preclude further transformations. Several compilers for strict and non-strict func-
tional languages integrate a cps conversion as a preliminary step [1][7][11].

Here, we study how to use cps conversion for the implementation of head and strong reductions.
To the best of our knowledge, the application of this transformation to such reduction strategies has
not been investigated for far. A key property of cps expressions is that their (weak) evaluation is or-
der independent: there is a unique (weak) redex at each reduction step. This property does not hold
with strong or head reduction ; a cps expression may have several (strong) redexes. Our approach is
to simulate head/strong reductions by weak reductions. Cps expressions are applied to special con-

tinuations so that their head/strong normal form can be obtained by the usual weak-head reduction.
This way, we still use the only strategy known by compilers (weak reduction), and we retain the key
property of cps. The advantage of this approach is that we do not have to introduce a special abstract
machine and/or particular structures. It can be used to extend an existing compiler with head/strong
reduction capabilities and it enables us to use classical implementation and optimization techniques.

In the following, we assume a basic familiarity with theλ-calculus and cps. In section 2, we in-
troduce some notations, the definitions of the different reduction strategies and cps conversion. We
consider in section 3 how to use standard cps conversion to simulate head-reduction ofλ-expres-
sions. Section 4 is devoted to strong reduction which involves a minor modification of the technique
used for head reduction. In section 5, we envisage a restriction ofλ-calculus with a flexible notion of
typing which allows a better treatment of head reduction. Section 6 describes how this method could
be used to compile more efficient reduction strategies, addresses implementation issues and discuss-
es possible extensions.

2 Preliminaries

One of the application of head reduction being to avoid duplicated or useless computations (see sec-
tion 6), we will focus on call-by-name. We consider pureλ-calculus and the globalλ-expression to
be reduced is always assumed to be closed. Given a reduction strategy x, E→x F (resp. E i→x F)
reads “E reduces to F after one (resp. i) reduction step by x”. The transitive, reflexive closure of→x is
noted ∗→x . The three computation rules we are dealing with (i.e. weak head, head and strong reduc-
tion) are described in the form of deductive systems.

• Weak head reduction is noted→w and is defined by

E →w E’
(λx.E) F→w E[F/x]

E F→w E’ F

Closed whnf’s are of the formλx.E.

• Head reduction is noted→h and is defined by

E →w E’
 n≥0
λx1. …λxn.E →h λx1. …λxn.E’

Closed hnf’s are of the formλx1. …λxn.xi E1…Ep (1≤i≤n, p≥0). xi is called the head variable.

• Strong reduction is noted→s and, with Ni’s standing for normal forms, is defined by

E →h E’ Ei →s Ei’
E →s E’ λx1. …λxn.xi E1… Ei Ni+1…Np →s λx1. …λxn.xi E1… E’i Ni+1…Np

Strong reduction is described as a sequence of head reductions. When a hnf is reached, the argu-
ments of the head variable are reduced in a right to left fashion. Closed normal forms are of the form
λx1. …λxn.xi N1…Np with 1≤i≤n and with N = xj | λx1. …λxn.xk N1…Np

N stands for the standard cps conversion associated with call-by-name [16] and is defined in
Figure 1. Call-by-name cps could also been definedà la Fischer where continuations occur first [6].
Our approach could be applied to this kind of cps expressions as well.

N(x) = x

N(λx.E) = λc.c (λx.N(E))

N(E F) =λc.N(E) (λf.f N(F) c)

Figure 1 Standard Call-by-Name Cps

Variables c and f are supposed not to occur in the source term. The reduction of a cps term con-
sists of a sequence of administrative reductions (i.e. reduction of redexes introduced by the transfor-
mation, here redexes of the form(λc.E) F or (λf.E) F), followed by a proper reduction
(corresponding to a reduction of the source term), followed by administrative reductions, and so on.
The relation induced by administrative reductions is noteda→w , for example:

N((λx.E) F) I ≡ (λc.(λc.c (λx.N(E))) (λf.f N(F) c)) I a→w (λx.N(E)) N(F) I

The following property states that evaluation of cps expressions simulates the reduction of
source expressions ; it is proved in [16].

Property 1 If E ∗→w W thenN(E) I ∗→w X ←aw N(W) I and if W is a whnf then X is a whnf. Further-
more E does not have a whnf iffN(E) I does not have a whnf.

Cps conversion introduces many newλ-abstractions and affects the readability of expressions.
In the remainder of the paper we use the following abbreviations

λcx.E ≡ λc.c (λx.E)

λcxn
→

. E ≡ λc.c (λx1. …(λc.c (λxn.E))…)

Xn
→

E ≡ λf.f X1 (…(λf.f Xn E) …)

3 Head Reduction

Since we are interested in compiling, we consider only programs, i.e. closed expressions. A compiler
does not know how to deal with free variables ; the expression to be reduced must remain closed
throughout the evaluation. Furthermore, in order to use weak head reduction to evaluate hnf’s, the
leadingλ’s must be suppressed as soon as the whnf is reached. Our solution is to apply the whnf to
combinators so that the associated variables are replaced with closed expressions. The head lambdas
disappear, the expression remains closed and the evaluation can continue as before. After the body is
reduced to hnf the expression must be reconstructed (i.e. the leadingλ’s must be reintroduced as well
as their variables). We reach a hnf when the head variable is applied (a closed hnf is of the formλx1.
…λxn.xi E1…En) so the combinators previously substituted for the leading variables should take
care of the reconstruction process.

In general, it is not possible to know statically the number of leadingλ’s (sometimes called the
binder length) of the hnf of an expression. We have to keep track of their number in order to eventu-
ally reintroduce them.This complicates the evaluation and reconstruction process. In section 5 we
present a means of avoiding this need for counting.

We use the standard call-by-name cps conversion (N). The global cps expression is applied to a
recursive continuationΩ and an indexn such thatΩ E n = EHn Ω n+1 (Ω, Hn andn being combina-

tors). Combinatorsn represent the number of head abstractions already encountered. The weak head
reduction of such expressions looks like

N(E) Ω n ∗→w (λc.c (λx.F)) Ω n when a cps expression E is evaluated by wh-reduction, its whnf

(if any) will be of the formλc.c (λx.F)

→w Ω (λx.F) n the continuationΩ is applied

→w (λx.F) Hn Ω n+1 Ω applies the whnf to combinatorHn, Ω and the new index

→w F[Hn/x] Ω n+1 Hn is substituted for x

The expression remains closed and the evaluation continues, performing the same steps if other
whnf’s are encountered. Eventually a hnf is reached, that is, a combinatorH i is in head position and
this combinator is responsible for reconstructing the expression.

In fact, we do not apply the global expression directly toΩ but to combinatorA (defined byA E
F = F E) whose task is to apply the expression toΩ. This wayΩ remains outside the expression and
it makes its suppression during the reconstruction process easier. This technical trick is not absolute-
ly necessary but it simplifies things when working within the pureλ-calculus. The reduction steps
that occur when a whnf is reached actually are

(λc.c (λx.F)) A Ω n →w A (λx.F) Ω n →w Ω (λx.F) n →w (λx.F) Hn A Ω n+1

If E is a closed expression, its transformed form will beN(E) A Ω 0 with

A M N →w N M (A)

Ω M n ∗→w M Hn A Ω n+1 (Ω)

The family of combinatorsH i is defined by

H i M N n = λcxn
→

. λc.xi+1 (M (R n (λc. xn
→

c)) (K c)) (H)

with R E F G H I →w λf.f (λc.GA Ω E (F c)) (H (R E F) I) (R)

The definitions (H) and (R) can be explained intuitively as follows. When the hnf is reached the
expression is of the form Hi (λf.f E1…(λf.f Em A)…) Ω n, n representing the number of head ab-
stractions of the hnf. The reduction rule ofH i deletesΩ, reintroduces the n leadingλ’s, the head vari-
able and yields

λcxn
→

. λc.xi+1 ((λf.f E1…(λf.f Em A)…) (R n (λc.xn
→

c)) (K c))

Some Hi’s may remain in the continuation of xi+1 and the role ofR is to remove them by apply-
ing each Ei to suitable arguments. The reconstructing expressionR n (λc.xn

→
c) will be recursively

called by the argument “list” (λf.f E1…(λf.f Em A)…) ; the final continuationA will call K which re-
movesR n (λc.xn

→
c). MeanwhileR applies each argument Ei to A, Ω, n, (xn

→
c) and reconstructs the

argument “list”. In summary

(λf.f E1…(λf.f EmA)…) (R n (λc.xn
→

c)) (K c) ∗→ (λf.f (λc.E1 A Ω n (xn
→

c))…

…(λf.f (λc.Em A Ω n (xn
→

c)) c)…)

Each Ei corresponds to an original cps expression Fi containing at most n free variables such
that Ei≡Fi[xn

→
/Hn

→
]. Let Ni be the normal form of Fi then

λc.Ei A Ω n (xn
→

c) = λc.Fi[xn
→

/Hn
→

] A Ω n (xn
→

c)= λc.(λcxn
→

.Fi) A Ω 0 (xn
→

c)

(and using Property 3) =λc.(λcxn
→

.Ni) (xn
→

c) = λc.Ni c = Ni

So, the reduction ofλc.Ei A Ω n (xn
→

c) eventually yields the normal form of the argument, suppress-
ing this way the combinatorsH i’s occurring in Ei.

Example: Let E≡ λx.(λw.λy. w y x) (λz. z) x

Its head reduction is

E →h λx.(λy.(λz. z) y x) x

→h λx.(λz. z) x x

→h λx.x x

After cps conversion and simplification the expression becomes

N(E) = λcx. λc.(λw. λcy.λc. w (λf.f y (λf.f x c))) (λcz.z) (λf.f x c)

The weak head reduction ofN(E) A Ω 0 simulates the head reduction of E. Reductions correspond-
ing to head reductions of the source expression are marked by✢ ; the other being administrative re-
ductions.

N(E) A Ω 0 →w A (λx.λc.(λw. λcy.λc. w (λf.f y (λf.f x c))) (λcz.z) (λf.f x c)) Ω 0

→w Ω (λx.λc.(λw. λcy.λc. w (λf.f y (λf.f x c))) (λcz.z) (λf.f x c)) 0

→w (λx.λc.(λw. λcy.λc. w (λf.f y (λf.f x c))) (λcz.z) (λf.f x c)) H0 A Ω 1

→w
2 (λw. λcy.λc. w (λf.f y (λf.f H0 c))) (λcz.z) (λf.f H0 A) Ω 1

→w (λcy.λc. (λcz.z) (λf.f y (λf.f H0 c))) (λf.f H0 A) Ω 1 ✢

→w
2 (λy.λc. (λcz.z) (λf.f y (λf.f H0 c))) H0 A Ω 1

→w (λc. (λcz.z) (λf.f H0 (λf.f H0 c))) A Ω 1 ✢

→w
3 (λz.z)H0 (λf.f H0 A) Ω 1

→w H0 (λf.f H0 A) Ω 1 ✢

The hnf is reached. Using the definition ofH0 we get

H0 (λf.f H0 A) Ω 1 → λcx.λc.x ((λf.f H0 A) (R 1 (λc.λf.f x c)) (K c)) ≡ ∆ (H)

Now, we show that this hnf∆ is equivalent to (or that the reconstruction yields) the principal hnf
(λx.x x) in cps form (λcx.λc.x (λf.f x c)).

∆ → λcx.λc.x (R 1 (λc.λf.f x c) H0 A (K c))

→ λcx.λc.x (λf.f (λc.H0 A Ω 1 ((λc.λf.f x c) c)) (A (R 1 (λc.λf.f x c)) (K c))) (R)

Since λc.H0 A Ω 1 ((λc.λf.f x c) c) → λc.(λcw.λc.w c) ((λc.λf.f x c) c) (H),(A),(K)

→ λc.x c =η x

and A (R 1 (λc.λf.f x c)) (K c) →w c (A),(K)

then∆ = λcx.λc.x (λf.f x c) ❏

All reductions taking place in the head reduction of the source expression are performed on the
transformed expression by weak head reduction. Here the resulting expression is interconvertible
with the principal hnf in cps form. Note that the reconstruction process is not completed by weak
head reduction. In a sense, the reconstruction process is lazy ; it can take place (by wh-reduction)
only when the resulting expression is applied. Only the required subexpressions will be reconstitut-
ed.

The following property states that for any closed expression E the weak head reduction ofN(E)
A Ω 0 simulates the head reduction of E. If E has a hnf H then the wh-reduction ofN(E) A Ω 0 yields
an expression equal toN(H) A Ω 0 (after administrative reductions).

Property 2 Let E be a closed expression, if E∗→h H then there exists an expression X such
that N(E) A Ω 0 ∗→w X ←aw N(H) A Ω 0 and if H is a hnf then X is a whnf. Furthermore E does not
have a hnf iffN(E) A Ω 0 does not have a whnf.

Proof. [Sketch] We first show that the property holds for one reduction step. Two lemmas are needed:
“N(E)[N(F)/x] ≡ N(E[F/x])” which is shown in [16] and “if x≡/ y and x does not occur free in G then E[F/
x][G/y] ≡ E[G/y][F[G/y]/x]” which is shown in [3] (2.1.16 pp. 27). The property is then shown by induction
on the number of reduction steps. Concerning the second part of the property: if an expression E0 does not
have a hnf there is an infinite reduction sequence Eo →h E1 →h …. It is clear from the preceding proof that the
corresponding weak head reduction onN(E0) A Ω 0 will also be infinite, so this expression does not have a
whnf. If E has a hnf H then E0

n→h H so there is a X such that N(E0)A Ω 0 +→w X ←aw N(H)A Ω 0. H being
of the formλx1. …λxn.xi E1…Ep, after administrative reductions,N(H) A Ω 0 is of the formH i C Ω n and the
reduction rule ofH i yields a whnf. ❏

In generalN(H) A Ω 0 ↔ N(H) does not hold, namely the result is not always interconvertible
with the hnf in cps. This is usual with this kind of transformation ; the result is in compiled form and
is convertible to its source version only under certain conditions. Still,N(H) A Ω 0 andN(H) can be
considered equivalent as they have the same Böhm tree. Let H≡ λx1. …λxn.xi E1 …Εp then

N(H) = λcxn
→ .λc. xi (N(Ep)

→
c)

and N(H) A Ω 0 = λcxn
→ λc. xi (Xp

→
E) with Xi ≡ λc.N(λxn

→
.Ei) A Ω 0 (xn

→
c).

So, the head variable is the same and if the sub-expressionsN(Ei) and Xi have a hnf they will
also have the same head variable. Likewise, if a sub-expressionN(Ei) does not have a hnf then the
corresponding expressionN(λxn

→
.Ei) A Ω 0 (xn

→
c) does not have a whnf ; they can then be consid-

ered equivalent. There are also expressions whose subexpressions all have a hnf but have no nf
themselves ; for example(λxy.y (x x)) (λxy.y (x x)) → … → (λy.y (λy.y …(λxy.y (x x)) (λxy.y (x
x))). For such expressionsN(H) A Ω 0 andN(H) are not interconvertible; theH i’s substituted for the
leading variables may never be completely removed. However, for expressions with a normal form
the following result holds.

Property 3 Let E be a closed expression with a normal form thenN(E) ↔ N(E) A Ω 0

Proof. [Sketch] If E→ F thenN(E) ∗→ N(F) and then obviouslyN(E) A Ω 0 → N(F) A Ω 0 (just pick up the
same redex). So if E has a normal form S then E∗→ S andN(E) A Ω 0 ∗→ N(S) A Ω 0. We just have to show
that for any normal form S,N(S) ↔ N(S) A Ω 0 which is proved by induction on the structure of nfs. ❏

Here, we propose one possible definition of combinatorsn, Ω, H i, R in terms of pureλ-expres-
sions. We do not claim it is the best one ; we just want to show that such combinators can indeed be
implemented in the same language. Simpler definitions could be conceived in a less rudimentary lan-
guage (e.g.λ-calculus extended with constants).

We representn by Church integers, i.e.0 = λfx.x andn = λfx.fn x. The successor functionS+ is
defined by S+ = λxyz.y (x y z).

I = λx.x, K = λxy.x, A = λxy.y x andY = (λxy.y (x x y))(λxy.y (x x y)) (Turing’s fixed point
combinator)

Ω = Y (λwen. e (H n) A w (S+ n))

The familyH i is represented byH i with

H = λieon. nL (λac.aI (W i) (e (R n a) (K c))) I

where W = λi.i (λxyz.z x)K

L = λab.λcx.a (λc.b (λf.f x c))

and R = Y (λruvwxy.λf.f (λc.w A Ω u (v c)) (x (r u v) y)

We can easily check that these definitions imply the reduction rules previously assumed, for ex-
ample Ω E n ∗→w E Hn A Ω n+1 or R E F G H I ∗→w λf.f (λc.GA Ω E (F c)) (H (R E F) I).

4 Strong Reduction

Full normal forms are evaluated by first reducing expressions to hnf and then reducing the arguments
of the head variable. We follow the same idea as for head reduction. Instead of instantiating variables
by combinatorsH i we use the familySi which will carry out the evaluation before reconstructing.
The recursive continuationΩ is the same as before except that it applies theλ-abstraction toSi in-
stead ofH i.

If E is a closed expression, its transformed form will beN(E) A Ω 0 with

Ω M n →w M Sn A Ω n+1 (Ω)

and Si M N n →w Μ En B H i N n (S)

where Ei M N P→w N Ei P (MA Ω i C) (E)

B M N →w N A (B)

C M N P→w P (λf.f (λc. c M) N) (C)

When the hnf is reached the head variable previously instantiated bySi is called. It triggers the eval-
uation of its arguments viaEi and insertH i as last continuation.Ei applies the arguments toA Ω i
which will be evaluated in a right to left order and inserts the continuationC needed to put back the
evaluated arguments X1,…,Xn in cps form (i.e.λf.f X1 (…(λf.f Xn E) …)). The role ofH i’s is still to
reconstruct the expression. Combinator Hi keeps the same definition except forR which have now
the simplified reduction rule

R E F G H I =λf.f (λc.G (F c)) (H (R E F) I) (R)

WhenR is applied, the arguments are already evaluated and reconstructed so there is no need to ap-
ply them toA Ω i as before.

Example: Let E=λx.(λw.λy.w y ((λv.v) x)) (λz.z) x

Its strong reduction is

E →s λx.(λy.(λz.z) y((λv.v) x)) x

→s λx.(λz.z) x((λv.v) x)

→s λx.x ((λv.v) x)

→s λx.x x

After cps conversion and simplification the expression becomes

N(E) = λcx.(λw.λcy.λc.w (λf.f y (λf.f ((λv. v) x) c))(λcz.z) (λf.f x c)

The weak head reduction of the cps expression is (reductions corresponding to strong reductions of
the source expression are marked by✢)

N(E) A Ω 0 →w
3 (λx. λc.(λw. λcy.λc. w (λf.f y (λf.f ((λv. v) x) c))(λcz.z) (λf.f x c)) S0 A Ω 1

→w
2 (λw. λcy.λc. w (λf.f y (λf.f ((λv. v) S0) c)) (λcz.z) (λf.f S0 A) Ω 1

→w (λcy.λc. (λcz.z) (λf.f y (λf.f ((λv. v) S0) c)) (λf.f S0 A) Ω 1 ✢

→w
2 (λy.λc. (λcz.z) (λf.f y (λf.f ((λv. v) S0) c)) S0 A Ω 1

→w (λc. (λcz.z) (λf.f S0 (λf.f ((λv. v) S0) c)) A Ω 1 ✢

→w
3 (λz.z)S0 (λf.f ((λv. v) S0) A) Ω 1

→w S0 (λf.f ((λv. v) S0) A) Ω 1 the hnf is reached, the reduction rule ofS0 is used.✢

→w (λf.f ((λv. v) S0) A) E1 B H0 Ω 1

→w E1 ((λv. v) S0) A B H0 Ω 1

→w
3 ((λv. v) S0 A Ω 1 C) A H0 Ω 1

→w S0 A Ω 1 C A H0 Ω 1 the nf is reached ; the reconstruction begins.✢

→w
3 H0 A Ω 1 C A H0 Ω 1

→w (λcx.λc.x (A (R 1 (λc.λf.f x c)) (K c))) C A H0 Ω 1

→w C (λx.λc.x (A (R 1 (λc.λf.f x c)) (K c))) A H0 Ω 1

→w H0 X Ω 1 with X ≡ λf.f (λc.c(λx.λc.x (A (R 1 (λc.λf.f x c)) (K c)))) A

→ λcx.λc.x (X (R 1 (λc.λf.f x c)) (K c))

The wh-reduction is completed. Now, we show that the result is equivalent to the normal form
in cps form.

X →* λf.f (λcx.x) A (A),(K)

and X (R 1 (λc.λf.f x c)) (K c) →* R 1 (λc.λf.f x c) (λcx.x) A (K c)

→* λf.f (λc.(λcx.x) ((λc.λf.f x c) c)) (A (R 1 (λc.λf.f x c)) (K c)) (R)

→* λf.f x c since A (R 1 (λc.λf.f x c)) (K c) →* c (A),(K)

and λc.(λcx.x) ((λc.λf.f x c) c) → λc.x c→η x

So λcx.λc.x (X (R 1 (λc.λf.f x c)) (K c)) →* λcx.λc.x (λf.f x c) which is the normal form in cps
form. ❏

All the reductions taking place during the strong reduction of the source expression are carried
out by wh-reduction of the transformed expression. We do not really get the full normal form since
the reconstruction can not be achieved completely by weak head reduction. As before the reconstruc-
tion is lazy. However the result is convertible to the normal form in cps and the complexity of this
last step is bounded by the size of the normal form. If we were just interested in normal forms as a
syntactic result,H i’s could be replaced by functions printing the nf instead of building a suspension
representing it. In this case, the evaluation would be completely carried out by wh-reduction.

We have the analogues of Property 2 and Property 3. The following property states that for any
closed expression E the weak head reduction ofN(E) A Ω 0 simulates the strong reduction of E.

Property 4 Let E be a closed expression, if E∗→s S then there exists an expression X such that
N(E) A Ω 0 ∗→w X ←aw N(S)A Ω 0 and if S is a nf then X is a whnf. Furthermore, E does not have a
nf iff N(E) A Ω 0 does not have a whnf.

The result of the evaluation ofN(E) A Ω 0 is interconvertible with the nf in cps.

Property 5 If a closed expression E has a normal form thenN(E) ↔ N(E) A Ω 0

Their proofs are similar to those of Property 2 and Property 3.

5 Head Reduction of Typedλ-Expressions

In the previous sections we needed to count the number of leadingλ’s during the evaluation. Using
some form of typing it is possible to know the functionality of the expression prior to evaluation and
thus get rid of this counter. We consider only head reduction ; typing does not seem to simplify the
compilation of strong reduction.

Simply typedλ-calculus would suit our purposes but would harshly restrict the class of expres-
sions. More flexible typing systems are sufficient. One candidate is reflexive reducing typing [2]
which has already been used in [9] to determine the functionality of expressions. It is shown in [2]
that we can restrict a language to reflexive reducing types without weakening its expressive power.
Reflexive reducing types are defined by (possibly recursive) equations of the formσ = σ1 → …→
σn→ α , σ1 , …, σn being themselves reflexive reducing types andα being a base type (not a reflex-
ive type). This enables us to type recursive functions but not for example (λxy.xx)(λxy.xx) (this ex-
pression has the reflexive typeρ → α → σ with σ = α → σ which is not reducing). We do not dwell
here on the details of this typing system. The important point for us is that if a closed expression with
typeσ = σ1 →…→ σn→ α has a hnf then it is of the formλx1. …λxn.xi E1…Εp.

If the expression to reduce to hnf has functionality n then the transformed expression is

N(E) (λf.f X1
n … (λf.f Xn

n Ln)…) and we noteN(E) (Xn
→

Ln).

That is, we apply the expression to n arguments in order to remove the n leading abstractions.
CombinatorsX i

n play the same role as the combinatorsH i introduced in section 3. They will be sub-
stituted for variables and used to start the reconstruction process.

X i
n E = λcxn

→
. λc.xi (E (Rn (λc.xn

→
c)) (K c)) (X)

CombinatorRn used in the definition ofX i
n plays the same role asR in the definition ofH i.

Rn E F G H =λf.f (λc.FLn (E c)) (G (Rn E) H) (R)

 In the preceding sections, the reconstruction of subexpressions was based on the same tech-
nique as the reduction of the global expression: each subexpression was applied to continuationΩ
and was rebuild after being reduced to hnf. Here, there is no type information available on the subex-
pressions and we cannot use the same method as for the global expression. In particular, a subexpres-
sion (λcz.E) can not be reduced since we do not know its functionality. However, it may contain
occurrences of combinatorsX i

n which are to be removed. This case is treated using combinatorsLn
andZn which carry on the reconstruction inside theλ-abstraction.

Ln E = λcxn
→

. λcz.λc. E (Zn z) Ln (xn
→

c) (L)

Zn E F =λcxn
→

. λc. E (F (Rn (λc.xn
→

c)) (K c)) (Z)

For example, if the hnf is of the formλx1. …λxn.xi …(λz.E)… thenRn applies each subexpres-
sion toLn and (xn

→
c) and we will get for theλ-abstraction (λz.E)

λc.(λcz.E)Ln (xn
→

 c) → λc. Ln(λz.E) (xn
→

 c)

→ λc. (λcxn
→

. λcz.λc. (λz.E) (Zn z) Ln (xn
→

c))(xn
→

 c)

→ λcz.λc. E[Zn z/z] Ln (xn
→

c)

The list of variables has been pushed inside theλ-abstraction and the reconstruction can contin-
ue. Variable z is replaced by (Zn z) so that when it is applied to the list (xn

→
c) it returns z. Combina-

torsRn, Ln, X i
n , Zn act very much like combinators used in abstraction algorithms.X i

n is a selector
(it selects the ith variable),Zn is (like K) a destructor (it ignores the list and returns its first argu-
ment),Rn andLn distribute the list of variables (λc.xn

→
c) throughout the expression.

The head normal form (if any) of E will be of the form(λx1.…λxn.xi E1…Ep) soN(E) (Xn
→

Ln)
will be reduced (by weak head reduction) toX i

n (Ep
→

Ln) and then, according to the definition of
combinatorsX i

n , to λcxn
→

.λc.xi ((Ep
→

Ln) (Rn (λc.xn
→

c)) (K c)). As before the continuation (K c)
removes reconstructing expressions and returns the final continuation.

The following property states that for any closed expression E of typeσ1 → …→ σn→ α the
weak head reduction ofN(E) (Xn

→
Ln) simulates the head reduction of E.

Property 6 Let E be a closed expression of functionality n, if E∗→h H then there exists an expression
X such thatN(E) (Xn

→
Ln) ∗→w X ←aw N(H) (Xn

→
Ln) and if H is a hnf then X is a whnf. Further-

more, E does not have a hnf iffN(E) (Xn
→

Ln) does not have a whnf.

If E has a normal form the result of the evaluation ofN(E) (Xn
→

Ln) is interconvertible with the
principal hnf in cps form.

Property 7 If a closed expression E of functionality n has a normal form thenN(E)↔N(E)(Xn
→

Ln)

Their proofs are similar to those of Property 2 and Property 3.

6 Applications

Among practical applications of head reduction listed in the introduction, one is to compile more ef-
ficient evaluation strategies. We describe better this question in the next section and suggest in sec-
tion 6.2 how our approach can be used to compile such strategies. Implementation issues are
discussed in 6.3.

6.1 Spine Strategies

Even when evaluating weak-head-normal forms it is sometimes better to reduce sub-terms in head
normal forms. For example, in lazy graph reduction, the implementation ofβ-reduction (λx.E)F→β
E[F/x] implies making a copy of the body E before the substitution. It is well known that this may
lose sharing and work may be duplicated [18]. Program transformations, such as fully lazy lambda-
lifting [10], aim at maximizing sharing but duplication of work can still occur. Another approach
used to avoid recomputation is to consider alternative evaluation strategies. If the expression to re-
duce is (λx.E)F we know that the whnf of the body E will be needed and so it is safe to reduce E pri-
or to theβ-reduction. This computation rule belongs to the so-called spine-strategies [4]. It never
takes more reductions than normal order and may prevent duplication of work.

A revealing example, taken from [8], is the reduction of An I where the family ofλ-expressions
Ai is defined by A0 = λx.I and An = λh.(λw.w h (w w)) An-1. The expression An I is reduced using
the call-by-name weak head graph reduction as follows:

 An I = (λh.(λw.w h (w w)) An-1) I

→ (λw.w I (w w)) An-1

→ An-1 I (• •) ≡ (λh.(λw.w h (w w)) An-2) I (• •) (• representing the sharing of An-1)

→ (λw.w I (w w)) An-2 (An-1 •)

The sharing is lost and the redexes inside An-1 are duplicated. The complexity of the evaluation
is O(2n). On the other hand, by reducingλ-abstractions to hnf beforeβ-reductions the evaluation se-
quence becomes

An I = (λh.(λw.w h (w w)) An-1) I

→ (λh.An-1 h (• •)) I

4(n-1)→ (λh.A0 h (• •)) I An-1 reduces to A0 in 4(n-1) steps

→ (λh. I (A0 •)) I → (λh. A0 •) I → (λh. I) I → I

and the Ai’s remain shared until they are reduced to their hnf A0. The complexity of the evaluation
drops from exponential to linear.

Of course this strategy alone is not optimal (optimal reduction ofλ-expressions is more complex
[12][13]) and work can still be duplicated. But in [17] Staples proposes a similar evaluation strategy
with the additional rule that substitutions are not carried out inside redexes (they are suspended until
the redex is needed and reduced to hnf). This reduction has been shown to be optimal for aλ-calcu-
lus with explicit substitutions.

6.2 Sharing Hnf’s

We saw that evaluating theλ-abstraction to hnf before theβ-reduction can save work by sharing
hnf’s instead of whnf’s. Following this idea, maximal sharing is obtained by reducing every closure
to hnf instead of whnf. The straightforward idea of applying closures toA Ω 0 does not work. Our
previous results were relying on the fact that the expression to be reduced was closed. Here, even if
the global expression is closed, we may have to reduce to hnf sub-expressions containing free vari-
ables. For example, if (λx. I (λy. I x)) is cps converted and the two closures (λcx.…) and (λcy.…) are
applied toA Ω 0 then during the reduction of (λcx. …) we will have to reduce to hnf (λcy.…) A Ω 0.
But x is already instantiated byH0 and we get (λcy.H0) A Ω 0 → H0 A Ω 1 → (λcy.y) which is false.
The cps hnf of (λy. I x) should have been(λcy. H0) and the enclosing evaluation of (λcx. …) could
continue. The problem comes from free variables already instantiated by combinators when a new
head reduction begins.

One solution to the free variable problem is to use a second index as in [5]. In our framework,
this technique is expressed by changing the rule of cps conversion for applications

N*(E F) = λcwn.N*(E) (λf.f (N*(F) A Ω n n) c) w n

Each closure is applied to two indexes, initially the current binder length. The first one will play
the same role as before and will increase at each leading lambda encountered during the reduction of
the closure. The second index, say k, remains fixed for each closure and is used to determine if a
combinatorH i corresponds to a free variable (i<k) or a bound variable (i≥k) in that context. The def-
initions of combinatorsH i andR become

H i M N n k = λcxn-k
→

. λcwn.xi-k+1 (M (R n k n (λc. xn-k
→

c)) (K c)) w n , if i≥k (H1)

= λcxn-k
→

. λcwn.H i (M (R n k n (λc. xn-k
→

c)) (K c)) w n , if i<k (H2)

R C D E F G H I →w λf.f (G A Ω C D (FA)) Ω Ε Ε) (H (R C D E F) I)

Now, the reduction of the (cps form of the) closure (λx. I (λy. I x)) becomes

(λcx.λcwn.I ((λcy. I x) A Ω n n) c) w n)A Ω 0 0

∗→ (λcwn.I ((λcy. I H 0) A Ω n n) c w n)A Ω 1 0

∗→ (λcy. I H 0) A Ω 1 1 A Ω 1 0

∗→ H0 A Ω 2 1 A Ω 1 0 H0 corresponds to a free variable in (λcy.…)

∗→ (λcy. H0) A Ω 1 0 (H2)

∗→ H0 A Ω 2 0 → λcx.λcy.x H0 corresponds to a bound variable in (λcx.…) (H1)

Several optimizations can be designed to avoid producing useless closures. An important one
(that we used in the example above) isN*(E x) = λc.N*(E) (λf.f x c). This rule holds because a vari-
able is always instantiated either by a combinatorH i or by a closureN*(F) A Ω m m. It can be
shown thatH i A Ω n n =H i (if i<n) and (N*(F) A Ω m m)A Ω n n =N*(F) A Ω m m if n≥m.

Sharing as much hnf’s as possible is likely to be quite costly in practice. In [5] Crégut gives a
function for which the reduction takes n2 steps when sharing hnf’s whereas it takes only n steps us-
ing standard wh-reduction. It is also shown that this is the worst case. Some less extreme strategies
may be envisaged. For example, the imbrication of several head reductions could be forbidden (i.e.
closures would be reduced to hnf by the top level reduction but only to whnf during the reduction of
another closure). This would simplify the reduction but the price is a potential loss of sharing.

6.3 Implementation issues

The most obvious way to implement our approach is to transform expressions as previously de-
scribed and give the result to a compiler. The combinatorsA, Ω,… are compiled like other functions
and the reconstruction is naturally implemented by closure building. However, with compilers which
already integrate a cps conversion, a more efficient way would be to directly use the cps phase. This
is less trivial since the following steps expect only cps expressions and we have to introduce special
combinators which are not in cps. One solution is to implement those combinators by hand and the
compiler can use them as primitive functions. We plan such an integration in our cps-based compiler.
Further work is still needed on different extensions:

• So far we have only considered call by name. As cps conversion can be used to compile different
computation rules (call-by-value, call-by-name with strictness annotations,…) it is likely that our
method could be extended to treat those strategies as well.

• This method should be extended to aλ-calculus with constants and primitive operators.

If we just aim at reducing a program to hnf/nf and print the result then our approach will be very
efficient. The whole evaluation is a weak reduction which can be completely compiled. The only
slight overhead will be a few more reductions for each leading lambda and printing the result which
should be proportional to the size of the expression.

The costly part of head/strong reduction is the reconstruction of expressions which happens
when we actually use (i.e. apply) the hnf/nf. In particular, reconstructing uses a lot of memory space.
In order to implement efficient evaluation strategies as described previously, it would be useful to de-
velop the following points:

• Several analyses can detect expressions for which wh-reduction is better and should be imple-
mented as well. For example, one policy could be that a closure will be reduced to hnf only if it is
shared (using a sharing analysis), complex enough (using a complexity analysis) and of course not
already in hnf.

• Computation can still be duplicated by performing substitutions inside redexes. It would be inter-
esting to extend our work to compile Staples’ method [17] which avoids this loss of sharing.

We did a few experiments using the trivial way (i.e. transforming source expressions before giv-
ing them to our compiler). We transformed the family of expressions An defined in section 6.1 into
supercombinators and into cps form. The evaluation of A15 I takes around 1s using standard reduc-
tion and around 1ms when each supercombinator is applied toA Ω 0. This result is not surprising
since the theoretical complexity is exponential in one case and linear in the other. More interestingly,
we redefined the family An by A0 = λx.I and An = λh.(λw.w h (A0 w)) An-1. Here, the wh-reduction
of An I does not duplicate work (the second occurrence of w is not needed) and nothing is saved by
using head reduction. We found that the head reduction of supercombinators made the evaluation 3
to 4 times slower than the standard wh-reduction. This example indicates the cost of reconstructing
expressions. This cost is acceptable when the final goal is to implement symbolic evaluation. When
the goal is to evaluate whnf’s more efficiently by sharing hnf’s then such examples should be avoid-
ed using analyses or (maybe more pragmatically) using user’s annotations.

7 Conclusion

Implementation of head and strong reduction has also been studied by Crégut [5] and Nadathur and
Wilson [14]. Crégut’s abstract machine is based on De Bruijn’s notation. Two versions have been de-
veloped. The first one evaluates the head or full normal form of the global expression. The second
one implements a spine strategy and shares head normal forms. Terms are extended with formal vari-
ables and the machine state includes two indexes. One plays the role of our binder level as in section
3 and 4, the other one is needed (only in the second version of the machine) to deal with the problem
of free variables in subexpressions as exposed in section 6.2. The algorithm presented in [14] was
motivated by the implementation ofλProlog [15]. It evaluates terms to hnf and, expressed as an ab-
stract machine, this technique resembles Crégut’s. It is also based on De Bruijn notation and the ma-
chine state includes two indexes.

We described in this paper how to use cps conversion to compile head and strong reduction. The
hnf’s or nf’s of cps-expressions are evaluated by weak head reduction and at each step the unique
(weak) redex is the leftmost application. The technique does not require to modify the standard cps
cbn conversion. The cps expression is just applied to a special continuation and an index to keep
track of the binder length. We presented a way to get rid of this index and suggested applications for
our technique. Cps conversion was important to this work in several respects: special continuations
could be used to suppress the leadingλ’s and the regular form of cps expressions helped the recon-
struction.

Compared to [5] and [14] the main difference is that we proceed by program transformations
and stay within the functional framework. Used as a preliminary step our technique allows a stan-
dard compiler to evaluate underλ’s. Thus we can take advantage of all the classical compiling tools
like analyses, transformations or simplifications. As already emphasized in [7], another advantage of
this approach is that we do not have to introduce an abstract machine which makes correctness
proofs simpler. Furthermore, optimizations of this compilation step can be easily expressed and jus-
tified in the functional framework.

Apart from the practical issues discussed in section 6.3, several others research directions like
the application of this approach to partial evaluation or to the compilation ofλ-prolog should be ex-
plored.

Acknowledgments. Thanks are due to Daniel Le Métayer for his comments on an earlier version of
this paper.

References

[1] A. W. Appel.Compiling with Continuations. Cambridge University Press. 1992.

[2] E. Astesiano and G. Costa. Languages with reducing reflexive types. In7th Coll. on Automata, Lan-
guages and Programming, LNCS Vol. 85, pp. 38-50, 1980.

[3] H.P. Barendregt.The Lambda Calculus. Its Syntax and Semantics. North-Holland, 1981.

[4] H.P. Barendregt, J.R. Kennaway, J.W. Klop and M.R. Sleep. Needed reduction and spine strategies for
the lambda calculus.Information and Computation, Vol. 75, pp. 191-231, 1987.

[5] P. Crégut. An abstract machine for the normalization ofλ-terms. InProc. of the ACM Conf. on Lisp and
Functional Programming, pp. 333-340, 1990.

[6] M. J. Fischer. Lambda-calculus schemata. InProc. of the ACM Conf. on Proving Properties about Pro-
grams, Sigplan Notices, Vol. 7(1), pp. 104-109,1972. Revised version inLisp and Symb. Comp., Vol. 6,
Nos. 3/4, 1993.

[7] P. Fradet and D. Le Métayer. Compilation of functional languages by program transformation.ACM
Trans. on Prog. Lang. and Sys., 13(1), pp. 21-51, 1991.

[8] G.S. Frandsen and C. Sturtivant. What is an efficient implementation of theλ-calculus? InProc. of the
ACM Conf. on Functional Prog. Languages and Comp. Arch., LNCS Vol. 523, pp. 289-312, 1991.

[9] M. Georgeff. Transformations and reduction strategies for typed lambda expressions.ACM Trans. on
Prog. Lang. and Sys., 6(4), pp. 603-631, 1984.

[10] R.J.M. Hughes. Supercombinators, a new implementation method for applicative languages. InProc. of
the ACM Conf. on Lisp and Functional Programming, pp. 1-10, 1982.

[11] D. Kranz, R. Kelsey, J. Rees, P. Hudak, J. Philbin and N. Adams. Orbit: An optimizing compiler for
scheme. Inproc. of 1986 ACM SIGPLAN Symp. on Comp. Construction, 219-233, 1986.

[12] J. Lamping. An algorithm for lambda calculus optimal reductions. InProc. of the ACM Conf. on Princ.
of Prog. Lang., pp. 16-30, 1990.

[13] J.-J. Lévy.Réductions correctes et optimales dans le lambda calcul. Doctorat d’état, Paris VII, 1978.

[14] G. Nadathur and D.S.Wilson. A representation of lambda terms suitable for operations on their inten-
sions, InProc. of the ACM Conf. on Lisp and Functional Programming, pp. 341-348, 1990.

[15] G. Nadathur and D. Miller. An overview ofλProlog. InProc. of the 5th Int. Conf. on Logic Prog., MIT
Press, pp. 810-827, 1988.

[16] G.D. Plotkin. Call-by-name, call-by-value and theλ-calculus.Theoretical Computer Science, pp. 125-
159, 1975.

[17] J. Staples. A graph-like lambda calculus for which leftmost-outermost reduction is optimal. InGraph
Grammars and their Application, LNCS vol. 73, pp. 440-455, 1978.

[18] C.P. Wadsworth.Semantics and Pragmatics of the Lambda-Calculus. PhD thesis, Oxford, 1971.

