Gamma and the chemical reaction model:
fifteen years after*

Jean-Pierre Banatre!, Pascal Fradet?, Daniel Le Métayer®

! Université de Rennes I, Campus de Beaulieu, 35042 Rennes, France
and INRIA, Domaine de Voluceau-Rocquencourt, 78153 Le Chesnay Cedex, France
jpbanatreQinria.fr
2 INRiA / IRisA, Campus de Beaulieu, 35042 Rennes, France
fradet@irisa.fr
3 Trusted Logic S.A. 5, rue du Bailliage, 78000 Versailles, France
Daniel.Le_Metayer@trusted-logic.fr

Abstract. Gamma was originally proposed in 1986 as a formalism for
the definition of programs without artificial sequentiality. The basic idea
underlying the formalism is to describe computation as a form of chemical
reaction on a collection of individual pieces of data. Due to the very
minimal nature of the language, and its absence of sequential bias, it
has been possible to exploit this initial paradigm in various directions.
This paper reviews most of the work around Gamma considered as a
programming or as a specification language. A special emphasis is placed
on unexpected applications of the chemical reaction model, showing that
this paradigm has been a source of inspiration in various research areas.

1 The basic chemical reaction model

The notion of sequential computation has played a central réle in the design of
most programming languages in the past. This state of affairs was justified by
at least two reasons:

— Sequential models of execution provide a good form of abstraction of algo-
rithms, matching the intuitive perception of a program defined as a “recipe”
for preparing the desired result.

— Actual implementations of programs were made on single processor archi-
tectures, reflecting this abstract sequential view.

However the computer science landscape has evolved considerably since then.
Sequentiality should no longer be seen as the prime programming paradigm but
just as one of the possible forms of cooperation between individual entities.

* This paper is a revised version of Gamma and the chemical reaction model: ten years
after [10]. It has been reorganized and includes additional sections on applications of
the chemical reaction model. Sections presenting large examples, extensions of the
formalism and implementations issues have been seriously shortened. The reader is
referred to [10] and the original papers for further details on these topics.

The Gamma formalism was proposed fifteen years ago to capture the intuition
of computation as the global evolution of a collection of atomic values interacting
freely. Gamma is a kernel language which can be introduced intuitively through
the chemical reaction metaphor. The unique data structure in Gamma is the
multiset which can be seen as a chemical solution. A simple program is a pair
(Reaction condition, Action). Execution proceeds by replacing in the multiset
elements satisfying the reaction condition by the products of the action. The
result is obtained when a stable state is reached, that is to say when no more
reactions can take place. The following is an example of a Gamma program
computing the maximum element of a non-empty set.

mar 1 x, Yy — Yy <=x <y

The side condition = < y specifies a property to be satisfied by the selected ele-
ments « and y. These elements are replaced in the set by the value y. Nothing is
said in this definition about the order of evaluation of the comparisons. If several
disjoint pairs of elements satisfy the condition, the reactions can be performed in
parallel. Let us consider as another introductory example a sorting program. We
represent a sequence as a set of pairs (index,value) and the program exchanges
ill-ordered values until a stable state is reached and all values are well-ordered.

sort @ (i,2), (4,y) = (i,y), (j,x) <= (@ >7) and (x < y)

The possibility of getting rid of artificial sequentiality in Gamma confers a very
high level nature to the language and allows the programmer to describe pro-
grams in a very abstract way. In some sense, one can say that it is possible in
Gamma to express the very “idea” of an algorithm without any unnecessary
linguistic idiosyncrasy (like “exchange any ill-ordered values until all values are
well ordered” for the sorting algorithm). This also makes Gamma suitable as an
intermediate language in the program derivation process: Gamma programs are
easier to prove correct with respect to a specification and they can be refined for
the sake of efficiency in a second stage. This refinement may involve the intro-
duction of extra sequentiality but the crucial methodological advantage of the
approach is that logical issues can be decoupled from implementation issues.

To conclude this introduction, let us quote E.W.Dijkstra thirty years ago
[27]: “Another lesson we should have learned from the recent past is that the de-
velopment of “richer” or “more powerful” programming languages was a mistake
in the sense that these baroque monstrosities, these conglomerations of idiosyn-
crasies, are really unmanageable, both mechanically and mentally. I see a great
future for very systematic and very modest programming languages”. We believe
that this statement is more relevant than ever and the very minimal nature of
the original Gamma formalism is one factor which has made possible the various
developments that are sketched in this paper.

We start by providing in section 2 the basic intuitions about the program-
ming style entailed by Gamma as well as various programming examples and
extensions.

Gamma was originally proposed in the context of a work on systematic pro-
gram derivation [8]. Section 3 describes how Gamma can be used as an interme-
diate language in the derivation of efficient implementations from specifications.

Since the initial developments, Gamma has been a source of inspiration in
unexpected research areas. Section 4 shows several applications of the chemi-
cal reaction model in various domains such as the semantics of process calculi,
imperative programming and software architectures. Section 5 concludes by a
sketch of related work.

2 Gamma as a programming language

Using the chemical reaction model as a basic paradigm can have a deep effect on
our way of thinking about algorithms. We first try to convey the programming
style favored by Gamma through some very simple examples. Then we intro-
duce five basic programming schemes, called “tropes” which have emerged from
our experience in writing Gamma programs. We proceed by presenting large
applications written in Gamma and reviewing various linguistic extensions.

2.1 A new programming style

We first come back on the straightforward maz program defined in the intro-
duction to illustrate some distinguishing features of Gamma:

mar 1 x, Yy — Yy <=x <y

In order to write a program computing the maximum of a set of values in a
“traditional” language, we would first have to choose a representation for the
set. This representation could typically be an array for an imperative language
or a list for a declarative language. The program would be defined as an iter-
ation through the array, or a recursive walk through the list. The important
point is that the data structure would impose constraints on the order in which
elements are accessed. Of course, parallel versions of imperative or functional
programs can be defined (solutions based on the “divide and conquer” paradigm
for example), but none of them can really model the total absence of ordering
between elements that is achieved by the Gamma program. The essential feature
of the Gamma programming style is that a data structure is no longer seen as
a hierarchy that has to be walked through or decomposed by the program in
order to extract atomic values. Atomic values are gathered into one single bag
and the computation is the result of their individual interactions. A related no-
tion is the “locality principle” in Gamma: individual values may react together
and produce new values in a completely independent way. As a consequence, a
reaction condition cannot include any global condition on the multiset such as V-
properties or properties on the cardinality of the multiset. The locality principle
is crucial because it makes it easier to reason about programs and it encapsulates
the intuition that there is no hidden control constraints in Gamma programs.

Let us now consider the problem of computing the prime numbers less than
a given value n. The basic idea of the algorithm can be described as follows:
“start with the set of values from 2 to n and remove from this set any element
which is the multiple of another element”. So the Gamma program is built as the
sequential composition of iota which computes the set of values from 2 to n and
rem which removes multiples. The program iota itself is made of two reactions:
the first one splits an interval (z,y) with # y in two parts and the second one
replaces any interval (z,z) by the value x.

primes(n) = rem(iota({(2,n)}))

iota = (z,y) = (z,[(z+9)/2]), ((z+y)/2|+1y) =z #y
(z,y) mz<=z=y
rem =z, y = y < multiple(z,y)

The first reaction increases the size of the multiset, the second one keeps it
constant and the third one makes the multiset shrink. In contrast with the usual
sequential or parallel solutions to this problem (usually based on the successive
application of sieves [9]), the Gamma program proceeds through a collection of
atomic actions applying on individual and independent pieces of data.

Another program exhibiting these expansion and shrinking phases is the
Gamma version of the Fibonacci function:

fib(n) = add(dec, (n))

dec;, =z—>x—-1,x—-2<z>1
r—=1<sz=0
add =z, y—>z+y<True

The initial value is decomposed by dec; into a number of ones which are then
summed up by add to produce the result. The first phase corresponds to the
recursive descent in the usual functional definition

fib(z) = if x < 1then lelse fib(z —1) + fib(z — 2)

while the reduction phase is the counterpart of the recursive ascent. However the
Gamma program does not introduce any constraint on the way the additions are
carried out, which contrasts with the functional version in which additions must
be performed following the order imposed by the recursion tree of the execution.

As alast example of this introduction, let us consider the “maximum segment
sum” problem. The input parameter is a sequence of integers. A segment is a
subsequence of consecutive elements and the sum of a segment is the sum of its
values. The program returns the maximum segment sum of the initial sequence.
The elements of the multiset are triples (¢, x, s) where i is the position of value
x in the sequence and s is the maximum sum (computed so far) of segments
ending at position ¢. The s field of each triple is originally set to the x field. The
program mazx; computes local maxima and maz, returns the global maximum.

mazss(M) = mazgy(max;(M))

max; = (i,z,s), (i',2',s') = (i,z,8), (i',2',s + ')
< @' =i+1)and (s+2' > 5)

maz, = (i,x,s), (i",2',s") = (i',2',s') s > s

2.2 The tropes: five basic programming schemes

The reader may have noticed a number a recurrent programming patterns in
the small examples presented in the previous section. After some experience
in writing Gamma programs, we came to the conclusion that a very smal-
1 number of program schemes were indeed necessary to write most applications.
Five schemes (basic reactions), called tropes (for transmuter, reducer,optimiser,
expander, selector) are particularly useful. We present only three of them here:

— Transmuter.

T(C,f) =z — f(z) < C(x)

The transmuter applies the same operation to all the elements of the multiset
until no element satisfies the condition.
— Reducer.
R(C,f) =z, y = f(z,y) < Clx,y)

This trope reduces the size of the multiset by applying a function to pairs
of elements satisfying a given condition. The counterpart of the traditional
functional reduce operator can be obtained with an always true reaction
condition.
— Expander.
E(C, fr, f2) =z = fi(w), fa(z) < C(x)

The expander is used to decompose the elements of a multiset into a collec-
tion of basic values.

The Fibonacci function can be expressed as the following combination of
tropes:

fib(n) = add (zero (dec ({n})))
dec =E&(C, f1,f2) where

(
zero =T(C,f) where
Clx) = (z =0), flz) =1
add =TR(C,f) where
C(z,y) = True, f(z,y) = z+y

The maximum segment sum program presented in the previous section can
be defined in terms of tropes in a very similar way. Further details about tropes
may be found in [35].

2.3 Larger applications

The interested reader can find in [9] a longer series of examples chosen from a
wider range of domains (string processing problems, graph problems, geometric
problems). We just sketch in this section a small selection of applications that we
consider more significant, either because of their size or because of their target
domain.

Image processing application. Gamma has been used in a project aiming at
experimenting high-level programming languages for prototyping image process-
ing applications [24]. The application was the recognition of the tridimensional
topography of the vascular cerebral network from two radiographies. A version
of this application written in PL/1 was in use before the start of the experimen-
t but it was getting huge and quite difficult to master. One of the benefits of
rewriting the application in Gamma has been a better understanding of the key
steps of the application and the discovery of a number of bugs in the original
software. So Gamma has been used in this context as an executable specifica-
tion language and it turned out to be very well suited to the description of this
class of algorithms. The basic reason is probably that many treatments in image
processing are naturally expressed as collections of local applications of specific
rules.

Another example of application of Gamma to image processing is reported
in [47]. The aim of this application is to generate fractals to model the growth of
biological objects. Again, the terseness and the facility of the expression of the
problem is Gamma was seen as a great advantage. In both experiences however,
the lack of efficient general purpose implementation of Gamma was mentioned
as a serious drawback because it prevented any test on large examples.

Reactive programming. In [58], an operating system kernel is defined in Gam-
ma and proven correct in a framework inspired by the Unity logic [14]. An impor-
tant result of this work is the definition of a temporal logic for Gamma (extended
with a fairness assumption) and the derivation of the kernel of a file manage-
ment system by successive refinements from a temporal logic specification. Each
refinement step results in a greater level of detail in the definition of the network
of processes. We are not aware of comparable attempts in the area of operating
systems.

2.4 Implementations

A property of Gamma which is often presented as an advantage is its potential
for concurrent interpretation. In principle, due to the locality property, each
tuple of elements fulfilling the reaction condition can be handled simultaneously.
It should be clear however that managing all this parallelism efficiently can be a
difficult task and complex choices have to be made in order to map the chemical
model on parallel architectures. The major problems to be solved are:

1. The detection of the tuples which may react.
2. The transformation of the multiset by application of reactions.
3. The detection of the termination.

This section sketches several attempts to provide parallel implementations for
Gamma programs.

Distributed memory implementations Two protocols have been proposed
[6, 7] for the implementation of Gamma on network of communicating machines.
They differ in the way rewritings are controlled:

— Centralized control. The elements of the multiset are distributed over the
local memories of the processors. A central controller is connected to all
the processors and monitors information exchanges. This protocol has been
implemented on a Connexion Machine [23]. Other experiments have been
conducted on the Maspar 1 SIMD machine: [46] describes an implementation
of Gamma which results in a very good speed-up and a good exploitation
of parallel resources. [45] shows how Higher-Order Gamma programs can be
refined for an efficient execution on a parallel machine.

— Distributed control. Information transfers are managed in a fully asynchronous
way. The values of the multiset are spread over a chain of m processors. There
is no central controller in the system and each processor knows only its two
neighbors. The termination detection algorithm is fully distributed over the
chain of processors; however, the cost of this detection can be high compared
with the cost of the computation itself [6, 7]. This solution has been imple-
mented on an Intel iPSC2 machine [6,7] and on a Connexion Machine [23].
The results show a good exploitation of the processing power and speedup.

Shared memory implementations. The Gamma model can also be seen as a
shared memory model: the multiset is the unique data structure from which el-
ements are extracted and where elements resulting from the reaction are stored.
Shared memory multiprocessors are good candidates for parallel implementa-
tions of Gamma. A specific software architecture has been developed in [33] in
order to provide an efficient Gamma implementation on a Sequent multiproces-
sor machine. Several techniques have been experimented in order to improve
significantly the overall performances. A kernel operating system has also been
developed in order to cope with various traditional problems and in particu-
lar with the synchronization required by Gamma (a multiset element cannot
participate in more than one reaction at a time).

Hardware implementation. The tropes defined in section 2.2 have been used
as a basis for the design of a specialized architecture [62]. A hardware skeleton is
associated with each trope and these skeletons are parameterized and combined
according to the program to be implemented. A circuit can then be produced
from a program description. The hardware platform was the PRL-DEC Perle 1
board which is built around a large array of bit-level configurable logic cells [11].

2.5 Linguistic extensions

The Gamma programs that we have presented so far are made from a single
block of reaction rules. In this section, we review several linguistic extensions for
structuring programs or multisets.

Composition operators for Gamma. For the sake of modularity, it is desir-
able that a language offers a rich set of operators for combining programs. It is
also fundamental that these operators enjoy a useful collection of algebraic laws
in order to make it possible to reason about programs. Several proposals which

have been made to extend Gamma with facilities for building complex programs
from simple ones.

[34] presents of a set of operators for Gamma and studies their semantics and
the corresponding calculus of programs. The two basic operators considered in
this paper are the sequential composition P; o P, and the parallel composition
P, + P>. The intuition behind P; o P, is that the stable multiset reached after
the execution of P, is given as argument to P;. On the other hand, the result
of P + P» is obtained (roughly speaking) by executing the reactions of P; and
P, (in any order, possibly in parallel), terminating only when neither can pro-
ceed further. The termination condition is particularly significant and heavily
influences the choice of semantics for parallel composition. As an example of
sequential composition of Gamma programs, let us consider another version of
sort.

sort’ : match o init
where init : (z — (1,z) < integer(z))
match : ((i,x), (j,y) = (i, 2), (i + 1,y) < (z <y and i = j))

The program sort’ takes a multiset of integers and returns an increasing list
encoded as a multiset of pairs (index, value). The reaction init gives each integer
an initial rank of one. When this has been completed, match takes any two
elements of the same rank and increases the rank of the larger.

The case for parallel composition is slightly more involved. In fact sort’ could
have been defined as well as:

sort’ : match + init

because the reactions of match can be executed in parallel with the reactions
of init (provided they apply on disjoint subsets, but this is implied by the fact
that their respective reaction conditions are exclusive). As far as the semantics
of parallel composition is concerned, the key point is that a synchronized ter-
mination of P and P» is required for P; + P> to terminate. It may be the case
that, at some stage of the computation, none of the reaction conditions of, P;
(resp. P») holds; but some reactions by P> (resp. P;) may create new values
which will then be able to take part in reactions by Py (resp. P»). This situation
precisely occurs in the above example where no reaction of match can take place
in the initial multiset; but inet transforms the multiset and triggers subsequent
reactions by match. Thus the termination condition of P, + P, indicates that
neither P; nor P> can terminate unless both terminate and the composition as
well.

This new vision of parallel composition and its combination with the se-
quential composition creates interesting semantical problems. [34] defines a set
of program refinement and equivalence laws for parallel and sequential com-
position, by considering the input-output behavior induced by an operational
semantics. Particular attention is paid on conditions under which P; o P, can
be transformed into P; + P, and vice-versa. These transformations are useful
to improve the efficiency of a program with respect to some particular machine
and implementation strategy.

Several compositional semantics of the language have also been proposed [59,
20]. Not all the laws established in the operational semantics remain valid in these
semantics; this is because they distinguish programs with identical input/output
behavior but which behave differently in different contexts. It is shown however
that most interesting properties still hold, the great advantage of a compositional
semantics being that laws can be used in a modular way to prove properties
of large programs. Other semantics of Gamma have been proposed, including
[28] which defines a congruence based on transition assertions and [55] which
describes the behavior of Gamma programs using Lamport’s Temporal Logic of
Actions.

Composition operators have been studied in a more general framework called
reduction systems [60] which are sets equipped with some collection of binary
rewrite relations. This work has led to a new graph representation of Gamma
programs which forms a better basis for the study of compositional semantics
and refinement laws.

Higher-order Gamma. Another approach for introduction of composition op-
erators in a language consists in providing a way for the programmer to define
them as higher-order programs. This is the traditional view in the functional
programming area and it requires to be able to manipulate programs as ordi-
nary data. This is the approach followed in [41] which proposes a higher-order
version of Gamma. The definition of Gamma used so far involves two different
kinds of terms: the programs and the multisets. The multiset is the only data
structure and programs are described as collections of pairs (Reaction Condi-
tion, Action). The main extension of higher-order Gamma consists in unifying
these two categories of expressions into a single notion of configuration. One
important consequence of this approach is that active configurations may now
occur inside multisets and reactions can take place (simultaneously) at different
levels. Thus two conditions must be satisfied for a simple program to terminate:
no tuple of elements satisfies the reaction condition and the multiset does not
contain active elements.
A configuration is denoted:

[Prog,Var, = Multezxp,,...,Var, = Multexp,].

It consists of a (possibly empty) program Prog and a record of named multi-
sets Var;. A configuration with an empty program component is called passive,
otherwise it is active. The record component of the configuration can be seen
as the environment of the program. Each component of the environment is a
typed multiset. Simple programs extract elements from these multisets and pro-
duce new elements. A stable component Multexp; of a configuration C can be
obtained as the result of C.Var;.

The operational semantics is essentially extended with the following rules to
capture the higher-order features:

X - X
XtoM > {(XoM

My — M,::
[P,...Vary = My,...] = [P,...Var, = M|, ..]
The first and the second rule respectively account for the computation of active
configurations inside multisets and for the transformation of multisets containing
active configurations inside a configuration. Note that these rules are very similar
to the chemical law and the membrane law of the Cham (section 4.1).

Let us take one example to illustrate the expressive power provided by this
extension. The application of the sequential composition operator to simple pro-
grams can be defined in higher-order Gamma, and thus does not need to be
included as a primitive. (PyoP;)(My) is defined by the following configuration:

(Q, By = {[P1,M = Mo}, E» = O].E»
where Q = [@,M = Ml] B — [PQ,M = Ml] : By

E, is a multiset containing the active configuration [Py, M = Mp] initialy. Note
that @) reactions only apply to passive values of F; which means that M; must
be a stable state for P;. Then the new active configuration [P, M = Mi] is
inserted into F> and the computation of P, can start. When a stable state
is obtained, it is extracted from the top-level configuration through the access
operation denoted by .Fs.

[41] shows how other useful combining forms can be defined in higher-order
Gamma (including the chemical abstract machine). It is also possible to express
more sophisticated control strategies such as the scan vector model suitable for
execution on fine-grained parallel machines. Another generalization of the chem-
ical model to higher-order is presented in [21].

Structured Gamma. The choice of the multiset as the unique data constructor
is central in the design of Gamma. However, this may lead to programs which are
unnecessary complex when the programmer needs to encode specific data struc-
tures. For example, it was necessary to resort to pairs (indez,value) to represent
sequences in the sort program. Trees or graphs have to be encoded in a similar
way. This lack of structuring is detrimental both for reasoning about programs
and for implementing them. The proposal made in [31] is an attempt to solve
this problem without jeopardizing the basic qualities of the language. It would
not be acceptable to take the usual view of recursive type definitions because
this would lead to a recursive style of programming and ruin the fundamental
locality principle (the data structure would then be manipulated as a whole).

The solution proposed in [31] is based on a notion of structured multiset which
can be seen as a set of addresses satisfying specific relations and associated with
a value. As an example, the list [5; 2; 7] can be represented by a structured
multiset whose set of addresses is {a;, a2, asz} and associated values (written
a;) are a; = 5, az = 2, a3 = 7. Let next be a binary relation and end a unary
relation; the addresses satisfy

next a; as, next as az, end ag

A new notion of type is introduced in order to characterize precisely the structure
of the multiset. A type is defined in terms of a graph grammar (or rewrite rules).

A structured multiset belongs to a type T if its underlying set of addresses
satisfies the invariant expressed by the grammar defining T'. As an example, the
list type can be defined by the following context-free graph grammar:

List=L z
Lx =nextzxy, Ly
Lz =endz

Any multiset which can be produced by this grammar belongs the the List
type. Reading the grammar rules from right to left gives the underlying rewrite
system. So alternatively, any multiset which can be reduced using this rewrite
rules to the singleton List belongs to the List type. The variables in the rules are
instantiated with addresses in the multiset. L x can be seen as a non-terminal
standing for a list starting at address z and end z is a one element list. A circular
list can be defined as follows:

Circular =L x x
Lzy =Lxz, Lzy
Lzy =next z y

Note that the use of different variable names in a rule is significant: two variables
are instantiated with the same address if and only if the variables have the same
name. In this definition, L z y is the non terminal for a list starting at position
x and ending at position y.

A reaction in Structured Gamma can:

— test and modify the relations on addresses,
— test and modify the values associated with addresses.

Here are some examples of programs operating on lists:

Sort : List = next a b —nextab, a == bb:=a <a<b
Mult : List = next a b, next b c - next a c,a := axb
Iota : List =end a —nextab, endbb .= a—-1<a>1

Actions are now described as assignments to given addresses. A consumed ad-
dress which does not occur in the result of the action disappears from the multi-
set: this is the case for b in the Mwult program. On the other hand, new addresses
can be added to the multiset with their value, like b in the Iota program. Actions
must also state explicitly how the relations are modified. For instance, the Sort
does not modify the next relation, but Mult shrinks the list by removing the
intermediate element b.

The natural question following the introduction of a new type system con-
cerns the design of an associated type checking algorithm. In the context of
Structured Gamma, type checking must ensure that a program maintains the
underlying structure defined by a type. It amounts to the proof of an invariant
property. There exists a sound checking algorithm based on the construction of
an abstract reduction graph. For a reaction C — A and type T, the algorithm

computes the possible contexts X such that X + C reduces to {T'} (i.e. belongs
to {T'}). It is then sufficient to check that X + A (i.e. the multiset after the
reaction) reduces to {1'}.

Structured Gamma allows the programmer to define his own types and have
his programs checked according to the type definitions. For example, it is pos-
sible to check that the three programs above manipulate multisets of type List:
in other words, the list property is an invariant of the programs. Applications
of this approach to imperative programming and the analysis of software ar-
chitectures are described in sections 4.2 and 4.3. It is important to notice that
this new structuring possibility is obtained without sacrificing the fundamental
qualities of the language. Gamma programs are just particular cases of Struc-
tured Gamma programs and Structured Gamma programs can be translated in
a straightforward way into Gamma.

3 Gamma as a bridge between specifications and
implementations

In the previous section, we presented Gamma as a programming language and
tried to convey the programming style entailed by the chemical reaction mod-
el through a series of examples. Gamma can be also seen as a very high-level
language bridging the gap between specification languages and low-level (imple-
mentation oriented) languages.

3.1 From specifications to Gamma programs

We first present the techniques that can be used to prove properties of Gamma
programs. Then, we suggest how they can be used to derive programs from
specifications in a systematic way.

In order to prove the correctness of a program in an imperative language, a
common practice consists in splitting the property into two parts: the invariant
which holds during the whole computation, and the wvariant which is required
to hold only at the end of the computation. In the case of total correctness, it
is also necessary to prove that the program must terminate. The important ob-
servation concerning the variant property is that a Gamma program terminates
when no more reaction can take place, which means that no tuples of elements
satisfy the reaction condition. So the obtain the variant of the program by taking
the negation of the reaction condition. Let us consider as an example the sort
program introduced in the introduction. The reaction condition corresponds to
the property:

A(i,z) € M. 3(j,y) € M. (i > j) and (z < y)
and its negation

V(i,2) e M.Y(j,y) e M. (i>j) =z >y

This variant is very informative indeed since it is the well-ordering property. The
invariant of the program must ensure that the set of indexes and the multiset of
values are constant. This can be checked by a simple inspection of the action

A 2), () = {G,y), (G,2)}

It is easy to see that the global invariance follows from the local invariance.
In order to prove the termination of the program, we have to provide a well-
founded ordering (an ordering such that there is no infinite descending sequences
of elements) and to show that the application of an action decreases the multiset
according to this ordering. To this aim, we can resort to a result from [26]
allowing the derivation of a well-founded ordering on multisets from a well-
founded ordering on elements of the multiset. Let > be an ordering on V and
> be the ordering on Multisets(V) defined in the following way:

M>M <

3X,Y € Multisets(V). X #0 and
XCM and M'=(M—-X)+Y and (VyeY. Iz € X. x> y)

The ordering > on Multisets(V) is well-founded if and only if the ordering
> on V is well-founded. This result is fortunate because the definition of >
precisely mimics the behavior of Gamma (removing elements from the multiset
and inserting new elements). The significance of this result is that it allows us
to reduce the proof of termination, which is essentially a global property, to a
local condition. In order to prove the termination of the sort program, we can
use the following ordering on the elements of the multiset:

(i,2) E(i',2") & (i > and 2’ > z)

It is easy to see that this ordering is well-founded (the set of indexes and the
multiset of values are finite), so the corresponding multiset ordering is also well-
founded. We are left with the proof that for each value produced by the action,
we can find a consumed value which is strictly greater. To prove this we observe
that:

(i,9) C (G,y) and (j,7) C (4,y)

This concludes the correctness proof of the sort program.

Rather than proving a program a posteriort, it may be more appropriate to
start from a specification and try to construct the program systematically. The
derived program is then correct by construction. A method for the derivation of
Gamma programs from specifications in first order logic is proposed in [8]. The
basic strategy consists in splitting the specification into a conjunction of two
properties which will play the roles of the invariant and the variant of the pro-
gram to be derived. The invariant is chosen as the part of the specification which
is satisfied by the input multiset (or that can be established by an initialization
program). If the variant involves only V quantifiers than its negation yields the

reaction condition of the program directly. The technique for deriving the action
consists in validating the variant locally while maintaining the invariant. These
two constraints are very often strong enough to guide the construction of the ac-
tion. Let us consider as an example the rem program in the definition of primes

in section 2.1. The input multiset is {2,...,n} and a possible specification of the
result M is the following:
MC{2,...,n} (1)
Ve e {2,...,n}. Yy € {2,...,n}. -multiple(z,y)) >z € M (2)
Va,y € M. ~multiple(x,y) (3)

Both properties (1) and (2) are satisfied by the input multiset {2,...,n}, so the
invariant is defined as I = (1) A (2) and the variant is V' = (3). The negation of
the variant is

dz,y € M. multiple(x,y)

which yields to the reaction condition multiple(x,y). The action must satisfy
the invariant which means that no value outside {2,...,n} can be added to
the multiset and no value should be removed from the multiset unless it is the
multiple of another value. On the other hand, the action should establish the
variant locally which means that the returned values should not contain any
multiples. So the action cannot return both x and y and it cannot remove y:
the only possibility is to return y; this action satisfies all the conditions and the
derived program is:

rem =z, y = y < multiple(x,y)

The interested reader can find a more complete treatment of several exam-
ples in [8]. A slightly different approach is taken in [52] which introduces a very
general form of specification and the derivation of the corresponding Gamma
program. It is then shown that a number of classical and apparently unrelated
problems (the knapsack, the shortest paths, the maximum segment sum and the
longest up-sequences problems) turn out to be instances of the generic speci-
fication. The generic derivation can then be instantiated to these applications,
yielding the corresponding Gamma programs.

Let us stress the pervasive influence of the locality principle (stated in the
introduction) in the correctness proofs and the derivations. Each part of the
correctness proof of the sort program sketched above exploits this feature by
reducing the global reasoning (manipulation of properties of the whole multiset)
to a local reasoning (on the elements involved in a single reaction).

3.2 From Gamma programs to efficient implementations

As mentioned earlier, the philosophy of Gamma is to introduce a clear separation
between correctness issues and efficiency issues in program design. In particu-
lar, Gamma can be seen as a specification language which does not introduce
unnecessary sequentiality. As a consequence, designing a reasonably efficient im-
plementation of the language is not straightforward. This section outlines several

optimizations allowing Gamma, programs to be refined into efficient, sequential
programs.
Consider a very simple form of Gamma, program:

Tiyeooy @y = f(T1,...,2,) < R(zy,...,2,)

A straightforward implementation of this program can be described by the fol-
lowing imperative program:

While tuples remain to be processed

do
choose a tuple (x1,...,x,) not yet processed;
if R(zq,...,z,) then
(1) remove zy,...,z, from M
(2) replace them by f(z1,...,2,)
end

This very naive implementation puts forward most of the problems which have
to be tackled in order to produce a Gamma implementation with a realistic
complexity. The hardest problem concerns the construction of all tuples to be
checked for reaction. A blind approach to this problem leads to an untractable
complexity but a thorough analysis of the possible relationships between the
elements of the multiset and the shape of the reaction condition may lead to
improvements which highly optimize the execution and produce acceptable per-
formances. In his thesis, C. Creveuil [22] studied several optimizations which are
summarized here.

One important source of inefficiency comes from useless (redundant or deemed
to fail) checks of the reaction condition. Three optimizations can dramatically
reduce the overhead resulting from this redundancy:

1. Decomposition of the reaction condition: instead of considering R as
a whole, one may decompose it as a conjunction of simpler conditions like:

R(l’l,...,l’n) = Rl(l’l) /\RQ(Z’l,Z’z) A .../\Rn(l’l,l’z,...,l'n)

The test for condition R is done incrementally, avoiding the construction of
tuples whose prefix does not satisfy one R;.

2. Detection of neighborhood relationships: the analysis of the reaction
condition may provide information which can be used to limit the search
space. For example, it may happen from the reaction condition that only
adjacent values can react, or that only values possessing a common ”flag” can
be confronted. These properties can be detected at compile time and, in some
situations (some sorting examples, pattern detection in image processing
applications), the run-time improvement is considerable.

3. Control of the non-determinism: The Gamma paradigm imposes no con-
straint on the way tuples are formed. [22] shows that limiting non-determinism
by imposing an ordering in the choice of values to be checked against the
reaction condition can be very fruitful.

An interesting conclusion of the work described in [22] is that well-known
efficient versions of sequential algorithms (shortest path for instance) can be
“rediscovered” and justified as the result of several optimizations of a naive
implementation of Gamma. It is very often the case that the most drastic op-
timizations rely on structural properties of the values belonging to the multiset
(neighborhood relationship, ordering in the choice of values ...).

Such properties are difficult to find automatically and the optimizations de-
scribed above can be seen as further refinement steps rather than compilation
techniques. Several proposals have been made to enrich Gamma with features
which could be exploited by a compiler to reduce the overhead associated with
the “magic stirring” process. For example, the language of schedules [17,18] pro-
vides extra information about control in Gamma programs, and local linear logic
[48] as well as Structured Gamma [31] structure the multiset.

4 Gamma as of source of inspiration

The chemical reaction model has served as the basis of a number of works in var-
ious, often unexpected, research directions. In particular, ideas borrowed from
Gamma have been applied to process calculi, imperative programming and soft-
ware architectures. We describe these three developments in turn and conclude
with a sketch of a few other proposals. Most of these works are quite significant
and open new research directions but it is important to note that none of them
jeopardizes the fundamental characteristics of the model which is the expres-
sion of computation as “the global result of the successive applications of local,
independent, atomic reactions”.

4.1 The chemical abstract machine

The chemical abstract machine (or Cham) was proposed by Berry and Boudol
[12] to describe the operational semantics of process calculi. The most impor-
tant additions to Gamma are the notions of membrane and airlock mechanism.
Membranes are used to encapsulate solutions and to force reactions to occur
locally. In terms of multisets, a membrane can be used to introduce multiset of
molecules inside a multiset that is to say “to transform a solution into a sin-
gle molecule” [13]. The airlock mechanism is used to describe communications
between an encapsulated solution and its environment. The reversible airlock
operator < extracts a element m of a solution {m,my,...,my}:

{m,mi,...,mp} — {m<a{m,...,my}}

The new molecule can react as a whole while the sub-solution {m1,...,m,} is
allowed to continue its internal reactions. So the main role of the airlock is to
allow one molecule to be visible from outside the membrane and thus to take part
in a reaction in the embedding solution. The need for membranes and airlocks
emerged from the description of CCS [50] in Cham and especially the treatment

of the restriction operation (which restricts the communication capabilities of a
process to labels different from a particular value a). The computation rules of
the Cham are classified into general laws and two classes of rules:

The general laws include the chemical law and the membrane law:

S — s
S+5 55+5

S— s
{CIS]y = {C[s"]}

The former shows that reactions can be performed freely within any solution,
which captures the locality principle. The latter allows reactions to take place
within a membrane (C[S] denotes any context of a solution S).

The first class of rules corresponds to the proper reaction rules similar to the
rules presented so far in the paper. The definition of a specific Cham requires
the specification of a syntax for molecules and the associated reaction rules.
As an example, molecules can be CCS processes and the rule corresponding
to communication in CCS would be:

aP,aQ—P,Q

The second kind of rules are called structural and they are reversible. They
can be decomposed into two inverse relations — and — called respective-
ly heating and cooling rules. The first ones break complex molecules into
smaller ones, preparing them for future reactions, and the second ones re-
build heavy molecules from light ones. Continuing the CCS example, we have
the structural rule:

(PlQ)~P,Q

where | is the CCS parallel composition operator.

The Cham was used in [12] to define the semantics of various process calculi

(TCCS, Milner’s m-calculus of mobile processes) and a concurrent lambda cal-
culus. A Cham for the call-by-need reduction strategy of A-calculus is defined in
[13]. The Cham has inspired a number of other contributions. Let us mention
some of them:

[1] uses a linear Cham to describe the operational semantics of proof expres-
sions for the classical linear logic.

[51] defines an operational semantics of the 7-calculus in a Cham style.

[39] describes a graph reduction in terms of a Cham.

[43] applies the Cham in the context of the Facile implementation.

The Cham approach illustrates the significance of multisets and their connec-

tion with concurrency. The fact that multisets are inherently unordered makes
them suitable as a basis for modeling concurrency which is an essentially asso-
ciative and commutative notion. As stated in [12]: “In the SOS style of seman-
tics, labeled transitions are necessary to overcome the rigidity of syntax when

performing communications between two syntactically distant agents. ... On the
contrary, in the Cham, we just make the syntactic distance vanish by putting
molecules into contact when they want to communicate, and their communica-
tion is direct.” As a consequence, this makes it possible to bring the semantics
of concurrent systems closer to the execution process of sequential languages, or
the evaluation mechanism of functional languages [13].

4.2 Shape types

Type systems currently available for imperative languages are too weak to de-
tect a significant class of programming errors. The main reason is that they fail
to capture properties about the sharing which is inherent in many data struc-
tures used in efficient imperative programs. As an illustration, it is impossible to
express the property that a list is doubly-linked or circular in existing type sys-
tems. The work around Structured Gamma (section 2.5) showed that many data
structures could be described as graph grammars and manipulated by reactions.
Furthermore, a static algorithm can be used to check that a reaction preserve
the structure specified by the grammar. These ideas and techniques have been
adapted in order to extend the type system of C and make pointer manipulation
safer [30].

Shape-C is an extension of C which integrates the notion of types as graph
grammars (called here shapes) and reactions. The notion of graph grammars
is powerful enough to describe most complex data structures (see [30] for a
description of skip lists, red-black trees, left-child-right-sibling trees in terms of
graph grammars).

The design of Shape-C was guided by the following criteria:

— the extensions should be blended with other C features and be natural
enough for C programmers,

— the result of the translation of Shape-C into pure C should be efficient,

— the checking algorithm of section 2.5 should be applicable to ensure shape
invariance.

We present Shape-C through an example: the Josephus program. This pro-
gram, borrowed from [56], first builds a circular list of n integers; then it proceeds
through the list, counting through m — 1 items and deleting the next one, until
only one is left (which points to itself). Figure 1 displays the program in Shape-
C. The Josephus program first declares a shape cir denoting a circular list of
integers with a pointer pt. Besides cosmetic differences, the definition of shapes
is similar to the context free grammars presented in Section 2.5. The variables
are interpreted as addresses. They possess a value whose type must be declared
(here int). Values can be tested or updated but cannot refer to addresses. They
do not have any impact on shape types.

Intuitively, unary relations (here pt) correspond to roots whereas binary
relations (here next) represent pointer fields. Shapes can be translated into C
structures with a value field and as many fields (of pointer type) as the shape
has binary relations.

/* Integer circular list */
shape int cir { pt x, L x x;
Lxy=Lxz, Lzy;

L xy = next xy; };
main()
{int i, n, m;
/*initialization to a one element circular list */
cir s = [| => pt x; next x x; $x=1; [];
scanf ("%d%d", &n, &m);
/* Building the circular list 1->2->...->n->1 */

for (i =n; i > 1; i--)
s: [l pt x; next x y; => pt x; next x z; next z y; $z=i; |];

/* Printing and deleting the m th element until only one is left */
while (s:[| pt x; next x y; x !=y; => [|])
{

for (i = 1; i < m-1; ++i)
s:[| pt x; next x y; => pt y; next x y; |1;
s:[| pt x; next x y; next y z; => pt z; next x z; printf("%d ",$y); I1;
}
/* Printing the last element %/
s:[l pt x => pt x; printf("id\n",$x); 11;
}

Fig. 1. Josephus Program

Shape-C uses only a subset of graph grammars that corresponds to the rooted
pointer structures manipulated in imperative languages. This subset is defined
by the following properties:

(S1) Relations are either unary or binary.

(S2) FEach unary relation is satisfied by exactly one address in the shape.
(S3) Binary relations are functions.

(S4) The whole shape can be traversed starting from its roots.

These conditions allow shapes to be implemented by simple C structures
(with a value and pointer fields). They can be enforced by analyzing the definition
of grammars.

The reaction, written [| C => A 1], is the main operation on shapes. T-
wo specialized versions of reactions are also provided: initializers, with only an
action, written [| => A |] and tests, with only a condition, written [| C => [].

The Josephus program declares a local variable s of shape cir and initializes
it to a one element circular list.

cir s = [| => pt x; next x x; $x = 1; |];

The value of address x is written $x and is initialized to 1. In general, actions
may include arbitrary C-expressions involving values. The for-loop builds a n
element circular list using the reaction

s:[| pt x; next x y; => pt x; next x z; next z y; $z=i; |];

The condition selects the address x pointed to by pt and its successor. The
action inserts a new address z and initializes it to i. The translation in pure C
is local and applied to each shape operation of the program. Shape-C enforces
a few simple restrictions on reactions so that the translation is both direct and
efficient.

Shape checking amounts to verify that initializations and reactions preserve
the shape of objects. The checking algorithm is directly based on the algorithm
outlined in section 2.5. Note that values and expressions on values are not rele-
vant for shape checking purposes. Using this algorithm, it is easy to ensure that
the list s is cyclic throughout the Josephus program.

Due to their precise characterization of data structures, shape types are a
very useful facility for the construction of safe programs. Most efficient versions
of algorithms are based on complex data structures which must be maintained
throughout the execution of the program [16,56]. The manipulation of these
structures is an error-prone activity. Shape types permits to describe invariants
of their representation in a natural way and have them automatically verified.

4.3 Software architectures

Another related area of application which has attracted a great amount of in-
terest during the last decade is the formal definition of software architectures.
As stated in [2], “Software systems become more complex and the overall sys-
tem structure - or software architecture - becomes a central design problem. An
important step towards an engineering discipline of software is a formal basis
for describing and analyzing these designs”. Typical examples of software ar-
chitectures are the “client-server organization”, “layered systems”, “blackboard
architecture”. Despite the popularity of this topic, little attention has focused
on methods for comparing software architectures or proving that they satisfy
certain properties. One major reason which makes these tasks difficult is the
lack of common and formally based language for describing software architec-
tures. These descriptions are typically expressed informally with box and lines
drawings indicating the global organization of computational entities and the
interactions between them [2]. The chemical reaction model has been used for
specifying software architectures [38] and architecture styles [42].

Software architecture specification. The application considered in [38] is
a multi-phase compiler and two architectures are defined using the “chemical
abstract machine” [12,13]. The different phases of the compiler are called lezer,
parser, semantor, optimiser and generator. An initial phase called text generates
the source text. The types of the data elements circulating in the architecture are
char, tok, phr, cophr, obj. The elements of the multiset have one of the following
forms:
i(t1) © o(t2) o phase

o(t1) ¢ phase ¢ i(t2)

phase o i(t;) o o(tz)

where ¢ is a free constructor, t; and ¢y represent data types and phase is one

of the phases mentioned above. An element starting with i(¢1) (resp. o(t1)) cor-

responds to a phase which is consuming inputs (resp. producing outputs). An

element starting with phase is not ready to interact. So i(¢t;) and o(t;) can be

seen as ports defining the communications which can take place in a given state.
The following is a typical reaction in the definition of an architecture:

l(dl) < 0(d2) o my, O(dl) S my < l(d3)
-
O(dg) S myp © Z(dl), mo < Z(dg) < O(dl)

This rule describes pairwise communication between processing elements: m;
consumes input d; produced as output by another processing element m,. For
example, the reaction:

i(tok) o o(phr) o parser, o(tok) < lexer o i(char)
_)
o(phr) o parser o i(tok), lexer ¢ i(char) o o(tok)

represents the consumption by the parser of tokens produced by the lexer. At
the end of the reaction, the parser is ready to produce its output and the lexer is
inert because it has completed its job. In fact another reaction may be applied
later to make it active again to process another piece of text.

One major benefit of the approach is that it makes it possible to define
several architectures for a given application and compare them in a formal way.
As an example, [38] defines a correspondence between multisets generated by
two versions of the multi-phase compiler and establishes a form of bisimulation
between the two architectures. They also prove normalization properties of the
programs.

Software architecture styles. The approach described in [42] focuses on the
interconnection between individual components of the software architecture. The
main goal is to describe architecture styles (i.e. classes of architectures) and to
check that the dynamic evolution of an architecture preserves the constraints
imposed by the style. Techniques developed for Structured Gamma (graph gram-
mars and the associated checking algorithm) can be applied to this problem.
Structured Gamma allows connections to become “first class” objects and
to prove invariance properties on the structure of the network. For example, a
client-server architecture style can be defined as the graph grammar

ClientServer = CS m

cSm =crcm,camec, Cc, CSm
cSm =srms,sasm, Ss, CSm
CSm =Mm, Xz

The unary relations C, S, M and X correspond respectively to client, server,
manager and external entities. The external entity stands for the external world;

it records requests for new clients wanting to be registered in the system. The
binary relations cr and ca correspond to client request links and client answer
links respectively (sr and sa are the dual links for servers). For example, the

architecture @ @
N /

involves two clients ¢; and ¢z, two servers s; and s», a manager mg and the
external entity zo. It belongs to the client-server class (grammar) ClientServer.

It is often the case that the architecture of an application should be able to
evolve dynamically. For instance, a client-server organization must allow for the
introduction of new clients or their departure, a pipeline may grow or shrink,
facilities for dealing with mobile computing may be required. In this framework,
the evolution of the architecture is defined by a coordinator. The task of the
coordinator is expressed by reaction rules. As an illustration, the following co-
ordinator applies to a client-server architecture:

Xz, Mm—X2', Mm, crcm,came, Cc

crcm,camc, Cc -0

The two rules® describe respectively the introduction of a new client in the
architecture and its departure. The main benefit of this approach is that the
algorithm of section 2.5 can be used to ensure that a coordinator does not break
the constraints of the architecture style. This makes it possible to reconcile
a dynamic view of the architecture with the possibility of static checking. For
example, had we forgotten, say cr ¢ m in the right-hand side of the first rule, then
the coordinator would have been able to transform a client-server architecture
into an architecture which would not belong any longer to the class defined by
ClientServer.

The interested reader can find in [37] the treatment of an industrial case
study proposed by the Signaal company [25] using a multiple views extension
of the formalism presented above. The goal of the work was the specification
of a railway network system. The static verification of coordination rules with
respect to grammars was deemed the most attractive feature of the formalism
[37].

These applications provide evidence that (Structured) Gamma is an intuitive
and formally based formalism to describe and analyze software architectures.

! In fact, these rules are completed with side conditions on the states of the entities
otherwise, the coordinator could add or remove entities without any consideration
of the current state of the system.

4.4 Other works

Influences of the chemical reaction model can be found in other domains such
as visual languages [36], protocols for shared virtual memories [49] or logic pro-
gramming [19,61]. We just sketch here works around coherence protocols and
logic programming where Gamma played a key role.

Formalization of coherence protocols. Coherence protocols for shared vir-
tual memories have been formalized as Gamma programs in [49]. The multiset,
whose elements are the protocol entities or events, represents a global view of
the system. The protocol itself is described as a Gamma program (i.e. a collec-
tion of reaction rules). Besides, a fragment of first-order logic is used to specify
properties that the protocol is expected to satisfy. This formalization made it
possible to design an algorithm checking that properties are indeed invariants of
the protocol. [49] presents a Gamma formalization of the Li and Hudak protocol
[44] as well as the automatic verification of a collection of invariants.

This approach has been applied to software architectures in [53]. The dynamic
evolution of the architecture is described as a Gamma program (as in section 4.3).
Instead of checking membership to a given style (as in section 4.3), the algorithm
of [49] is reused to check that the evolutions of the architecture respect some
logical properties specified in a separate language.

Gamma and logic programming. Several proposals have been made for in-
tegrating Gamma and logic programming languages. A first approach, followed
in [19], uses multisets of terms and describes conditions and actions as pred-
icates. This model is implemented as an extension of Gddel, a strongly typed
logic programming language with a rich module system. It involves a definition
of multiset unification and a careful integration with the operational semantics
of Gamma, in which the “choices” made by reaction conditions are not back-
trackable. This extension, called Gammaldg, includes the sequential and parallel
composition operators introduced in [34]. Another approach is followed in [61]
where the objects in the multisets are goal formulas and the (condition,action)
pairs are goal-directed deduction rules. This results in ALO, an extension of LO
[3] which can itself be seen as an elaboration on the basic chemical reaction
model. ALO can be seen as a higher-order extension of LO in the same way
as AProlog is a higher-order extension of Prolog. Implication in goals provides
the ability to construct (or augment) the program at run-time and the use of
multisets leads to a uniform treatment of programs and data.

5 Conclusion

A number of languages and formalisms bearing similarities with the chemical
reaction paradigm have been proposed in the literature. Let us briefly review
the most significant ones:

— A programming notation called associons is introduced in [54]. Essentially
an associon is a tuple of names defining a relation between entities. The

state can be changed by the creation of new associons representing new
relations derived from the existing ones. In contrast with Gamma, the model
is deterministic and does not satisfy the locality properties (dues to the
presence of YV properties).

— A Unity program [14] is basically a set of multiple-assignment statements.
Program execution consists in selecting non deterministically (but following
a fairness condition) some assignment statement, executing it and repeating
forever. [14] defines a temporal logic for the language and the associated proof
system is used for the systematic development of parallel programs. Some
Unity programs look very much like Gamma programs (an example is the
exchange sort program presented in the introduction). The main departures
from Gamma is the use of the array as the basic data structure and the ab-
sence of locality property. On the other hand, Unity allows the programmer
to distinguish between synchronous and asynchronous computations which
makes it more suitable as an effective programming languages for parallel
machines. In the same vein as Unity, the action systems presented in [5] are
do-od programs consisting of a collection of guarded atomic actions, which
are executed nondeterministically so long as some guard remains true.

— Linda [32,15] contains a few simple commands operating on a tuple space.
A producer can add a value to the tuple space; a consumer can read (de-
structively or not) a value from the tuple space. Linda is a very elegant
communication model which can easily be incorporated into existing pro-
gramming languages.

— LO (for Linear Objects) was originally proposed as an integration of log-
ic programming and object-oriented programming [3]. It can be seen as an
extension of Prolog with formulae having multiple heads. From an object-
oriented point of view, such formulae are used to implement methods. A
method can be selected if its head matches the goal corresponding to the
object in its current state. The head of a formula can also be seen as the
set of resources consumed by the application of the method (and the tail
is the set of resources produced by the method). In [4], LO is used as a
foundation for interaction abstract machines, extending the chemical reac-
tion metaphor with a notion of broadcast communication: sub-solutions (or
“agents”) can be created dynamically and reactions can have the extra effect
of broadcasting a value to all the agents.

Taking a dual perspective, it is interesting to note that the physical modeling
community has borrowed concepts from computer science leading to formalisms
which bear similarities with higher-order Gamma. An example of this trend of
activity is the “Turing gas” [29] where molecules float at random in a solution,
reacting if they come into contact with each other. A language akin to lambda-
calculus is used to express the symbolic computation involved in the reactions.

As a conclusion, we hope that this paper has shown that the chemical reac-
tion model is a particularly simple and fruitful paradigm. No doubt that new
surprising developments are yet to come.

Acknowledgments We would like to express our thanks to all the people who
have contributed to the development of Gamma during these years.

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

S. Abramsky, Computational interpretations of linear logic, Theoretical Computer
Science, Vol. 111, pp. 3-57, 1993.

R. Allen and D. Garlan, Formalising architectural connection, Proceedings of the
IEEE 16th International Conference on Software Engineering, pp. 71-80, 1994.
J.-M. Andreoli and R. Pareschi, Linear Objects: logical processes with built-in
inheritence, New Generation Computing, Vol. 9, pp. 445-473, 1991.

J.-M. Andreoli, P. Ciancarini and R. Pareschi, Interaction abstract machines, in
Proc. of the workshop Research Directions in Concurrent Object Oriented Pro-
grammang, 1992.

R. Back, Refinement calculus, part II: parallel and reactive programs, in Proc. of
the workshop on Stepwise Refinement of Distributed Systems: Models, Formalism-
s, Correctness, 1989, Springer Verlag, LNCS 430.

J.-P. Banatre, A. Coutant and D. Le Métayer, A parallel machine for multiset
transformation and its programming style, Future Generation Computer Systems,
pp. 133-144, 1988.

J.-P. Banatre, A. Coutant and D. Le Métayer, Parallel machines for multiset
transformation and their programming style, Informationstechnik, Oldenburg Ver-
lag, Vol. 2/88, pp. 99-109, 1988.

J.-P. Banatre and D. Le Métayer, The Gamma model and its discipline of pro-
gramming, Science of Computer Programming, Vol. 15, pp. 55-77, 1990.

J.-P. Banatre and D. Le Métayer, Programming by multiset transformation, Com-
munications of the ACM, Vol. 36-1, pp. 98-111, January 1993.

J.-P. Banatre and D. Le Métayer, Gamma and the chemical reaction model: ten
years after, in Coordination Programming: Mechanisms, Models and Semantics,
Imperial College Press, 1996.

P. Bertin, D. Roncin and J. Vuillemin, Programmable active memories: a perfor-
mance assessment, in Proc. of the workshop on Parallel architectures and their
efficient use, 1992, Springer Verlag, LNCS , pp. 119-130.

G. Berry and G. Boudol, The chemical abstract machine, Theoretical Computer
Science, Vol. 96, pp. 217-248, 1992.

G. Boudol, Some chemical abstract machines, in Proc. of the workshop on A
decade of concurrency, 1994, Springer Verlag, LNCS 803, pp. 92-123.

Chandy M. and Misra J., Parallel program design: a foundation, Addison-Wesley,
1988.

N. Carriero and D. Gelernter, Linda in contert, Communications of the ACM,
Vol. 32-4, pp. 444-458, April 1989.

T. H. Cormen, C. E. Leiserson and R. L. Rivest, Introduction to algorithms, MIT
Press, 1990.

M. Chaudron and E. de Jong, Schedules for multiset transformer programs, in Co-
ordination Programming: Mechanisms, Models and Semantics, Imperial College
Press, 1996.

M. Chaudron and E. de Jong, Towards a compositional method for coordinating
Gamma programs, in Proc. Coordination’96 Conference, Lecture Notes in Com-
puter Science, Vol. 1061, pp. 107-123, 1996.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

P. Ciancarini, D. Fogli and M. Gaspari, A logic language based on multiset rewrit-
ing, in Coordination Programming: Mechanisms, Models and Semantics, Imperial
College Press, 1996.

P. Ciancarini, R. Gorrieri and G. Zavattaro, An alternate semantics for the cal-
culus of Gamma programs, in Coordination Programming: Mechanisms, Models
and Semantics, Imperial College Press, 1996.

D. Cohen and J. Muylaert-Filho, Introducing a calculus for higher-order multiset
programming, in Proc. Coordination’96 Conference, Lecture Notes in Computer
Science, Vol. 1061, pp. 124-141, 1996.

C. Creveuil, Techniques d’analyse et de mise en ceuvre des programmes Gamma,
Thesis, University of Rennes, 1991.

C. Creveuil, Implementation of Gamma on the Connection Machine, in Proc. of
the workshop on Research Directions in High-Level Parallel Programming Lan-
guages, Mont-Saint Michel, 1991, Springer Verlag, LNCS 574, pp. 219-230.

C. Creveuil and G. Moguérou, Développement systématique d’un algorithme de
segmentation d’images a [’aide de Gamma, Techniques et Sciences Informatiques,
Vol. 10, No 2, pp. 125-137, 1991.

E. de Jong, An industrial case study: a railway control system, Proc. Second
int. Conf. on Coordination Models, Languages and Applications, Springer Verlag,
LNCS 1282, 1997.

Dershowitz N. and Manna Z., Proving termination with multiset ordering, Com-
munications of the ACM, Vol. 22-8, pp. 465-476, August 1979.

Dijkstra E. W., The humble programmer, Communications of the ACM, Vol. 15-
10, pp. 859-866, October 1972.

L. Errington, C. Hankin and T. Jensen, A congruence for Gamma programs, in
Proc. of WSA conference, 1993.

W. Fontana, Algorithmic chemistry, Proc. of the workshop on Artificial Life, Santa
Fe (New Mexico), Addison-Wesley, 1991, pp. 159-209.

P. Fradet and D. Le Métayer, Shape types, in Proc. of Principles of Programming
Languages, POPL’97, ACM Press, pp. 27-39, 1997.

P. Fradet and D. Le Métayer, Structured Gamma, Science of Computer Program-
ming, 31, pp. 263-289, 1998.

Gelernter D., Generative communication in Linda, ACM Transactions on Pro-
gramming Languages and Systems, Vol. 7,1, pp. 80-112, January 1985.

K. Gladitz and H. Kuchen, Parallel implementation of the Gamma-operation on
bags, Proc. of the PASCO conference, Linz, Austria, 1994.

C. Hankin, D. Le Métayer and D. Sands, A calculus of Gamma programs, in Proc.
of the 5th workshop on Languages and Compilers for Parallel Computing, Yale,
1992, Springer Verlag, LNCS 757.

C. Hankin, D. Le Métayer and D. Sands, A parallel programming style and its
algebra of programs, in Proc. of the PARLE conference, LNCS 694, pp. 367-378,
1993.

B. Hoffmann. Shapely Hierarchical Graph Transformation, Symposium on Visual
Languages and Formal Methods (VL FM’01) in the IEEE Symposia on Human-
Centric Computing Languages and Environments (HCC’01), IEEE Press, 2001.
A. A. Holzbacher, M. Périn and M. Siidholt, Modeling railway control systems
using graph grammars: a case study, Proc. Second int. Conf. on Coordination
Models, Languages and Applications, Springer Verlag, LNCS 1282, 1997.

P. Inverardi and A. Wolf, Formal specification and analysis of software architec-
tures using the chemical abstract machine model, IEEE Transactions on Software
Engineering, Vol. 21, No. 4, pp. 373-386, April 1995.

39

40.

41.

42.

43.
. K. Li, P. Hudak, Memory Coherence in Shared Virtual Memory Systems, in Proc.

45.

46.
47.

48.

49.

50.
51.

52.

53.
54.
55.

56.
57.

58.

59.

60.

61.
62.

A. Jeffrey, A chemical abstract machine for graph reduction, TR 3/92, University
of Sussex, 1992.

H. Kuchen and K. Gladitz, Parallel implementation of bags, in Proc. ACM Conf.
on Functional Programming and Computer Architecture, ACM, pp. 299-307, 1993.
D. Le Métayer, Higher-order multiset programming, in Proc. of the DIMACS work-
shop on specifications of parallel algorithms, American Mathematical Society, Di-
macs series in Discrete Mathematics, Vol. 18, 1994.

D. Le Métayer, Describing software architecture styles using graph grammars,
IEEE Transactions on Software Engineering (TSE), Vol. 24(7), pp. 521-533, 1998.
L. Leth and B. Thomsen, Some Facile chemistry, TR 92/14, ECRC, 1992.

of ACM Symposium on Principles of Distributed Computing, pp. 229-239, 1986.
Lin Peng Huan, Kam Wing Ng and Yong Qiang Sun, Implementing higher-order
Gamma on MasPar: a case study, Journal of Systems Engineering and Electronics,
Vol. 16(4), 1995.

Lin Peng Huan, Kam Wing Ng and Yong Qiang Sun, Implementing Gamma on
MasPar MP-1, Journal of Computer Science and Technology.

H. McEvoy, Gamma, chromatic typing and vegetation, in Coordination Program-
ming: Mechanisms, Models and Semantics, Imperial College Press, 1996.

H. McEvoy and P.H. Hartel, Local linear logic for locality consciousness in multi-
set transformation, Proc. Programming Languages: Implementations, Logics and
Programs, PLILP’95 LNCS 982, pp. 357-379, 1995.

D. Mentré, D. Le Métayer, T. Priol, Formalization and Verification of Coherence
Protocols with the Gamma Framework, in Proc. of the 5th Int. Symp. on Software
Engineering for Parallel and Distributed Systems (PDSE-2000), ACM, 2000.

R. Milner, Communication and concurrency, International Series in Computer
Science, Prentice Hall, Englewood Cliffs, NJ, 1989.

R. Milner, Functions as processes, Mathematical Structures in Computer Science,
Vol. 2, pp. 119-141, 1992.

L. Mussat, Parallel programming with bags, in Proc. of the workshop on Research
Directions in High-Level Parallel Programming Languages, Mont-Saint Michel,
1991, Springer Verlag, LNCS 574, pp. 203-218.

M. Périn, Spécifications graphiques multi-vues : formalisation et vérification de
cohérence, PhD thesis, Université de Rennes 1, 2000.

M. Rem, Associons: a program notation with tuples instead of variables, ACM
Trans. on Programming Languages and Systems, Vol. 3,3, pp. 251-261, 1981.

M. Reynolds, Temporal semantics for Gamma, in Coordination Programming:
Mechanisms, Models and Semantics, Imperial College Press, 1996.

R. Sedgewick, Algorithms in C, Addison-Wesley publishing company, 1990.
W.-P. de Roever, Why formal methods are a must for real-time system specifica-
tion, in Proc. Euromicro’92, Panel discussion, June 1992, Athens.

H. Ruiz Barradas, Une approche d la dérivation formelle de systémes en Gammea,
Thesis, University of Rennes 1, July 1993.

D. Sands, A compositional semantics of combining forms for Gamma programs, in
Proc. of the Formal Methods in Programming and their Applications conference,
Novosibirsk, 1993, Springer Verlag, LNCS 735, pp. 43-56.

D. Sands, Composed reduction systems, in Coordination Programming: Mecha-
nisms, Models and Semantics, Imperial College Press, 1996.

L. Van Aertryck and O. Ridoux, Gammalog as goal-directed proofs, internal report.
M. Vieillot, Synthése de programmes Gamma en logique reconfigurable, Technique
et Science Informatiques, Vol. 14, pp. 567-584, 1995.

