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ABSTRACT
We present a novel logic-level circuit transformation tech-
nique for automatic insertion of fault-tolerance properties.
Our transformation uses double-time redundancy coupled
with micro-checkpointing, rollback and a speedup mode. To
the best of our knowledge, our solution is the only techno-
logically independent scheme capable to correct the multi-
ple bit-flips caused by a Single-Event Transient (SET) with
double-time redundancy. The approach allows soft-error
masking (within the considered fault-model) and keeps the
same input/output behavior regardless error occurrences.
Our technique trades-off the circuit throughput for a small
hardware overhead. Experimental results on the ITC’99
benchmark suite indicate that the benefits of our methods
grow with the combinational size of the circuit. The hard-
ware overhead is 2.7 to 6.1 times smaller than full Triple-
Modular Redundancy (TMR) with double loss in through-
put. We do not consider configuration memory corruption
and our approach is readily applicable to Flash-based FP-
GAs. Our method does not require any specific hardware
support and is an interesting alternative to TMR for logic-
intensive designs.

Categories and Subject Descriptors
B.5.3 [Hardware]: Register-Transfer-Level Implementation-
Reliability and Testing [Redundant design]; B.5.2 [Hardware]:
Design Aids [Automatic synthesis, Verification]

General Terms
Reliability; Verification

Keywords
Time-Redundancy; Checkpointing; Single-Event Transient;
Formal Methods
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1. INTRODUCTION
Circuit tolerance towards soft (non-destructive, non-perma-

nent) errors has become a design characteristic as important
as performance and power consumption [1]. Having been
an object of attention in space and medical industries for
many years [2], circuit fault-tolerance is nowadays a research
topic for any application manufactured at modern technol-
ogy nodes (90nm and smaller) due to the increased risk of
soft errors [1]. Such risk results from the continuous shrink-
ing of transistor size that makes components more sensitive
to perturbations induced by radiation [3].

The most common methods to make circuits fault-tolerant
to soft errors rely on hardware redundancy, therefore incur-
ring a significant area overhead. TMR [4] remains the most
popular fault-tolerance technique and is widely supported by
CAD tools for FPGAs [5] [6]. Time-redundant techniques
for fault-tolerance require less hardware resources than spa-
tial redundancy but decrease the circuit throughput. As
in software, the standard implementation relies on a block-
by-block processing and triple redundancy: an input data
is processed three times to produce three outputs used by
a majority voter which filters out a possible error. Conse-
quently, latency and throughput are degraded three times.

In this paper, we propose a circuit transformation that is
suitable for any type of processing (block or stream process-
ing) and requires only double time redundancy. We target
and evaluate our transformation for flash-based FPGA real-
ization where the small hardware size is especially important
and configuration memory upsets are nonexistent [7]. Since
the approach does not require specific hardware support, it is
applicable to ASICs as well. As any time-redundant scheme,
our technique is not suited to applications that require high
throughput. A particular target is FPGA-based designs of
embedded systems such as controllers used in safety critical
domains (space, nuclear, medical, . . . ).

There are two main types of soft errors caused by par-
ticle strikes: Single-Event Upsets (SEUs) (i.e., bit-flips in
flip-flops (FFs)) and Single-Event Transients (SETs) (i.e.
pulses propagating in the combinational circuit). Since an
SET may potentially lead to several bit-flips, SETs sub-
sume SEUs. In this paper, we consider fault models of the
form “at most one SET within K clock cycles”, denoted by
SET (1 ,K ). Even in environments with high levels of ioniz-
ing radiations (e.g., space, particle accelerators), K is con-
sidered to be larger than 10 10 [8]. Our transformation masks
SETs for any K greater than 10 cycles.



The main features of our Double-Time Redundant Trans-
formation (DTR) transformation are illustrated in Fig. 1.
The primary input stream is upsampled twice and given to
the combinational part to detect errors by comparison (writ-
ten C). The line . . . , s1, s2, t1, t2, . . . represents paired in-
ternal states and . . . , a, a, b, b, . . . paired bits in the output
stream. When an error is detected (e.g., t1 6= t′2), a recov-
ery process consisting of a rollback and a re-execution is trig-
gered (resulting in the internal state t3). The check-pointing
mechanism is tolerant towards SETs and is performed every
other cycle.
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Figure 1: Overview of the DTR transformation

According to the fault-model SET (1 ,K ), no error occurs
within K clock cycles after the last error. This allows to
switch off time-redundancy during the recovery phase and
to “accelerate” the circuit twice (speed up phase in Fig. 1).
Along with the use of specifically designed input and output
buffers to produce delayed outputs (and record inputs) dur-
ing that phase, this makes the recovery absolutely transpar-
ent to the surrounding circuit. The input/output behavior
remains unchanged as if no SET had occurred. The output
streams correctness and consistency (. . . , a, a, b, b, . . . )
are guaranteed by the transformation. After an error, the
check-pointing mechanism returns the circuit to a correct
state (i.e., to the state that the circuit would have been if
no error had occurred) within at most 10 clock cycles. Con-
sequently, the allowed maximum fault rate is one every 10
clock cycles (i.e., SET (1 , 10 )).

To summarize, DTR is a new automatic logic-level trans-
formation for fault-tolerance with the following benefits:

1. It is technologically independent, in particular it does
not require specific hardware support nor control of
clock lines. Therefore, it is applicable to Commercial
Off-The-Shelf (COTS) FPGAs.

2. Its throughput loss for error-correcting is only double
instead of the standard triple overhead.

3. It can be shown to mask all possible SETs, which is a
more demanding fault-model than SEUs.

4. It is suitable for stream processing since the input/out-
put streams are insensitive to SET occurrences.

Section 2 introduces notations and provides an overview of
the transformation. It consists in replacing each memory
cell by a Memory Block supporting redundancy and check-
pointing, and adding a global Control Block providing con-
trol signals. Section 3 describes in details the DTR trans-
formation. It ends with the proof that the transformed cir-
cuit is fault-tolerant for all possible errors according to the

fault-model. Experimental results using the ITC’99 bench-
mark suite [9] are presented in Section 4. The hardware
overheads and maximum throughputs of the original, TMR,
and DTR circuits are compared. Section 5 presents related
works that use time-redundancy or micro-level checkpoint-
ing for circuit fault-tolerance. Finally, we summarize our
contributions and sketch possible extensions in Section 6.

2. NOTATIONS AND APPROACH
Any digital circuit can be represented in the most general

way as in Figure 2. The circuit, which consists of combina-
tional and sequential parts, takes a primary input bit vector
~PI and returns a primary output bit vector ~PO each clock
cycle. The combinational part performs some memoryless
boolean function ϕ.

Sequential Part

Combinational Part 

clk

CI COPI

SO SI

φ

si so
ini:C2

FF
D Q

PO
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Figure 2: Digital circuit before transformation.

We denote the input (resp. output) bit vector of the com-
binational part by ~CI (resp. ~CO) and the input (resp. out-
put) bit vector of the sequential part by ~SI (resp. ~SO). They
satisfy the following equalities:

~CO = ϕ( ~CI ) ~CI = ~PI ⊕ ~SO ~CO = ~PO ⊕ ~SI (1)

where ⊕ denotes vector concatenation. We use lower case
(e.g., ~pi , ~co, etc.) to denote the corresponding signals in the
transformed circuits; they satisfy the same equalities.

Throughout the paper, we write ~vi for the value of the
bit vector ~v at the ith clock cycle (the numbering starts at
i =1 ). Values and outputs of memory cells are denoted by
the same names. For instance, the memory cell in Figure 2
with output so is itself denoted so.

An SET in a combinational circuit can lead to the non-
deterministic corruption of any memory cell connected (by
a purely combinational path) to the place where the SET
occurred. A corrupted vector is written †~v; it represents the
vector ~v with an arbitrary number of bit-flips (corrupted
bits). An SET in the combinational circuit of Figure 2 at
some cycle i can lead to the corruption of some outputs of the
combinational circuit † ~COi. This leads to the corruption of
the primary outputs † ~POi and of inputs of the memory cells
† ~SI i, which, in turn, causes the corruption of the circuit’s
memory cells. This last corruption is visible at their outputs
during the next clock cycle † ~SOi+1. An SET can occur on
any input/output wire. Note that SET subsumes the SEU
fault-model since any SEU of a cell can be caused by a SET
on its input line.



The DTR transformation consists of five steps (see Fig-
ure 3):

1. upsampling of the input stream;

2. substitution of each memory cell with a memory block ;

3. addition of a control block ;

4. addition of input buffers to all circuit primary inputs;

5. addition of output buffers to all circuit primary out-
puts.

Here, the combinational part of the circuit is kept un-
changed but ϕ(~ci) is computed twice. The results are com-

pared and, if an error is detected, ϕ(~ci) is recomputed the
third time. The input stream is upsampled two times. If
~pi represents the upsampled primary input bit vector of the
transformed circuit, it satisfied the following equalities:

∀i ∈ N∗. ~pi2i−1 = ~pi2i = ~PI i (2)

Each original memory cell is substituted with a memory
block that implements the time-redundant mechanism. The
memory blocks store the results of signal propagations but
they also save recovery bits (or checkpoint bits). As an
error-detection mechanism, a comparison takes place that,
in case of an error, leads to the use of the recovery bits to
rollback and re-execute. The control block takes the result of
comparisons as an input and provides several control signals
to schedule check-pointing and rollback. To prevent errors
from corrupting the input/output behavior, additional input
and output buffers are necessary. Input buffers store the
last two input vectors to provide the necessary information
for re-computation. During the re-computation, the control
block speedups the circuit which, in a few cycles, catches
up the state it should have had if no error had occurred.
Output buffers emit the previously recorded correct outputs
and filter out the corrupted data during the recovery process.

In the presented transformations, memory blocks, the con-
trol block, and the input/output buffers guarantee that the
circuit is fault tolerant, i.e., that an SET (within the fault-
model) cannot corrupt the primary outputs. Even errors
occurring directly at the primary outputs can be masked.
Our output buffers provide three redundant output wires
for each output of the original circuit, so the surrounding
circuit can also vote to mask errors.

The following sections present the transformation in de-
tails.

3. DOUBLE-TIME REDUNDANT
TRANSFORMATION

As we observed in Section 2, the circuit after DTR trans-
formation can be represented as in Figure 3. We describe the
new components of the DTR transformed circuit (marked
with green) hereafter.

3.1 DTR Memory Blocks
The memory block is depicted in Figure 4. It consists of

four memory cells:

• two cells d and d′ (the data bits) to save redundant
information for comparison; since the input stream is
upsampled twice, d and d′ contain the same value each
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Figure 3: Transformed circuit for DTR.

odd cycle; e.g., if the input stream leads to si1=u,
si2=u, ... then the pair (d, d′) will contain successively
the values (0, 0), (u, 0), (u, u), ... where the initial
values of the memory cells is supposed to be 0;

• two cells r and r′ (the recovery bits) with enable-input
to keep the value of the si input during four clock cy-
cles and to allow the rollback after an error detection.
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Figure 4: DTR Memory Block.

The DTR memory performs an error-detection compari-
son whose result is sent as a fail signal to the DTR control
block. As noted above, the comparison of d and d′ is mean-
ingful only during the odd cycles and so is the fail signal
which is read only at those cycles.

In addition to the data input signal (si in Figure 4), each
DTR memory block takes special global control signals save
and rollBack produced by the control block and used to
organize the circuit recovery after an error detection.

3.2 DTR Input Buffers
An input buffer is inserted at each primary input of the

original circuit to keep the two last bits of the input stream.
The buffer is implemented as a pipeline of two memory cells,
b and b′ as shown in Figure 5. The signal rB is raised by
the control block during the recovery process (Figure 7).

The cells b and b′ are used only during the recovery process
in order to re-execute the last two cycles. These bits are
provided to the combinational part instead of the bits from
the input streams. They also serve to store the inputs that
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Figure 5: DTR input buffer (pi primary input)

keep coming during those two cycles. During the recovery,
the vector ~ci consists of (i) the first part ~pi coming from the
input buffers and (ii) the second part ~so coming from the
rollbacked memory blocks. If the error is detected at cycle i,
then the rollback is performed at cycle i + 1 and the vector
~pi i−1⊕ ~soi−1 is provided to the combinational part (exactly
the input vector already supplied 2 cycles before).

From Eq. (2), we see that b and b′ represent two identical
(resp. distinct) upsampled bits at each odd (resp. even) clock

cycle: ~b2i−1 =~b′2i−1. Since the error detection occurs at odd
cycles, the recovery, which starts a cycle after, will read
two different inputs (i.e., not the same upsampled input)

from ~b and ~b′. This is consistent with the speedup of the
circuit during recovery. The behavior of input buffers during
recovery is illustrated in Section 3.6.

3.3 DTR Output Buffers
The error recovery procedure disturbs the vector stream

~co in comparison with the normal operating mode. To mask
this effect at the primary outputs, we insert a DTR output
buffer (Figure 6) before each primary output. They produce
correct outputs but introduce in normal mode a latency loss
of three clock cycles.
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Figure 6: DTR Output Buffer (co output of the com-
binational part.

The buffer is designed to be also fault-tolerant to any SET
occurring inside or at its outputs. To achieve this property,
the new primary outputs are triplicated (poA, poB , poC ).
The output buffers ensure that at least two out of them are
correct at each even cycle. The surrounding circuit can thus
read these outputs at even cycles and perform a vote to mask
any SET that may have occurred at the outputs. This is just
a possible implementation and a different design could be
used, e.g., with a fault-model excluding/disregarding errors
at the outputs or with different interface requirements.

Additional details about the behavior of output buffers
are provided in Section 3.6.

3.4 DTR Control Block
The control block is shown in Figure 3. The control

signals save, rollBack (for memory blocks), rB (for input
buffers), and subst (for output buffers) are generated to
support the transformed circuit functionality during normal
and recovery modes.

Control block takes as an input the error detection signal
fail (the disjunction of all memory blocks and output buffers
individual fail signals). The functionality of the control
block can be described as the Finite State Machine (FSM)
of Figure 7. States norm1 and norm2 compose the normal
mode which raises the save signal alternatively. When an
error is detected (i.e., fail = 1), the FSM enters the recovery
mode for 4 cycles and raises the corresponding signals.

Figure 7: FSM of the DTR control block: “
?
=” de-

notes a guard, “=” an assignment and signals absent
from an edge are set to 0.

The control block itself is protected against SETs using
TMR. Since its size (25 core cells) is negligible in comparison
with the rest of the circuit, its triplication almost does not
increase the hardware overhead (as confirmed by Figure 10).
Therefore, the only way to corrupt the global control signals
is by an SET outside the control block. This ensures that no
two global control signals can be corrupted simultaneously.

It would be tedious to explain separately all the possible
interactions of the control block with memory blocks and
buffers. Instead, we present in Sections 3.5 and 3.6 the two
operating modes of the DTR circuit: the normal mode (be-
fore a soft-error) and the recovery mode (after a soft-error).
Section 3.7, which examines all possible SETs, also clarifies
the mechanisms of the different components.

3.5 Normal Execution Mode
If no error is detected, the circuit is working in the normal

operating mode. During this mode, the signal rollBack is
always set to zero, while save is raised every even cycle:

save2i−1 = 0 and save2i = 1 (3)

Since save is the enable signal of r and r′, it organizes a
four-cycle delay from si to r ′ in normal mode. The internal
behavior of each DTR memory block in normal mode can



be described by the following equations:
rollBacki = 0
~si i = ~di+1 = ~d′i+2 = ~soi+2

~si2i = ~r2i+1 = ~r2i+2 = ~r′2i+3 = ~r′2i+4

save2i−1 = 0, save2i = 1

(4)

It is easy to show that the DTR circuit verifies the same
equalities as Eq. (1) for the original circuit:

~coi = ϕ(~ci i) ~ci i = ~pi i ⊕ ~soi ~coi = ~poi ⊕ ~si i (5)

From Eqs. (2), (4), and (5), we can derive two properties for
the normal operating mode. First, the output bit stream ~co
of the combinational part after the circuit transformation is
a double-time upsampling of the corresponding bit stream
~CO of the original circuit. Formally:

Property 1. ∀i ∈ N∗. ~co2i−1 = ~co2i = ~COi

Proof. We assume that the two cells d and d′ of each
memory block are initialized as the original cell, and there-
fore ~so1 = ~so2 = ~SO1. By Eqs. (1) and (5), we have
~co1 = ~co2 = ~CO1. The proof is then a simple induction
using Eqs. (1), (2), and (5).

Second, at each odd cycle, the outputs of the cells d and d′

are equal.

Property 2. ∀i ∈ N∗. ~d2i−1 = ~d′2i−1

Proof. At the first cycle (i=1), the property is true by
the same initialization hypothesis as above. Property 2 and
Eq. (5) entail that ~si2i−1 = ~si2i. By Eq. (4), we have:

~si2i = ~d2i+1 = ~d′2i+2

‖
~si2i−1 = ~d2i = ~d′2i+1

and thus, ∀i > 0, ~d2i+1 = ~d′2i+1, which is equivalent to ∀i >
1, ~d2i−1 = ~d′2i−1.

For error detection, we check the violation of Property 2
which is performed by the EQ comparator (Figure 4). If at
some odd cycle 2j − 1 the d and d′ cells of a memory block
differ, an error is detected and the fail signal will be raised
(fail2j−1 = 1). The circuit has to rollback to the correct

state stored in ~r′ and to re-compute the previous step. The
rollback is performed by propagating ~r′ to ~so. From Eq. (4),
we can derive the following equation:

~r′2j−1 = ~r′2j = ~si2j−4 (6)

Eq. (6) means that, at the moment of an error detection
(and at the next clock cycle), the recovery bit r′ is set to
the value of the input signal si 3 cycles before. It will be
shown in Section 3.7 that all recovery bits contain correct
values when an error is detected (i.e., an error in the data

bits never corrupts ~r′).

3.6 Recovery Execution Mode
If an error has been detected, the circuit performs a roll-

back followed by three consecutive cycles during which the
double time redundancy mechanism is switched-off. These
steps are implemented by a sequence of signals (save, rollBack ,
subst , and rB) produced by the control block.

The left part of Table 3.5 (in white) shows the values of
bit vectors in the transformed circuit cycle by cycle when an

error is detected at clock cycle i. The behavior of the circuit
in normal mode (when no error occurs) is shown in the right
part (in gray). Recall that, in the normal mode, the vector
~ci at cycle i is such that ~ci i = ~pi i ⊕ ~soi = ~pi i ⊕ ~si i−2. The
principle of the rollback mechanism is that the DTR memory
blocks re-inject the last correct saved state (the ~si vector)
while the DTR input buffers will re-inject the corresponding
primary input (the ~pi component).

At the clock cycle (i + 1) following an error detection,

the recovery starts and the correct state represented by ~r′

is pushed through ~so. Consequently, ~soi+1 = ~r′i+1 = ~si i−3

instead of the expected ~si i−1 in the normal mode. Thus,
the second component of ~ci i+1 is ~si i−3. The primary in-
put vector is also replaced by the vector kept in the input
buffers; that is, at the i+ 1 cycle ~pi i+1 is replaced by ~pi i−1.
Recall that, during recovery, the circuit is working with the
throughput of the original circuit, which is twice higher than
in the normal mode. In particular, during the cycles i + 2,

i+3, and i+4, ~d propagates directly through the ~so outputs

of each memory block, bypassing the memory cells ~d′. This
is implemented by raising rollBack and lowering save which
control the muxA and muxB multiplexers appropriately in
each memory block. This is safe since the SET (1 ,K ) fault-
model guarantees that no additional error can occur just
after a SET.

Consider cycle i+2: the second component of ~ci i+2 is ~si i−1

(~si i−2, which is identical to ~si i−1, has been skipped). Sim-

ilarly, the primary input vector is replaced by ~pi i+1, since,

in the input buffers, ~b′i+2 = ~pi i and ~pi i+1 = ~pi i. It follows

that ~ci i+1 = ~pi i−1 ⊕ ~si i−3 and ~ci i+2 = ~pi i+1 ⊕ ~si i−1.
Let us look more closely at how an error propagates and

how it is masked. The error ~di 6= ~d′i detected at cycle i does

not indicate which of ~d or ~d′ is corrupted. The fault-model
only guarantees that their simultaneous corruption is not
possible. We consider both of them as potentially corrupted
and the † and ‡ marks indicate the two possible bit vector
corruptions. We track the error propagation cycle by cycle
based on data dependencies between vectors as shown in
Table 3.5.

Case #1: If ~d′i contains a corrupted value †~si i−2, it con-
taminates ~ci i. Since this input bit vector is corrupted, the
outputs of the combinational circuit can be corrupted as well

as ~di+1 that latches †~si i. This corrupted value propagates

to ~d′, so ~d′i+2 =†~si i. Since ~d′ is bypassed and ~d propagates
directly through the wires ~so, the error at †~si i is logically
masked at muxB by rollBack , which is raised during 4 cycles
after the error detection.

Case #2: If ~di contains a corrupted value ‡~si i−1, it will

propagate to ~d′ and ~d′i+1 = ‡~si i−1. Since ‡~si i−1 has been

latched by ~d and ~r at the same clock cycle, ~ri is also cor-
rupted: ~ri = ‡~si i−1. When rollback happens at cycle i + 1,
~r propagates to ~r′ and remains in ~r′ until the next raised
save. The save signal is raised only 5 cycles after the error-
detection, when rollBack is lowered again. As a result, any
error in ~r′i+5 will be re-written with a new correct data
and cannot propagate through signals ~so due to the logical
masking by rollBack =0 at muxB .

All corrupted signals disappear from the circuit state within
6 clock cycles after an error detection. The whole circuit re-
turns to a correct state within 8 cycles. As it is shown in



Table 3.5: Recovery process in DTR circuits.

clk ~pi ~b ~b′ ~ci ~d ~d′ ~r ~r ′ f sa ro ~ci ~d ~d′ ~r ~r ′

i− 3 ~pi i−3
~pi i−4

~pi i−5
~pi i−3 ⊕ ~si i−5 ~si i−4 ~si i−5 ~si i−5 ~si i−7 ? 1 0 ~pi i−3 ⊕ ~si i−5 ~si i−4 ~si i−5 ~si i−5 ~si i−7

i− 2 ~pi i−2
~pi i−3

~pi i−4
~pi i−2 ⊕ ~si i−4 ~si i−3 ~si i−4 ~si i−3 ~si i−5 0 0 0 ~pi i−2 ⊕ ~si i−4 ~si i−3 ~si i−4 ~si i−3 ~si i−5

i− 1 ~pi i−1
~pi i−2

~pi i−3
~pi i−1 ⊕ ~si i−3 ~si i−2 ~si i−3 ~si i−3 ~si i−5 ? 1 0 ~pi i−1 ⊕ ~si i−3 ~si i−2 ~si i−3 ~si i−3 ~si i−5

i ~pi i ~pi i−1
~pi i−2

~pi i ⊕ †~si i−2 ‡~si i−1 †~si i−2 ‡~si i−1 ~si i−3 1 0 0 ~pi i ⊕ ~si i−2 ~si i−1 ~si i−2 ~si i−1 ~si i−3

i + 1 ~pi i+1
~pi i ~pi i−1

~pi i−1 ⊕ ~si i−3 †~si i ‡~si i−1 ‡~si i−1 ~si i−3 ? 1 1 ~pi i+1 ⊕ ~si i−1 ~si i ~si i−1 ~si i−1 ~si i−3

i + 2 ~pi i+2
~pi i+1

~pi i ~pi i+1 ⊕ ~si i−1 ~si i−1 †~si i ~si i−1 ‡~si i−1 ? 0 1 ~pi i+2 ⊕ ~si i ~si i+1 ~si i ~si i+1 ~si i−1

i + 3 ~pi i+3
~pi i+2

~pi i+1
~pi i+3 ⊕ ~si i+1 ~si i+1 ~si i−1 ~si i−1 ‡~si i−1 ? 0 1 ~pi i+3 ⊕ ~si i+1 ~si i+2 ~si i+1 ~si i+1 ~si i−1

i + 4 ~pi i+4
~pi i+3

~pi i+2
~pi i+4 ⊕ ~si i+3 ~si i+3 ~si i+1 ~si i−1 ‡~si i−1 ? 0 1 ~pi i+4 ⊕ ~si i+2 ~si i+3 ~si i+2 ~si i+3 ~si i+1

i + 5 ~pi i+5
~pi i+4

~pi i+3
~pi i+5 ⊕ ~si i+3 ~si i+4 ~si i+3 ~si i−1 ‡~si i−1 ? 1 0 ~pi i+5 ⊕ ~si i+3 ~si i+4 ~si i+3 ~si i+3 ~si i+1

i + 6 ~pi i+6
~pi i+5

~pi i+4
~pi i+6 ⊕ ~si i+4 ~si i+5 ~si i+4 ~si i+5 ~si i−1 0 0 0 ~pi i+6 ⊕ ~si i+4 ~si i+5 ~si i+4 ~si i+5 ~si i+3

i + 7 ~pi i+7
~pi i+6

~pi i+5
~pi i+7 ⊕ ~si i+5 ~si i+6 ~si i+5 ~si i+5 ~si i−1 ? 1 0 ~pi i+7 ⊕ ~si i+5 ~si i+6 ~si i+5 ~si i+5 ~si i+3

i + 8 ~pi i+8
~pi i+7

~pi i+6
~pi i+8 ⊕ ~si i+6 ~si i+7 ~si i+6 ~si i+7 ~si i+5 0 0 0 ~pi i+8 ⊕ ~si i+6 ~si i+7 ~si i+6 ~si i+7 ~si i+5

† = ‡ but for two mutually-exclusive error propagation cases
f :fail; sa:save; ro:rollBack

the next section, the error detection occurs at worst 2 cycles
later after an SET.

Table 3.6 represents the behavior of output buffers in the
same situation (i.e., the recovery procedure when an error
is detected at cycle i). The signal names correspond to Fig-
ure 6.

We investigate all possible SETs in the next section.

3.7 Fault Tolerance Guarantees
Hereafter, we check all possible SET insertion cases. We

write j to denote the clock cycle where the SET occurs. The
causal relationship is written as “→”.

1 An SET in ~ci , ~si , the rollBack signal, the internal wire

dA′, or the combinational part ϕ may lead to †~d and †~r.

During odd cycles, the simultaneous corruption of ~d and ~r
is not possible since the save signal logically masks SET
propagation towards r memory cell. As a result, there are
two cases:

1. †~dj+1; if j = 2i−1. If ~d has been corrupted by an SET
in the preceding combinational circuit, an error will be
detected by the comparator within the next two cycles.

fail j+2 = 1 since ~dj+2 is calculated correctly. Since ~r′

is correct, the recovery will return the circuit to its
correct state.

2. †~dj+1 ∧ †~rj+1; if j = 2i. In this case, we must check

that the error is detected before reaching ~r′. Actually,
the error will be detected at the next (odd) clock cycle

after an error occurrence: fail j+1 = 1. But ~r′ keeps
its correct value because savej+1 = 0. The recovery

process starts at cycle j + 2, re-writing the correct ~r′

with a possible corrupted data, but in the same cycle
~r′j+2 outputs a correct value that rollbacks the circuit
to a correct state.

2 Consider the following SETs: †savej , †~rj , †~r′j , † ~muj ,

† siBj and † ~dC j , which may result in the corruption of
the pipeline r − r ′ (see Figure 4). Such corruption is not
detected by the comparator and cannot propagate to the
data bits. It disappears a few cycles later at muxB by

rollBack =0. So, this failure is masked.

3 An SET during an odd clock cycle at the fail line possi-
bly leads to spurious error detection followed by a recovery.
But ~r′j+1 is valid and the recovery will be performed cor-
rectly. During even clock cycles, an SET at the fail line
remains silent since, at these cycles, a fail is ignored by the
control block.

4 An SET at the output signal of d′ may lead to three
different cases:

1. †~d′j → † ~soj → †ϕj , which is equivalent to case 1 ;

2. †~d′j → † ~failj , which is equivalent to case 3 ;

3. †~d′j → †ϕj ∧ † ~failj i.e., a simultaneous corruption of
combinational circuit and a fail signal. The recovery
process starts at the next clock cycle j + 1 using the
correct ~r′j+1.

5 An SET at the output signal of d may lead to the
corruption of dA, dB , and/or dC (see Figure 4). First, a
corruption of dC will always be masked regardless of the
possible common corruptions of dA or dB . Indeed, if dC is
corrupted, then the propagation/corruption will be masked
by muxB since rollBack = 0 (a simultaneous corruption is
impossible). Five other cases must be considered:

• If the error propagates to dA (but not dB) and is
latched by d′ during an even cycle, then an error will
be detected at the next odd cycle j + 1 and will be
masked as in case 1 ;

• If the error propagates to dA (but not dB) and is
latched by d′ during an odd cycle, then it is equiva-
lent to a corruption of the combinational circuit one
clock cycle after the latch. It will be masked as in
case 1 ;

• If the error propagates to dA and dB and corrupts d′

and fail at an even cycle, then we are back to the first
case above; indeed, the control block reads fail only
at odd cycles and the corruption of fail will not be
considered;



Table 3.6: Recovery Process: Input/Output Buffers Reaction for an Error Detection at Cycle i

clk ~pi ~ci ~o ~o′ ~o′′ ~poA/B/C fail sav ro rB sub ~o ~o′ ~o′′ ~poA/B/C

i− 3 ~pi i−3
~pi i−3 ⊕ ~si i−5 ~coi−4 ~coi−5 ~coi−6 ~coi−5 ? 1 0 0 0 ~coi−4 ~coi−5 ~coi−6 ~coi−5 = ~coi−6

i− 2 ~pi i−2
~pi i−2 ⊕ ~si i−4 ~coi−3 ~coi−4 ~coi−5 ignore 0 0 0 0 0 ~coi−3 ~coi−4 ~coi−5 ignore

i− 1 ~pi i−1
~pi i−1 ⊕ ~si i−3 ~coi−2 ~coi−3 ~coi−4 ~coi−3 ? 1 0 0 0 ~coi−2 ~coi−3 ~coi−4 ~coi−3 = ~coi−4

i ~pi i ~pi i ⊕ †~si i−2 ‡ ~coi−1 ‡ ~coi−2 ~coi−3 ignore 1 0 0 0 0 ~coi−1 ~coi−2 ~coi−3 ignore

i + 1 ~pi i+1
~pi i−1 ⊕ ~si i−3 † ~coi ‡ ~coi−1 ‡ ~coi−2 ~coi−1 (←) ? 1 1 1 1 ~coi ~coi−1 ~coi−2 ~coi−1 = ~coi−2

i + 2 ~pi i+2
~pi i+1 ⊕ ~si i−1 ~coi−1 † ~coi ‡ ~coi−1 ignore ? 0 1 1 1 ~coi+1 ~coi ~coi−1 ignore

i + 3 ~pi i+3
~pi i+3 ⊕ ~si i+1 ~coi+1 ~coi−1 † ~coi ~coi+1 (←) ? 0 1 0 1 ~coi+2 ~coi+1 ~coi ~coi+1 = ~coi

i + 4 ~pi i+4
~pi i+4 ⊕ ~si i+3 ~coi+3 ~coi+1 ~coi−1 ignore ? 0 1 0 0 ~coi+3 ~coi+2 ~coi+1 ignore

i + 5 ~pi i+5
~pi i+5 ⊕ ~si i+3 ~coi+4 ~coi+3 ~coi+1 ~coi+3 ? 1 0 0 0 ~coi+4 ~coi+3 ~coi+2 ~coi+3 = ~coi+2

i + 6 ~pi i+6
~pi i+6 ⊕ ~si i+4 ~coi+5 ~coi+4 ~coi+3 ignore 0 0 0 0 0 ~coi+5 ~coi+4 ~coi+3 ignore

i + 7 ~pi i+7
~pi i+7 ⊕ ~si i+5 ~coi+6 ~coi+5 ~coi+4 ~coi+5 ? 1 0 0 0 ~coi+6 ~coi+5 ~coi+4 ~coi+5 = ~coi+4

i + 8 ~pi i+8
~pi i+8 ⊕ ~si i+6 ~coi+7 ~coi+6 ~coi+5 ignore 0 0 0 0 0 ~coi+7 ~coi+6 ~coi+5 ignore

‡ = † but for two error-detection cases: ‡ - detection in Output Buffer; † - detection in a preceding Memory Block
(←) - data substitution performed by multiplixers muxA, muxB, muxC, muxD

sav - save; ro - rollBack; sub - subst

• If the error propagates to dA and dB and corrupts d′

and fail at an odd cycle, then the recovery starts at the
next clock cycle using the correct ~r′ and disregarding

the corrupted ~d′;

• If the error propagates to dB (but not dA), it may
corrupt the fail signal and it is masked as in case 3 .

An SET in the control block is fixed within one clock
cycle since it is protected by TMR. The hardware overhead
of TMR for this modest sub-circuit is small.

An SET may also occur in input buffers, in particular in
the memory cells b and b′ (see Figure 5). Such an error will
be logically masked within two clock cycles by the signal
rB =0 at the multiplexer.

The most critical SET is the one that may occur at the
primary input signals ~pi and is latched both by the memory
blocks and the input buffers. Double-redundancy can detect
the error but it has no way to replay the input signal. Such
an SET can be masked only if a surrounding circuit can read
the fail signal from the DTR circuit and provide a third copy
of ~pi . Here, we do not enforce such a requirement on the
surrounding circuit and consider that the fault-model forbids
the corruption of the primary inputs.

An SET occurring just before an output buffer at ~co (see
Figure 6) will be detected by the comparator (like in mem-
ory blocks). The error will be masked at multiplexers muxA,
muxB , or muxC . The structure of the output buffer provides
an isolation for the pipelines o− o′− o′′ and p− p′, which in
turn guarantees that at least two memory cells among o′, o′′,
and p′ are correct during all even clock cycles. The new pri-
mary outputs, poA, poB , and poC , are identical during all
even clock cycles if no SET occurs, and only one can differ
from the others if an SET occurs. This fault-tolerance prop-
erty still holds even if one of the control signals (rollBack,
subst, or save) is corrupted by an SET. Furthermore, using
three outputs, as in TMR, gives the surrounding circuit the
capability to mask (by voting) any error occurring at the
primary outputs.
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Figure 8: Circuit size (in core cells) after transfor-
mation (large circuits).

4. EXPERIMENTAL RESULTS
The proposed DTR transformation has been applied to

the ITC ’99 benchmark suite [9]. We considered two trans-
formations: full TMR (i.e., with triplicated voters after each
memory cell) and DTR as described before. Each trans-
formed circuit was synthesized for FPGA using Synplify Pro
without any optimization (resource sharing, FSM optimiza-
tion, etc.). We have chosen flash-based ProASIC3 FPGA
family as a synthesis target. Its configuration memory is im-
mune to soft-errors [7] and data memory is protected with
one of the above transformations.

The circuits are sorted according to the number of core
cells of the original circuit after synthesis. Figures 8 shows
the results for the largest circuits and 9 shows the results
for the smallest ones.

The DTR circuits require significantly less hardware for
almost all circuits of the suite. Since the technique re-
uses the combinational part, hardware benefits are grow-
ing with the size of the combinational part. The constant
hardware cost of the supporting mechanisms (control block,
input/output buffers) becomes negligible when the size of
the original circuit is large enough.

Figure 8 shows that the DTR circuits are 1.39 to 2.1 times
larger than the original ones. For comparison, TMR circuits
are 3.3 to 3.9 larger than the original ones. The largest
hardware overhead for all circuit transformations has been
observed for b12 circuit, a game controller with 121 memory



cells [9]. The TMR and DTR version of b12 are respectively
3.9 and 2.1 times larger than the original circuit.
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Figure 9: Circuit size after transformation (small
circuits).

Figure 9 shows that, for the majority of the smallest cir-
cuits (< 100 memory cells), DTR still have less hardware
overhead than TMR. But this benefit is negated for the tiny
circuits b01, b02, and b06 (< 10 memory cells) due to the
hardware overhead of the control block and input/output
buffers. For such small circuits, TMR is clearly a better
option.
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Figure 10: Transformed circuits profiling (for b17).

Figure 10 demonstrates why DTR transformation has sig-
nificantly less hardware overhead compared to TMR. The
synthesized circuit b17 (first bar) consists of a large combi-
national part (bottom part: 17240 core cells) and a small
sequential part (top part: 1415 core cells). In the TMR ver-
sion of b17 (second bar) the triplicated combinational part is
dominant. The triplicated voters after each memory cell (for
protection against SET) occupy 14.5% of the whole circuit.
The DTR circuit (third bar) reuses the combinational part,
so its size stays the same. The hardware cost of the DTR
control block, input and output buffers is negligible (only
0.05% of all needed hardware resources). As a result, after
DTR transformation, the circtuit occupies 153% of its orig-
inal size (hardware overhead = 53%) whereas, after TMR,
it takes 350% (harware overhead = 250%). The overhead of
DTR is 4.7 times smaller than TMR for b17 and between 2.7
to 6.1 times smaller for the whole ITC ’99 benchmark suite.

Although DTR has a significantly smaller hardware over-
head than TMR it decreases the circuit throughput. Indeed,
since the technique requires the input streams to be upsam-
pled, the throughput of the transformed circuit is at least

divided by two. Figure 11 shows the ratio of the trans-
formed circuit throughput w.r.t. the corresponding original
throughput for the ITC’99 benchmark suite (sorted left to
right w.r.t. the size of the original circuit). Throughput is
defined as the number of significant bits (i.e., those not cre-
ated by the upsampling) processed per time unit. Besides
the upsampling, the DTR transformation influences by itself
(as well as TMR) the circuit maximum frequency, which also
changes the final throughput. In particular, the maximum
synthesizable frequency after DTR transformation reaches
∼75% of the original frequency for small circuits (for TMR
it is ∼77% ) and ∼92% for large circuits (for TMR it is
∼93%).

TMR voters clearly slow down the circuit: the decrease of
throughput varies from 3–10% for large circuits (e.g., b17,
b20 − b22) to 25–35% for small ones (e.g., b02, b06, b03).
In the best case, the throughput of DTR circuits can reach
50% of the original circuit due to the double upsampling of
inputs. The control block and the multiplexers in memory
blocks also introduce a small extra overhead. For large cir-
cuits, the throughput is 40–50% of the original, while for
small circuits it drops to 30–40%.

5. RELATED WORK
The principles of time-redundancy, check-pointing and roll-

back have been implemented in various methods. However,
the existing schemes are either ASIC-oriented requiring a
strong control on the clock lines, or do not tolerate SETs.

An application-oriented use of time-redundancy can be
found in fault-tolerant designs of arithmetic units [10, 11]
and CPUs [12, 13]. In the former case, the regularity of an
arithmetic operation is used to organize an optimized unit
architecture with error-detection and error-masking charac-
teristics. For ASICs, the hardware overhead (up to 72%) and
the throughput overhead (up to 19%) depend on the num-
ber of bits of the operation. These techniques are limited to
specific application domains. In the latter case, a CPU is
reorganized so that it executes each instruction twice with
a further comparison and a rollback upon an error detec-
tion in order to self-recover [12]. The hardware overhead
for FPGAs is 50-60% with only 79% of fault coverage (the
performance penalty is not indicated). Time-redundancy is
used at a higher level in [13]: the thread level. Time over-
head is stated to be 30% while fault-coverage is not given.
In both cases, these techniques, dedicated to CPUs, require
the knowledge of the macro-architecture and do not guar-
anty full error masking.

Some ASIC-oriented time-redundant techniques rely on
latching-window masking when an SET glitch is not latched
by memory cells, since it does not satisfy setup and hold
time conditions. Nicolaidis et al. [14, 15] present such an
approach with a hardware overhead of 20-50% and 97-100%
error-detection efficiency. The performance overhead is com-
parable to the one of TMR. A similar technique has been
presented in [16] for SRAM-based FPGAs. However, no in-
dication is given about its throughput overhead and nor how
to organize three independent clock lines shifted relatively
to each other to guarantee SETs masking. The latching-
window principle is commonly used in ASIC CPU pipelines
[17–19]. A “shadow” latch with its own clock line is at-
tached to each original memory cell to create an error de-
tection mechanism through time properties tuning. Being
developed to tolerate soft-errors to organize a safe voltage
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Figure 11: Throughput ratio of TMR, and DTR transformed circuits.

scaling, these techniques have a performance penalty as little
as 3% providing near 100% fault-masking. However, all the
mentioned restrictions (precise time properties tunings, ad-
ditional clock lines, pipelined architecture) prevent the use
of these approaches for FPGAs, where special circuitries to
implement these techniques are not normally available.

General check-pointing/rollback techniques have been pro-
posed in [20, 21]. As in our technique, it is implemented
using a micro-architectural transformation. However, the
resulting circuit is tolerant to SEUs but not SETs, regard-
less of the error detection mechanism used. Indeed, an SET
may corrupt both a cell (i.e., the current state) and its copy
(i.e., its check-point). As a result, when an error is detected,
the rollback may return the circuit to an incorrect state. Our
implementation excludes such behavior, because an error is
always detected before a potentially corrupted image (con-
tained in r cells, see Fig. 4) propagates to the checkpoints
(represented by r′ cells).

A Synplicity Inc. patent [22] shows how time-redundancy
can be implemented through a time-multiplexed combinato-
rial circuit. This technique is close to ours in that it replaces
all memory cells by a circuit similar to our memory block.
However, it does not mask all possible SETs and uses triple
(or higher) time redundancy. Using micro-level checkpoint-
ing/rollback (as well as a speedup mode and IO buffers),
we can implement stronger fault-tolerance guarantees using
double-time redundancy only.

6. CONCLUSION
We proposed a novel and general logic-level circuit trans-

formation to automatically introduce time-redundancy for
fault-tolerance in digital circuits. Our DTR technique guar-
antees that the transformed circuits are tolerant towards any
SET (a fortiori SEU) with no influence on output streams,
provided that errors occur less frequently than one every 10
clock cycles. The DTR transformation is formally provable
which is important for safety-critical systems. Our approach
is technologically independent, does not require any specific
hardware support, and is suitable for stream processing.

The technique is based on the time-redundancy principle
where a combinational circuit is time-multiplexed. Our ap-
proach associates in a new way several techniques: double-
time redundancy, error detection, micro-level checkpoint-
ing/rollback, a speedup mode, and input/output buffers.

The transformations substitute the original memory cells
with a small circuit (a memory block), which introduces a
time-redundant masking mechanism in an automatic man-
ner.

In order to verify the fault-tolerance of the transformed
circuit, we exhaustively checked all possible occurrences of
SETs. We have applied the proposed transformations to the
ITC′99 benchmark suite. Experimental results for flash-
based FPGA synthesis show that the hardware overhead of
DTR is 2.7 to 6.1 times smaller compared to TMR. It makes
the overall size of DTR circuits 1.9 to 2.5 times smaller than
TMR for circuits with more than 100 memory cells. DTR is
less beneficial for small circuits (less than 100 memory cells
and small combinational logic).

Such significant hardware reduction has been achieved
with a trade-off on the transformed circuit’s throughput.
The throughput of a DTR circuit is 50–55% of the corre-
sponding TMR circuit throughput. However, other existing
time-redundant error-correcting techniques implementable
in COTS FPGAs have higher throughput loss. However,
the proposed technique is harder to apply selectively to sub-
circuit as it can be done with TMR. The input/output streams
up-sampling may lead to adjustments of surrounding cir-
cuits.

Our transformation is an alternative to TMR for any logic
intensive circuits where hardware overhead takes precedence
over throughput. As in software, hardware time redun-
dancy is only suited to applications that do not require high
throughput. A particular target is flash-based FPGA de-
signs (where hardware size is crucial) for embedded systems
used in safety critical domains (e.g., physical-device con-
trollers, power supply sequencers, crypto cores). Existing
FPGA synthesis tools can easily be enriched with our DTR
technique.

An easy extension to DTR allows the surrounding circuit
to switch off time redundancy (as the control block does in
the recovery phase). This feature permits to dynamically
and temporarily give up fault-tolerance and speed up the
circuit. The motivations for such changes can be based on
the observed change in radiation environment or the pro-
cessing of (non)critical data.

In addition, DTR introduces new pipelined cells which
may allow optimizations using retiming. In particular, mem-



ory cells r and d might be moved into the combinatorial
circuit to break its critical path.

In this paper, we did not consider SETs on the clock line.
DTR could be made tolerant to this kind of faults by us-
ing two independent and synchronous clocks. They would
be used to prevent the simultaneous corruption of particu-
lar memory cells and guarantee error detection and proper
recovery. For instance, memory cells (d, d′) should use two
different clocks to avoid their simultaneous corruption that
would prohibit error-detection.

Finally, even if we have manually checked all possible oc-
currences of SETs and performed fault-insertions on a few
transformed circuits with the ModelSim simulator, a me-
chanically checked proof is necessary for a complete assur-
ance. We have started the formal certification of such trans-
formations using the Coq proof assistant [23]. We describe
program transformations on a simple gate-level hardware
description language and the fault-model is described in the
operational semantics of the language. The main theorem
states that, for any circuit, for any input stream and for
any SET allowed by the fault-model, its transformed ver-
sion produces a correct output. We have already used this
approach to prove the correctness of transformations imple-
menting TMR and triple time redundancy. At the time of
writing, the proof of the DTR transformation is in progress.
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