
Consistency checking for multiple view

software architectures∗

Pascal Fradet, Daniel Le Métayer, and Michaël Périn

Irisa/Inria
Campus de Beaulieu, 35042 Rennes Cedex, France

{fradet,lemetayer,mperin}@irisa.fr

Abstract. Consistency is a major issue that must be properly addressed
when considering multiple view architectures. In this paper, we provide
a formal definition of views expressed graphically using diagrams with
multiplicities and propose a simple algorithm to check the consistency of
diagrams. We also put forward a simple language of constraints to ex-
press more precise (intra-view and inter-view) consistency requirements.
We sketch a complete decision procedure to decide whether diagrams
satisfy a given constraint expressed in this language. Our framework is
illustrated with excerpts of a case study: the specification of the archi-
tecture of a train control system.

1 Multiple views: significance and problems

Because software must satisfy a variety of requirements of different natures,
most development methods or notations include a notion of software view. For
example, rm-odp descriptions [2] include five viewpoints (enterprise, informa-
tion, computational, engineering, and technology); uml [15] is defined in terms
of a collection of diagrams such as static structure, statechart, component and
deployment diagrams. However, these methods do not have a mathematical ba-
sis. As a consequence, some of their notations may be interpreted in different
ways by different people. Another drawback of this lack of formalization is the
fact that it is impossible to reason about the consistency of the views. As we
will see later, it is quite easy to define views that are in fact inconsistent (either
internally or because of contradictory constraints on their relationships).

The relevance of the notion of view for software architectures has already been
advocated in [12] but, to the best of our knowledge, no existing formally based
architecture description language really supports the notion of multiple views.
The key technical issue raised by multiple view architectures is consistency. In
order to be able to reason about consistency, it is necessary to provide a formal
definition of the views and their relationships. This is precisely the objective
of this paper, with the additional challenge to design an automatic method for
multiple view consistency checking.

We see a software architecture as a specification of the global organization of
software involving components and connections between them. Components and

∗To be published in Proc. of ESEC/FSE’99, LNCS series c© Springer-Verlag

2

connections are associated with attributes whose nature depends on the property
of interest. Most papers published in the area of software architectures have
focused on attributes related to communication and synchronization [1, 11, 4]. In
this paper, we focus on structural properties and we consider only simple, type-
like attributes. This context is sufficient both to express interesting properties
and to raise non-trivial consistency issues that must be properly addressed before
considering more sophisticated attributes.

In order to avoid introducing a new language, we start in Section 2 from
diagrams, a graphical representation which is reminiscent of notations such as
uml. We justify the use of diagrams in the context of software architectures and
define their semantics as sets of graphs. This notation does not prevent us from
defining (either internally or mutually) inconsistent views. A simple algorithm is
proposed to check the consistency of diagrams. Section 3 illustrates the frame-
work with a brief account of a case study conducted in collaboration with the
Signaal company. The goal of the study was the specification of the architecture
of a train control system involving a variety of functional and non functional
requirements. We provide excerpts of some of the views that turned out to be
relevant in this context. Diagrams themselves express in a natural way structural
constraints on the views but it is desirable to be able to express more sophis-
ticated constraints on views. In section 4, we put forward a simple language
of constraints to express more precise (intra-view and inter-view) consistency
requirements. We sketch a complete decision procedure to decide whether dia-
grams satisfy the constraints expressed in this language. Section 5 compares our
approach with related work and suggests some avenues for further research.

2 Diagrams: notation, semantics and consistency

In this section, we provide a formal definition of diagrams and study their con-
sistency. Their use to describe software architecture views is illustrated in the
next section.

2.1 Graphical notation

As mentioned in [1], software architectures have been used by developers for a
long time, but in a very informal way, just as “box and line drawings”. Typically,
such drawings cannot be used to detect potential inconsistencies of the archi-
tecture in a systematic way or to enforce the conformance of the constructed
software with respect to the architecture. It is the case however that some con-
ventions have emerged for the graphical representation of software views in the
area of development methods. These graphical notations were not proposed orig-
inally to describe software architectures in the accepted sense of the word (e.g.
they do not include provision for defining the behavior of connectors or compo-
nent interfaces). However, they are rich enough to be considered as a good basis
for the specification of the overall organization of a software. So, rather than
crafting a language of our own, we decided to use a graphical notation already

3

familiar to many developers. A diagram is a collection of nodes and edges with
multiplicities, in the spirit of uml class diagrams. Figure 1 provides an example
of a diagram.

A
1

∗
α

B1

1

β

C
1 1δ

D

1..∗

1
γ

Fig. 1. A diagram

Nodes (A, B, C, D in Figure 1) are connected via directed edges. An edge
bears a type (α, β, γ, δ in Figure 1) and an interval over the natural numbers
(called a multiplicity) at each end. The intervals [i, j], [i, i], [i,∞[and [0,∞[are
noted i..j, i, i..∗, and ∗ respectively.

Such a diagram represents in fact a class of graphs (called instance graphs).
Each node and edge in a diagram may represent several nodes and edges in an
instance graph. The role of multiplicities is to impose constraints on the number
of connected instance nodes. More precisely, an edge A

I α J−−−→B specifies that
each instance a of A is connected via outcoming α-edges to ja (ja ∈ J) instances
of B, whereas each instance b of B is connected via incoming α-edges to ib
(ib ∈ I) instances of A. For example, the graphs of Figure 2 are valid instances
of the diagram of Figure 1:

a1
α α

b1
β

b2
β

c1
δ

d1

γ

c2
δ

d2

γ

a1
α α

b1
β

b2
β

c1

δ

d1

γ

c2
δ

d2

γ

(a) (b)

Fig. 2. Instance graphs

2.2 Semantics

In order to be able to reason about diagrams, we provide a formalization of
the intuitive definition suggested above. Formally, a diagram is represented by
a structure 〈Ng, Eg, ms, md〉 called a generic graph where:

4

– Ng ⊂ N is a finite set of typed nodes1 (N denotes the domain of nodes).
– Eg ⊂ N×Te×N is a finite set of typed edges (the set Te denotes the domain

of edge types). If (A, α, B) ∈ Eg then A ∈ Ng and B ∈ Ng; A is called the
source node and B the destination node.

– ms, md : N × Te × N → I − [0, 0] are functions mapping each edge to the
multiplicities associated with the source and destination nodes respectively.
I is the set of (non empty) intervals over Nat. Like uml, we disallow null
multiplicities ([0, 0]).

The instances of a generic graph are graphs 〈Ni, Ei〉 where Ni ⊂ N is the
set of instance nodes and Ei ⊂ N × Te ×N is the set of instance edges.

Sem(Gg) = {Gi | ∃Class : Ni 7→ Ng, Gg
Class
⇀↽ Gi}

where 〈Ng, Eg,ms, md〉
Class
⇀↽ 〈Ni, Ei〉 iff:

∀A ∈ Ng. ∃a ∈ Ni. Class(a) = A (1)

∀E = (A,α, B) ∈ Eg. ∀a ∈ Ni.

Class(a) = A ⇒ Card{b | Class(b) = B ∧ (a,α, b) ∈ Ei} ∈ md(E)
(2)

∀E = (A, α, B) ∈ Eg. ∀b ∈ Ni.

Class(b) = B ⇒ Card{a | Class(a) = A ∧ (a, α, b) ∈ Ei} ∈ ms(E)
(3)

∀a, b ∈ Ni. Class(a) = A ∧ Class(b) = B ∧ (A, α, B) /∈ Eg ⇒ (a, α, b) /∈ Ei (4)

Fig. 3. Semantics of generic graphs

Figure 3 describes the semantics of a generic graph as the set of instance
graphs respecting the multiplicities and type constraints. A graph Gi is a valid
instance of Gg if and only if there exists a total function Class mapping instance
nodes to their generic node such that four conditions hold. The first condition
enforces that each generic node has at least one instance. The two other condi-
tions enforce the multiplicity constraints as described before. The last condition
expresses the fact that all the typed edges allowed in instance graphs are those
described in the generic graph.

2.3 Consistency checking

It is important to realize that a diagram can represent an empty set of graphs.
In this case, we say that the diagram is inconsistent.

Definition 1 Consistent(Gg) ≡ Sem(Gg) 6= ∅

For example, the diagram A
2 1α

B
11 β

is inconsistent. The reason lies

1 Node types do not play any role in this section. They are used to distinguish different
kinds of entities in diagrams defining software architecture views (Section 3).

5

in the contradiction in the specification of multiplicities: the multiplicities of
the α-edge imply that there must be two instances of A for each instance of
B whereas the multiplicities of the β-edge imply that there must be a single
instance of A for each instance of B.

In this case, inconsistency may look obvious but it is not always easy to
detect contradictions in more complex diagrams. Fortunately, consistency can
be reduced to the satisfiability of a system of linear inequalities. This system is
derived from the generic graph, using the formula described in Figure 4.

Sat(〈Ng, Eg,ms, md〉) = ∃{xN ≥ 1}N∈Ng such that

∧
E=(A,α,B)∈Eg




xA ≥ iA
xB ≥ iB
xA jB ≥ xB iA
xB jA ≥ xA iB

where
[iA, jA] = ms(E)
[iB , jB] = md(E)

Fig. 4. Consistency as integer constraint solving

In Figure 4, a variable xN represents the number of instances of a generic
node N . The semantics enforces that each node has at least one instance so each
variable xN must satisfy the constraint xN ≥ 1. Furthermore, for each generic
edge

A
[iA,jA] α [iB ,jB]−−−−−−−−−−−−→B

four constraints between the number of instances and the multiplicities are pro-
duced. These constraints will be justified in the proof below. For a generic graph
with n nodes and e edges this produces a system of 4e+n linear inequalities over
n variables. Standard and efficient techniques can be applied to decide whether
such a system has a solution.

We now apply the consistency check on the simple diagram A
2 1α

B
11 βthat was declared inconsistent at the beginning of this section.

The edge A
2 α 1−−−−→B raises constraints xA ≥ 2 xB and xA ≤ 2 xB which are

equivalent to xA = 2 xB. The edge A
1 β 1←−−−−B raises contraints xA ≥ xB and

xA ≤ xB which impose xA = xB. Thus, the system of linear inequalities derived
from the diagram requires that xB = 2 xB . Together with the constraint xA ≥ 1
and xB ≥ 1, this equation has no solution. Hence, Sat returns false and we can
conclude that the diagram is inconsistent.

It remains to prove that Sat(Gg) provides a necessary and sufficient condition
for the consistency of Gg.

6

Property 1 Consistent(Gg)⇔ Sat(Gg)

Proof.
(⇒) If Sem(Gg) 6= ∅, there exists an instance graph Gi and a function Class
such that conditions (1), (2), and (3) of Figure 3 are satisfied. For each node A
of Gg we note XA the number of instances of A occurring in Gi and show that
the XA’s form a solution to the system of constraints.
· Condition (1) implies that XA ≥ 1 for each A ∈ Ng.

· For each edge A
[iA,jA] α [iB ,jB]−−−−−−−−−−−−→B of Gg condition (2) implies that XB ≥ iB

and condition (3) that XA ≥ iA.
· Condition (2) (resp. (3)) implies that each instance of A (resp. B) is connected
to at least iB (resp. iA) and at most jB (resp. jA) instances of B (resp. A).
Let EαA

B be the total number of α-edges between instances of A and B, we
have XA iB ≤ EαA

B ≤ XA jB and XB iA ≤ EαA
B ≤ XB jA and therefore

XA jB ≥ XB iA and XB jA ≥ XA iB

(⇐) We assume that Sat(Gg) holds and construct an instance graph Gi =
〈Ni, Ei〉 such that Gi ∈ Sem(Gg).
From Sat(Gg) we can associate with each node A in Ng a number of instances
XA respecting the whole set of constraints. We take a set of nodes Ni and a
total function Class : Ni 7→ Ng such that ∀N ∈ Ng, Card{ni ∈ Ni | Class(ni) =
N} = XN . Since XN ≥ 1, condition (1) of Figure 3 is verified.
The number of instance nodes being fixed, we can reason locally and show that
for each edge A

[iA,jA] α [iB ,jB]−−−−−−−−−−−−→B of Gg we can produce instance edges re-
specting conditions (2) and (3) of Figure 3. From the constraints, the interval
[XA iB, XA jB]∩[XB iA, XB jA] cannot be empty. We choose a value EαA

B of this
interval as the number of α-edges between the instances of A and B. We attach
to each instance of A (in turn and cyclically) one edge to a new arbitrary instance
of B until the EαA

B edges are placed. Since XA iB ≤ EαA
B ≤ XA jB , this process

ensures that condition (2) holds. Now, if an instance bk of B has more than jA

(resp. less than iA) incoming α-edges we know from XB iA ≤ EαA
B ≤ XB jA

that there exists another instance bl of B having less than jA (resp. more than
iA) incoming α-edges. We switch the destination of one incoming α-edge from
bk to bl (resp. bl to bk). This process can be repeated until condition (3) holds.

2.4 Solid edges

From our experience, the notation described above is too imprecise to define soft-
ware architecture views. For example, it is not possible to express the constraint
that each instance of a node A is doubly linked to an instance of B. Indeed, the
diagram

A
1 1α

B
11 β

accepts a1

α
b1 β

b2
β

a2

α

7

as a valid instance. Although our graphical notation can specify graphs with
properties such as “for all instances of A there is a simple2 (or length k, α-
typed, . . .) path to an instance of B”, it does not have the ability to enforce
properties such as “there is a simple path from each instance of A to itself”.
This makes some sharing patterns impossible to describe. While this may not
be a problem for diagrams describing the organization of data in uml structural
views, a greater precision in the specification is often desirable for many typical
software architecture views (such as the control or physical views).

We extend our notation by introducing the notion of “solid edges”. They are
represented as bold arrows as shown in the diagram of Figure 5.

A
1

∗
α

B
β

C
δ

D

γ

Fig. 5. A diagram with solid edges

Solid edges bear implicitly the multiplicity 1 at both ends. The intention is
that the structure of the region delimited by solid edges should be reflected in
the instances of the diagram. For example, the diagram of Figure 5 accepts the
graph of Figure 2 (a) as a valid instance but not the graph of Figure 2 (b).

The semantics of diagrams must be extended to take into account this new
feature. A generic graph is now represented by the structure 〈Ng, Eg, ms, md, s〉
where the function s : N ×Te×N → Bool is such that s(E)⇔ E is a solid edge.
We assume that s(E)⇒ ms(E) = [1, 1]∧md(E) = [1, 1]. A new condition (5) is
imposed in the semantics of Figure 3.

∀a, b ∈ Ni.

{
Class(a) = A ∧Class(b) = B
∧ solid(a, b) ∧ s(A, α, B)

}
⇒ (a, α, b) ∈ Ei

where
solid(a, b) ≡ (a = b)

∨ ∃ (a1, α1, b1), . . . , (ak, αk, bk) ∈ Ei such that a1 = a, bk = b,∧k−1
i=1 s (Class(ai), αi,Class(bi)),∧k−1
i=1

(
(ai = ai+1) ∨ (ai = bi+1) ∨ (bi = ai+1) ∨ (bi = bi+1)

)

(5)

This condition ensures that for each connected region in the instance graph
corresponding to a solid region in the generic graph, the Class function is a
bijection. So, each solid region must have only isomorphic images in the instance
2 a path where any nodes x and y are such that Class(x) 6= Class(y)

8

graph. Consistency checking is not affected by this extension. It can be done as
before by considering solid edges as standard edges with multiplicities 1 and 1.
This is expressed formally as follows:

Property 2

Sem(〈Ng, Eg, ms, md, λx.false〉) 6= ∅ ⇒ Sem(〈Ng, Eg, ms, md, s〉) 6= ∅

Here, Gg = 〈Ng, Eg, ms, md, λx.false〉 denotes the generic graph of a diagram
where all solid edges are considered as standard edges with multiplicities 1 and
1. The proof proceeds by constructing from any valid instance Gi of Gg another
valid instance graph satisfying condition (5). First, all edges of Gi corresponding
to solid edges are removed. From the constraints of Figure 4, we know that all
nodes {A1, . . . , Ak} connected by edges of multiplicities 1 and 1 in Gg have the
same number of instances (say p). For all largest sets of nodes {A1, . . . , Ak} con-
nected by solid edges in Gg, the corresponding instance nodes can be split into
p sets {a1, . . . , αk} where Class(ai) = Ai. For each such set, the previously re-
moved edges are replaced isomorphically to the solid sub-graph. The multiplicity
constraints are respected and condition (4) holds.

3 Application to the design of a train control system

We illustrate our framework with a case study proposed in [5] concerning the
specification of the architecture of a train control system. We propose a multiple
view architecture defined as a collection of diagrams – one per view, plus one
diagram to describe the correspondences between views. The following is an
excerpt of [5] identifying the main challenges of the case study:

“Generally, a control system performs the following tasks: processing
the raw data obtained from the environment through sensing devices,
taking corrective action [...]. In addition to the functional requirements
of these systems, many non-functional requirements, such as geographi-
cal distribution over a possibly wide variety of different host processors,
place constraints on the design freedom that are very difficult to meet.
In practice, there are many interrelated system aspects that need to be
considered. [...] Although solutions are available for many of the prob-
lems in isolation, incompatible, or even conflicting premises make it very
difficult to cover all design aspects by a coherent solution.”

We present here a simplified version of the architecture of a train control
system focusing on the process of corrective actions. We distinguish two parts
in the system: the trains and a control system monitoring the traffic. In our
solution, each train computes and performs speed corrections with respect to
three parameters: its route (a detailed schedule including the reservation dates
of each track section), the railway topology, and its actual state (speed and
position) as indicated by its sensing devices. Trains periodically send their states

9

to the control system which extrapolates from the collected states to detect
future conflicts. Once identified, conflicts are solved and new routes are sent to
trains.

The train control system is described as a multiple view architecture. In the
simplified version, the architecture consists of three views: the distributed func-
tional view (dfv), the distributed control view (dcv), and the physical view
(phv). In our framework, each view is described by a diagram, and correspon-
dences between views are established through an additional diagram. From these
related views, we show how the requirements listed above can be addressed in
our framework.

In each of the three views, we distinguish two parts consisting of nodes con-
nected by solid edges: the train part and the control system part. These two
parts themselves are connected by standard edges with multiplicities ∗ and 1.
It allows several trains to be connected to the control system. Each view is de-
scribed by a diagram belonging to a given style. A style is defined here as a set
of node and edge types together with type constraints such as: edges of type r

(for read) can only be used to connect nodes of type data to nodes of type pro-

cess. Different views use different types so that a node type indicates without
any ambiguity the view to which the node belongs. Types are associated with a
graphical notation defined in the caption of each view. For the sake of clarity,
we use expressions in typewriter font (such as process speed correction) to
denote node names.

W R

W

W

speed

sensor

train

state

send

state

train

route

update

route

process

speed

correction

speed

correction

global

corrective

action

process

prediction

R

W

conflictglobal

route

send

route

update

state
global

state

topology

railway

R

W

SENSOR PROCESS ACTUATOR DATADFV caption:

R (read), W (write), M (message) edges

1* M

R

R

R

1*R M
R

W

the train part the control system part

R

speed

actuator

Fig. 6. The distributed functional view

The distributed functional view (Figure 6) describes the data flows and data
dependencies between processes, using four node types and three edge types.
sensor and actuator nodes represent the input and output ports of the system,

10

process nodes correspond to entities of computation, and data nodes correspond
to variables. sensor, actuator and process nodes can be connected to data

nodes by edges of type r or w denoting respectively the potential to read or
write a variable. An edge of type m represents message passing between two
process nodes.

TASKSOURCE SINK PLACEDCV caption: T (trigger) edge

prediction

process

speed

correction

speed

actuator

update

state

send

state

speed

sensor

process

global

corrective

action

update

route

send

route

T T

T T

T

T

T

the train part the control system part

T

T

* T 1

T

T

T T

T

T

1*

T

Fig. 7. The distributed control view

The distributed control view (Figure 7) describes the scheduling of processes
and the control flow in the spirit of Petri nets. It uses four node types and one
edge type. Nodes of types source, sink, and task can be seen as transitions in a
Petri net. Our intention is to draw a parallel between those node types and the
node types of the distributed functional view (sensor with source, actuator

with sink, and process with task). place nodes correspond to repository of
tokens in Petri nets. They are used for description purpose only and have no
corresponding nodes in the other views. Nodes of the distributed control view
are connected by triggering edges of type t.

NETWORK COMPUTER C (connection), L (link) edgesPhV caption:

computer

train
train

network

local
mobile

wide

area

network

*
C

C

1LC

the train part

L local

network

computer 1

computer 2

the control system part

Fig. 8. The physical view

11

The physical view (Figure 8) describes the network connections between com-
puters. It has two types of nodes, computer and network, and two types of
edges: c which denotes a connection between a computer and a network, and l

which represents a connection between networks.

speed

actuator

sensor

route

state

process

speed

correction update

speed

send

route

actions

corrective

send

process

prediction

update

state

global

PhV

MAP
DFV

DCV

PhV

actuator

speed

train
speed

state

conflict

prediction

state

update

route

global

route

send

route

update

train global

corrective

actions

computer 1

correction

speed

process

state

sendsensor

route

train

computer
computer 2

correction

speed

topology

railway

state

global

process

Fig. 9. dfv, dcv, and phv correspondences

It is easy to check that the multiplicity constraints can be satisfied; so that
each view is consistent. The different views of the system are not unrelated,
though. In our framework, the inter-view relationships are expressed through
edges of a specific type, called map. For example, an edge (P,map, C) between
node P of type process and node C of type computer indicates that the process
P of the distributed functional view is mapped onto the computer C of the
physical view. The map relations between the three views are described in an
additional diagram (Figure 9) which contains nodes of the three views to be
related. Each node of type process (resp. sensor, actuator) in the distributed
functional view is mapped onto a node of type task (resp. source, sink) with
the same name in the distributed control view. data nodes do not have any
counterpart in the distributed control view. All nodes of types data, process,
sensor, and actuator in the train part of the distributed functional view are
mapped onto the node named train computer in the physical view. The other
ones are mapped onto one of the nodes computer 1 and computer 2 in the
control system part of the physical view. All nodes of types task, source, and
sink in the train part (resp. the control system part) of the distributed control
view are mapped onto nodes of type computer in the same part of the physical
view.

The diagram of Figure 9 can be superimposed on the three diagrams of Fig-
ure 6, 7 and 8 to form the complete diagram defining the software architecture
of the system. Consistency checking (Section 2.3) of the complete diagram en-

12

sures that the family of architectures described by the three related views is not
empty.

4 Specification and verification of constraints

The graphical notation introduced in Section 2 is well-suited to the specification
of the overall connection pattern of each view and the correspondences between
their components. However, this notation generates only simple constraints on
the number of occurrences of edges and nodes. In the context of software ar-
chitectures, it is often desirable to be able to impose more sophisticated (both
inter-view and intra-view) consistency constraints. In our case study, for exam-
ple, we would like to impose that a process of the distributed functional view
and its corresponding task in the distributed control view are mapped onto the
same computer in the physical view. Another requirement could be that each
process must be on the same site as any data to which it has read or write access.

To address this need, we propose a small language of constraints and define
a complete checking algorithm for the generic graphs introduced in Section 2.
We illustrate the interest of this language with the case study introduced in
Section 3.

4.1 A simple constraint language

The syntax of our constraint language is the following:

C ::= ∀x1 : τ1, . . . , xn : τn. P

P ::= P1 ∧ P2 | P1 ∨ P2 | edge(x, α, y) | pathEt
(x, y) | ¬P

Et ⊆ Te ∪ Te

We also use ⇒ in the following but we do not introduce it as a basic connector
since it can be defined using ∨ and ¬. The semantics of the constraint language
is presented in Figure 10. A generic graph Gg satisfies a constraint C if all its
instances Gi satisfy the constraint. Constraints pathEt

(x, y) are defined with
respect to a set of edge types Et. Te = {α | α ∈ Te} is a set of annotated types
used to accept inverse edges in paths. For example, path{α,α}(a, b) is true if there
exists an undirected path, that is a path made of undirected α-edges, between
nodes a and b. Note that we consider only simple paths of the instance graphs.
Simple paths correspond to non-cyclic paths of the generic graph (condition
Class(ai) 6= Class(aj) at the bottom of Figure 10).

Examples of the use of the language to express both inter-view and intra-view
compatibility constraints are provided in Section 4.3. We now turn our attention
to the design of a verification algorithm for this language of constraints.

4.2 A constraint checking algorithm

The semantics of the language of constraints presented in Figure 10 is not directly
suggestive of a checking algorithm because it is defined with respect to the

13

Gg |= C ⇔ ∀Gi ∈ Sem(Gg), Gi ` C

where Gi = 〈Ni, Ei〉 and Gg
Class
⇀↽ Gi

Gi ` ∀x1 : τ1, . . . , xn : τn. P ⇔ ∀x1 : τ1, . . . , xn : τn ∈ Ni. Gi ` P

Gi ` P1 ∧ P2 ⇔ Gi ` P1 ∧ Gi ` P2

Gi ` P1 ∨ P2 ⇔ Gi ` P1 ∨ Gi ` P2

Gi ` edge(x,α, y) ⇔ (x,α, y) ∈ Ei
Gi ` pathEt

(x, y) ⇔ ∃a1, . . . , ak+1 ∈ Ni. ∃α1, . . . , αk ∈ Et.
a1 = x ∧ ak+1 = y

∧ ∀i ∈ [1, k]. ((ai, αi, ai+1) ∈ Ei ∧ αi ∈ Te)

∨ ((ai+1, αi, ai) ∈ Ei ∧ αi ∈ Te)
∧ ∀i, j ∈ [1, k]. i 6= j ⇒ Class(ai) 6= Class(aj)

Gi ` ¬P ⇔ Gi 6` P

Fig. 10. Semantics of the language of constraints

(potentially infinite) set of all the instances Gi of a generic graph Gg. In this
subsection, we sketch a checking algorithm, Check, and provide some intuition
about its correctness and completeness, stated as follows:

Property 3 Check (C, Gg)⇔ Gg |= C

Space considerations prevent us from presenting the algorithm thoroughly; the
interested reader can find a detailed account of the algorithm and proofs in [8].

The Check procedure outlined in Figure 11 takes two arguments: a property
∀x1 : τ1, . . . , xn : τn. P in canonical form and a generic graph Gg. Properties in
canonical form are properties in conjunctive normal form with negations bearing
only on relations edge(x, α, y) and pathEt

(x, y). The transformation of properties
into their canonical form is straightforward.

The first step of the algorithm consists in considering all the possible classes
Xi (denoting nodes of the generic graph) consistent with the types of the vari-
ables xi. The interesting case in the definition of Verif is the disjunction which is
based on a proof by contradiction. The function Contra returns true if its argu-
ment contains a basic property and its negation. The function Gen is called with
three arguments: the context Class, which records the class of each variable, the
generic graph Gg and the set of basic properties3 {¬B1, . . . ,¬Bn}. Gen is the
core of the algorithm: it generates all the basic properties that can be derived
from this initial set. Gen is defined as a composition of intermediate functions:

– GenPe expands path(x, y) properties into sequences of edges by introducing
fresh nodes variables. All the simple paths between Class(x) and Class(y)
in the generic graph Gg are considered. As a consequence, GenPe returns a
set of tuples 〈Class, Gg, S〉 which corresponds to a logical disjunction. This
justifies the use of the f? notation to ensure that the subsequent functions

3 Basic properties are properties of the form edge(x,α, y),pathEt
(x, y) or their nega-

tion.

14

Check(∀x1 : τ1, . . . , xn : τn. P, Gg) =
∧
X1:τ1,...,Xn:τn∈Ng

Verif([xi 7→ Xi], Gg, P)

where Gg = 〈Ng, Eg, ms, md, s〉

Verif(Class, Gg, P1 ∧. . .∧ Pn) = Verif(Class, Gg, P1) ∧. . .∧ Verif(Class, Gg, Pn)
Verif(Class, Gg, B1 ∨. . .∨ Bn) = Contra(Gen(〈Class, Gg, {¬B1, . . . ,¬Bn}〉))
where Contra(S) = ∃B ∈ S. ¬B ∈ S

Gen(〈Class, Gg, S〉) = Lub ◦ GenNi
? ◦ GenPi

?

◦ iter (GenSub
? ◦ GenEq

? ◦ GenEd
? ◦ GenSo

?)

◦ GenNeg
? ◦ GenPe(〈Class, Gg, S〉)

where f?(s) = {f(x) | x ∈ s}

iter f x =

{
x if f(x) = x
iter f f(x) otherwise

Lub({〈Class1, Gg, S1〉, . . . , 〈Classn, Gg, Sn〉}) =
⋂

i∈[1,n]

Si s.t. ¬Contra(Si)

Fig. 11. Constraint checking algorithm

are applied to all the tuple elements of this set. The Lub function is then
used to compute the intersection of all the resulting (non contradictory) sets;
it corresponds to disjunction elimination in an inference system.

– GenNeg exploits the generic graph and condition (4) of the semantics of
generic graphs (see Figure 3) to produce all valid ¬edge and ¬path relations.

– GenSo computes the relation solid as defined in Section 2.4 and GenEd applies
condition (5) to derive all possible new edges.

– GenEq exploits the multiplicities in the generic graph to derive all possible
equalities between nodes. For example, if the generic graph is such that

md(Class(x), α,Class(y)) = 1

then GenEq derives y1 = y2 from edge(x, α, y1) and edge(x, α, y2).
– GenSub uses the equalities produced by GenEq to derive new properties (for

example edge(x2, α, y) can be derived from x1 = x2 and edge(x1, α, y)). The
application of GenSub can lead to the derivation of new solid relations by
GenSo, hence the iteration. The termination of iter is ensured by the fact
that no new variable is introduced in the iteration steps (so only a finite
number of basic properties can be generated by Gen).

– GenPi generates the path properties implied by the edge properties.
– GenNi generates negations that follow from deduction rules such as:

edge(x, α, y) ∧ ¬pathEt∪{α}(x, z)⇒ ¬pathEt∪{α}(y, z).

It can be applied as a final step since negations are not used by the preceeding
functions.

15

The correctness and completeness proofs described in [8] are based on an
intermediate inference system (which is itself complete and correct with respect
to the semantics of generic graphs and the language of constraints). Correctness
of the algorithm is straightforward. Completeness and termination rely on the
application ordering of the intermediate functions of Gen. The proof uses the
fact that an intermediate function F cannot generate a property which could be
used (to derive new properties) by a function F ′ that is not applied after F .

The Check procedure outlined here is a näıve algorithm derived from the
inference system. We did not strive to apply any optimisation here. In an effective
implementation, the intermediate functions of Gen would be re-ordered so as to
detect contradictions as early as possible (and the algorithm would stop as soon
as two contradictory properties are generated).

4.3 Automatic verification of compatibility constraints

We return to the case study introduced in Section 3 and we show how inter-view
and intra-view compatibility relations can be expressed within our constraint lan-
guage. We consider three constraints involving the distributed functional view,
the control view and the physical view. In this subsection, we let Gg stand for
the generic graph 〈Ng, Eg, ms, md, s〉 made of all the (related) views defined in
Section 3.

1. Process-Task consistency constraint: “A process of the distributed func-
tional view and its corresponding task in the distributed control view must
be placed on the same computer in the physical view.” The mapping be-
tween dfv and phv associates data with the processes that use them, while
the mapping between dcv and phv is driven by concurrency concerns. The
compatibility constraint imposes that a tradeoff must be found that agrees
on the placement of processes on the available computers. It is expressed as
follows in our language:
∀p : process, t : task, c : computer.

edge(p, map, t) ∧ edge(p,map, c)⇒ edge(t,map, c)

The canonical form of this constraint is:
∀p : process, t : task, c : computer.

edge(t, map, c) ∨ ¬edge(p,map, t) ∨ ¬edge(p,map, c)

The application of the Check procedure to this constraint and Gg results in
a call to:

Contra(Gen(〈Class, Gg, {¬edge(t, map, c), edge(p,map, t), edge(p,map, c)}〉))

Then, whatever the mapping of the nodes variables p, c, t on class nodes
of the complete diagram, Gen adds the relation edge(t, map, c) to the initial
set. It results in a contradiction with ¬edge(t,map, c) and Check returns true.
The relation edge(t, map, c) is generated by the GenSo and GenEd functions
from the relations edge(p, map, t) and edge(p,map, c) using the fact that the

16

map edges are solid edges.

2. Site consistency constraint: “A process should be on the same site as
any data to which it has read or write access. A site is taken as a set of
computers linked by a local network. ” This second constraint is expressed
as follows in our language:
∀p : process, d : data, m1, m2 : computer, n : network.(

edge(p, r, d) ∨ edge(p,w, d)
)

∧ edge(p,map, m1) ∧ edge(d,map, m2) ∧ edge(m2, c, n)
⇒ edge(m1, c, n)

The application of the Check procedure shows that this constraint does not
hold. After translation of the contraint into its canonical form, Verif has to
examine a conjunction of two disjunctions. One of these disjunctions leads
to a call to Gen with the initial set of relations:

{edge(p,r, d), edge(p,map, m1), edge(d,map, m2), edge(m2,c, n),¬edge(m1,c, n)}

Together with the mapping: [p 7→ process speed correction, d 7→ railway

topology, m1 7→ train computer, m2 7→ computer 2, n 7→ local network], the
Gen function does not generate the expected contradiction. The reason lies
in the r link between the nodes railway topology and process speed
correction in the distributed functional view (Figure 6) and the fact that
these two nodes are mapped onto two computers (computer 2 and train
computer) belonging to two different sites (Figure 9): computer 2 is linked
to local network and train computer is linked to local train network
(Figure 8). This example shows that the Check procedure can easily be ex-
tended to return counterexamples.

3. Communication consistency constraint: “Two processes communicat-
ing by message passing are not allowed to share data.” This constraint im-
poses that message passing is used only for communication between distant
processes. The constraint is expressed as follows in our language:
∀p1, p

′
1, p2, p

′
2 : process, d : data.

∧
(

edge(p1, r, d) ∨ edge(p1,w, d)
)

(
edge(p2, r, d) ∨ edge(p2,w, d)

) ∧ edge(p′1,m, p′2)

⇒ ¬
(

path{r,w,r,w}(p1, p
′
1) ∧ path{r,w,r,w}(p2, p

′
2)

)
This constraint, which is an example of an intra-view consistency relation, is
not satisfied by the diagram of Figure 6. This is because process prediction
and process speed correction share the data railway topology and
still communicate (indirectly) by message passing (following a {r,w, r,w,m}
path through the nodes send state and update state).

These constraints illustrate that inconsistencies can naturally arise in the
specification of multiple views. Counterexamples produced by the extended Check

17

procedure provide useful information to construct a correct architecture. A sim-
ple solution to satisfy the last two constraints consists in providing each train
with a local copy of the railway topology data and adding an update mecha-
nism as was done for the “state” variable (global state and train state in
Figure 6). The two copies could then be mapped onto two different computers.

5 Conclusion

We have presented a framework for the definition of multiple view architectures
and techniques for the automatic verification of their consistency. It should be
noted that we have defined views as collections of uninterpreted graphs. The in-
tended meaning of a diagram (or a collection of diagrams) is conveyed indirectly
through the constraints. This uninterpreted nature of graphs makes it possible
to specify a great variety of views. In Section 3 we just sketched three views used
in the train control system case study. Following the approach presented in this
paper, we have been able to address some of the requirements (both functional
and non functional) listed in [5]. For example, distribution and fault-tolerance
are expressed directly as views. Fault-tolerance views are refinements4 of the
distribution views and they give rise to constraints like “Data A and Data B
must not be on the same memory device” or “Process A and Process B must be
mapped onto two different processors”.

An interesting byproduct of the work described here is that we can apply
the algorithm of Section 2 to check the consistency of uml diagrams. uml also
includes a language called ocl [14] for defining additional constraints on dia-
grams. ocl constraints can express navigations through the diagrams and ac-
cumulations of set constraints on the values of the node attributes. Even if our
language of constraints and ocl are close in spirit, they are not directly com-
parable because ocl does not include recursive walks through the graph similar
to our pathEt

constraint; on the other hand, we did not consider constraints on
node attributes. Previous attempts at formalizing certain aspects of uml and
ocl (based on translations into Z) are reported in [6, 9]. In contrast with the
framework presented here, they do not lead to automatic verification methods.
Recent studies have also been conducted on the suitability of uml to define
software architectures. In particular, [10] and [13] present detailed assessments
of the advantages and limitations of uml in this context. In comparison with
these approaches, we do not really use uml here, considering only graphical and
multiplicity notations as a basis for describing the structure of the architecture.
As mentioned in [10], a graphical notation may sometimes be too cumbersome to
express correspondences between views. Since our diagrams are translated into
constraints, we can easily allow a mixed notation (including diagrams and con-
straints) allowing architects to use the most appropriate means to define their
views.

More generally, we put forward a two-layer definition of software architec-
ture views: the basic or structural layer is defined using a graphical (or mixed)
4 Refinement is defined formally here as the expansion of nodes by subgraphs.

18

notation and the specific or semantical layer is defined on the top of the first
one, through node and edge attributes. We have only considered simple type
attributes here because they are sufficient both to express interesting properties
and to raise non-trivial consistency issues. We are currently working on the in-
tegration of more sophisticated attribute domains to describe other aspects of
software architectures (such as performances or interaction protocoles).

Finkelstein et al. have proposed a framework supporting the definition and
use of multiple viewpoints in system development [7]. They consider views ex-
pressed in different formalisms (Petri nets, action tables, object structure di-
agrams, ...). Correspondances between views are defined as relations between
objects in a logic close to our language of constraints. The logical formulae are
used as rules to help the designers to relate the views. An important departure
of the work presented here with respect to [7] is that our consistency checking
is performed on a family of architectures (which is potentially infinite); their
verification is simpler since it applies to fixed viewpoint specifications (which
correspond to a particular instance graph in our framework). To check consis-
tency, they first require the designers to provide a translation of the views into
first order logic. Consistency is then checked within this common formalism and
meta-rules are used to report inconsistencies at the view level. Their philosophy
is that “it is not possible (or even desirable) in general to enforce consistency
between all the views at all times because it can unnecessarily constrain the
development process”. So they put stress on inconsistency management rather
than consistency checking itself.

Consistency checking has also been carried out in the context of specifica-
tion languages like Z, Lotos or Larch [16, 3]. The traditional approach, which
can be called “implementation consistency”, is summarized as follows [3]: “n
specifications are consistent if and only if there exists a physical implementa-
tion which is a realization of all the specifications, ie. all the specifications can
be implemented in a single system”. In contrast, our approach decouples the
issues of consistency and conformance for a better separation of concerns and
an increased tractability. In this paper, we have been concerned exclusively with
consistency. Our approach to conformance consists in seeing the software archi-
tecture views as collections of constraints that can be exploited to guide the
development process. For example, the functional view specifies constraints on
the possible flows of data between variables; the control view adds constraints
on method or procedure calls and their sequencing. We are currently designing
a generic development environment which takes architectural constraints as pa-
rameters and guarantees that only programs that conform to these constraints
can be constructed. In addition to the views already mentioned in this paper,
this environment should make use of a “development view”, which represents the
hierarchical organization of programs and data into development units (classes
in Java).

19

References

1. R. Allen and D. Garlan. Formalizing architectural connection. In Proceedings of
the 16th International Conference on Software Engineering, pages 71–80. IEEE
Computer Society Press, May 1994.

2. M. Bourgois, D. Franklin, and P. Robinson. Applying RM-ODP to the air traf-
fic management domain. EATCHiP Technical Document, Eurocontrol, Brussels,
March 1998.

3. H. Bowman, E. Boiten, J. Derrick, and M. Steen. Viewpoint consistency in ODP,
a general interpretation. In E. Najm and J.-B. Stefani, editors, Proceedings of
the 1st IFIP International Workshop on Formal Methods for Open Object-Based
Distributed Systems, pages 189–204. Chapman & Hall, March 1996.

4. S. C. Cheung and J. Kramer. Checking subsystem safety properties in composi-
tional reachability analysis. In Proceedings of the 18th International Conference
on Software Engineering, pages 144–154, Berlin - Heidelberg - New York, March
1996. Springer.

5. E. de Jong. Software architecture for large control systems: a case study. In
D. Garlan and D. Le Métayer, editors, Proceedings of Coordination’97, volume
1282 of LNCS, pages 46–63. Springer-Verlag, September 1997.

6. Andy Evans. Reasoning with the unified modeling language. In Proceedings
of Workshop on Industrial-Strength Formal Specification Techniques (WIFT’98),
1998.

7. A. Finkelstein, D. Gabbay, A. Hunter, J. Kramer, and B. Nuseibeh. Inconsistency
handling in multi-perspective specifications. IEEE Transactions on Software En-
gineering, 20(8):509–578, August 1994.

8. P. Fradet, D. Le Métayer, and M. Périn. Consistency checking for multiple view
software architectures: application to the design of a train control system. Technical
Report 1249, IRISA/INRIA, Rennes, France, 1999.

9. A. Hamie, J. Howse, and S. Kent. Interpreting the object constraint language. In
Proceedings of Asia Pacific Conference in Software Engineering. IEEE Press, 1998.

10. C. Hofmeister, R. L. Nord, and D. Soni. Describing software architecture with
UML. In P. Donohoe, editor, Proceedings of Working IFIP Conference on Software
Architecture, pages 145–160. Kluwer Academic Publishers, February 1999.

11. P. Inverardi, A. Wolf, and D. Yankelevich. Checking assumptions in components
dynamics at the architectural level. In D. Garlan and D. Le Métayer, editors, Pro-
ceedings of Coordination’97, volume 1282 of LNCS, pages 46–63. Springer-Verlag,
September 1997.

12. Philippe B. Kruchten. The 4 + 1 view model of architecture. IEEE Software,
12(6):42–50, November 1995.

13. Nenad Medvidovic and David S. Rosenblum. Assessing the suitability of a stan-
dard design method for modeling software architecture. In P. Donohoe, editor,
Proceedings of Working IFIP Conference on Software Architecture, pages 161–182.
Kluwer Academic Publishers, February 1999.

14. UML. Object Constraint Language, version 1.1, September 1997. Available at
http://www.rational.com/uml.

15. UML. Unified Modelling Language notations guide, version 1.1, September 1997.
Available at http://www.rational.com/uml.

16. Pamela Zave and Michael Jackson. Conjunction as composition. ACM Transac-
tions of Software Engineering and Methodology, 2(4):379–411, October 1993.

