
Chemical Programming of Self-Organizing Systems

 by Jean-Pierre Banâtre, Pascal Fradet and Yann Radenac

Chemical programming relies on the “chemical metaphor”: data are seen as molecules and

computations as chemical reactions. This programming paradigm exhibits self-organizing

properties and allows the description of autonomic systems in an elegant way.

The Chemical Programming Model

This formalism was proposed to capture the intuition of computation as the global evolution of a

collection of atomic values interacting freely. It can be introduced intuitively through the chemical

reaction metaphor. The unique data structure is the multiset (a set possibly containing identical

elements) which can be seen as a chemical solution. A simple program is made of a reaction

condition and an action. Execution proceeds by replacing elements satisfying the reaction condition

by the elements specified by the action. The result of such a program is obtained when a stable

state is reached that is to say when no more reactions can take place. For example, the computation

of the maximum element of a non empty set can be described as:

replace x, y by x if x ≥ y

Any couple of elements x and y of the multiset is replaced by x if the condition is fulfilled. This

process goes on till a stable state is reached, that is to say, when only the maximum element

remains. Note that, in this definition, nothing is said about the order of evaluation of the

comparisons. If several disjoint pairs of elements satisfy the condition, reactions can be performed

in parallel.

Chemical Programming and Self-Organizing Systems

Autonomic computing provides a vision in which systems manage themselves according to some

predefined goals. The essence of autonomic computing is self-organization. Like biological

systems, autonomic systems maintain and adjust their operation in the face of changing

components, workloads, demands, and external conditions in the face of hardware or software

failures, either innocent or malicious. The autonomic system might continually monitor its own use

and check for component upgrades. We believe that the chemical programming paradigm is well-

suited to the descriptions of autonomic systems. It captures the intuition of a collection of

cooperative components which evolve freely according to some predefined constraints (reaction

rules). System self-management arises as a result of interactions between members, in the same

way as ``intelligence'' emerges from cooperation in colonies of biological agents.

A Self-Organizing Sorting Algorithm

Consider the general problem of a system whose state must satisfy a number of properties but

which is submitted to external and uncontrolled changes. This system must constantly re-organize

itself to satisfy the properties. Let us illustrate this class of problem by a simple sorting example

where the system state is made of pairs (index : value) and the property of interest is that values are

well-ordered (i.e. a smaller index means a smaller value). If the environment keeps adding random

pairs in the state, the system must re-organize itself after each insertion of an ill-ordered element.

The system is represented by a chemical solution State = <sort, (i
1
: v

1
),…, (i

n
: v
n
)>, a solution

made of pairs and of the following active molecule:

sort = replace (i : x), (j : y) by (i : y), (j : x) if i < j and x > y

The molecule sort looks for couples of ill-ordered values and swaps them. The solution evolves up

to the point where no more reactions are possible: the solution has reached a stable state and the

ordering property is satisfied.

Adding new ill-ordered values breaks the ``equilibrium'' since they violate the ordering property.

However, sort searches continuously for new ill-ordered values and makes reactions so that the

state will reach a new stable state.

This very simple example shows how the Chemical Paradigm naturally expresses self-organizing

systems. A program is made of a collection of rules (active molecules) which react until a stable

state is reached and the corresponding invariant properties satisfied. These rules remain present and

are applied (without any external intervention) as soon as the solution is unstable again.

Examples of Applications

An autonomic mail system has been described within the chemical framework. Rules ensure that all

messages have reached their destination; if it is not the case some reactions occur to reach that state.

The system includes rules that ensure other autonomic properties such as self-healing (rules that set

and unset emergency servers in case of failures), self-optimizing (rules that balance the load

between several servers), self-protecting (rules that suppress spam or viruses), self-configuration

(rules that forward messages to the new address of a user), etc.

We have also specified a chemical Distributed Versioning System. In that application, several

editors may edit concurrently a document made out of a set of files. The editors are distributed over

a network and each one works on her/his version, makes her/his own modifications to the files and

commits them locally. From time to time, two or more editors merge their modifications to

propagate them. This system can be easily described with reaction rules to reflect the self-

organization of the system. The system is also self-repairing: if an editor loses his local version it

can revert to a previous state by synchronising with one or several other editors.

Future Plans

We are currently studying the application of this model to the coordination of program execution on

grids. In a first step, applications are programmed in an abstract manner describing essentially the

chemical coordination between (not necessarily chemical) software components. In a second step,

chemical service programs are specifically provided to the run-time system in order to obtain the

expected quality of service in terms of efficiency, reliability, security, etc.

Reference

J.-P. Banâtre, P. Fradet and Y. Radenac. 'Higher-Order Programming Style'. In Proceedings of the

Workshop on Unconventional Programming Paradigms (UPP'04), LNCS 3566. Springer-Verlag.

Contact

INRIA / IRISA, Campus de Beaulieu, 35042 Rennes Cedex, France

INRIA Rhône-Alpes, 655, avenue de l'Europe, 38330 Montbonnot, France

{Jean-Pierre.Banatre, Pascal.Fradet, Yann.Radenac}@inria.fr

