
Aspects of Availability

Pascal Fradet ∗

INRIA / LIG
Pascal.Fradet@inria.fr

Stéphane Hong Tuan Ha †

INRIA / CEA-LIST
Stephane.Hong-Tuan-Ha@cea.fr

Abstract
In this paper, we propose a domain-specific aspect language to
prevent the denials of service caused by resource management. Our
aspects specify availability policies by enforcing time limits in the
allocation of resources. In our language, aspects can be seen as
formal timed properties on execution traces. Programs and aspects
are specified as timed automata and the weaving process as an
automata product. The benefit of this formal approach is two-fold:
the user keeps the semantic impact of weaving under control and
(s)he can use a model-checker to optimize the woven program and
verify availability properties.

Categories and Subject Descriptors D.2.3 [Coding Tools and
Techniques]: Structured programming; F.3.1 [Specifying and Veri-
fying and Reasoning about Programs]; I.2.2 [Automatic Program-
ming]: Program transformation

General Terms Languages, Reliability, Security, Verification

Keywords Aspect-Oriented Programming, Availability, Resource
Management, Timed Automata, Weaving, Denial of Service

1. Introduction
Along with confidentiality and integrity, availability is one of the
three main classes of security properties. Availability guarantees
that the requests of authorized subjects are answered in a timely
manner. In other words, there is no denial of service. In this pa-
per, we study resource management in isolation (i.e., separately
from the basic functionality) and address the prevention of denials
of services (i.e., availability) using aspect-oriented techniques. We
propose a domain-specific aspect language in order to prevent de-
nials of service caused by resource management (e.g., starvation,
deadlocks, etc.). Aspects specify availability policies which enforce
time constraints on resource allocation. For example, a constraint
may be that a service S does not retain a resource R more than k
seconds or that it does not allocate the resource R2 less than k sec-
onds after it has released R1. To the best of our knowledge, this is
the first work using aspects to enforce the availability of resources.

∗ INRIA Rhône-Alpes, 655, av. de l’Europe, 38330 Montbonnot, France
† CEA Saclay, DRT/LIST/DTSI/LSL, 91191 Gif sur Yvette Cedex, France

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

GPCE’07, October 1–3, 2007, Salzburg, Austria.
Copyright c© 2007 ACM 978-1-59593-855-8/07/0010. . . $5.00.

In our language, an aspect can be seen as a timed property on ex-
ecution traces which specifies an availability policy. The semantics
of base programs and aspects are expressed as timed automata [3].
The automaton representing a program specifies a superset of all
possible (timed) execution traces whereas the automaton represent-
ing an aspect specifies a set of desired/allowed (timed) execution
traces. Weaving can be seen as a product of two timed automata
(i.e., the intersection of execution traces) which restricts the execu-
tion of the base program to the behaviors allowed by the aspect.

In general purpose languages, aspects are often described in
a syntactic fashion as directives of code insertion at explicit join
points. In contrast, our aspects are constrained and have a more
semantic nature: they specify sets of desired timed behaviors. The
main advantage of such a more formal approach is two-fold:

• aspects are expressed at a higher-level and the semantic impact
of weaving is kept under control;

• model checking tools (e.g.,UPPAAL [16, 4]) can be used to opti-
mize weaving and verify the enforcement of general availability
properties.

Section 2 outlines our framework, in particular: the systems and
availability properties considered, the general approach and a small
example used throughout the paper to illustrate the different steps.
In section 3, we briefly recall the main characteristics of timed au-
tomata. Sections 4 and 5 present the syntax and semantics of ser-
vices and availability aspects, respectively. The technical core of
the paper lies in section 6 which describes the abstraction of ser-
vices and semantics of aspects in terms of timed automata and the
weaving as an automata product. The optimization, verification and
concretization of the final (woven) automaton back into a source
program are sketched in section 7. We conclude by presenting re-
lated work and possible extensions in section 8.

Previous versions of this work have been published in a French
conference [11], journal [12] and PhD thesis [13]. Correctness
proofs of our approach in a simpler setting can be found in [13].

2. Framework
We first define the systems and availability problems considered.
Then, we present our approach and the example used thereafter to
illustrate it.

2.1 Systems and availability

We consider systems which can be decomposed along three lay-
ers: users, services and resources (figure 1). Users send their re-
quests to services and wait for the answer. Services process users’
requests sequentially. Requests are stored in a FIFO file; process-
ing a request involves computation and accesses to resources. Re-
sources are (logical or physical) entities shared among services.
For instance, files, printers, processors or network connection man-
agers are examples of resources. This type of client-server model is
of widespread use in web servers and distributed applications. We

suppose that the numbers of services and resources are fixed and
known.

Users Services Resources

U1

U2

U3

S1

S2

R1

R2

R3

Figure 1. Three-layer model

Each service can be seen as a non-terminating loop processing
requests: the request is fetched, processed, the result is sent to
the corresponding user and so on. We do not specify users and
how services deal with their requests any further. Since we are
concerned by resource management and the prevention of denial of
services, we focus on interactions between services and resources.

The availability problems we consider come from concurrent
accesses of services to shared resources. For instance, there can be
starvation when a service cannot allocate a resource or deadlocks
when two services wait for a resource allocated by the other one.
Such problems can be prevented by appropriate resource manage-
ment. Of course, hardware faults can also cause availability prob-
lems. This source of denials of service must be addressed by dedi-
cated fault-tolerance techniques (see for example [15, 22]).

2.2 Approach

Yu and Gligor have studied denials of service caused by resource
management [25]. They have shown that availability properties de-
pend on resources but also on constraining the behavior of services
using user agreements. Our resource management system is in-
spired by Yu and Gligor’s model. As illustrated in Figure 2, it is
made of two parts:

• the specification of resources in terms of sufficiently precise
automata which can be translated into programs. Several types
of resources (exclusive access, shareable) have been specified
in [11].

• the specification of constraints on the use of resources. We de-
fine these constraints as availability aspects which are woven on
the source code of services. Compared to other aspects, avail-
ability aspects are original in that they specify timed behaviors.
They can, for example, limit the amount of time a service may
allocate a resource or forbid too frequent reallocations of a re-
source by the same service (see section 5).

In this paper, we focus on the aspect-oriented part of the frame-
work. Resource management constraints are specified by an avail-
ability aspect per service. Each aspect is independent and defines
a local policy which is woven on the corresponding service. These
aspects correspond to Yu and Gligor’s user agreements. We do not
consider global aspects constraining services depending on the be-
havior of other services. They are more expressive but their im-
plementation involves a global monitor observing the execution of

AspectS1

AspectS2

S1

S2

R1

R2

R3

specR1

specR2

specR3

Resource Management

weaving

weaving

generation

generation

generation

Figure 2. Global layout of the system

the complete system. Local aspects are sufficiently expressive to
prevent many denials of service and their implementation can be
optimized using static weaving.

Our approach relies on timed automata and weaving, the key
transformation step, is specified as a timed automata product. The
technical core of our technique is made of the following steps:

• a service is abstracted into a timed automaton over-approximating
its execution traces and its timed behavior (section 6.1);

• an aspect is defined using a domain specific language. Its se-
mantics is given by a timed automaton (section 6.2);

• the aspect is woven to the service by performing the product
of the two corresponding automata. The product automaton
represents a refined service that satisfies the constraints of the
aspect (section 6.3);

• information about the execution times of service instructions
can be taken into account, again using automata product. This
permits to optimize the woven automaton (section 7.1);

• it is possible to automatically verify that the woven automaton
satisfies general availability properties (section 7.2);

• the last step amounts to concretizing the (optimized and ver-
ified) automaton into source code using timed commands
(watchdog timers, waiting loops, interrupts) (section 7.3).

2.3 System example

We will use the example of figure 3 to illustrate the different steps
of our technique. This small system is made of two resources (M1
and M2) with exclusive access and two services (S1 and S2) with a
non terminating loop request. The service S1 allocates the resource
M1 then M2 (M1.alloc(); M2.alloc();). It computes S1Comput
(which takes between 2 and 10 seconds), releases the resources M2
and M1 and iterates. The service S2 models a potentially dangerous
behavior. It allocates the resource M2, then computes S2Comput1
which takes at least 1 second (and may not terminate). If the guard G
is true, it allocates M1, computes S2Comput2 (which takes between
3 and 20 seconds) and releases M1. It releases M2 and iterates.

The resource management of this system may lead to two avail-
ability problems:

Services Network

S1 =

8

>

>

>

>

>

<

>

>

>

>

>

:

l1 : M1.alloc();
M2.alloc();
S1Comput;
M2.free();
M1.free();
jmp l1;

9

>

>

>

>

>

=

>

>

>

>

>

;

S2 =

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

l2 : M2.alloc();
S2Comput1;
if G then

M1.alloc();
S2Comput2;
M1.free();

M2.free();
jmp l2;

9

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

;

S1

S2

M1

M2

Figure 3. A simple system with two services and two resources

• starvation may occur if S2Comput1 does not terminate. In this
case, the service S2 never releases M2 which is needed by S1;

• deadlock may also occur when the service S1 has allocated the
resource M1 and waits for M2 while the service S2 has allocated
the resource M2 and waits for M1.

3. Timed automata
In this section, we briefly recall the syntax and semantics of timed
automata which we use to model programs, aspects and weaving.
Timed automata have been introduced to specify problems and to
verify properties where time is explicit. We present Timed Safety
Automata [2, 16] which are a commonly used kind of timed au-
tomata.

3.1 Syntax

Let H be a set of real valued variables used to represent clocks. A
clock constraint C is of the form

C ::= x � k | x − y � k with x, y ∈ H, k ∈ N

and � ∈ {≤, <, =, >,≥}

Transitions of timed automata are guarded by a set of clock con-
straints (to be interpreted as the conjunction of the constraints). We
write 2C for the set of possible guards (i.e., clock constraints).

A timed automaton A is a tuple (Q, q0, H,Σ, δ, I) where:

• Q is a finite set of states;
• q0 ∈ Q is the initial state;
• H is a finite set of clocks;
• Σ is a finite set denoting actions of the automaton;
• δ ⊆ Q × 2C × Σ × 2H × Q is the transition relation;
• I : Q → 2C maps a state to its invariant.

A transition (q, g, a, r, q′) ∈ δ specifies that the automaton can go
from state q to state q′ by performing the action a and resetting the
set of clocks r (r ∈ H) if the guard g is true. The sub-set of clocks
r is called a reset. We restrict an invariant to be a conjunction of
constraints of the form x ≤ k or x < k with k an integer.

The symbol . is overloaded to denote the empty guard (i.e.,
∅ or true), the empty reset (i.e., ∅) and the empty action more
commonly written ε. We also write q

g,a,r
−−−→ q′ for transitions; for

example, q
.,.,.
−−→ q′ denotes the spontaneous transition.

3.2 Semantics

The operational semantics of a timed automaton (Q, q0, H,Σ, δ, I)
is given by a transition system between states of the form (q, u)

where q ∈ Q is the current state of the automaton and the function
u : H → R maps clocks to their current value. The initial semantic
state is made of the initial state of the automaton and the function
returning 0 for all clocks.

The definition of the semantic transition relation uses the fol-
lowing notations:

• u ∈ g to denote that the clocks of u verify the guard g;
• u + d to denote that d is added to all clocks of u;
• u[r 7→ 0] to denote the reset of all clocks of the set r.

The transitions are either transitions representing the time pass-
ing

(q, u) −→ (q, u + d) if ∀d′ : 0 ≤ d′ ≤ d ⇒ u + d′ ∈ I(q)

or transitions representing the execution of an action

(q, u) −→ (q′, u′) if ∃q
g,a,r
−−−→ q′ ∈ δ such that

u ∈ g, u′ ∈ I(q′), u′ = u[r 7→ 0]

Time may pass only if it satisfies the invariant of the current state.
A transition of the automaton may occur if and only if its guard
and the invariant of the new state are satisfied. The semantics of the
automaton is the set of traces of the associated transition system.

3.3 Timed automata product

The product of two timed automata X = (Qx, x0, Hx, Σ,−→x, Ix)
and Y = (Qy, y0, Hy, Σ,−→y, Iy) with the same set of actions
and disjoint sets of clocks is the automaton X ⊗ Y = (Qx ×
Qy, (x0, y0), Hx ∪ Hy, Σ,−→, I) with:

I(x, y) = Ix(x) ∪ Iy(y)

ACTION
x1

gx,a,rx−−−−−→x x2 y1
gy ,a,ry
−−−−−→y y2

(x1, y1)
gx∪gy,a,rx∪ry
−−−−−−−−−−→ (x2, y2)

ε1
x1

gx,.,rx−−−−→x x2

(x1, y)
gx,.,rx−−−−→ (x2, y)

ε2
y1

gy ,.,ry
−−−−→y y2

(x, y1)
gy ,.,ry
−−−−→ (x, y2)

The states of the product automaton is the cartesian product of
the states of the two automata X and Y . The initial state is made of
the initial states of X and Y . The invariant of a product state is the
conjunction (union) of the invariants of the two constitutive states.

The transition relation of the product automaton is defined by
three rules. The rule ACTION denotes the case where an action is
performed by both automata. The guard is the conjunction of the
two constitutive guards and the set of clocks to reset is the union of
the two reset sets. The rules ε1 and ε2 denote the cases where one
of the two automata performs the empty action. In these cases, the
automata can proceed independently.

The execution traces recognized by the product automaton X ⊗
Y is the intersection of the execution traces recognized by the two
automata X and Y .

4. Services
In this section, we describe the syntax and semantics of the source
language of services.

4.1 Syntax

A service is defined by a set of instructions {I1, . . . , In} of the
form

I ::= l1 : c ; l2 | l1 : g ; l2 ; l3

where l1, l2 and l3 are labels, c a command (e.g., an assignment)
and g a test (i.e., a boolean expression). In the following, we
use action to denote either a command or a test. Intuitively, if

the current program point is l1 and the service S contains the
instruction:

• l1 : c ; l2 then the command c is performed and the current
program point becomes l2 ;

• l1 : g ; l2 ; l3 then if the test g is true the current program
point becomes l2 else it becomes l3.

Left-hand side labels are supposed to label a unique instruction.
This syntactic restriction ensures sequentiality and determinism of
services (provided that commands are as such).

That source language is very simple yet sufficiently expressive.
Its main advantage is that source programs are very close to their
control flow graph which will be translated to a timed automaton.
A higher-level language could be considered using a control flow
graph analysis to abstract programs into automata.

Typically, a service is an infinite loop waiting for a user’s re-
quest, processing and answering the request and so on. The loop of
a service starts with the instruction l0 : getUser() ; l1 which
waits and takes a new request and ends with li : endUser() ; l0
which returns the results to the user and jumps to l0 to treat a new
request. For example, the service S1 of figure 3 can be written in
that syntax:

S1 =

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

l0 : getUser() ; l1
l1 : M1.alloc() ; l2
l2 : M2.alloc() ; l3
l3 : S1.comput() ; l4
l4 : M2.free() ; l5
l5 : M1.free() ; l6
l6 : endUser() ; l0

9

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

;

The commands getUser(), alloc() are blocking (e.g., if there
is no request or if the resource is not available); the command
S1.comput denotes a potentially large collection of basic instruc-
tions without any resource management command.

4.2 Semantics

The semantics of a service S is expressed as a labeled transition
system (LTS) (ΣS , (l0, s0), ES,−→S) where:

• Σp is an infinite set of states (l, s) with l a label and s a store;
• (l0, s0) is the initial state;
• ES is the set of actions of S;
• −→S is the transition function labeled by the action.

The semantics of commands c is assumed to be given by the
function C[[c]] mapping the current store to the updated store. The
semantics of tests is assumed to be given by the function G[[g]]
which takes the current store and returns a boolean. The transition
function can be then defined by the following three rules:

COMM
l1 : c ; l2 ∈ S C[[c]]s1 = s2

(l1, s1)
c

−→S (l2, s2)

THEN
l1 : g ; l2 ; l3 ∈ S G[[g]]s1

(l1, s1)
g

−→S (l2, s1)

ELSE
l1 : g ; l2 ; l3 ∈ S ¬G[[g]]s1

(l1, s1)
g

−→S (l3, s1)

5. Availability aspects
Finite time properties are a common class of availability properties
that ensure that users’ requests are eventually answered. This type

of liveness property must be ensured statically using verification
techniques. They cannot be enforced dynamically by monitoring,
weaving or code instrumentation [23]. Since only safety properties
can be enforced by weaving, we consider bounded time properties.
For example, we may want to ensure that requests are answered
before a fixed time limit. Many other timed properties can be
specified as well. For instance, to guarantee a fair use of resources,
we may want to limit the allocation frequency of resources by a
service (e.g., by adding waiting periods).

Availability aspects specify mostly maximal and minimal peri-
ods between events (e.g., the allocation and release of a resource).
They are written in a textual language and can be easily translated
into timed automata.

5.1 Syntax

Our language is inspired by stateful aspects [8] (or trace-based
aspects [9]) which take the history of execution into account. The
syntax is described in figure 4.

A ::= {ai = Ei} ; mutually recursive equations

E ::= E1 � E2 ; choice
| ((F, G) . L); ai ; adds advice L and proceeds

; with ai if the current event is
; matched by the pattern F and
; the timed guard G is true

F ::= Pat ; basic event patterns
| F1 ∧ F2 | ¬F

G ::= {. . . , t � k, . . .} ; timed guards
; � ∈ {≤, <, >,≥}

L ::= {I; . . . ; I} ; advice

I ::= reset (i, k) ; programs the interrupt i to be
; triggered in k time units

| cancel (i) ; cancels the interrupt i
| start (t) ; initializes the timer t
| wait (t, k) ; waits until t = k
| nop ; empty instruction

with k an integer, i an interrupt and t a timer

Figure 4. Syntax of availability aspects

An aspect is a collection of mutually recursive equations. An
equation is of the form ai = (C . L); aj and should be read as:
the aspect waits for the event C which triggers the execution of a
sequence of instructions L and passes the control to equation aj . In
general, an equation may contain choices. For example, the aspect
(C . L); a � (C′ . L′); a′ waits for the events C or C ′; the first
event occurring triggers the execution of the corresponding advice
and equation (L and a or L′ and a′). To ensure determinism, we
suppose that choices are exclusive1.

A pattern F , close to AspectJ’s pointcuts [14], is either a sim-
ple pattern (a term, possibly with wildcards *, matching instruc-
tions), or a logical combination of patterns. For example, R.alloc
matches only the allocation of the resource R, *.alloc matches all
allocations and R.* all operations on the resource R. A guard G
is a conjunction (represented by a set) of comparisons of timers to
integer constants.

1 Another option would be to choose the first choice (i.e., C) when both
choices match the same event

The list of instructions L denotes the advice to execute when
the associated pattern matches the current instruction. Availability
aspects use only 5 types of instructions:

• reset(i, k) programs an interrupt i to terminate the current re-
quest and to release all allocated resources after k seconds. We
suppose that reset rolls back a service to a safe initial state
(e.g., using transactional techniques). Most resources (proces-
sor, memory, printer, etc.) can be adapted to support roll-back.

• cancel(i) cancels the interrupt i;
• start(t) initializes the timer t;
• wait(t, k) waits until t has the value k. If t ≥ k then the

instruction does nothing (wait(t, k) ≡ nop);
• nop permits advance without performing any action.

All instructions are executed after the matched instruction (i.e.,
they are after advice) except wait(t, k) which is performed before
(i.e., a before advice). We forbid programming and canceling the
same interrupt (e.g., reset(i, k); cancel(i)) within the same advice.

Availability aspects can only add guards or time related instruc-
tions which do not modify the state of the service. Their semantic
impact boils down to forbidding some execution traces: either they
are aborted by a reset or their timing is modified by wait. Aspects
can therefore be seen as timed properties and it is possible to reason
on woven programs.

To simplify notation, we omit the guard when it is true and list
notation for a single instruction. For example, (true, M1.alloc) .
{reset(i1, 25)} is written M1.alloc . reset(i1, 25).

5.2 Examples

We illustrate our language using several simple and common ex-
amples, namely controlling the duration of resource allocation, the
frequency of resource allocations, the duration according to the fre-
quency and, finally, enforcing a specific allocation ordering.

Controlling the duration of resource allocations We may want
to weave the following two aspects to the service S1 of figure 3:

• A1 that ensures that the resource M1 is released within 25
seconds ;

• A2 that ensures that the resource M2 is released within 35
seconds.

These two aspects are specified as follows:

A1 =



a1 = M1.alloc . reset(i1, 25); a2

a2 = M1.free . cancel(i1); a1

ff

A2 =



a1 = M2.alloc . reset(i2, 35); a2

a2 = M2.free . cancel(i2); a1

ff

As soon as the event M1.alloc (resp. M2.alloc) is executed, a
reset is programmed to be set off 25 seconds (resp. 35 seconds)
later. If the event M1.free (resp. M2.free) occurs before, the
interrupt is canceled.

Controlling the frequency of resource allocations Here, the
goal is to prevent a service from monopolizing a resource by re-
allocating it immediately. This may be required by resources con-
stantly needed by several services.

Consider two services X and Y that need the resource M to answer
a request. The service X tries to allocate M as soon as it has released
it whereas Y asks for it 20 seconds after it has started to process
a new request. Better fairness can be guaranteed by making the
service X wait at least 20 seconds between each allocation of M.
The following aspect specifies such a property:



a1 = M.alloc . start(t); a2

a2 = M.alloc . {wait(t, 20); start(t)}; a2

ff

As soon as the event M.alloc is executed, a timer t is started.
A wait of at least 20 seconds is imposed before a new event
M.alloc is performed (wait(t, 20)). Afterward, the timer is reset
and restarted.

Controlling the duration according to allocation frequency
Instead of decreasing the frequency, another option is to adapt the
allocation time depending on the frequency. For example, a pol-
icy might be to set the maximal allocation time to be 10 seconds
except if the resource was already allocated by the same service
less than 20 seconds before (t < 20). In that case, the maximal
allocation time is only 5 seconds. The following aspect specifies
that property:

8

>

<

>

:

a1 = M.alloc . reset(i, 10); a2

a2 = M.free . {cancel(i); start(t)}; a1

a3 = (t < 20, M.alloc) . reset(i, 5); a2

� (t ≥ 20, M.alloc) . reset(i, 10); a2

9

>

=

>

;

Enforcing a resource allocation ordering Properties unrelated
to time can also be specified using the same language. For instance,
it is possible to enforce specific orders of resource allocation e.g.,
to prevent deadlocks. The following aspect forbids the allocation
of the resource M1 if the service already possesses the resource M2.
In this case, the service is terminated using reset(i, 0). This aspect
is useful only for services which may allocate M1 and M2 in both
orders. The aspect will select only executions allocating first M1
then M2.

8

<

:

a1 = M2.alloc . {}; a2

a2 = M1.alloc . reset(i, 0); a3

� M2.free . {}; a1

9

=

;

Many other availability policies can be described in our lan-
guage. For example, we could associate priorities to services and
make them evolve according to services’ behavior. Different delays
and frequencies could then be specified depending on the priority.

6. Weaving
Our approach implements weaving as a timed automata product.
A service is represented by a timed automaton over-approximating
its (timed) execution traces. The semantics of aspects is given as a
timed automaton. Such an automaton recognizes the set of (timed)
execution traces allowed by the aspect. The product of these two
automata performs the intersection of their two sets of traces. That
is, the product automaton recognizes the traces of the original
service minus the traces forbidden by the aspect. In practice, it
amounts to aborting some execution traces (using interrupts and
resets) or to slowing down others (using waits).

We first describe how services are abstracted into timed au-
tomata. The abstraction consists in the control flow graph without
any time constraint (i.e., all timing behaviors are included). Then,
we give the semantics of aspects in terms of timed automata. The
next step is to weave the aspect on the service. That step boils down
to a classical product operation. The resulting automaton represents
the service restricted in such a way that it respects the property
specified by the aspect. A last step implements the waiting con-
straints by the instruction wait.

6.1 Abstraction of services

We use an abstraction over-approximating the execution traces (a
standard control flow analysis) that does not take time information
into account. This can be seen as the largest over-approximation as
far as time is concerned. A service is represented by an automaton
which can be seen as the control flow graph of the service. The
abstraction is described by the relation nextS(l1, a, l2) which

denotes that S can go from the program point l1 to l2 by performing
the action a. That relation is defined as follows:
nextS(l1, a, l2) iff
l1 : a ; l2 ∈ S ∨ l1 : a ; l2 ; l ∈ S ∨ l1 : ¬a ; l ; l2 ∈ S

The relation is clearly an over approximation of the control flow
since values (and the evaluation of tests) are abstracted away.

The service S = (ΣS , (l0, s0), ES,−→S) is abstracted in the
timed automaton S] = (ΣS] , l0, ∅, ES] ,−→S] , IS]) where

• ΣS] , the set of abstract states, is composed of the set of program
points and a set of intermediate states. Formally:

ΣS] = {l, la | nextS(l, a, l
′)}

• the initial abstract state is the initial label (program point) l0;
• the set of clocks is empty;
• the set of actions is composed, for each action of S, of two

actions (instants) B(a) (the beginning of a) and E(a) (the end
of a):

ES] = {B(a), E(a) | a ∈ ES}

Splitting the action in two instants is used to represent the
execution time of actions ;

• the transition relation −→S] is defined as follows:

(l, ., B(a), ., la) ∈−→S] ∧ (la, ., E(a), ., l′) ∈−→S]

iff nextS(l, a, l′)

Each action a from one state to another is represented using an
intermediate state la and two transitions corresponding to the
two instants B(a) and E(a) without any timing constraint (no
constraints on the time passing between two actions).

• the function IS] does not add any timing constraint, that is
∀l ∈ ΣS] . IS](l) = ∅.

The absence of any timing constraint implies that the automa-
ton models all possible execution times for each action. Figure 5
illustrates the abstraction of service S1 into a timed automaton.

., E(M2.free), .

., B(M2.free), . ., E(S1Comput), .

., B(M1.free), .

., B(S1comput), .

., E(M1.free), .

., E(M2.alloc), .

., B(M1.alloc), . ., E(M1.alloc), .

., B(M2.alloc), .

Figure 5. Abstraction of service S1

The abstraction is safe since the automaton accepts all execution
traces of the source program. Formally:

PROPERTY 1. [Safety] A service S = (ΣS , (l0, s0), ES,−→S)
and its associated abstraction S] = (ΣS] , l0, ES] ,−→S] , IS]) are
such that for all labels l1 and l2, states s1 and s2, and action a:

(l1, s1)
a

−→S (l2, s2) ⇒ ∃l. l1
.,B(a),.
−−−−→S] l ∧ l

.,E(a),.
−−−−→S] l2

6.2 Aspect semantics

The semantics of aspects is given in terms of timed automata. An
aspect specifies a timed property and the timed traces recognized by
the corresponding semantic automaton are the timed traces allowed
by the aspect.

The semantics of aspects is given by automata of the form:

A = (Na, la0, Ha, Ea,−→a, Ia) where

• the set of states Na is made of a sink state RESET and pairs
(q, e) where q denotes the state (i.e., the current equation) of
the aspect and e the current interrupt environment;

• la0 = (a0, {}) is the initial state;
• Ha is the set of clocks (interrupts and timers) used in the aspect;
• Ea contains the same actions as the service and aspect;
• Ia associates each state (q, e) to an invariant enforcing that

no valid interrupt (i.e., defined in e) occurs. This function is
defined as follows:

Ia(q, e) = {i ≤ e(i) | ∀i.e(i) 6=⊥}

In the remaining, we use the special transition (q, e)
else
−−→a

(q, e) which denotes that if no other transitions from (q, e) applies
then the aspect remains in the same state. This notation is syntactic
sugar which can be translated into a collection of transitions from
(q, e) to (q, e) (the complementary of outgoing transitions). The
relation −→a is defined on the syntax of the aspect as follows:

[a0 = E0] = (a0, {})
else
−−→a (a0, {}) ∪ [E0]

(a0,{})

The automaton corresponding to E0 (the initial equation) has the
initial state (a0, {}). No interrupt is active and, as for all states,
there is an else transition.

[E1�E2]
(q,e) = [E1]

(q,e) ∪ [E2]
(q,e)

The transitions corresponding to an exclusive choice are the union
of the transitions for both choices.

[(F, G) . L; ai]
(q,e)

= [(F, G) . L]
(q,e)
(ai,e′) ∪ [Ei]

(ai,e′) ({ai = Ei} ∈ A)

∪ (ai, e
′)

else
−−→a (ai, e

′) ∪ interrupt(ai, e
′)

A rule (F, G) . L involves the computation of a new interrupt
environment (see the next translation rule) and new transitions to a
new state. The automaton corresponding to the continuation of the
aspect starts from this new state. As any state, the else transition
and the interrupt transitions (contained in the current environment)
are generated.

[(F, G) . L]
(q1,e1)
(q2,e2)

= { (q1, e1)
g,B(a),.
−−−−−→a (q′, e1)

∪ (q′, e1)
V

(e),E(a),r
−−−−−−−→a (q2, e2) ∪ interrupt(q′, e1)

| match(a, F) ∧ ins(e1, L) = (gi, r, e2)
∧ (g =

V

(e1) ∪ G ∪ gi)}

For each action a matched by F , two transitions (B(a) and E(a))
are added using a new intermediate state (q′, e1). Transitions mod-
eling interrupts are added to this state. The function ins analyzes
the advice L to compute the guards and resets of transitions as well
as the new interrupt environment.
The intermediate functions used in the translation are defined as
follows:

• The function interrupt takes a state (q, e) and returns the set
of transitions modeling the interrupts that may arise in this state.

interrupt(q, e) = {(q, e)
i≥e(i),.,.
−−−−−−→a RESET | e(i) 6=⊥}

There is a transition to RESET each time an interrupt i reaches
its trigger value recorded in the environment e.

• The function match(a, F) returns true if F matches a.

• The function ins takes an interrupt environment, an advice and
returns the guard, the reset set and the new interrupt environ-
ment taking into account the wait, reset, start and cancel in-
structions of the advice.

ins(e, L) = ({w(t, k) | wait(t, k) ∈ L},
{z | reset(z, k) ∈ L ∨ start(z) ∈ L},
e′)

with

8

<

:

e′(i) =⊥ if cancel(i) ∈ L
e′(i) = k if reset(i, k) ∈ L
e′(i) = e(i) otherwise

The wait(t, k) advice is represented by a special guard w(t, k).
At the end of weaving, these guards are implemented by new
states in which waiting is possible. Without this representation,
we would need to add a new state before each instruction to
represent possible waits.

• The function
V

takes an environment and returns the guard
corresponding to the case where no interrupt occurs:

V

(e) =
{i < e(i) | e(i) 6=⊥}

The translation proceeds by unfolding the recursive equations of
the aspect. The process terminates since there are a finite number
of definitions (ai = . . .) and interrupt environments.

i1 ≤ 25

i1 ≤ 25

Reset

else
., B(M1.alloc), . ., E(M1.alloc), {i1}

i1 < 25, E(M1.free), .

else

i1 < 25, B(M1.free), .

i 1
≥

2
5
,
.,

.

i1 ≥ 25, ., .

i1 ≤ 35

i1 ≤ 35

Reset

else
., B(M2.alloc), . ., E(M2.alloc), {i1}

i2 < 35, E(M2.free), .

else

i2 < 35, B(M2.free), .

i 2
≥

3
5
,
.,

.

i2 ≥ 35, ., .

Figure 6. Timed automata of A1 (above) and A2 (below)

Figure 6 shows the semantic automata for the previously defined
aspects A1 and A2. Intuitively, weaving will amount to starting a
timer when the service takes the resource and to reset it when the
timer reaches its time limit (i.e., 25 or 35 seconds). In the aspect
A1, the clock i is reset at the initialization of the interrupt. Then,
for all states until the resource is released, the outgoing transitions
have the guard i < 25, the state invariant has the condition i < 25
and a transition with guard i ≥ 25 to the state RESET is added.
The sink state RESET will be interpreted during the concretization
as a collection of transitions releasing all resources followed by a
transition returning to the beginning of the request loop.

6.3 Weaving an aspect to a service

Weaving per se is just the product (as described in section 3.3) of
the automata representing the service and the aspect. The aspect au-
tomaton specifies a set of allowed timed traces using timers, guards
and invariants. The automata product performs the intersection of
the execution traces of the service and aspect. The semantic impact
of weaving is therefore to restrict the service’s behavior to the timed
traces allowed by the aspect. In implementation terms, it amounts
to inserting the time annotations of the aspect within the service to
shorten or lengthen some timed executions.

A last step implements guards w(t, k) by wait instructions.
More precisely, a transition of the form

q
w(t,k)∧g,B(c),.
−−−−−−−−−−→ q

′

is translated into the following transitions

q
(t≥k)∧g,B(c),.
−−−−−−−−−→ q

′
q

(t<k)∧g,B(wait),.
−−−−−−−−−−−→ qw qw

(t≥k),E(wait),.
−−−−−−−−−−→ q

and the state invariant t ≤ k on state qw . That is to say, if t ≥ k
the action c can start otherwise the automaton performs a wait
instruction i.e., goes into the new state qw where time passes until
t ≥ k.

Figure 7 shows the product of the abstraction of service S1 with
the aspects A1 and A2. In the product automaton, two interrupts
are programmed after M1.alloc and after M2.alloc. If M1.free
(resp. M2.free) is not executed before 25 seconds (resp. 35 sec-
onds), the automaton goes to state RESET.

i1 ≤ 25 ∧
i2 ≤ 35

i1 ≤ 25 ∧
i2 ≤ 35

i1 ≤ 25 ∧
i2 ≤ 35

i1 ≤ 25
i1 ≤ 25 ∧
i2 ≤ 35

i1 ≤ 25 i1 ≤ 25

i1 ≤ 25

Reset

i1 < 25,

E(M2.free), . i 1
≥

2
5
,

.,
.

i 2
≥

3
5
,
.,

.

i1 < 25∧
i2 < 35,

B(M2.free), .

i
1

≥
2
5

,
.,

.

i
2

≥
3
5

,
.,

.

i1 < 25∧
i2 < 35,

E(S1Comput), .

i
1
≥

2
5
,
.,

.
i
2
≥

3
5
,

.,
.

i1 < 25,

B(M1.free), .

i 1
≥

25
,
.,

.

i1 < 25 ∧ i2 < 35,

B(S1comput), .

i
1 ≥

25, ., .

i
2
≥

3
5
,
.,

.

., E(M1.free), .

i1 ≥ 25, ., .

i1 < 25,

E(M2.alloc),
{i2}

i1 ≥ 25, ., .

., B(M1.alloc), . ., E(M1.alloc), {i1}

i1 < 25,

B(M2.alloc), .

i 1
≥

25
,
.,

.

Figure 7. Product of service S1 with aspects A1 and A2

In comparison with figure 5, transitions to RESET and state in-
variants have been added to model interrupts. Loops on the instruc-
tion wait have been suppressed since the aspects do not add delays.

Compared to a standard weaving a la AspectJ, the final result
is similar: new code (i.e., advice) is added at various join points.
The respective approaches are however quite different. In AspectJ,
design and reasoning are mainly syntactic processes. Aspects spec-
ify sets of join points and code to insert at these points. The pro-
grammer usually reasons on the semantics of the program by (men-
tally) visualizing the expected source code of the woven code. In
our domain-specific language, where advice is restricted, aspects
can be seen as a (timed) property on execution traces. An aspect
specifies a set of allowed traces which can be enforced to the base
program using automata product and a concretization into source
code.

7. Optimization, verification and concretization
The product (woven) automaton can then be

• optimized by taking into account (worst-case and best case)
execution times of instructions;

• used to model-check general availability properties (e.g., ab-
sence of deadlock, boundedness of the request loop, etc.);

• translated back into a source program.

We briefly present these three steps in turn.

7.1 Optimizations

We describe here how to optimize the woven automaton by tak-
ing into account time information. We assume a cost function
fcost returning for each instruction of the service a time interval
[BCET(I), WCET(I)] where BCET(I) (resp. WCET(I)) is a best-
case (resp. worst-case) execution time of I . Note that it is always
possible to build such a function since the trivial approximation
fcost(I) = [0, +∞] is always safe (if not very useful). Such in-
tervals can be seen as a new constraint removing all execution
traces where I takes less (resp. more) than BCET(I) (resp. WCET(I)).
Again, these constraints are taken into account by a product opera-
tion. A precise cost function (e.g., see [21, 17]) permits the removal
of spurious tests or useless timers from the woven automaton. For
instance, if fcost directly implies that a service releases its resource
before the time limit required by an aspect, no instrumentation will
be needed to enforce this requirement.

In the following, we suppose that we have such a cost function
and that it returns the following results for the instructions of
service S1:

fcost(S1Comput) = [2, 10]
fcost(M1.alloc()) = fcost(M2.alloc()) = [0, +∞]
fcost(M1.free()) = fcost(M2.free()) = [0, 0]

The function fcost yields an unbounded time interval for allo-
cations since these instructions depend on the state of the re-
source and are blocking. The time information is taken into ac-
count by performing a product with the cost automaton C =
(Nc, c0, {k}, ES] ,−→c, Ic) where:

• for any action a such that fcost(a) = [BCET(a), WCET(a)] we
have

c0
.,B(a),{k}
−−−−−−→c q and q

k≥BCET(a),E(a),.
−−−−−−−−−−−−→c c0

with q a fresh state

• the state invariant specifies that control can remain in this state
not longer than WCET(a); that is:

Ic(q) = {k ≤ WCET(a) | q
k≥BCET(a),E(a),.
−−−−−−−−−−−−→c c0}

The timer k is reset at the beginning of a. The control remains in
the intermediate state at least until k ≥ BCET(a) and at most until
k = WCET(a).

Another issue to take into account is that sequencing (i.e., the
; operator) takes no time. In our example, this fact can be taken
into account by a product with a two-state timed automaton, the
sequencing automaton, E = ({e0, e1}, e0, {seq}, ES] ,−→e, Ie)
where:

• each beginning of action goes to state e1 and each end of action
goes to e0 resetting the dedicated timer seq. Intuitively, the state
e0 represents the sequencing between actions (which takes no
time) and the state e1 represents an action which may take time.

−→e=

(

e0
.,B(a),.
−−−−→e e1

e1
.,E(a),{seq}
−−−−−−−→e e0

˛

˛

˛

˛

˛

B(a) ∈ ES] ∧ E(a) ∈ ES]

)

• the invariant of state e0 ensures that no time can be spent in this
state. No constraint is placed on state e1.

Ie(e0) = {seq ≤ 0} Ie(e1) = ∅

The timed automaton obtained after the product with the cost
and sequencing automata is more precise. The two products have

integrated time information and have removed many impossible
timed traces The resulting automaton can be analyzed to remove
useless guards, timers and invariants as well as unreachable states.
This process optimizes the overhead introduced by the aspect. It is
easily carried out by tools such as UPPAAL.

Figure 8 shows the service S1 of figure 7 after product with
the sequencing and cost automaton corresponding to fcost and
simplification.

i1 ≤ 25 ∧
k ≤ 0

i1 ≤ 25 ∧
seq ≤ 0

i1 ≤ 25 ∧
k ≤ 10

i1 ≤ 25 ∧
seq ≤ 0

i1 ≤ 25 ∧
seq ≤ 0

i1 ≤ 25 ∧
k ≤ 0

i1 ≤ 25

seq ≤ 0 seq ≤ 0

Reset

i1 < 25,

E(M2.free),
{seq}

i 1
≥

2
5
,
.,

.

i1 < 25,

B(M2.free),
{k}

i1 < 25,

E(S1Comput),
{seq}

i
1
≥

2
5
,
.,

.

i1 < 25,

B(M1.free),
{k}

i1 < 25,

B(S1comput),
{k}

i1 < 25,

E(M1.free),
{seq}

i1 ≥ 25, ., .

i1 < 25,

E(M2.alloc),
{seq}

i1 ≥ 25, ., .

., B(M1.alloc), .

.,

E(M1.alloc),
{i1, seq}

., B(M2.alloc), .

Figure 8. Timed automaton of S1 after weaving and optimization

Aspect A2 prevents the service from retaining the resource M2
more than 35 seconds. The weaving of A2 has no impact on the
code since the automaton makes it clear that S1Comput (i.e., the use
of M2) lasts at most 10 seconds. This information, initially given by
fcost and integrated by product in the service automaton, permits
suppression of the useless interrupt i2 and the related transitions.

7.2 Verification

The previous product automaton is a formal representation of the
woven service. We may now want to verify that woven services
satisfy general availability properties that are not directly specified
by aspects. Actually, aspects are best seen as collections of timed
properties (or availability policies) which are supposed to ensure
high-level availability properties. These properties can be verified
by model-checking on the woven automaton. This verification step
allows also checking that aspects are not contradictory. For exam-
ple, an aspect adding waiting periods (e.g., to lower an allocation
frequency) may conflict with another aspect limiting the duration of
another resource allocation. It is also possible to verify global prop-
erties (e.g., absence of deadlocks) on the complete system com-
posed of the woven services and shared resources.

We have used UPPAAL to represent services and to verify prop-
erties expressed as LTL formulas. We have woven the aspects A1

and A2 on services S1 and S2 and written the result with UPPAAL.
We have verified that the woven system respected the following
properties:

• the system is well timed and has no deadlock. Note that dead-
locks are prevented by the aspect resetting S2 after 35 seconds;

• the service S1 treats a request in less than 45 seconds. This
property can be verified using a new timer avail reset at the
beginning of the request loop and by checking avail≤ 45 for
all states. This property has been ensured by weaving. Indeed,
the woven service S2 must release resource M2 at most after
35 seconds, so S1 cannot wait more than 35 seconds to get
its resources. Since S1Comput takes at most 10 seconds, S1
will terminate before 45 seconds. This also means that service
S1 will always get access to the needed resources and, more
generally, that no denial of resources can arise in the system
anymore.

The verification of these properties is very fast (less that 1 second).
Since UPPAAL has been used to analyze complex protocols, we
expect that it could verify availability properties of much larger
systems.

7.3 Concretization

The concretization of a standard automaton into our source code is
very simple [10]. The concretization of timed automata requires the
introduction of timed instructions (initialization of timers, checking
time invariants, timed guards).

In order to take into account the timing facet introduced in the
automaton during weaving, we extend our source language with
timed guards and commands.

Guards are extended with timer comparisons:

g ::= t � k | . . . with � ∈ {<, >,≤, . . .}

The following commands are added:

c ::= start(t) | wait(t, k) | reset(i, k) | cancel(i) | . . .

where t and i denote identifiers for a timer and an interrupt, respec-
tively, and k denotes an integer. These commands are the source
code equivalent of the advice instructions. The start(t) command
sets and starts a timer t which could be compared to integer con-
stants in guards. Timers are also used to slow down an execution us-
ing the command wait(t, k) that waits while t < k. The reset(i, k)
command programs an interrupt i to arise after k seconds. The
cancel(i) instruction cancels the interrupt i. The commands are the
equivalent in source code of the advice instructions.

We sketch how a timed automaton is translated into that ex-
tended language. First, the time information introduced by the cost
and sequencing automata are removed since they do not describe
program instructions but merely non-functional properties. Con-
cretization uses the following rules:

• couples of transitions of the form

(q1
.,B(c),.
−−−−→ q

′
, q

′ .,E(c),.
−−−−→ q2)

correspond to a command c and are translated into the instruc-
tion lq1 : c ; lq2;

• tuples of transitions of the form

(q1
.,B(g),.
−−−−→ q′, q′

.,E(g),.
−−−−→ q2,

q1
.,B(¬g),.
−−−−−→ q′′, q′′

.,E(¬g),.
−−−−−→ q3)

correspond to a guard g and are translated into the instruction
lq1 : g ; lq2 ; lq3;

• couples of transitions of the form

(q1
g∧G,B(a),.
−−−−−−−→ q

′
, q1

¬g∧G,B(a),.
−−−−−−−−→ q

′′)

correspond to a guard g added by an aspect and are translated
into the instruction lq1 : g ; lq1′ ; lq1′′ . Concretization
proceeds with the transitions

(q′1
G,B(a),.
−−−−−→ q

′
, q

′′
1

G,B(a),.
−−−−−→ q

′′)

• a loop q
t<k,B(wait),.
−−−−−−−−−→ q′ t≥k,E(wait),.

−−−−−−−−−→ q involves the inser-
tion of the command wait(t, k) before the corresponding pro-
gram point (i.e., lq);

• the reset of a timer t in a transition q
g,E(a),{t}
−−−−−−→ q′ is translated

by the insertion of a command start(t) after the program point
corresponding to q′ (i.e., lq′);

• interrupts involves inserting the command reset(i, k) at the
initialization of i (i.e., i is within a reset) and the command
cancel(i) at the program point corresponding to the first state
where there is no invariant i ≤ k anymore.

Figure 9 shows the source code of service S1 obtained after the
concretization of the automaton of figure 8. After the command
M1.alloc(), a new interrupt i is set to arise after 25 seconds.
When the service takes less than 25 seconds to complete its treat-
ment, the resource M1 is released (M1.free()) and the interrupt is
canceled (cancel (i)).

S1 =

8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

:

l0 : getUser() ; l1
l1 : M1.alloc() ; l′1
l′1 : reset(i, 25) ; l2
l2 : M2.alloc() ; l3
l3 : S1Comput() ; l4
l4 : M2.free() ; l5
l5 : M1.free() ; l′6
l′6 : cancel(i) ; l6
l6 : endUser() ; l0

9

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

;

Figure 9. Code of service S1 after weaving

8. Conclusion
We have proposed a formal framework to enforce availability prop-
erties on services sharing resources. At a practical level, we have
defined a domain specific aspect language dedicated to the pre-
vention of denial of services. At a methodological level, our ap-
proach promotes a formal view of AOP with aspects as properties
and weaving as an automata product.

We have shown in [13] the correctness of the whole approach
(abstraction, weaving, concretization) in a simpler (untimed) set-
ting. We have shown that if a program respects the aspect (a safety
property) then the woven program has the same behavior. If a pro-
gram does not respect the aspect then the woven program is stopped
just before the violation. With availability aspects, proofs need to
refer to the timed semantics of services. We have not completed that
generalization yet but we believe that the structure of the proofs re-
mains identical.

The implementation of our technique is likely to be easy and
realistic. The representation of services should remain of moderate
size since code unrelated to resource management can be repre-
sented by a single instruction. The costs of analyses (control flow,
execution time) can be controlled by adjusting the precision of their
approximation. Finally, if a weaving based on a standard automata
product may involve a code explosion in some cases, it is easy to
circumvent this problem by replacing code duplication by code in-
strumentation (see [6]).

This research belongs to a series of work considering aspects
as formal properties on execution traces. The joint technique is to
translate programs and aspects into (various forms of) automata and
to express weaving as a product.

• in [6], we have proposed a technique to enforce user-defined
security policies expressed as automata. A potential use of the
method is the securing of applets using a just-in-time weav-
ing of the policies/aspects. The instrumentation performed by

weaving ensures that the applet will be stopped just before it
tries to infringe the policy;

• in [10], we have proposed domain-specific aspects to specify
and enforce scheduling policies to networks of communicating
processes. A scheduling aspect (expressed as an automaton)
selects a subset of allowed execution traces of the set of all
possible interleavings. This technique permits transformation
of a network into an equivalent (and more efficient) sequential
program;

• in this article, we have generalized our previous framework to
timed automata in order to express and enforce properties on
execution time. We can prevent some execution traces and also
modify their timed behavior. Our aspect language is expressive
enough to specify many different availability policies.

That series shares the same goal of keeping the semantic impact
of weaving under control in order to permit reasoning (analyses,
verification, proofs) on aspect-oriented programs. In general pur-
pose aspect languages with unrestricted advice, it is very difficult,
in general, to predict the effect of weaving and to reason compo-
sitionally. Several AOP related approaches also rely on automata.
Let us mention [18] which uses automata to enforce safety proper-
ties and [24] and [1] which investigate AOP for parallel languages.
Their respective goals and techniques are quite different from ours;
in particular, none of them consider timed properties and automata.

Yu and Gligor [25] present a method to verify that a resource
allocator remains available. Our framework can be seen as a gen-
eralization of that work to bounded time policies. Further, aspects
allow a better separation of concerns and, above all, an automatic
instrumentation of programs using weaving. Millen [19] proposes
a model based on a global monitor for availability relying on a
Trusted Computing Base. We have shown that local policies can
suffice to ensure availability properties. Local policies are easier
to design and to implement efficiently. Cuppens and Saurel [7]
presents a logic framework to express and verify availability poli-
cies. Their model is suitable to verify policies a posteriori but not
to enforce them. J-Seal2 [5] proposes a simple and global mech-
anism to ensure availability of processors and memory. They de-
scribe the implementation in terms of code instrumentation but it
is not generic enough to be used for other types of resources (e.g.,
resources with exclusive access). Nandivada and Palsberg [20] ab-
stracts a TCP server into a timed automaton and use UPPAAL to
verify its ability to survive denial-of-service attacks. They do not
consider the enforcement availability properties but we could reuse
their timing analysis to abstract our services.

We are currently completing the formalization of the concretiza-
tion and the associated correctness proofs. A useful extension
would be to provide better support for the prevention of dead-
locks. Limiting the duration of resource allocation or enforcing
an allocation ordering (cf. section 5.2) permit avoidance of dead-
locks. However, these techniques are not always satisfactory. The
system can often be stuck waiting for a time limit to be reached.
Worse, a bad allocation ordering may involve systematic interrupts
of services which will not be able to perform their task anymore.
A better solution would be to transform services such that they al-
locate some resources earlier (but therefore longer) to satisfy the
allocation ordering specified by the aspect. Another research di-
rection would be to model in our framework more sophisticated
availability policies relying, for example, on dynamic performance
evaluation, admission control or priorities.

Acknowledgments
This work has been supported by the ACI DISPO project. We thank
the anonymous reviewers for their corrections and suggestions.

References
[1] K. Altisen, F. Maraninchi, and D. Stauch. Aspect-oriented program-

ming for reactive systems: Larissa, a proposal in the synchronous
framework. Sci. Comput. Program., 63(3):297–320, 2006.

[2] R. Alur. Timed automata. In Computer Aided Verification, pages
8–22, 1999.

[3] R. Alur and D. L. Dill. A theory of timed automata. Theoretical
Computer Science, 126(2):183–235, 1994.

[4] J. Bengtsson and W. Yi. Timed automata: Semantics, algorithms and
tools. In Concurrency and Petri Nets, LNCS vol. 3098. Springer–
Verlag, 2004.

[5] W. Binder, J. G. Hulaas, and A. Villaz. Portable resource control
in java. In OOPSLA ’01: Proceedings of the 16th ACM SIGPLAN
conference on Object oriented programming, systems, languages, and
applications, pages 139–155. ACM Press, 2001.

[6] T. Colcombet and P. Fradet. Enforcing trace properties by program
transformation. In Symposium on Principles of Programming
Languages (POPL’00), pages 54–66, 2000.

[7] F. Cuppens and C. Saurel. Towards a formalization of availability and
denial of service. In Inf. Syst. Tech. Panel Symp. on Protecting Nato
Information Systems in the 21st century, 1999.

[8] R. Douence, P. Fradet, and M. Südholt. A framework for the detection
and resolution of aspect interactions. In Proc. of Conference on
Generative Programming and Component Engineering (GPCE’02),
LNCS vol. 2487. Springer–Verlag, 2002.

[9] R. Douence, P. Fradet, and M. Südholt. Trace-based aspects. In
M. Aksit, S. Clarke, T. Elrad, and R. Filman, editors, Aspect-Oriented
Software Development, pages 201–217. Addison-Wesley, 2004.

[10] P. Fradet and S. Hong Tuan Ha. Network fusion. In Prog. Lang. and
Syst.: Second Asian Symposium, (APLAS’04), LNCS vol. 3302, 2004.

[11] P. Fradet and S. Hong Tuan Ha. Systèmes de gestion de ressources
et aspects de disponibilité. In 2e Journée sur le Développement de
Logiciels Par Aspects (JFDLPA 2005), Sept. 2005.

[12] P. Fradet and S. Hong Tuan Ha. Systèmes de gestion de ressources
et aspects de disponibilité. L’Objet - Logiciel, bases de données,
réseaux, 12(2-3):183–210, Sept. 2006.

[13] S. Hong Tuan Ha. Programmation par aspects et tissage de
propriétés. Application à l’ordonnancement et à la disponibilité.
PhD thesis, Rennes University, Jan. 2007.

[14] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G.
Griswold. An overview of AspectJ. Lecture Notes in Computer
Science, 2072:327–355, 2001.

[15] J.-C. Laprie. Dependability: Basic Concepts and Terminology.
Dependable Computing and Fault-Tolerant Systems. Springer, 1992.

[16] K. G. Larsen, P. Pettersson, and W. Yi. UPPAAL in a nutshell. Int. J.
on Software Tools for Technology Transfer, 1(1-2):134–152, 1997.

[17] X. Li, T. Mitra, and A. Roychoudhury. Modeling control speculation
for timing analysis. Real-Time Syst., 29(1):27–58, 2005.

[18] J. Ligatti, L. Bauer, and D. Walker. Edit automata: enforcement
mechanisms for run-time security policies. Int. J. Inf. Security, 4(1-
2):2–16, 2005.

[19] J. K. Millen. A resource allocation model for denial of service
protection. Journal of Computer Security, 2(2), 1994.

[20] V. K. Nandivada and J. Palsberg. Timing analysis of tcp servers
for surviving denial-of-service attacks. In IEEE Real-Time and
Embedded Technology and Applications Symp., pages 541–549, 2005.

[21] P. Puschner and C. Koza. Calculating the maximum, execution time
of real-time programs. Real-Time Syst., 1(2):159–176, 1989.

[22] J. Rushby. Critical system properties: Survey and taxonomy.
Reliability Engineering and Systems Safety, 43(2):189–219, 1994.

[23] F. B. Schneider. Enforceable security policies. ACM Transactions on
Information and System Security, 3(1):1–50, Feb. 2000.

[24] H. Sipma. A formal model for cross-cutting modular transition
systems. In Workshop on Foundations of Aspect-Oriented Languages
(FOAL’03), 2003.

[25] C.-F. Yu and V. D. Gligor. A specification and verification method for
preventing denial of service. IEEE Trans. Soft. Eng., 16(6), 1990.

