
Formal Verification of Automatic Circuit
Transformations for Fault-Tolerance

Dmitry Burlyaev

Univ. Grenoble Alpes; INRIA
dmitry.burlyaev@inria.fr

Pascal Fradet

INRIA; Univ. Grenoble Alpes
pascal.fradet@inria.fr

Abstract—We present a language-based approach to certify
fault-tolerance techniques for digital circuits. Circuits are ex-
pressed in a gate-level Hardware Description Language (HDL),
fault-tolerance techniques are described as automatic circuit
transformations in that language, and fault-models are specified
as particular semantics of the HDL. These elements are formal-
ized in the Coq proof assistant and the properties, ensuring that
for all circuits their transformed version masks all faults of the
considered fault-model, can be expressed and proved. In this
article, we consider Single-Event Transients (SETs) and fault-
models of the form “at most 1 SET within k clock cycles”. The
primary motivation of this work was to certify the Double-Time
Redundant Transformation (DTR), a new technique proposed
recently [1]. The DTR transformation combines double-time
redundancy, micro-checkpointing, rollback, several execution
modes and input/output buffers. That intricacy requested a
formal proof to make sure that no single-point of failure existed.
The correctness of DTR as well as two other transformations for
fault-tolerance (TMR & TTR) have been proved in Coq.

I. INTRODUCTION

Circuit tolerance towards soft (non-destructive, non-perma-
nent) errors has become a design characteristic as important as
performance and power consumption [2]. The increased risk of
soft errors results from the continuous shrinking of transistor
size that makes components more sensitive to radiation [3].

The most widely-used methods to make circuits fault-
tolerant rely on hardware redundancy. Triple-Modular Re-
dundancy (TMR) [4] remains the most popular technique
along with Finite State Machine (FSM) encoding (one hot,
hamming, etc.). Some more complex ones are based on time-
redundancy (re-execution) [1], [5], [6]. All these techniques
can be realized through automatic circuit transformations and
some of them are already supported by CAD tools. Since
fault-tolerance is typically used in critical domains (aerospace,
nuclear power, etc.), the correctness of such transformations
is essential. If there is little doubt about the correctness of
simple transformations such as TMR, this is not the case for
more intricate ones.

The overall correctness of an automatic circuit transfor-
mation for fault tolerance consists not only in its functional
correctness when no soft errors occur but also in its proper
behavior under error occurrences. Widely-used post-synthesis
verification tools (e.g., model checking) are simply inappro-
priate to prove that a transformation ensures some property for
all possible circuits; only proof-based approaches are suitable.

We propose an approach using the Coq proof assistant [7]
to formally verify the functional and fault-tolerance properties
of circuit transformations. We define the syntax and semantics
of a simple gate-level functional HDL to describe circuits.
Fault models, that specify the kind and occurrences of faults
to be masked, are formalized in the language semantics. In this
paper, we focus on SETs and fault-models of the form “at most
1 SET every k cycles”. Fault-tolerance transformations are
defined as recursive functions on the syntax of the language.
Proofs rely mainly on relating the execution of the source
circuit without faults to the execution of the transformed circuit
w.r.t. the considered fault-model. They make use of several
techniques (case analysis, induction on the type or the structure
of circuits, co-induction on input streams).

While our approach is general, it has been originally de-
veloped to prove DTR, an involved transformation combining
double-time redundancy, micro-checkpointing, rollback, sev-
eral execution modes and input/output buffers [1]. If manual
checks were quite useful to develop that transformation, they
were error-prone and not convincing enough. This transforma-
tion served as an advanced case study. The correctness of DTR
as well as two other transformations (among which TMR) have
all been proved in Coq.

Section II introduces the syntax and semantics of our gate-
level HDL. In section III, we present the specification of fault-
models in the language formal semantics. Section IV explains
the proof methodology adopted to show the correctness of
circuit transformations. It is illustrated by examples taken from
the simplest transformation: TMR. Section V introduces the
DTR circuit transformation [1] and sketches the associated
proofs. Section VI presents related work, summarizes our
contributions and suggests a few extensions.

Throughout this article, we use standard mathematical and
semantic notations. The corresponding Coq specifications and
proofs are available online [8].

II. CIRCUIT DESCRIPTION LANGUAGE

We describe circuits at the gate level using a purely
functional language inspired from Sheeran’s combinator-based
languages such as µFP [9] or Ruby [10]. We equip our
language with dependent types which, along with the language
syntax, ensure that circuits are well-formed by construction
(gates correctly plugged, no dangling wires, no combinational
loops, . . .).

Contrary to µFP or Ruby, our primary goal is not to make
the description of circuits easy but to keep the language as
simple and minimal as possible to facilitate formal proofs.
Our language contains only 3 logical gates, 5 plugs and 3
combining forms. It is best seen as a low-level core language
used as the object code of a synthesis tool. We denote it as
LDDL (Low-level Dependent Description Language).

A. Syntax of LDDL

A bus of signals is described by the following type

B := ω | (B1 ∗B2)

A bus is either a single wire (ω) or a pair of buses. In other
terms, buses are defined as nested pairs. The constructors of
LDDL annotated with their types are gathered in Fig. 1. A
circuit takes as parameters its input and output types and is
either a logic gate, a plug, or composition of circuits.

Gates

NOT : Gate ω ω AND, OR : Gate (ω ∗ ω) ω

Plugs

ID : ∀α,Plug α α
FORK : ∀α,Plug α (α ∗ α)
SWAP : ∀α β,Plug (α ∗ β) (β ∗ α)
LSH : ∀α β γ,Plug ((α ∗ β) ∗ γ) (α ∗ (β ∗ γ))
RSH : ∀α β γ,Plug (α ∗ (β ∗ γ)) ((α ∗ β) ∗ γ)

Circuits
C ::= Gates

| Plugs
| C1 -◦-C2 : ∀α β γ,Circ α β → Circ β γ

→ Circ α γ
| []C1, C2[] : ∀α β γ δ,Circ α γ → Circ β δ

→ Circ (α ∗ β) (γ ∗ δ)
| x−C : ∀α β, bool→ Circ (α ∗ ω) (β ∗ ω)

→ Circ α β

Fig. 1: LDDL Syntax

The sets of logical gates and plugs are minimal but expres-
sive enough to specify any combinational circuit. The type of
AND and OR, Gate (ω∗ω) ω, indicates that they are gates taking
a bus made of two wires and returning one wire. Likewise,
NOT has type Gate ω ω. Plugs, used to express (re)wiring,
are polymorphic functions that duplicate or reorder buses: ID

leaves its input bus unchanged, FORK duplicates its input bus,
SWAP inverts the order of its two input buses, LSH and RSH

reorder their three input buses.
Circuits are either a gate, a plug, a sequential composition

(. -◦- .), a parallel composition ([]., .[]), or a composition with a
cell (flip-flop) within a feedback loop (. −.). The typing of
the sequential operator ensures that the output bus of the first
circuit has the same type as the input bus of the second one.
The typing of the parallel operator expresses the fact that the
inputs (resp. outputs) of the resulting circuit is made of the

inputs (res. outputs) of the two sub-circuits. The last operator
(related to the µ operator of µFP) is the only way to introduce
feedback loops in the circuit. x−C is better seen graphically
as the circuit

C

x

The circuit C can have any input/output bus but it also
takes and returns a wire connected to a memory cell set to
the Boolean value x (tt or ff). The main advantage of that
operator is to ensure that any loop contains a cell. It prevents
combinational loops by construction. Of course, it does not
force all cells to be within loops. A simple cell without
feedback is expressed as x−SWAP:

SWAP

=x

x

To illustrate the language, a multiplexer

0

1
c

can be expressed in LDDL as the expression

[]FORK, ID[] -◦- LSH -◦- []NOT, RSH -◦- SWAP[] -◦- RSH

-◦- []AND, AND[] -◦- OR

As common with low-level or assembly-like languages, LDDL
is quite verbose. Recall that it is not meant to be used directly.
It is best seen as a back-end language produced by synthesis
tools. On the other hand, it is simple and expressive; its
dependent types make inputs and outputs of each sub-circuit
explicit and ensure that all circuits are well-formed.

B. Semantics of LDDL

From now on, to alleviate notations, we leave typing con-
straints implicit. All input and output types of circuits and
corresponding buses always match.

The semantics of gates and plugs are given by functions
denoted by J.K. For instance, the semantics of ID, is the identity
function (JIDKx = x) or the semantics of FORK is the function
duplicating its bus argument (JFORKKx = (x, x)).

Taking into account errors (in particular, SETs) makes the
semantics non deterministic. When a glitch produced by an
SET reaches a flip-flop, it may be latched non-deterministically
as tt or ff. Therefore, the standard semantics of circuits is not
described as functions but as predicates. The second issue is
the representation of a circuit state (i.e., the current values of
its cells). A solution could be to equip the semantics with an
environment (cell → bool). We choose here to use the circuit
itself to represent its state which is made explicit by the x−C
constructs.

The semantics of circuits is described by the inductive
predicate step : Circ α β → α → β → Circ α β. The

expression step C a b C ′ can be read as “after one clock cycle,
the circuit C applied to the inputs a may produce the outputs
b and the new circuit (state) C ′ ”. The rules are gathered in
Fig. 2.

Gates & Plugs
JGKa = b

step G a b G

Seq
step C1 a b C

′
1 step C2 b c C

′
2

step (C1 -◦-C2) a c (C
′
1 -◦-C ′2)

Par
step C1 a c C

′
1 step C2 b d C

′
2

step []C1, C2[] (a, b) (c, d) []C
′
1, C

′
2[]

Loop
step C (a, b2s x) (b, s) C ′ s2b s y

step x−C a b y −C ′

Fig. 2: LDDL semantics for a clock cycle

Gates (or plugs) are stateless: they are always returned
unchanged by step. The rules for sequential and parallel
compositions are standard. The rule for x −C makes use
of the b2s function which converts the Boolean value of a
cell into a signal and of the s2b predicate which relates a
signal to a Boolean. The outputs and the new state (circuit)
depend on the reduction of C applied to the inputs a and the
signal corresponding to x. Non-determinism may come from
the predicate s2b which relates a glitch to both tt and ff.

The complete semantics is given by a co-inductive predicate
eval : Circ α β → Stream α→ Stream β which describes the
circuit behavior for any infinite stream of inputs.

Eval
step C i o C ′ eval C ′ is os

eval C (i : is) (o : os)

If C applied to the inputs i returns after a clock cycle the
outputs o and the circuit C ′ and if C ′ applied to the infinite
stream of inputs is returns the output stream os then the
evaluation of C with the input stream (i : is) returns the
stream (o : os).

The variable-less nature of LDDL spares the semantics
to deal with bindings and environments. It avoids many
administrative matters (reads, updates, well-formedness of
environments) and facilitates formalization and proofs.

III. SPECIFICATION OF FAULT MODELS

There are two main types of soft errors caused by particle
strikes: Single-Event Upsets (SEUs) (i.e., bit-flips in flip-
flops) and SETs (i.e., glitches propagating in the combinational
circuit). An SEU can be modeled by changing the value of
an arbitrary memory cell between two clock cycles. In this
article, we focus on SETs and fault-models allowing at most
1 SET within k clock cycles, written SET (1 , k). An SET
in a combinational circuit can lead to the non-deterministic
corruption of any memory cell connected (by a purely combi-
national path) to the place where the SET occurred. Since an
SET may potentially lead to several bit-flips, the SET (1 , k)

model subsumes SEU (1 , k). In order to model SETs, glitches
and their propagation must be represented in the semantics. We
use signals that can take 3 values: 0, 1, or a glitch written �.
We often abuse the notation and denote a wire by its signal
value.

Glitches propagate through plugs and gates
(e.g., AND(1, �) = �) but can be also logically masked
(e.g., OR(1, �) = 1 or AND(0, �) = 0). If a corrupted signal
is not masked, it is latched as tt or ff (both (s2b � tt) and
(s2b � ff) hold).

The semantics of circuits for a cycle with an SET is
represented as the inductive predicate stepg C a b C ′ that
can be read as “after one cycle with an SET occurrence, the
circuit C applied to the inputs a may produce the outputs b
and the new circuit/state C ′”. The main rules for stepg are
gathered in Fig. 3.

Gates
stepg G a � G

SeqL
stepg C1 a b C

′
1 step C2 b c C

′
2

stepg (C1 -◦-C2) a c (C
′
1 -◦-C ′2)

SeqR
step C1 a b C

′
1 stepg C2 b c C

′
2

stepg (C1 -◦-C2) a c (C
′
1 -◦-C ′2)

. . .

LoopC
stepg C (a, b2s x) (b, s) C ′ s2b s y

stepg x−C a b y −C ′

LoopM
step C (a, �) (b, s) C ′ s2b s y

stepg x−C a b y −C ′

Fig. 3: LDDL semantics with SET (main rules)

The rule (Gates) asserts that stepg introduces a glitch
after a logical gate. The two rules for sequential composition
represents two mutually exclusive cases where the SET occurs
in left sub-circuit (SegL) or in the right one (SegR). The rule
for the parallel operator is similar. The rule (LoopC) represents
the case where an SET occurs inside C. The rule (LoopM)
represents the case where an SET occurs at the output of the
memory cell x which is taken as an input by C. To summarize,
stepg introduces non-deterministically a single glitch after a
cell or a logical gate. Hence, if a circuit has n gates and m
cells, it specifies n+m possible executions.

The fault-model SET (1 , k) is expressed by the predicate
setk eval : Nat→ Circ α β → Stream α→ Stream β:

SetN
step C i o C ′ setk eval (n− 1) C ′ is os

setk eval n C (i : is) (o : os)

SetG
stepg C i o C ′ setk eval (k − 1) C ′ is os

setk eval 0 C (i : is) (o : os)

The first argument of setk eval plays the role of a clock
counter. A glitch can be introduced (by stepg) only if the

counter is 0 (SetG). When a glitch is introduced, the counter
is reset to enforce at least k−1 normal execution steps (SetN).

IV. OVERVIEW OF CORRECTNESS PROOFS

Describing the proofs in details is out of scope of this paper
(and would be tiresome). Instead, we outline the common
proof structure of the transformations we have studied. We
illustrate the main steps using examples taken from the cor-
rectness proof of the simplest one: TMR.

Transformation

Each fault-tolerance technique is specified by a program
transformation on the syntax of LDDL. They are all defined by
induction of the syntax and replacement of each memory cell
by a memory block (a small circuit). The TMR transformation
takes a circuit of type Circ α β and returns a circuit of type
Circ ((α ∗ α) ∗ α) ((β ∗ β) ∗ β). Inputs/outputs are triplicated
to play the role of the inputs/outputs of each copy.

TMR(X) = [][]X,X[], X[] with X a gate/plug
TMR(C1 -◦-C2) = TMR(C1) -◦- TMR(C2)
TMR([]C1, C2[]) = S1 -◦- []TMR(C1), TMR(C2)[] -◦- S2
TMR(x−C) = x− x− x−(vot -◦- TMR(C) -◦- S3)

where S1, S2, S3 are reshuffling plugs (e.g., S1 has type
Plug (((α∗β)∗ (α∗β))∗ (α∗β)) (((α∗α)∗α)∗ ((β ∗β)∗β))
and reshuffles the input bus accordingly). Each cell is replaced
by three cells followed by a triplicated voter (vot) made of a
majority voter for each copy.

Relations between source and transformed circuits

The correctness property relates the execution of the source
circuit without fault to the execution of the transformed circuit
under a fault-model. Most of the lemmas also relate the states
and executions of the source and transformed circuits. These
relations are expressed as inductive predicates.

For TMR, a key property is that an SET can corrupt only a
single redundant copy and that such corruption stays confined
in that copy. To express corruption, we use a predicate relating
source and transformed programs expressed on the syntax of
LDDL. The corruption of the first copy of a transformed circuit
CT w.r.t. to its source circuit C is expressed by the predicate
c∼1. The main rule is

CLoop
C

c∼1 CT

(x−C) c∼1 (z − x− x−(vot -◦-CT -◦- S3))

which states that if C is in relation with CT and the second
and third memory cells of the transformed circuit are the same
as the cell of the source circuit, then x−C and its transformed
version are in relation. The other rules just check recursively
this source/transformed circuit relationship. For instance, the
rule for the parallel construct is

CPar
C1

c∼1 CT
1 C2

c∼1 CT
2

([]C1, C2[])
c∼1 (S1 -◦- []CT

1 , C
T
2 [] -◦- S2)

The same relations exist for other options of redundant copy
corruption (c∼2 and c∼3) and for each possible corruption of the

triplicated bus (b∼1, b∼2, b∼3). In the following, we write c∼ for
the relation c∼1 ∨

c∼2 ∨
c∼3.

Key properties and proofs

Properties and their associated proofs can be classified as:
• properties “for all circuits” relating their source and

transformed versions for a one cycle reduction. They are
usually proved by a simple structural induction on the
structure of LDDL expressions;

• similar properties but for known sub-circuits introduced
by the transformations (e.g., voters). They are proved
by examining all possible cases of corruption or SET
occurrences.

• properties about the complete (infinite) execution of
source and transformed circuits. They are proved by co-
induction on the stream of inputs.

The main lemmas state how the transformed circuit evolves
when it is in a correct state and one SET occurs (stepg), or
when it is in a corrupted state and it executes normally (by
step). For TMR we have for instance:

step C1 a b C2 ∧ stepg TMR(C1) (a, a, a) b3 C
T
2

⇒ C2
c∼ CT

2

It can be read as: if C1 reduces by step in C2, and its
transformed version TMR(C1) reduces by stepg in a circuit
CT

2 , then CT
2 is the transformed version of C2 with at most

one corrupted redundant copy (C2
c∼ CT

2). In other terms, a
glitch can corrupt only one of copies of the TMR circuit.

The following lemma

C1
c∼ CT

1 ∧ step C1 a b C2

⇒ step CT
1 (a, a, a) (b, b, b) TMR(C2)

ensures that a corrupted transformed circuit comes back to a
valid state after one normal reduction step.

The main correctness theorems state that for related inputs
the normal execution of the source circuit and the execution
(under the considered fault-model) of the transformed circuit
give related outputs. A complete execution is modeled using
infinite streams of inputs/outputs and the proof should proceed
by co-induction.

The correctness of the TMR transformation is expressed as

eval C i o ∧ setk eval 2 TMR(C) n (tripl i) o3

⇒ o
s∼ o3

TMR masks all faults of the fault-model SET (1, 2), so it tol-
erates an SET every other cycle. The stream of primary inputs
for the transformed circuit is the input stream i where each
element (bus) is triplicated (tripl i). The stream of primary
outputs of the transformed circuit (o3 : Stream ((β∗β)∗β)) is
a triplicated version of the output stream (o : Stream β) with
at most one corrupted element in each triplet (s∼ relation).
Indeed, the fault-model allows an SET to occur after the final
voters. These SETs cannot be corrected internally but, since
the outputs are triplicated, masking is still possible by voting
in the surrounding circuit.

Practical issues

Taylor-made tactics had to be written for LDDL syntax and
semantics. They helped to shorten and to automatize parts of
the proofs.

All the transformations use known sub-circuits (e.g., voters)
and many basic properties must be shown on them. Such
properties are often of the form

Pstepg
P a stepg C a b C ′

Q(a, b, C ′)

with P and Q representing pre- and post-conditions, respec-
tively. These properties on stepg entail to consider all possible
SET occurrences. For TMR, which introduces triplicated vot-
ers, this can be done using standard proofs. The transformation
DTR introduces much bigger sub-circuits, which would lead
to very large proofs since dozens of different cases of SET
need to be considered. Fortunately, Coq permits proofs by
reflection which, in some cases, permits to replace manual
proofs by automatic computations. We use largely this feature
for known circuits. It amounts to
• define fstepg a functional version of stepg, which, for a

given circuit and particular input, computes the set of the
possible outputs and circuits in relation by stepg;

• prove that if (b, C ′) ∈ (fstepg C a) then stepg C a b C ′;
• define (or generate) equivalent functional (Boolean) ver-

sions Pb and Qb of the predicates P and Q.
Then, a proof by reflection of the property (Pstepg) proceeds

by generating all possible inputs, then it filters them by Pb,
executes fstepg on all elements of that set and, finally, checks
that Qb returns true on all results. In this way, reflection
automatizes the exploration of all fault occurrences and most
of the proof boils down to computations.

V. CORRECTNESS OF DOUBLE-TIME REDUNDANCY

The initial motivation of this work was to certify DTR, an
involved circuit transformation that we recently proposed [1].
Hereafter, we outline DTR and the main parts of its proof.

A. DTR Transformation Overview

The main assets of DTR are its much lower hardware
overhead than TMR and its ability to mask SETs using double-
time redundancy instead of a triple overhead (in time or in
space). DTR uses double-time redundancy to detect errors
and a micro-checkpointing and a rollback mechanisms to re-
execute the faulty cycle for recovery. Since, according to the
fault-model, no error can occur immediately after the last
error, time-redundancy can be switched-off during the recovery
phase to “accelerate” the circuit twice. Along with input and
output buffers to record inputs and to produce delayed outputs,
it makes errors and recovery absolutely transparent to the
surrounding circuit. Error detection followed by the recovery
to a correct state may take up to 9 clock cycles; therefore DTR
masks errors from the SET (1, 10) fault-model.

The DTR transformation consists of four parts (see Fig. 4):
1) substitution of each original memory cell with a memory

block and threading of control wires within the circuit;

ini:C2

MemoryRBlock
si so

failsave
rollBack

In
pu

tR
B

uf
fe

rs

rB

O
ut

pu
tR

B
uf

fe
rs

save
rollBack
subst

CombinationalRPartR

SequentialRPart

ini:C2

ControlRBlocksave
rollBack
rB
subst

failf1

f2

f3

f1

TMR f2

f3

Fig. 4: Transformed circuit for DTR.

2) addition of a control block;
3) addition of input buffers to all circuit primary inputs;
4) addition of output buffers to all circuit primary outputs.
Further, the input stream should be upsampled twice in order

to introduce enough redundancy in the transformed circuit to
detect errors caused by SETs.

1) Memory blocks: Each original memory cell is substituted
with a memory block (see Fig. 5) that stores the results of
signal propagation through the combinatorial circuit along
with recovery bits (or checkpoint bits). It consists of:
• two cells d and d′ (the data bits) to save redundant

information for comparison (with EQ) to detect errors;
since the input stream is upsampled twice, d and d′

normally contain the same value each every other cycle;
• two cells r and r′ (the recovery bits) with enable-input

to keep the value of the input during four clock cycles. If
an error is detected in any memory block, a synchronous
rollback occurs in all blocks. It retrieves correct values
from r′ cells and the circuit recovers from the erroneous
state using a third recomputation.

Q
r

D
E

Q Q
r'

D
E

Q

Q
d

D Q Q
d'

D Q

save 0

1

c

0

1c

si

so

rollBack

≠ fail

muxA

muxB

EQ

Fig. 5: DTR memory block.

2) Control block: When a memory block detects an error,
the fail signal, going to the control block, is raised and latched
in three error signaling cells (fi in Fig. 4). Then, the control
block emits a series of control signals to memory blocks
(e.g., save and rollBack) to schedule rollback and recovery. Its
functionality can be described as the FSM of Fig. 6. The states

0 and 1 compose the normal mode which raises alternatively
the save signal used as an enable signal to organize a 4-cycle
delay in the r-r′ memory block cells. When an error is detected
(i.e., fi = 1), the FSM enters the recovery mode for 4 cycles
(states 2, 3, 4, 5) and raises appropriate signals.

0 1

2

34

5

Fig. 6: FSM of the DTR control block: “ ?
=” denotes a guard,

“=” an assignment and, by default, signals are set to 0.

During the recovery process, the control block switches-
off double time redundancy speeding-up the circuit which, in
a few cycles, catches up the state it should have had if no
error had occurred. According to the fault-model, no error
may occur immediately after the last error which allows us
to perform such “acceleration”. The control block itself is a
small circuit protected against SETs using TMR.

3) Input/Output Buffers: To prevent disrupted input/output
behavior during recovery and to guarantee transparency for
the surrounding circuit, additional input and output buffers
are necessary. They are inserted at each primary input and
output of the original circuit. Input buffers keep the two
last inputs which are only used for re-computation during
recovery. Output buffers delay outputs (and introduce a two-
cycles latency) in order to emit the previously recorded correct
outputs during the recovery process. They are designed to
be also fault-tolerant to any SET occurring inside or even at
their outputs. To achieve this property, the primary outputs
are triplicated in space. Buffers are controlled by the rB ,
rollBack , subst , save signals. We refer the reader to [1] for a
detailed presentation of their internal structure and behavior.

We illustrate the basic functionalities of DTR using a simple
scenario where the upsampled stream a a b b c c d d e e f f . . .
is sent to the circuit but a SET in the combinational part cor-
rupts the first occurrence of b (written b̃). We use quadruplets
like (c, s, [d, d′, r, r′], s) to denote the cycle number (c), the
state of the control block (s) at the beginning of the cycle
(see Fig. 6) and the state of the memory blocks (the values
to be used as output are in bold). We start when the error is
about to be detected: the four first values a, a, b̃, b have been
stored in memory blocks. The execution proceeds as follows:

(1, 0, [b, b̃, b, a]); (2, 1, [c̃, b, b,a]); (3, 2, [b, c̃, b, b]);
(4, 3, [c, b, b, b]); (5, 4, [d, c, b, b]); (6, 5, [e,d, b, b]);
(7, 0, [e, e, e, b]); (8, 1, [f, e, e, b]); (9, 0, [f, f , f, e])

In cycle 1, the error is detected and the fi cells (see Fig. 4)
are set to 1. The value c̃ is read; it is potentially corrupted
since it may be the result of the propagation of b̃ (which is
corrupted) through the combinational circuit. In cycle 2, the
control block goes in the recovery mode and performs the
rollback (transition 1 7→ 2, Fig. 6). It emits control signals
that ensure that the values stored in the recovery bits r′ (as
well as those stored the input buffers) are used instead of the
usual inputs for the third recomputation. The circuit is now
in a speedup mode and double time redundancy is suspended.
The cycles 2 to 4 are computed using the values a, b, c. The
control signals entail that the read value, which is stored in d,
is used as output in the next cycle. Then, double redundancy
resumes and the recovery line r-r′ retakes correct values in
the next cycles. At the 9th cycle, the state is exactly the
state that would have been reached at the same 9th cycle
without error. During the recovery, input buffers also re-inject
previous values synchronously with the memory blocks, and
output buffers produce delayed correct outputs (see [1] for the
complete description).

B. Formal Specification and Proofs

While TMR is a well-established transformation and its
properties are doubtless, DTR is a novel and much more
complex technique. Our goal was to ensure that no single point
of failure existed: in particular, any SET in memory blocks,
combinational logic, input or output buffers, control block,
and control wires should be masked. The number of possible
error scenarios is very large (about 10 cases each for memory
block and output buffers). Moreover, the normal execution
mode has a two-cycle period which doubles the number of
corruption cases. Full confidence in DTR correctness for all
possible circuits and errors can only be achieved with a formal
proof-based approach.

Transformation

The core DTR transformation is defined very much like
TMR as presented in Section IV. It takes an original circuit
of type Circ α β and substitutes each memory cell with a
memory block returning a circuit of type Circ (α ∗ ((ω ∗ ω) ∗
ω)) (β∗((ω∗ω)∗ω)). The three wires ((ω ∗ ω) ∗ ω) correspond
to the control signals ((save ∗ rollBack) ∗ fail) that propagate
through all memory blocks. Input (resp. output) buffers are
plugged to each primary input (resp. output) by recursion on
the input type α (resp. output type β). Plugging input/output
buffers and the control block to the transformed circuit returns
a circuit of type Circ α ((β ∗ β) ∗ β). The triplicated output
interface of type ((β∗β)∗β) represents the triplicated original
output bus.

In the following, we write MB(d, d′, r, r′, C) to denote a
memory block with values d, d′, r, r′ (see Fig. 5) plugged to
a circuit C.

Relations between source and transformed circuits

Most of the inductive predicates relating states and exe-
cutions of the source and transformed circuits have several
versions depending on the state of the control block (0, 1, . . .).

For instance, the predicate dtr0 expresses the relation be-
tween a transformed circuit and its source version(s) when the
control block is in state 0. The state of a memory block is of
the form [y, y, y, x] where the values x and y are the two values
taken successively by the corresponding cells of the source
version. Therefore, the state of the transformed circuit is in
relation with two successive source circuits. dtr0 is defined
inductively in a similar way as c∼ predicates in Sec. IV. The
main rule relates the memory block to the states of the two
source circuits:

dtr0 C0 C1 C
T

dtr0 (x−C0) (y −C1) MB(y, y, y, x, CT)

The memory block should be of the form (d = d′ = r = y;
r′ = x) where x and y are values of the corresponding cells
of the circuits x −C0 and y −C1, respectively. Those two
circuits represent two successive states of the source circuit.

The corresponding predicate when the control block is in
state 1 relates a transformed circuit to three successive source
circuits. Indeed, in that state, the memory block is of the form
[z, y, y, x] where x, y and z are three successive values taken
by the source circuit.

Several versions of these predicates are needed to repre-
sent the corruption cases. For instance, the predicate dtr1d
expresses the relation between a transformed circuit whose d
cells are potentially corrupted and its source version when the
control block is in state 1. The main rule is:

dtr1d C0 C1 C2 C
T

dtr1d (x−C0) (y −C1) (z −C2) MB(w, y, y, x, CT)

that is, r′, (resp. d′ and r) should hold the same values are the
first (resp. second) source circuit; d has no constraint (i.e., can
be corrupted). Other predicates are also needed to relate the
source and transformed versions when the control block is in
the recovery mode.

Key lemmas

Using the aforementioned predicates, we can define lemmas
that show how the transformed circuit evolves with and with-
out SETs. First, it can be shown that, initially, the transformed
circuit is in relation with the source circuit i.e.,

dtr0 C C DTR(C)

Then, all cases of state evolution are covered. For instance,
the following property for a reduction with no SET

dtr0 C0 C1 C
T ⇒ step C1 a b C2

⇒ step CT {a, {0, 0, 0}} b′ C ′T
⇒ b′ = {b, {0, 0, 0}}
∧ dtr1 C0 C1 C2 C

′T

states that, if the original circuit evolves from C1 to C2 with
input a, then the corresponding transformed circuit CT with
input a and signals save = 0, rollBack = 0, and fail = 0
returns the same output b and the same global signals. Further,
if CT is related to (C0, C1) with dtr0, the returning state C ′T

is related to (C0, C1, C2) with dtr1.

Similarly, if the rollBack signal is corrupted (has a glitch),
then memory blocks may output an incorrect value (wrongly
selected by muxB, Fig.5). Since this value goes through the
combinational circuit and may be fetched by memory blocks,
their d values may be corrupted. This is formalized as

dtr0 C0 C1 C
T ⇒ step C1 a b C2

⇒ step CT {a, {0, �, 0}} b′ C ′T
⇒ ∃x, b′ = {x, {0, �, 0}}
∧ dtr1d C0 C1 C2 C

′T

These properties are shown by simple structural induction.
Similar properties on input and output buffers are proved using
reflection. The proofs for the collection of input and output
buffers plugged to the primary input and output buses are
proved by induction of the input and output types. Proofs for
the triplicated control block make a critical use of the main
properties proved for the TMR transformation.

The property corresponding to a reduction by stepg of
the whole transformed circuit proceeds by inspection of all
cases of fault occurrences and application of the properties
mentioned above. It can be shown that in all cases the
transformed circuit returns to a correct state after less than
10 reduction steps after an SET.

Main theorem

The main correctness theorem is expressed as

step C0 a b C1

∧ step DTR(C0) a b1 C
T ∧ step CT a b2 C

T
1

∧ eval C1 i o ∧ setk eval 10 CT
1 n (upsampl i) oo

⇒ outDTR (b, o) oo

It assumes that no error occurs during the first two cycles
(second line of the theorem). This is due to the arbitrary
initialization of memory cells (buffers, memory blocks) per-
formed by the transformation. Since the recovery bits are not
properly set, a rollback and the following recovery would be
incorrect. The stream of primary inputs of the transformed
circuit (upsampl i) is the input stream i where each bit is
repeated twice. The fault-model SET (1, 10) is expressed by
the predicate (setk eval 10) that may use stepg at most once
every 10 cycles (and uses step otherwise). The predicate
outDTR relates the output stream (of type Stream β) pro-
duced by the source circuit to the output stream (oo of type
Stream (β ∗ (β ∗ β))) of the transformed circuit. The two
first values of the transformed stream are not meaningful since
output buffers introduce a latency of two cycles. The predicate
outDTR states that if the first stream has value a at position
i, then the second stream will have a triplet with at least two
a’s at position 2 ∗ i+ 1. We can guarantee the correctness of
only two values because we allow an SET to occur even at
the primary outputs.

VI. CONCLUSIONS

Many efforts have been devoted to the formal functional
verification of circuits [11]. It is usually performed for specific
circuits using model-checking or SAT solving techniques.

However, such an approach is inappropriate to prove the cor-
rectness of a synthesis or transformation tool for all possible
circuits; theorem proving must be used instead.

Still, proof-assistants have been mostly used for functional
circuit verification. Let us cite, among many others, the
application of ACL2 to prove the out-of-order microprocessor
architecture FM9801 [12], HOL for the Uinta pipelined mi-
croprocessor [13], and Coq for an ATM Switch Fabric [14].
The language proposed by Braibant [15] is close to our
LDDL language and has been used to prove the correctness
of parametric combinational circuits (e.g., n bits adders).

Proof-assistants have also been used to certify tools used
in circuit synthesis. An old survey of formal circuit synthesis
is given in [16]. More recently, S. Ray et al. proved circuit
transformations used in high-level synthesis with ACL2 [17].
Braibant and Chlipala certified in Coq a compiler from a
simplified version of BlueSpec to RTL [18].

To the best of our knowledge, our work is the first to certify
automatic circuit transformations for fault-tolerance. Contrary
to most of the works which specify circuits within the logic of
the prover, we use a gate-level HDL. This approach permits
to reason on circuits (gates and wires) and to model SETs as
glitches occurring at specific places. Automatic fault-tolerance
techniques are easily specified by program transformations
on the syntax of LDDL. Furthermore, its variable-less nature
allowed a simple semantics (without environments) that facil-
itated formalization and proofs.

Our approach is general and applicable to many fault-
tolerant transformations. We used it to prove the correct-
ness of TMR and DTR but also of Triple-Time Redundant
Transformation (TTR), a simpler and more straightforward
time redundancy technique where each computation cycle
is triplicated and followed by votings. However, our initial
motivation was the proof of DTR whose correctness was far
from obvious. While we relied on many manual checks to
design the transformation, only Coq allowed us to get complete
assurance. The formalization of DTR did not reveal real errors
but a few imprecisions. For instance, we stated in [1] that the
control block was protected using TMR without making it
clear how it was connected to the rest of the circuit. We had
to introduce three cells to record the value of the fail signal
and to slightly change the definition of its internal FSM.

The approach makes an essential use of two features of Coq:
dependent types and reflection. Dependent types provided an
elegant solution to ensure that all circuits were well-formed.
Such types are often presented as tricky to use but, in our case,
that complexity remained confined to the writing of libraries
for the equality and decomposition of buses and circuits.
Reflection was very useful to prove properties of known sub-
circuits; it would had been much harder without it.

The size of specifications and proofs for the common part
(LDDL syntax and semantics, libraries) is 5000 lines of Coq
(excluding comments and blank lines), 700 for TMR, 3500
for TTR and 7000 for DTR. Checking all the proofs takes
around 45 min on an average laptop. The overall effort for
the complete development is hard to estimate. Completing the

proof of DTR alone took roughly 5 man-months. The Coq
files for these proofs are available online [8].

We believe that additional user-defined tactics could make
the proofs of LDDL transformations much smaller and auto-
matic. Indeed, the key parts are to define the predicates relating
the source and transformed circuits and to state the lemmas.
The proofs themselves are, for the most part, straightforward
inductions. The proposed framework could also be used to
prove other fault-tolerance mechanisms (e.g., the transfor-
mations for adaptive fault-tolerance we present in [19]) or
well-known techniques used in circuit synthesis (e.g., FSM-
encoding). More generally, proof-assistants are now suffi-
ciently mature to consider the formal certification of the whole
circuit synthesis chain including optimizations.

ACKNOWLEDGMENTS

Thanks are due to Frédéric Besson and Damien Pous for
answering several questions about Coq. We got inspiration
from James R. Wilcox’s blog to make our proofs axiom free.

REFERENCES

[1] D. Burlyaev, P. Fradet, and A. Girault, “Automatic time-redundancy
transformation for fault-tolerant circuits,” in FPGA, 2015, pp. 218–227.

[2] S. Mitra, N. Seifert, M. Zhang, Q. Shi, and K. S. Kim, “Robust system
design with built-in soft-error resilience,” IEEE Computer, vol. 38, no. 2,
pp. 43–52, Feb. 2005.

[3] P. Shivakumar, M. Kistler, S. Keckler, D. Burger, and L. Alvisi,
“Modeling the effect of technology trends on the soft error rate of
combinational logic,” in Dependable Systems and Networks, 2002, pp.
389–398.

[4] J. von Neumann, “Probabilistic logic and the synthesis of reliable
organisms from unreliable components,” Automata Studies, pp. 43–98,
1956.

[5] C. Chan, D. Schwartz-Narbonne, D. Sethi, and S. Malik, “Specification
and synthesis of hardware checkpointing and rollback mechanisms,” in
Design Automation Conference, 2012, pp. 1222–1228.

[6] D. Koch, C. Haubelt, and J. Teich, “Efficient hardware checkpointing:
Concepts, overhead analysis, and implementation,” in FPGA, 2007, pp.
188–196.

[7] Coq development team. The coq proof assistant, software and documen-
tation available at http://coq.inria.fr/, 1989-2014.

[8] “Coq proofs of circuit transformations for fault-tolerance,” available at
https://team.inria.fr/spades/fthwproofs/, 2014-2015.

[9] M. Sheeran, “muFP, A language for VLSI design,” in LISP and
Functional Programming, 1984, pp. 104–112.

[10] G. Jones and M. Sheeran, “Designing arithmetic circuits by refinement
in Ruby,” Sci. Comput. Program., vol. 22, no. 1-2, pp. 107–135, 1994.

[11] A. Gupta, “Formal hardware verification methods: A survey,” Form.
Methods in System Design, vol. 1, no. 2-3, pp. 151–238, Oct. 1992.

[12] J. Sawada and W. A. Hunt Jr., “Verification of FM9801: An out-of-
order microprocessor model with speculative execution, exceptions, and
program-modifying capability,” Formal Methods in System Design, pp.
187–222, 2002.

[13] P. J. Windley and M. L. Coe, “A correctness model for pipelined
multiprocessors,” in Theor. Provers in Circuit Design, 1994, pp. 33–51.

[14] S. Coupet-Grimal and L. Jakubiec, “Certifying circuits in type theory,”
Formal Asp. Comput., vol. 16, no. 4, pp. 352–373, 2004.

[15] T. Braibant, “Coquet: A coq library for verifying hardware,” in Proc. of
Certified Programs and Proofs - CPP, 2011, pp. 330–345.

[16] R. Kumar, C. Blumenrhr, D. Eisenbiegler, and D. Schmid, “Formal
synthesis in circuit design. A classification and survey,” in FMCAD,
1996, pp. 294–309.

[17] S. Ray, K. Hao, Y. Chen, F. Xie, and J. Yang, “Formal verification for
high-assurance behavioral synthesis,” in Int. Symposium on Automated
Technology for Verification and Analysis, 2009, pp. 337–351.

[18] T. Braibant and A. Chlipala, “Formal verification of hardware synthesis,”
in Computer Aided Verification, 2013, vol. 8044, pp. 213–228.

[19] D. Burlyaev, P. Fradet, and A. Girault, “Time-redundancy transforma-
tions for adaptive fault-tolerant circuits,” in NASA/ESA Conf. in Adaptive
Hardware and Systems, AHS, jun 2015.

