
Appeared in Proc.of FPCA’91, LNCS Vol.523, pp.241-258.

Syntactic Detection of Single-Threading using Continuations*

Pascal Fradet

IRISA / INRIA

Campus de Beaulieu, 35042 Rennes Cedex, France

fradet@irisa.fr

Abstract

 We tackle the problem of detecting global variables in functional programs. We present syntactic criteria
for single-threading which improves upon previous solutions (both syntactic and semantics-based) in that
it applies to higher-order languages and to most sequential evaluation strategies. The main idea of our ap-
proach lies in the use of continuations. One advantage of continuation expressions is that evaluation order-
ing is made explicit in the syntax of expressions. So, syntactic detection of single-threading is simpler and
more powerful on continuation expressions. We present the application of the analysis to the compilation
of functional languages, semantics-directed compiler generation and globalization-directed transforma-
tions (i.e. transforming non-single-threaded expressions into single-threaded ones). Our results can also be
turned to account to get single-threading criteria on regularλ-expressions for different sequential evalua-
tion orders.

1 Introduction

Single-threading is a property allowing function parameters or semantics domains to be implement-
ed by a global variable. This optimization can have drastic effects on the efficiency of both function-
al language and semantics-directed compilers. In particular, single-threading can be exploited for
register allocation and for the efficient implementation of contiguous data structures.

Imperative language compilers make great use of registers [1], whereas functional language
compilers do not take much advantage from register allocation because of frequent context switch-
ing. A function which is single-threaded in its argument (we will say that the argument is globaliz-
able) can be compiled using a global register to hold its argument value. A recursive call with a new
argument results in a register updating and registers are used throughout the reduction of recursive
functions without having to be saved in the stack.

Contiguous data structures, such as arrays, are useful because they can be accessed in constant
time. A functional implementation of arrays involves making a new copy before each update (since
the original array can be referenced later on). This can clearly be a source of extreme inefficiency. A
program using an array in a single-threaded fashion can be implemented using destructive updates
on a global array variable. This optimization has a counterpart in semantics-directed compiler gener-
ation [11]: the store appears as an argument of the semantic function and a naïve implementation in-
volves a duplication of the store each time the update function is called. In order to derive realistic
compilers from denotational specifications one should detect that the store can safely be modified in
place. This can be done by checking that the semantic definition is single-threaded in its store do-
main.

Two approaches have been considered for the detection of single-threading: syntactic analysis
[19] and semantic analysis (or abstract interpretation) [2,3,9,18]. In both cases, analyses are approxi-

* Part of this research was done during a visit to Kansas State University (thanks to David Schmidt).

mate since single-threading is not a decidable property. Abstract interpretation often produces more
precise results at the cost of an exponential worst case complexity. For this particular problem, it is
not clear whether the gain is worth the cost. Syntactic analysis turns out to be sufficient in most com-
mon cases and we choose it here for two reasons:

• it is typically a linear time analysis,

• in case of failure, it indicates the faulty subexpression and detects (for free) subexpressions satis-
fying the property. One can take advantage of this information to perform program transforma-
tions (section 4.3) or local optimizations (section 4.1).

The main idea of our approach lies in the use of continuations. Single-threading depends heavily
on the evaluation strategy; for example a single-threaded expression using left-to-right call-by-value
may turn out to be non single-threaded using right-to-left call-by-value. One advantage of continua-
tion expressions is that evaluation ordering is made explicit in the syntax of expressions. Therefore,
syntactic detection of properties depending on the computation rule is likely to be simpler and more
powerful on this kind of expressions. We should point out that we do not consider here continuations
as a programming tool (in particular, we are not interested in first-class continuations) but as a way
of formalizing part of the implementation process, namely the evaluation strategy. Our analysis ap-
plies to continuation expressions that are supposed to be produced by a continuation passing style
(CPS) transformation. However, our results can be turned to account to get single-threading criteria
on regularλ-expressions for different evaluation orders. This is one important advantage of our ap-
proach: it can be applied to most sequential evaluation strategies.

Section 2 introduces the syntax of continuation expressions and studies their reduction. In sec-
tion 3, we present our criteria for single-threading and the associated global variable transformation.
Section 4 is devoted to the application of the analysis to functional language implementation, seman-
tics-based compilation and goal-directed transformation. Section 5 describes the generation of suffi-
cient conditions for single-threading on ordinaryλ-expressions according to several evaluation
orders. We conclude with an overview of related works and a discussion on possible extensions.

2 Continuation expressions

Continuations have been primary used in denotational semantics to model unrestricted jumps
[21,22]. Continuation semantics take an additional argument (a continuation) representing control,
that is, the evaluation ordering of program constructs. The same concept is used to compile the com-
putation rule of functional programs [4,5,14,16]. CPS transformations produce continuation expres-
sions reducible without dynamic search for the next redex. Typically, a CPS compiler transforms an
expressionE into an expressionEc taking a continuation as argument and applying it to the result of
evaluatingE. For example, each operatoropm such thatopm V1…Vm →δ N, is transformed into a
new operatoropmc such thatopmc C V1…Vm →δ C N.

The language used in this paper is described in Figure 1. It is general enough to support the compila-
tion of most sequential evaluation orders and standard optimizations of CPS transformations.

Expressions Types

Vν ::= Kβ | vν | opmc(ν → κ) → ν1 …→ νm → κ | λcκ1.Cκ2 | rec fν= Vν ν ::= β | κ1 → κ2 ; β ::= bool | int | [int] | …

Cκ ::= finν → A | cκ | (ifc C1
κ

C2
κ
) bool → κ | λvν.Cκ | Cν → κ Vν | Vκ1 → κ2 Cκ1 κ ::= A | ν → κ

Figure 1 Syntax of Continuation Expressions

Typeβ stands for first-order types, ν for value types,κ for continuation types andA for answers.
An expression is either a valueVν or a continuationCκ. A value is either a first-order constantK, a
variablev, a strict operator of arity mopmc, a functional valueλcκ1.Cκ2 or a recursive definition
(note that values are weak normal forms). A continuation is either the final continuation finν → A, a
continuation variable with the unique namec, a conditionalifc taking two continuation expressions
and a boolean, a functional continuationλvν.Cκ or an application (Vκ1 → κ2 Cκ1 or Cν→κ Vν). In the
remainder of the paper we often omit types to make reading easier.This syntax generalizes usual con-
tinuation expressions in two ways:

• One standard CPS optimization, which is very important in practice, is to avoid to introduce a
continuation for eachλ-abstraction. For example, if an expressionλv1... λvn.E is known to be ful-
ly applied ton arguments, then a single continuation is sufficient and the transformed expression
is of the formλc.λv1... λvn.Ec. Thus, function values which usually have typeκ → ν → A (that is,
take a continuation, a value and yields an answer) have here the generalized typeκ → ν1 → …→
νn → A. For the same concerns, continuation types, usually of the formν → A, are generalized to
ν1 → …→ νn → A.

• Usually, continuation expressions are of the formE1…En (Eis being weak normal forms) Here,
we allow nested applications in continuations. Expressions can be of the formV C V1…Vn, C be-
ing itself of the formU C’ U1…Un.

The factorial function can be written in this continuation passing style language as follows:

rec factc =λc.λn. eqc (ifc (c 1) (subc (factc (multc c n)) n 1)) n 0

The reduction rules for this language are the following:

(β) (λx.E)F→β E[F/x]

(fix) rec f = V→fix V[rec f = V/f]

(δ) opmc C V1…Vm →δ C N ifc C1 C2 True →δ C1 ifc C1 C2 False →δ C2

No reduction rule is specified for the continuationfin and expressionsfin V are considered as
normal forms.

The key property (Property 1) of those expressions is that they can be evaluated using a simpler
evaluation order than normal order. It is sufficient to reduce at each step the head operator thus
avoiding the need of a dynamic search for the next redex. This evaluation scheme, called First, is for-
mally defined (Figure 2) by a set of axioms (no inference rule is needed).

opmc C V1…Vm Vm+1…Vn
1→F C N Vm+1…Vn

ifc C1 C2 True V1…Vn
1→F C1 V1…Vn

ifc C1 C2 False V1…Vn
1→F C2 V1…Vn

(λx.E) F V1…Vn
1→F E[F/x] V1…Vn

(rec f = V) V1…Vn
1→F V[rec f = V/f] V1…Vn

Figure 2 First evaluation strategy

Property 1 An expression E has a weak head normal form (whnf) W iff E has a whnf W’ (W cnv W’)
such that E *→F W’.

Proof: Using the standardization theorem and the fact that any expression of typeν is a wnf. The
only kind of expression being a First normal form without being a whnf is a strict operator applied to
unevaluated arguments (e.g.plus 1 (plus 2 3)). But syntactic restrictions (Figure 1) enforce that strict
operators always have their arguments in normal form (e.g. the former expression would be written
plusc (plusc fin 1) 2 3), so First normal form and whnf are equivalent for our language.

Example: We describe here the first steps of the reduction by First of the factorial function applied to
the continuationfin and argument 1.

(rec factc =λc.λn. eqc (ifc (c 1) (subc (factc (multc c n)) n 1)) n 0) fin 1

→F eqc (ifc (fin 1) (subc ((rec factc = λc.λn...)(multc fin 1)) 1 1)) 1 0

→F ifc (fin 1) (subc ((rec factc =λc.λn...) (multc fin 1)) 1 1)) False

→F subc ((rec factc =λc.λn...) (multc fin 1)) 1 1

→F (rec factc =λc.λn...) (multc fin 1) 0

… and so on until…→F fin 1

It is often helpful to look at continuation expressions operationally. An expressionV C V1…Vn
can be seen as a stack machine sate,V being the instruction to reduce, the continuationC represent-
ing the remainder of the program, andV1,…,Vn the stack. Actually, after a few supplementary trans-
formations (e.g. abstraction using combinators), one can get true generic stack machine code from
those expressions [5,6]. The important point for the single-threading detection is that for any applica-
tion Vκ1 → κ2 Cκ1 we know thatV is evaluated first and then applies continuationC to its result. We
show in the next section how this information can be exploited.

3 Single-Threading Detection and Globalization Transformation

Let us take an example to introduce the problem and our solution. Let f be a recursive function de-
fined by:

rec f = λa.λi.λp. if (eq i 0) a (f (update a i p) (sub i 1) (mult p (access a i)))

Function f can be used to replace each elementa[i] of the arraya by the product of its succes-
sors; for examplef [4,3,2] 3 1= [6,2,1]. A naïve implementation off would produce code copying
the array before each update. We want to detect whether the first argument can be globalized and up-
dated destructively. First, we should notice that the entity to be represented by a global variable is the
sequence of arrays (a, update a i p, update (update a i p) (i-1) (a[i]*p),…). We rely on types to char-
acterize single-threading properties. Letρ → int → int → ρ be the type off, therefore each element
of the above sequence has typeρ and the problem is to detect whether type ρ can be implemented by
a global variable. (Throughout the paper, typeρ denotes the candidate for globalization. We some-
times say that a function is single-threaded in an argument (or parameter) assuming that this argu-
ment can be characterized by its type). Assuming a call-by-value (cbv) implementation of functionf,
two cases arise:

- the update is done before the access (left-to-right cbv). In this case,f is not single-threaded and
we cannot use destructive updates,

- the access is done before the update (right-to-left cbv) and the array can be modified in place.

Such cases are easily detected on CPS versions of f. Considering left-to-right call-by-value,f is
transformed into:

rec f = λc.λa.λi.λp. eqc (ifc (c a)

(updatec (subc (accessc (multc (λk.λl.λm.f c m l k) p) a i) i 1) a i p)) i 0

We will say that an expressionF modifiesρ if its reduction may involve the creation of a new in-
stance of typeρ. In particular, an operatoropmc of type (ρ → κ1) → κ2, which yields an element of
typeρ (since its continuation has typeρ → κ1), will be a modifier (ofρ). The criterion used here to
detect thatf is not single-threaded inρ is that a free variable of typeρ (namelya) appears in the con-
tinuation of a modifier (updatec). In other words, the structure would be modified whereas it is still
referenced (by a free variable); therefore it cannot be updated in place.

Using right-to-left call-by-value,f becomes:

rec f = λc.λa.λi.λp. eqc (ifc (c a) (accessc (multc (subc (updatec (f c) a i p) i 1) p) a i)) i 0

Here, no free variable of typeρ appears in the continuation of the modifierupdatec, and we will see
later that this expression is indeed single-threaded inρ.

3.1 Single-threading criteria

Our criteria are in the form of a predicate∆ such that∆ρ(E) implies thatE is single-threaded in type
ρ. Before giving a formal and comprehensive account of∆, let us introduce it in a more intuitive way.

Let Vκ1 → κ2 Cκ1 V1…Vn be the expression to analyze. Operationally, single-threading implies
that every element of typeρ in the stackV1…Vn can be represented by a single global variable
throughout the reduction. First, we must check that all elements of typeρ present in the stack are
equal. To this purpose, predicate∆ always keeps the last encountered ρ-value. A new value or a
modification will be accepted only when

(i) There is no reference (free variables) to an “old”ρ-value occurring in the continuation.
Predicatenfvτ(E) indicates thatE does not contain free variables of typeτ (we also use
fvτ(E) to denote the opposite).

(ii) No ρ-value occurs in the stack. This is checked on the type of (V C)κ2 by predicate
ntρ(κ2) defined by nβ(τ) = if τ ≡ τ1 → τ2 thenτ1 ≡/ β ∧ ntβ(τ2) else True. Thusntρ(κ2) means
that there is noρ-value amongV1,…,Vn.

This explains the three following criteria:

• General expressions of the formVκ1 → κ2 Cκ1 are single-threaded inρ if V andC are single-
threaded inρ and ifV modifiesρ then its continuationC does not contain free variables of typeρ
(rule (∆9)). For example, expressionλc.λxρ. succ(ρ → A) → ρ→ A (succ c xρ) xρ violates the criteri-
on sincesucc is a modifier (produces(x+1)ρ) and a freeρ-typed variable appears in its continua-
tion. On the other hand, expressionλc.λxρ. chr(char → A) → ρ→ A (succ c xρ) xρ satisfies the
criterion sincechr does not create a newρ-typed value.

• Expression Cρ → κ Kρ is single-threaded ifC is single-threaded, and ifK is different from the last
encounteredρ-value then noρ-typed elements should appear in the stack (i.e.ntρ(κ)) and no free
ρ-typed variables should occur inC (i.e. nfvρ(C)) (rule (∆6)). For example, expressionsplusc fin
1ρ 2ρ andλc.λxρ. plusc c xρ 1ρ violate the criterion.

• The reduction of an operator yielding aρ-value opmc(ρ → νm+1 →…→ νn→ A) → κ C V1…Vm
Vm+1…Vn

1→F C Nρ Vm+1…Vn entails that no element of typeρ should occur in {Vm+1,…,Vn}.
(i.e. ntρ(νm+1 →…→ νn→ A) (rule (∆2)). For example, expressionλc.λxρ. succ(ρ →ρ→ A) → ρ→
ρ→ A (plusc c) xρ xρ violates the criterion (after reduction ofsucc there will be two differentρ-val-
ues (x+1 andx) in the stack).

Two problems arise with closures:

- In general we do not know when the closure will be applied, so we enforce that no freeρ-typed
variable occurs in closures.

- In an expressionv C we do not know if variablev will be bound to a modifying expression or
not. One solution is to find a sufficient conditionP such thatP(τ) implies that any closure of typeτ is
not a modifier ofρ. So, considering the expressionvκ1 → κ2 C, if P(κ1 → κ2) then we can deduce
thatv will not be bound to a modifying expression andC can contain free variables of typeρ; other-
wise no free variables of typeρ should occur inC. Here we choose, to be coherent with operator
types,P(τ) = (τ ≡/ (ρ → κ1) → κ2) (∆1) andP is made into a sufficient condition by rule(∆8).

Recursive functions could have been treated in the same way as closures. However, the associat-
ed criterion can be less conservative because we know that the expressionrec f = V will be bound to
variablef. To this aim, recursive functions are assumed to bear different names. An expression rec f
= V is single-threaded if its bodyV is single-threaded assuming that variablef is single-threaded
(rule (∆5)). To check that a function does not modifyρ, the assumption is thatf is not a modifier.

Our single-threading predicate∆r
ρ is recursively defined on the structure of expressions. We as-

sume that typeρ is a first-order type and that primitive operators act on their arguments in a single-
threaded fashion. Superscript r represents the lastρ-typed value encountered; initially r is set to a
special valueΩ different from any other value. Figure 3 gathers the criteria for single-threading.

Definition 2 An expression E is said single-threaded in typeρ if ∆Ω
ρ (E).

∆r
ρ (Eτ) iff:

(∆1) Eτ ≡ finκ ∨ cκ

(∆2) Eτ ≡ (vν ∨ opmcν) ∧ (ν ≡ (ρ → κ1) → κ2 ⇒ ntρ(κ1))

(∆3) Eτ ≡ ifc C1 C2 ∧ ∆r
ρ (C1) ∧ ∆r

ρ (C2)

(∆4) Eτ ≡ λx.F ∧ ∆r
ρ (F)

(∆5) Eτ ≡ rec f = V ∧ nfvρ(V) ∧ ((∆Ω
ρ (f) | ∆Ω

ρ (V)) ∨ (ΘΩ
ρ (f) | ΘΩ

ρ (V)))

(∆6) Eτ ≡ Cρ → κ Kρ ∧ ∆Κ
ρ (C) ∧ (K ≡ r ∨ (nfvρ(C) ∧ ntρ(κ)))

(∆7) Eτ ≡ Cρ → κ vρ ∧ ∆r
ρ (C)

(∆8) Eτ ≡ Cσ → κ Vσ ∧ ∆r
ρ (C) ∧ nfvρ(V) ∧ if σ ≡/ (ρ → κ1) → κ2 thenΘΩ

ρ (V) else∆Ω
ρ (V)

(∆9) Eτ ≡ Vκ1 → κ2 Cκ1 ∧ ((Θr
ρ (V) ∧ ∆r

ρ (C)) ∨ (nfvρ(C) ∧ ∆r
ρ (V) ∧ ∆Ω

ρ (C)))

Figure 3 Single-threading criteria on continuation expressions (Predicate∆)

 Intuitively, ∆Κ
ρ (E) means thatE is single-threaded provided that the global variable implement-

ing ρ-values has previously being initialized toK (and∆Ω
ρ (E) ⇒ ∀Κ ∆Κ

ρ (E)). In the remainder of the
paper,σ stands for a value type different fromρ. The non-modification criteriaΘr

ρ (E) means thatE is
single-threaded and does not create new instances of typeρ. That is to say thatE does not contain
(except in closures of type(ρ → κ1) → κ2) expressions of the formv(ρ → κ1) → κ2 C, opmc(ρ → κ1) →
κ2 or C Kρ with K ≡/ r. Θr

ρ is formally defined in Figure 4.

Θr
ρ (E) iff:

Eτ ≡ finκ ∨ cκ

Eτ ≡ (vν ∨ opmcν) ∧ ν ≡/ (ρ → κ1) → κ2

Eτ ≡ ifc C1 C2 ∧ Θr
ρ (C1) ∧ Θr

ρ (C2)

Eτ ≡ λx.F ∧ Θr
ρ (F)

Eτ ≡ rec f = V ∧ nfvρ(V) ∧ (ΘΩ
ρ (f) | ΘΩ

ρ (V))

Eτ ≡ Cρ → κ Kρ ∧ Θr
ρ (C) ∧ K ≡ r

Eτ ≡ Cρ → κ vρ ∧ Θr
ρ (C)

Eτ ≡ Cσ → κ Vσ ∧ Θr
ρ (C) ∧ nfvρ(V) ∧ if σ ≡/ (ρ → κ1) → κ2 thenΘΩ

ρ (V) else∆Ω
ρ (V)

Eτ ≡ Vκ 1→ κ2 Cκ1 ∧ Θr
ρ (V) ∧ Θr

ρ (C)

Figure 4 Non-modification criteria on continuation expressions (PredicateΘ)

 We can now check by applying the∆-rules that the function

rec f = λc.λa.λi.λp. eqc (ifc (c a) (accessc (multc (subc (updatec (f c) a i p) i 1) p) a i)) i 0

is single-threaded inρ. As an example, we describe a few steps of the analysis of subexpression
subc (updatec (f c) a i p) i 1:

∆Ω
ρ (subc(σ → κ1) → κ2 (…) iσ 1σ)

⇔ ∆Ω
ρ (subc(σ → κ1) → κ2 (…) iσ) ∧ nfvρ(1σ) ∧ ΘΩ

ρ (1) (∆8)
nfvρ(1σ) ∧ ΘΩ

ρ (1) is trivially true and the same applies toi thus

⇔ ∆Ω
ρ (subc(σ → κ1) → κ2 (…))

⇔ ΘΩ
ρ (subc(σ → κ1) → κ2) ∧ ∆Ω

ρ (updatec (f c) aρ i p) (∆9)
and so on.

One important property of∆ is that it is preserved by the reduction by First.

Property 3 (∀ EA) ∆r
ρ (E) ∧ E *→F F ⇒ ∆r

ρ (F)

Proof: Showing∆r
ρ (E) ∧ E 1→F F ⇒ ∆r

ρ (F) for each rule of First. The only tedious part is the proof
that the predicate is preserved byβ-reduction; the following lemmas (each one is proved by structur-
al induction) resolve this point:

• ∆r
ρ ((λc.C1) C2) ⇒ ∆r

ρ (C1[C2/c])

• ∆K
ρ ((λv.C) Kρ) ⇒ ∆K

ρ (C[K/v]) and ΘK
ρ ((λv.C)K) ⇒ ΘK

ρ (C[K/v])

• ∆r
ρ ((λv.C) Vσ) ⇒ ∆r

ρ (C[V/v]) and Θr
ρ ((λv.C)V)⇒ Θr

ρ (C[V/v])

We tried to keep the criteria from being too complex and did not mention some less conservative
but more intricate options. One potential source of failure lies in our treatment of closures. Our re-
quirement (ifσ ≡/ (ρ → κ1) → κ2 then ΘΩ

ρ (V) else ∆Ω
ρ (V)) is somewhat simplistic and better solu-

tions could have been chosen. The best way would be to perform a closure analysis to detect the set
of closures that each higher-order variablev may be bound to; non-modification has to be enforced
on those closures only if really needed (for example if expressionv C has freeρ-typed variables).
This may be too costly an analysis and one might prefer alternative solutions relying on types. For
each closureVσ we might check∆r

ρ (V) ∧ ¬Θr
ρ (V) constructing this way a set of modifying closure

typesM (i.e.σ ∈ M iff there is a closureV of typeσ such that∆r
ρ (V) ∧ ¬Θr

ρ (V)). An expressionvν C
with freeρ-typed variables could be single-threaded only if type ν does not belong toM. Another
case of failure occurs when a freeρ-typed variable is enclosed. There are ways to relax this restric-
tion. For instance, when the closure application time (or a safe approximation of it) is known, it is
sufficient to enforce that no modification occurs until then.

3.2 Global variable transformation

Property 3 does not state thatρ can indeed be implemented by a global variable. In order to show that
globalization can be performed on single-threaded expressions we now give a formal specification of
this optimization. Global variable transformation has been expressed using a Simula-like class [19]
or by adding explicit assignments [18]. We choose here to stay in the functional framework and to
describe the globalization in terms of program transformations. The transformation produces expres-
sions of the formV C R V1…Vn where the extra argumentR plays the role of a global variable. Oper-
ationally, expressions can still be seen as a stack machine state whereR denotes a register.
TransformationR (Figure 5) removes variables of typeρ (rules(R5),(R8)) and replaces the creation of
new ρ-values by destructive updates (rules(R3),(R7)). Applications are transformed to take into ac-
count the global variable (rules(R10), (R11)). If the global expression yields a result of type σ (differ-
ent fromρ) then continuationfin removes the global variable before returning the answer (rule(R2)).
Destructive versions of operators are introduced; for example:

plusd C R V→δ C (R+V)

updated C [a1,…ai,…am] i V →δ C [a1,…,ai-1,V,…am]

More generally, operatorsopmc such thatopmc C V1
σ1…Vi

ρ… Vm
σm →δ C Nσ are transformed into

operatorsopmd such thatopmd C Vi
ρ V1

σ1…Vi−1Vi+1… Vm
σm →δ C Vi

ρ Nσ. Modifiers opmc such
thatopmc C V1

σ1…Vi
ρ… Vm

σm →δ C Nρ are transformed into operatorsopmd such thatopmd C Vi
ρ

V1
σ1…Vi−1Vi+1… Vm

σm →δ C Nρ. That is to say, ifopmc takesm arguments,n beingρ-typed,opmd
takes only(m-n)+1 arguments (single-threading enforces then ρ-typed elements to be equal) and
yields the same value asopmc, updating the global variable if the result is of typeρ (rule (R3)). The
conditional is treated in the same way(R4)

(R1) Rρ(a) = a if a≡ v, c, K or finρ → A (R2) Rρ(finσ → A) = λr. fin

(R3) Rρ(opc) = opd (R4) Rρ(ifc C1 C2) = ifd Rρ(C1) Rρ(C2)

(R5) Rρ(λvρ. C) =Rρ(C) (R6) Rρ(λvσ. C) = λr.λv.Rρ(C) r

(R7) Rρ(E Kρ) = λr.Rρ(E) K (R8) Rρ(C vρ) = Rρ(C)

(R9) Rρ(λc. V) = λc.Rρ(V) (R10) Rρ(V Cκ) = Rρ(V) Rρ(C)

(R11) Rρ(C Vσ) = λr. Rρ(C) r Rρ(V) or using a convenient combinator = push Rρ(V) Rρ(C) (push V C R →
F

C R V)

Figure 5 Global Variable Transformation R

The expressions produced by this transformation contain at most one free occurrence ofρ-typed
variables. Operationally, this means that noρ-value will ever be pushed on the stack. The correctness
property (Property 4) states that if an expressionEA is single-threaded then its reduction and the re-
duction of its transformed version produce equivalent results.

Property 4 For all closed EAsuch that∆Ω
ρ (E), if E has a whnf, i.e. E*→F fin N then (∀Rρ) Rρ(E)

R *→F fin Rρ(N)

Proof: Induction requires a stronger property that we do not describe here for the sake of brevity. The
structure of the proof is as before by showing the property for one reduction step using lemmas
(Rρ(E)[Rρ(Cκ)/c] ≡ Rρ(E[Cκ/c]), Rρ(E)[Rρ(Vσ)/v] ≡ Rρ(E[Vσ/v]) which are themselves proved by
structural induction; Property 3 is then used for the induction on the length of the reduction.

Example: The application of the global variable transformation to functionf

rec f = λc.λa.λi.λp. eqc (ifc (c a) (accessc (multc (subc (updatec (f c) a i p) i 1) p) a i)) i 0

yields

rec f = λc.λr.λi.λp. push 0 (push i (eqd (ifd (c) (push i (accessd (push p (multd (push 1 (push i (subd

(push p (push i (updated (f c)))))))))))))) r

The array argument has been replaced by the global variabler. We describe below some of the reduc-
tion steps of the application of this function to argumentsfin, [4,3,2]ρ, 3, 1.

(rec f = λc.λr.λi.λp. push 0 (push i (eqd (ifd (c) (push i (...)))) r) fin [4,3,2] 3 1

→F push 0 (push 3 (eqd (ifd (fin) (push 3 (...))))) [4,3,2]

→F push 3 (eqd (ifd (fin) (push 3 (...)))) [4,3,2] 0

→F→F updated ((rec f =...) fin) [4,3,2] 3 1 2 2{destructive update of the 3rd element}

→F (rec f =λc.λr.λi.λp....) fin [4,3,1] 2 2

→F→F updated (f fin) [4,3,1] 2 2 1 6 {destructive update of the 2nd element}

→F (rec f =λc.λr.λi.λp....) fin [4,2,1] 1 6 →F

→F updated ((rec f =...)fin) [4,2,1] 1 6 0 24 {destructive update of the 1st element}

→F (rec f =λc.λr.λi.λp....) fin [6,2,1] 0 24

→F ... →F ifd (fin) (push 0 (...)) [6,2,1] True →F fin [6,2,1]

Criteria∆ and transformationR extend trivially to single-threading in several typesρ1,...ρi. The
transformed expressions would have several explicit global variables and would be of the formV C
R1... Ri V1... Vn.

4 Applications

In this section we describe several applications of the analysis: the compilation of functional lan-
guages (section 4.1), semantics-directed compilation (section 4.2) and globalization-based transfor-
mations (section 4.3).

4.1 Compilation of functional languages

The primarily goal of our work was to improve the compilation of functional programs. We are cur-
rently working on the integration of our analysis in a transformation-based compiler [5,6]. The first
step of this compiler is the compilation of the computation rule; call-by-value, call-by-need and even
mixed evaluation orders (e.g. call-by-need with strictness information) are compiled using CPS
transformations; single-threading is then detected on the resulting continuation expressions. Prelimi-
nary results indicate that this optimization is very effective for iterative functions where the use of
registers can reduce execution time up to50 per cent and, of course, for the implementation of ar-
rays. Our criteria is also helpful for non single-threaded functions since they detect single-threaded
subexpressions which can be locally transformed byR.

However, there are cases where a standard type annotation would not fit well with the analysis.
For example, when two parameters have the same type, we would try to detect if both of them can be
implemented using a single global variable. In most cases this would fail whereas they can be imple-
mented in two different variables. Letitfact be the iterative version of the factorial function:

rec itfact =λcint → A.λxint.λyint. eqc (ifc (c y) (multc (subc (itfact c) x 1) x y)) 0 x

∆int fails becauseitfact is obviously not single-threaded in typeint.

We are primarily interested in globalizing parameters of recursive functions, a simple solution
consists in annotating types so that each parameter has a different type. A recursive function of type
(κ → A) → ν → ν → A is typed(κ → A) → ν1 → ν2 → A. Type inference will be performed using
this information and assuming thatτi matches the unannotated typeτ (e.g.int1 → int andint → int2
are unified intoint1 → int2).

If the factorial function is given type(int → A) → int1 → int2 → A then type inference produces
new types for operators and the type ofitfact becomes(int2 → A) → int1 → int2 → A.

rec itfact =λcint2 → A.λx int1.λy int2. eqc (ifc (c yint2)

(multc(int2 → A) → int1→ int2→ A(subc(int1 → int2→ A) → int1→ int→ int2→ A

(itfact(int2 → A) → int1 → int2 → A c) xint1 1) xint1 yint2)) 0 xint1

 Using this annotation,∆int1 and ∆int2 detect thatitfact is single-threaded in typesint1 andint2.

Type inference must be extended a bit to be able to type functions likerec f = λc.λx int.λy int...
subc (f c y) y 1... If f has type (int → A) → int1 → int2 → A, thenf c y can not be typed. To solve this
point, an operatorIdc, with reduction ruleIdc C V→ C V, is introduced. The previous expression be-
comesIdc (f c) y and functionf can now be typed:

rec f = λc.λx int1.λy int2.... subc (Idc(int1 → int2 → A) → int2 → int2 →A (f c) yint2) y int2 1)...

If a function is single threaded in typeρ1 andρ2 then an operatorIdc(ρ1 → κ) → ρ2→ κ corresponds to
the affectationR1 := R2, R1 andR2 being the global variables implementingρ1 andρ2.

This heuristic for annotating types fits our needs but is not optimal in that it would fail to detect
when several arguments can indeed be implemented by a single global variable. As mentioned in
section 6.2, a better solution would be to use the information provided by the single-threading crite-
ria to choose the annotation.

4.2 Semantics-directed compiler generation

We plan to integrate our analysis into a semantics-directed compiler generator which would also in-
clude a CPS transformation. Starting from a direct denotational semantics, a first step is the defunc-
tionalization of the store introducing a first-order data structure (e.g. an array). The second step is the
compilation of the computation rule using a CPS transformation. Call-by-value is chosen if the se-
mantics uses a strictλ-calculus or if we can infer (using a strictness analysis) that the valuation func-
tions are strict; otherwise call-by-need is used. Single-threadedness of the store domain is then
analyzed on the resulting continuation expressions and the globalization transformation is applied if
possible. The next step is the partial evaluation of the semantics function applied to a particular pro-
gram. Let us take an example to illustrate these steps; letP be a specification of a small imperative
language (cf. Figure 6). The valuation functions are assumed to be strict in their arguments.

P: Program→ Store→ Store

P [[C.]] = C [[C]]

C: Command→ Store→ Store

C [[I:=E]] = λs. update s [[I]] (E [[E]] s)

C [[C1;C2]] = λs. C [[C2]] (C [[C1]] s)

C [[if B then C1 else C2]] = λs. if (B [[B]] s) (C [[C1]] s) (C [[C2]] s)

C [[while B do C]] = (rec loop = λs. if (B [[B]] s) (loop (C [[C]] s)) s)

E: Expression→ Store→ Int

E [[E1 * E2]] = λs. mult (E [[E1]] s) (E [[E2]] s) {same thing for E1 - E2, E1 + E2,...}

E [[I]] = λs. access s [[I]]

E [[N]] = λs.N [[N]]

B: Expression→ Store→ Bool (omitted)

Figure 6 Denotational Semantics of a Small Imperative Language (extract)

These functions are first transformed using a CPS conversion (e.g.V described in section 5). For
instance, the first equation describing commands becomesλc.λs. E [[E]] (updatec c s [[I]])s . Predi-
cate∆Store is then applied to check that command equations are single-threaded in their store do-
main. For the equation above, we have to checkΘStore(E [[E]]) since this expression has a free store-
typed variable in its continuation. TransformationR is applied and the first command equation is
now λc.λr. E [[E]] (λr. push [[I]] (updated c) r) r; the global variable r is suppressed byη-reduction
and we getλc.E [[E]] (push [[I]] (updated c)) . Figure 7 gathers the transformed equations after glo-
balization.

P : Program→ Cmdcont→ Cmdcont

P [[C.]] = C [[C]]

C : Command→ Cmdcont→ Cmdcont

C [[I:=E]] = λc. E [[E]] (updated[[I]] c) (updated[[I]] being an abbreviation for push [[I]] o updated)

C [[C1;C2]] = λc. C [[C1]] (C [[C2]] c)

C [[if B then C1 else C2]] = λc. B [[B]] (ifc (C [[C1]] c) (C [[C2]] c))

C [[while B do C]] = (rec loop =λc. B [[B]] (ifc (C [[C1]] (loop c)) c))

E: Expression→ ExprCont→ Cmdcont

E [[E1 * E2]] = λc. E [[E2]] (E [[E1]] (multd c))

E [[I]] = λc. accessd[[I]] c

E [[N]] = push N [[N]]

B: Expression→ ExprCont→ Cmdcont (omitted)

Figure 7 Semantics after CPS and globalization transformations

This semantics applied to a program is simplified by partial evaluation. For that particular se-
mantics, this step is straightforward since it amounts toβ-reduce continuations. The expressions ob-
tained can be seen as generic stack machine code. For example:

P [[X:=2;Y:=Y*X.]] = λc. C [[X:=2]] (C [[Y:=Y*X]] c) =...

= λc. push 2 (updated[[X]] (accessd[[X]] (accessd[[Y]] (multd (updated[[Y]] c)))))

This method produces very good quality code for such toy languages. This would not be the
case if environments and procedures were added to the language. Much work remains to be done in
order to automatically derive efficient compilers for real life languages.

4.3 Globalization-directed transformations

We are interested in this section in non single-threaded functions. No extension of the criteria could
help, however our analysis returns information which can be turned to account to transform non sin-
gle-threaded functions into single-threaded ones. One of the most common cases of non single-
threadedness is when arguments are not evaluated in a proper order. The evaluation strategy enforces
a specific order which may invalidate single-threading, whereas arguments of strict functions can be
evaluated in any order. In order to deal with this problem, we define program transformations which
can be seen as local modifications of the evaluation ordering. Let us come back to thef function de-
fined in section 3.

rec f = λc.λa.λi.λp. eqc (ifc (c a) (accessc (multc (subc (updatec (f c) a i p) i 1) p) a i)) i 0

Functionf is not single-threaded in its third argument which is modified while still referenced.
Let ρ be the type of the third argument;∆ρ points out thatf is not single-threaded inρ because there
are occurrences of ρ-typed free variablei in the continuation of modifiersubc. The idea is to post-
pone the evaluation ofsubc until it can be done in a single-threaded fashion or it becomes necessary.

Let Π be a function such that:

Πi(F
ν) = j ⇒ (∀C,V1,...,Vi) (F C V1... Vi

*→F C U1... Uj-1Vi) ∨ (F C V1... Vi = ⊥)

Intuitively, this function indicates that theith element of the stack is not needed byF and will be
at positionj in the stack after the execution ofF. Of course,Π is a partial function which yields only
a safe approximation (⊥ or an integer). We do not describe it here and we just give the rule that is
needed for our example:

Πi(opmc) = i-m+1 if i>m otherwise⊥

Using this function, safe adjustments of the evaluation ordering can be performed. One basic
transformation is:

F (E C V1…Vp) ↔ E (λv1. …λvn-1. F (C v1…vn-1)) V1…Vp if Πp+1(E) = n > 0

with p≥0 andv1,…,vn-1 being fresh variables.

Evaluations ofF andE are inverted and it is easy to prove that both expressions are operational-
ly equivalent. This transformation is worth applying when non single-threading comes from free
variables in the continuation of a modifier, that is when¬Θρ(F) ∧ fvρ(C) is detected. The above
transformation is used to delay the reduction of the modifier until it is needed or, hopefully, until the
free variables are eventually consumed.

When analyzing the subexpressionsubc (updatec (f c) a i p) i 1, we get∆ρ (subc)∧ fvρ(updatec
(f c) a i p) andΠ4(updatec) = 2, thus the transformation can be applied and returnsupdatec (λv. subc
(f c v)) a i p i 1. Functionf is now single-threaded in its second and third arguments.

5 Single-threading detection on source expressions

All the results described so far apply to continuation expressions. It is not however compulsory and
we describe in this section how to use∆ to get criteria on regularλ-expressions according to differ-
ent computation rules. The idea is to design a CPS conversionC mapping source expressions to con-
tinuation expressions according to a specific evaluation schemeE. TransformationC must produce
expressions whose reduction by First models the reduction byE of the original expressions. By sim-
plifying ∆ o C one can get single-threading criteria on source expressions for the evaluation ordering
E. Figure 8 describes a transformation compiling left-to-right call-by-value. For the sake of brevity,
we consider here aλ-calculus extended with constants and operators only.

• V(vτ) = λc.cτ → A vτ

• V(opτ) = λc.cτ → A opcτ

• V(λvτ1.Fτ2) = λc.c(τ1 → τ2) → A (λc.λvτ1.V(F) cτ2 → A)

• V(E1
τ1→τ2 E2

τ1) = λcτ2 → A.V(E1) (λf(τ2 → A) → τ1 → A.V(E2) (f c))

With the associated transformation on types defined by:β = β andτ1 → τ2 = (τ2 → A) → τ1 → A

Figure 8 CPS transformation for left-to-right call-by-value (V)

The proof thatV models properly left-to-right call-by-value is beyond the scope of this paper.
The interested reader may refer to [6] which presents such a proof.

We proceed by simplifying∆ o V to get criteria defined on the syntax of source expressions. We
do not describe the simplification process which is straightforward; for example, the first rule (ifE is
an atom thenE is single-threaded) follows from: ∆ρ o V(v) = ∆(λc.cτ → A vτ) = Trueand ∆ o V(opτ)
= ∆(λc.cτ → A opcτ) = True (sincentρ(A)). For all expressionE, (Θρ o V) E can be shown equivalent

to: (∆ρ o V) E ∧ (E does not contain active expressions of typeρ different from an identifier), where
an expression is saidactive if it is not properly contained within aλ-abstraction. The resulting predi-
cate is described in Figure 9.

∆ρ o V (E) iff:

• E ≡ atom (v or op)

• E ≡ λvτ1.Fτ2 ∧ ∆ρ o V (F) ∧

(i) τ1 ≡ ρ ⇒ all freeρ-typed identifiers in F are vρ

(ii) τ1 ≡/ ρ ⇒ F has no activeρ-typed expressions

(iii) τ2 ≡/ ρ ⇒ E does not contain active expressions of typeρ different from an identifier.

• E ≡ E1
τ1 → τ2 E2

τ1 ∧ ∆ρ o V (E1) ∧ ∆ρ o V (E2)∧

fvρ(E2) ⇒ all occurrences of activeρ-typed expressions in E2 are occurrences of identifiers.

Figure 9 Single-threading criteria for λ−calculus using left-to-right cbv (∆ρ o V)

If right-to-left call-by-value is used, the associated CPS conversionVr remains the same except
for the application rule which becomes:

Vr(E1 E2) = λcτ2 → A.V(E2) (λaτ1.V(E1) (λf.f(τ2 → A) → τ1 → A c a))

The criteria remain the same except for the last one which becomes:

• E ≡ E1
τ1 → τ2 E2

τ1 ∧ ∆ρ o Vr(E1) ∧ ∆ρ o Vr(E2)∧

(i) τ1 ≡ ρ ⇒ all occurrences of activeρ-typed expressions in E1 are occurrences of identifiers

(ii) fv ρ(E1) ⇒ all occurrences of activeρ-typed expressions in E2 are occurrences of identifiers.

In order to introduce as few continuations as possible, efficient transformations often use the fol-
lowing optimizations [6]:

• V(opm V1... Vm) = λc. V(Vm) (... (V(V1) (opmc c))...)

• V((λv1. …λvn. F1) F2... Fn) = λc. V(Fn) (... (V(F2) (λv1. …λvn. V(F1) c))...)

This amounts to introducing multi-applications in the language and single-threading detection
takes a great benefit from it. For example, the expressionλxρ.λy.x would not be single-threaded in
general: it can be applied to one argument and yields a closureλy.x[Kρ/x] containingρ-typed ele-
ments (and one can check that(∆ρ o V)λxρ.λy.x = False). This would have drastic effects on single-
threading since only the last parameter of functions would be a candidate for globalization. However,
if the expression is known to be fully applied, no closure has to be built. Taking into account the
above optimizations, we get an improved version of our criteria. For example:

• E ≡ (λv1. …λvn. F1) F2... Fn ∧ ∆ρ o V (F1) ∧ ∧ ∆ρ o V (Fn) ∧

fvρ(Fi) ⇒ all occurrences of activeρ-typed expressions in Fi-1,...,F1, are occurrences of identifiers.

Using this criterion, the expressionλxρ.λy.x applied to two arguments is detected as single-
threaded

It would also be possible to get criteria for call-by-need but they would be of little use since
most parameters would be enclosed, and few globalizable variables would be found. However, a
call-by-need with strictness information can benefit from single-threading analysis. Let us assume

thatE1 E2 indicates thatE1 is strict andv means thatv is defined by a strictλ-abstractionλv.E. Then
a CPS transformation for call-by-need can make use of these pieces of information in order to evalu-
ate arguments of strict functions before calling them (cf. Figure 10).

• N(v) = v

• N(v) = λc.c v {v is already evaluated}

• N(op) =λc.c opc

• N(λv.F) =λc.c (λc.λv.N(F) c)

• N(E1 E2) = λc.N(E1) (λf.f c N(E2))

• N(E1 E2) = λc.N(E2) (λa.N(E1) (λf.f c a)) {E1 is strict; its argument is evaluated}

Figure 10 CPS transformation for call-by-need with strictness annotations (N)

Therefore, by simplifying∆ o N, we can get criteria for call-by-need with strictness annotations.

This method of deriving criteria on source expressions is general (at least for sequential compu-
tation rules) and quite simple. However, to insure its correctness one has to check that the CPS trans-
formation models the underlying implementation properly; in particular, the sequencing of variable
definitions and uses must be identical.

6 Conclusions

We have presented sufficient syntactic criteria to detect the single-threading property on both contin-
uation expressions and standardλ-expressions. Syntactic analysis is attractive by its low cost and by
the information it provides. The approach is general enough to be applied to the compilation of func-
tional languages, semantics-directed compiler generation and goal-directed transformations. Our
work improves upon previous solutions (both syntactic and semantics-based) in that it applies to
higher-order languages and to most sequential evaluation strategies.

6.1 Related Works

The closest related work is Schmidt’s [19] which performs a syntactic analysis on aλ-calculus with a
call-by-value semantics. His criteria can be described as the predicateSρ in Figure 11.

Sρ iff:

• E ≡ atom (v or op)

• E ≡ λvτ.F ∧ Sρ(F) ∧

(i) τ ≡ ρ ⇒ all freeρ-typed identifiers in F are vρ

(ii) τ ≡/ ρ ⇒ F has no activeρ-typed expressions

• E ≡ (E1 E2)
τ ∧ Sρ(E1) ∧ Sρ(E2) ∧

(i) τ ≡ ρ ⇒ if both E1 and E2 contain one or more activeρ-typed expressions then all of the activeρ-typed ex-
pressions in E are occurrences of the same identifier.

(ii) τ ≡/ ρ ⇒ all occurrences of activeρ-typed expressions in E are occurrences of the same identifier

Figure 11 Schmidt’s single-threading criteria (call-by-value)

Our criteria combined with transformationsV or Vr turns out to be less conservative thanS. For-
mally stated:

Property 5 Sρ(E) ⇒ (∆Ω
ρ o V(E)) ∧ (∆Ω

ρ o Vr(E))

This property is easily shown by structural induction using definitions of∆ρ o V and∆ρ o Vr
(section 5). Actually, Property 5 would hold for any transformationV compiling a call-by-value re-
duction strategy. The main reason is thatSρ does not rely upon a particular version of call-by-value.
Sρ is valid for any sequential or parallel version of call-by-value and therefore does not take advan-
tage of a particular evaluation order. If this loss of information may be accepted in semantics-direct-
ed compiling (where a language designer may make conscious use of the criteria), it would spoil
many optimization opportunities when used in a functional language compiler. Another drawback of
Sρ is that multi-applications (cf. Section 5) are not considered and it detects only functions that are
single-threaded in their last parameter. This work has been extended in order to analyse combinator
languages [15].

Most of the other single-threading detection methods are based on abstract interpretation with
some kind of operational semantics describing the sequencing of definitions and uses of variables.
[13] builds a lifetime grammar to detect global variables in procedural programs. Bloss [2] uses the
notion of path semantics to analyze a lazy first order functional language. [3] considers the same kind
of language but accepts call-by-need with strictness information; this analysis, while still in expo-
nential time, is faster than Bloss’. Sestoft [18] focuses on function parameters and considers a strict
higher order functional language. The single-threading criteria are defined by an interference analy-
sis on a definition-use grammar constructed from a path semantics. This approach is quite different
from ours and a formal assessment of their relative power is difficult to achieve. However, since Ses-
toft’s analysis includes a closure analysis it might detect globalizable parameters that we fail to de-
tect. On the other hand, multi-applications are not considered and this analysis has the same
shortcoming as Schmidt’s. A notable difference is that Sestoft’s work does not rely on types and
therefore is well-suited for untyped languages. This work has been extended recently in order to de-
tect globalizable parameters that may be captured in closures [7]. It is worth mentioning that they
also found the need to make the order of evaluation explicit on the syntax level, although not using
continuations butlet-construct. Experimental results would be helpful to have a better idea of the rel-
ative costs and powers of these analyses.

Another approach is to allow the programmer to make space reutilization explicit [8,23]. New
constructs are added to the language to express sequentiality and destructive updates. A type system,
inspired from linear logic, is needed to insure that referential transparency is preserved. Wadler pro-
posed another solution based on monad comprehension [24]; in this case no new typing discipline is
necessary. Under this approach the programmer is able and has to reason about order of evaluation
and space utilization of the program. This may be regarded as a benefit or as a drawback.

Related are also the work done by Raoult and Sethi [17] who have studied single-threading us-
ing a pebble game on a program tree. Let us also mention studies aiming at reducing storage alloca-
tions for dynamic data structures [10,12] by doing a sharing analysis on strict, first order, languages.

6.2 Future work

We did not consider product types in this paper. There are several ways to extend this work to deal
with such constructs. One straightforward solution is to treat tuples the same way as closures but oth-
er approaches should be investigated.

We focused on recursive function parameters because the use of registers seems the most useful
in this case. However,∆ may also be used for more general register allocation (e.g. using registers to
store intermediate results);∆ can be applied not only to check but also to choose type annotations.
For example, letC be a continuation expression containing no free variables of typesρ1 or ρ2, then
when analyzing the expression

plusc(α→ κ) → ρ2 → ρ1 → κ (plusc(β→ κ) → ρ2 → α → κ C yρ2) yρ2 xρ1

whereα andβ are type variables, we deduce that the condition for single-threading isα ≡/ ρ2. Thusα
≡ ρ1 ∧ (β ≡ ρ1 ∨ β ≡ ρ2) are possible choices for implementing those intermediate values by global
variables. Predicate∆ would produce a register-interference graph which could be used by classic
register allocation algorithms [1].

We believe that the continuation-based approach is also promising for other syntactic analyses.
Many properties depend on the evaluation ordering and it is clear that continuations provide valuable
information to this respect. We plan to study along these lines stack-single-threading [20] (e.g. de-
tecting when closures or lists can be allocated on a stack) and the introduction of safe destructive up-
dates for list management.

References

1. A.V. Aho, R. Sethi and J.D. Ullman.Compilers: Principles, Techniques, and Tools. Add-
ison-Wesley, 1986.

2. A. Bloss. Update analysis and the efficient implementation of functional aggregates. In
FPCA’89, pp. 26-38, ACM Press, 1989.

3. M. Draghicescu and S. Purushothaman. A compositional analysis of evaluation order and
its application. In Proc. of 1990 Conf. on Lisp and Func. Prog., ACM Press, pp. 242-250,
1990.

4. M. J. Fisher. Lambda-calculus schemata. InProc. of the ACM Conf. on Proving Proper-
ties about Programs, Sigplan Notices, Vol. 7(1), pp. 104-109,1972.

5. P. Fradet and D. Le Métayer. Compilation ofλ-calculus into functional machine code. In
Proc. TAPSOFT’89,LNCS vol. 352, pp. 155-166, 1989.

6. P. Fradet and D. Le Métayer. Compilation of functional languages by program transfor-
mation.ACM Trans. on Prog. Lang. and Sys., 13(1), pp. 21-51, 1991.

7. C.K. Gomard and P. Sestoft. Globalization and live variables. In Proc. of ACM Sympo-
sium on Partial Evaluation and Semantics-Based Program Manipulation,Yale, June
1991. (to appear in Sigplan Notices)

8. J.Guzmán and P. Hudak. Single-threaded polymorphic lambda-calculus. InIEEE Sympo-
sium on Logic in Computer Science, June 1990.

9. P. Hudak. A semantic model of reference counting and its abstraction. InProc. of Conf.
on Lisp and Func. Prog., ACM Press, pp. 351-363, 1986.

10. K. Inoue, H. Seki and H. Yagi. Analysis of functional programs to detect run-time gar-
bage cells.ACM Trans. on Prog. Lang. and Sys., 10(4), 1988, 555-578.

11. N.D. Jones Ed.Semantics-Directed Compiler Generation. LNCS Vol. 94,1980.

12. S.B. Jones and D. Le Métayer. Compile-time garbage collection by sharing analysis. In
FPCA’89, pp.54-74, ACM Press, 1989.

13. U. Kastens and M. Schmidt. Lifetime analysis for procedure parameters. InESOP 86,
LNCS Vol. 213, pp.53-69, 1986.

14. D. Kranz, R. Kelsey, J. Rees, P. Hudak, J. Philbin and N. Adams. Orbit: An optimizing
compiler for Scheme. Inproc. of 1986 ACM SIGPLAN Symp. on Comp. Construction,
219-233, 1986.

15. D. Lass. Detection of single-threading properties in combinator notations. Ph.D. Thesis,
Iowa State University, 1991.

16. G.D. Plotkin. Call-by-name, call-by-value and theλ-calculus.Theoretical Computer Sci-
ence 1, pp. 125-159, 1975.

17. J.-C. Raoult and R. Sethi. The global storage needs of a subcomputation. InProc. ACM
Symp. on Princ. of Prog. Lang., 1984, 148-157.

18. P. Sestoft. Replacing function parameters by global variables. InFPCA’89,ACM Press,
pp.39-53, 1989. (see also Tech. Report 88-7-2, University of Copenhagen, 1988.)

19. D.A. Schmidt. Detecting global variables in denotational specifications.ACM Trans. on
Prog. Lang. and Sys., vol. 7, 1985, 299-310.

20. D.A. Schmidt. Detecting stack-based environments in denotational definitions.Science of
Computer Programming, 11(2), 1988.

21. D.A. Schmidt.Denotational Semantics. A Methodology for Language Development. Al-
lyn & Bacon, 1986.

22. J.E. Stoy.Denotational Semantics: The Scott-Strachey Approach to Programming Lan-
guage Theory, MIT Press, Cambridge, Mass.,1977.

23. P. Wadler. Linear types can change the world! InIFIP Working Conf. on Programming
Concepts and Methods, North Holland, 1990.

24. P. Wadler. Comprehending monads. In Proc. of 1990 Conf. on Lisp and Func. Prog.,
ACM Press, pp. 61-78, 1990.

