
Chemical Specification of Autonomic Systems

J.-P. Ban̂atre, Y. Radenac P. Fradet

IRISA INRIA Rhône-Alpes

Campus de Beaulieu 655 avenue de l’Europe

35042 Rennes Cedex, France 38330 Montbonnot, France

{jbanatre,yradenac }@irisa.fr pfradet@inria.fr

Abstract

Autonomic computing provides a vision of informa-
tion systems allowing self-management of many predefined
properties. Such systems take care of their own behavior
and of their interactions with other components without any
external intervention. One of the major challenges con-
cerns the expression of properties and constraints of auto-
nomic systems. We believe that thechemical programming
paradigm (represented here by the Gamma formalism) is
very relevant to the programming of autonomic systems. In
Gamma, computation is described in terms of chemical re-
actions (rewrite rules) in solutions (multisets of elements).
It captures the intuition of a collection of cooperative com-
ponents which evolve freely according to some predefined
constraints. In this paper, after a short presentation of a
higher-order version of the Gamma formalism, it is shown
through the example of a mailing system, how the major
properties expected from an autonomic system can be eas-
ily expressed as a collection of chemical reactions.

1 Introduction

The Gamma formalism was proposed in [3] to cap-
ture the intuition of computation as the global evolution
of a collection of atomic values interacting freely. Gamma
can be introduced intuitively through the chemical reaction
metaphor. The unique data structure in Gamma is the mul-
tiset which can be seen as a chemical solution. A simple
program is made of areaction conditionand anaction. Ex-
ecution proceeds by replacing elements satisfying the reac-
tion condition by the elements specified by the action. The
result of a Gamma program is obtained when a stable state
is reached that is to say when no more reactions can take
place.

For example, the computation of the maximum element
of a non empty set can be described as:

replace x, y by x if x > y

meaning that any couple of elementsx andy of the multiset
is replaced byx if the condition is fulfilled. This process
goes on till a stable state is reached, that is to say, when
only the maximum element remains. Note that, in this def-
inition, nothing is said about the order of evaluation of the
comparisons. If several disjoint pairs of elements satisfy the
condition, the reactions can be performed in parallel.

The possibility of getting rid of artificial sequentiality
in Gamma confers a high level nature to the language and
allows the programmer to describe programs in a very ab-
stract way. In some sense, one can say that it is possible
in Gamma to express the very idea of an algorithm without
any unnecessary linguistic idiosyncrasies. The interested
reader may find in [3] a long series of examples (string pro-
cessing problems, graph problems, geometry problems, . . .)
illustrating the Gamma style of programming and in [1]
a review of contributions related to the chemical reaction
model. Gamma has been applied to the development of op-
erating systems and software architectures [4, 9, 10]; it has
revealed many highly valuable properties as far as produc-
tion of reliable software is concerned.

Autonomic computing provides a vision in which sys-
tems manage themselves according to some predefined
goals. The essence of autonomic computing is self-
organization. Like biological systems, “autonomic systems
maintain and adjust their operation in the face of changing
components, workloads, demands, and external conditions
in the face of hardware or software failures, both innocent or
malicious. The autonomic system might continually mon-
itor its own use and check for component upgrades” [8].
We believe that the chemical programming paradigm (rep-
resented here by the Gamma formalism) is very relevant
to the programming of autonomic systems. It captures the
intuition of a collection of cooperative components which
evolve freely according to some predefined constraints (re-
action rules). System self-management arises as a result of
interactions between members, in the same way as “intelli-
gence” emerges from cooperation in colonies of biological

agents.
We describe the use of Gamma as a basis for the mod-

eling and description of autonomic systems through the ex-
ample of a mail system exhibiting many self-management
properties. We develop our system by considering in
turn, self-organization, self-healing, self-optimization, self-
protection and self-configuration. Each property is de-
scribed separately from the others by new rules which are
simply added to the system description. This example
shows that rule-based programming languages (and, in par-
ticular, chemical programming) allows the expression of
such properties in a natural, elegant and modular way.

This article is organized as follows. Section 2 presents
an overview of theγ-calculus [2], that summarizes in a
simple and formal setting the main features of the chemi-
cal paradigm. Section 3 introduces higher-order Gamma, a
high-level chemical programming language, and illustrates
its style of programming through simple examples. Section
4 focuses on the application of higher-order Gamma to de-
scribe autonomic systems using a case study. Finally, sec-
tion 5 discusses a few issues related to chemical autonomic
systems and suggests avenues for further research.

2 Theγ-calculus

In this section, we describe a higher-order calculus, the
γ-calculus [2], that can be seen as a formal basis for the
chemical paradigm (in much the same way as theλ-calculus
is the formal basis of the functional paradigm). It general-
izes the chemical model of computation by considering ev-
ery element (including programs themselves) as a molecule.
It naturally leads to a higher-order extension of the original
Gamma language.

The fundamental data structure of theγ-calculus is the
multiset (a collection which may contain several copies of
the same element). Computation can be seen either intu-
itively, as chemical reactions between molecules moving
freely in solutions, or formally, as associative, commuta-
tive and higher-order multiset rewritings. In the following,
we summarize the very primitive features of theγ-calculus.

Molecules. Molecules (orγ-expressions) are variables,
γ-abstractions, multisets or solutions of molecules. Their
syntax is defined by the following grammar:

M ::= x | y | . . . ; variables
| (γ〈x〉.M) ; γ-abstraction
| (M1,M2) ; multiset
| 〈M〉 ; solution

Brownian motion. Brownian motion makes molecules
move freely in a solution. In theγ-calculus, Brownian mo-
tion is represented by the associativity and commutativity

of the multiset constructor “,”. Equivalent molecules mod-
ulo associativity and commutativity (A/C rules) are denoted
by “≡”. For example:

(x, (y, x)) ≡ (y, (x, x)) ≡ y, x, x ≡ x, y, x

So, parentheses are not necessary to denote multisets. So-
lutions encapsulate molecules. Molecules can move within
solutions but not across solutions. For example:

x, 〈y, x〉 ≡ 〈x, y〉, x 6≡ 〈x, x〉, y

Chemical reactions. Another distinctive feature of chem-
ical models is the reaction concept. In theγ-calculus, it is
represented by a rewrite rule called theγ-reduction:

(γ〈x〉.M), 〈N〉 →γ M [x := N]
if 〈N〉 is inert ; γ-reduction

If a γ-abstraction “meets” an inert solution, then they may
react. The rule itself is similar to theβ-reduction in theλ-
calculus: theγ-abstractionγ〈x〉.M and the inert solution
〈N〉 are rewritten into the moleculeM where all the free
occurrences of the parameterx have been replaced byN .
An inert solution is a solution where no reaction can occur.
It is a solution that contains only abstractions or only solu-
tions (however these inner solutions may not be inert). Note
that γ-abstractions disappear in reactions: they are said to
beone-shot.

The structural rules describe how reactions can occur in
aγ-expression:

locality
M1 →γ M2

M,M1 →γ M,M2
solution

M1 →γ M2

〈M1〉 →γ 〈M2〉

Thelocality rule states that if a moleculeM1 can react then
it can do so whatever its contextM (i.e. the rest of the
solution). Thesolution rule states that reactions can occur
within nested solutions.

Non-determinism. The A/C rules make theγ-calculus
non-deterministic. If a molecule contains several elements,
it is not knowa priori how they will combine because of
the Brownian motion. For example, consider the following
(and very classical) example:

(γ〈x〉.γ〈y〉.x), 〈a〉, 〈b〉 →γ

{
(γ〈y〉.a), 〈b〉 →γ a
(γ〈y〉.b), 〈a〉 →γ b

This molecule can reduce itself to two distinct stable terms
depending on the application of A/C rules and whether the
first reaction involves〈a〉 or 〈b〉.

2

Higher-order. Finally, the γ-calculus is a higher-order
model: abstractions are molecules and can be taken as pa-
rameter or yielded as result by other abstractions. This ex-
pressivity makes it possible to encode all standard program-
ming language features (e.g. booleans, integers, pairs, re-
cursion, . . .) within theγ-calculus itself. For example, here
is a possible encoding of the booleans and negation:

true ≡ γ〈x〉.γ〈y〉.x
false ≡ γ〈x〉.γ〈y〉.y
not ≡ γ〈x〉.〈〈x〉, (γ〈a〉.a, 〈false〉)〉, (γ〈b〉.b, 〈true〉)

The molecule(not, 〈true〉) reacts as follows:

(γ〈x〉.〈〈x〉, (γ〈a〉.a, 〈false〉)〉, (γ〈b〉.b, 〈true〉)), 〈true〉
∗→γ 〈〈true〉, (γ〈a〉.a, 〈false〉)〉, (γ〈b〉.b, 〈true〉)
∗→γ 〈true, 〈false〉〉, (γ〈b〉.b, 〈true〉)
≡ 〈γ〈x〉.γ〈y〉.x, 〈false〉〉, (γ〈b〉.b, 〈true〉)
∗→γ 〈γ〈y〉. false〉, (γ〈b〉.b, 〈true〉)
∗→γ false

The γ-calculus is a minimal but very expressive model.
It can encode theλ-calculus, but can also express non-
deterministic primitives. However, as such, it is quite a
clumsy programming tool. More practical programming
languages can be built above the basicγ-calculus such as
the reference Gamma language (used in this paper) pre-
sented in the next section.

3 A Higher-order Chemical Language

A practical chemical programming language can be built
upon theγ-calculus by adding constants (e.g. booleans, in-
tegers), primitive operators (e.g. arithmetic operators, con-
ditional), data structures (e.g. pairs, tuples), recursive def-
initions and pattern matching. We do not present this con-
struction here but only introduce the constructions and no-
tations used later on to express autonomic systems. The lan-
guage that we use can be seen as a higher-order extension
of Gamma [3]. Gamma has a very distinctive and elegant
programming style which we illustrate by a collection of
classical programs.

3.1 Higher-order Gamma

Here, we consider theγ-calculus extended with
booleans, integers, arithmetic and booleans operators, tu-
ples (written x1: . . . :xn) and the possibility of naming
molecules (ident = M). Furthermore,γ-abstractions (also
calledactive molecules) can react according to a condition
and can extract elements using pattern-matching. The syn-
tax ofγ-abstractions is extended to:

γP bCc.M

whereM is the action,C is the condition of reaction and
P a pattern extracting the elements participating in the re-
action. Pattern have the following syntax:

P ::= x | ω | ident = P | P, P | 〈P 〉

where

• variables (x) match basic elements (integers, booleans,
tuples, ...),

• ω is a named wild card that matches any molecule
(even the empty one),

• ident = P matches any moleculeM namedident
which matchesP ,

• P1, P2 matches any moleculem ≡ m1,m2 such that
m1 matchesP1 andm2 matchesP2

• 〈P 〉 matches any solution〈m〉 such thatm matchesP

For example, the patternSol = 〈x, y, ω〉 matches any
solution namedSol containing at least two basic elements
namedx andy. The rest of the solution (that may be empty)
is matched byω.

Theγ-abstractions are one-shot: they are consumed by
the reaction. Many programs are naturally expressed by ap-
plying the same reaction an arbitrary number of times. We
use recursive (orn-shot)γ-abstractions which are not con-
sumed by the reaction. We denote them by the following
syntax:

replace P by M if C

Such a molecule reacts exactly asγP bCc.M except than it
remains after the reaction and can be used as many times
as necessary. If needed, they can be removed by another
molecule, thanks to the higher-order nature of the language.
If the conditionC is true, we omit it in the definition of
active (one-shot orn-shot) molecules.

A higher-order gamma program is an unstable solution
of molecules. The execution of that program consists in
performing the reactions (modulo A/C) until a stable state
is reached (no more reaction can occur).

3.2 Some classical examples

We now provide some simple examples to familiarize
with Gamma’s syntax and programming style.

Prime numbers. Given the function x multipleOf y
which returnstrue if x is a multiple ofy, the computation
of the prime numbers up ton can be expressed by:

〈prime, 2, 3, 4, 5, . . . , n〉

3

where the active molecule:

prime = replace x, y by x if y multipleOf x

filters out all integers which can be divided by others. A
stable state is reached only when all the remaining integers
are prime. Let us point out the simplicity and elegance of
this program compared to its expression in a traditional pro-
gramming language.

The factorial function. The active moleculeprod re-
places two integers by their product.

prod = replace x, y by x ∗ y

This molecule can be used to compute the factorial ofn:

prod, 2, 3, 4, 5, . . . , n

Note that the classical way to write the factorial function
involves a loop that computes the product in a specified or-
der (. . . ((2 ∗ 3) ∗ 4) ∗ . . .). Gamma does not have such
an artificial sequential bias. Products are performed in any
order.

In our example, the stable solution will be of the form
〈prod, n!〉. A function taking a solution〈2, . . . , n〉 and re-
turning only the integern! as result can be written as

fact = γ〈ω〉.clean, 〈prod, ω〉
with clean = γ〈prod, ω〉.ω

The moleculefact takes a solution of integers, placesprod
inside whereasclean will remove it when the solution be-
comes stable.

4 Chemical Autonomic Systems

In this section, we develop programs which demonstrate
how the chemical paradigm is adequate to describe auto-
nomic systems. Examples are chosen in order to illustrate
how the chemical paradigm facilitates the description of
self-management properties.

4.1 Self-organization: a sorting machine

Consider the general problem of a system whose state
must satisfy a number of properties but which is submit-
ted to external and uncontrolled changes. This system must
constantly re-organize itself to satisfy the properties. Let us
illustrate this class of problem by a simple sorting example
where the system state is made of pairsindex:value and
the property of interest is that values are well-ordered (i.e.
a smaller index means a smaller value). If the environment

keeps adding random pairs in the state, the system must re-
organize itself after each insertion of an ill-ordered element.
In Gamma, the system is represented by

State = 〈sort, (i1:v1), . . . , (in:vn)〉

a solution made of pairs and of the following active
molecule:

sort = replace i:x, j:y
by (j + 1):x, j:y
if i ≤ j and x > y

The moleculesort looks for couples of ill-ordered values
and increases the position of the greater values over the
smaller ones. The solution evolves up to the point where
no more reactions are possible: the solution has reached a
stable state and the ordering property is satisfied. The “ma-
chine” is set to an initial environment

Env = 〈alter, seed, State = 〈sort〉〉

whereseed is an integer used byalter to generate random
integers. This molecule adds random integers at index 1 in
the solutionState:

alter = replace State = 〈ω〉, n
by State = 〈1:rand(n), ω〉, n + 1

New ill-ordered values break the “equilibrium” and violate
the ordering property. However,sort searches continuously
for new ill-ordered values so the state will reach a new sta-
ble state. When the state is stable, alter may add again a
new value.

From that simple program, we can check properties. For
example, if the program terminates, we can show that the
pairs are well-ordered. The program terminates when no re-
action can occur, so no couple of pairs satisfies the reaction
condition: ∀ i:x, j:y (i > j) ∨ (x ≤ y) which is a defi-
nition for well-ordered values (i.e. a smaller index means
a smaller value). Termination can be proved by finding a
termination function like [7] does.

This very simple example shows how Gamma naturally
expresses self-organizing systems. A Gamma program is
made of a collection of rules (active molecules) which react
until a stable state is reached. Theses rules remain and are
applied (without any external intervention) as soon as the
solution is unstable again. As we will see in the mail system
example, this way of expressing self-organization is very
practical and will be used intensively.

4.2 A mail system

We now describe an autonomic mail system within the
Gamma framework. It consists in mail servers, each one

4

dealing with a particular address domain, and clients send-
ing their messages to their domain server. Servers forward
messages addressed to other domains to the network. They
also get messages addressed to their domain from the net-
work and direct them to the appropriate clients.

General description: self-organization. The mail sys-
tem (see Figure 1) is described using several molecules:

• Messages exchanged between clients are represented
by basic molecules whose structure is left un-
specified. We just assume that relevant informa-
tion (such as sender’s address, recipient’s address,
etc.) can be extracted using appropriate func-
tions (such assender, recipient, senderDomain,
recipientDomain, body, etc.).

• Solutions namedToSenddi
contain the messages to be

sent by the clienti of domaind.

• Solutions namedMboxdi
contain the messages re-

ceived by the clienti of domaind.

• Solutions namedPoold contain the messages that the
server of domaind must take care of.

• The solution namedNetwork represents the global
network interconnecting domains.

• A client i in domaind is represented by two active
moleculessenddi

andrecvdi
.

• A server of a domaind is represented by two active
moleculesputd andgetd.

Clients send messages by adding them to the pool of mes-
sages of their domain. They receive messages from the pool
of their domain and store them in their mailbox. Thesenddi

molecule sends messages of the clienti (i.e. messages in
theToSenddi

solution) to the client’s domain pool (i.e. the
Poold solution).

senddi = replace ToSenddi = 〈msg, ωt〉, Poold = 〈ωp〉
by ToSenddi = 〈ωt〉, Poold = 〈msg, ωp〉

The recvdi molecule places the messages addressed to
client i (i.e. messages in thePoold solution whose recip-
ient isi) in the client’s mailbox (i.e. theMboxdi

solution).

recvdi
= replace Poold = 〈msg, ωp〉,

Mboxdi
= 〈ωb〉

by Poold = 〈ωp〉,
Mboxdi = 〈msg, ωb〉

if recipient(msg) = i

Servers forward messages from their pool to the network.
They receive messages from the network and store them in

their pool. Theputd molecule forwards only messages ad-
dressed to other domains thand.

putd = replace Poold = 〈msg, ωp〉,
Network = 〈ωn〉

by Poold = 〈ωp〉,
Network = 〈msg, ωn〉

if recipientDomain(msg) 6= d

The moleculegetd extracts messages addressed tod from
the network and places them in the pool of domaind.

getd = replace Network = 〈msg, ωn〉,
Poold = 〈ωp〉

by Network = 〈ωn〉,
Poold = 〈msg, ωp〉

if recipientDomain(msg) = d

The system is a solution, namedMailSystem, containing
molecules representing clients, messages, pools, servers,
mailboxes and the network. Figure 1 represents graphically
the following solution with five clients grouped into two do-
mainsA andB:

MailSystem = 〈
sendA1 , recvA1 , ToSendA1 = 〈. . .〉, MboxA1 = 〈. . .〉,
sendA2 , recvA2 , ToSendA2 = 〈. . .〉, MboxA2 = 〈. . .〉,
sendA3 , recvA3 , ToSendA3 = 〈. . .〉, MboxA3 = 〈. . .〉,
putA, getA, PoolA, Network, putB, getB, PoolB,
sendB1 , recvB1 , ToSendB1 = 〈. . .〉, MboxB1 = 〈. . .〉,
sendB2 , recvB2 , ToSendB2 = 〈. . .〉, MboxB2 = 〈. . .〉
〉

Self-healing. We now assume that a server may crash. To
prevent the mail service from being discontinued, we add
an emergency server for each domain (see Figure 2). The
emergency servers work with their own pool as usual but
are active only when the corresponding main server has
crashed. The modeling of a server crash can be done us-
ing the following higher-order reaction:

crashServerd = replace putd, getd, Upd

by putd′ , getd′ ,
DownInd, DownOutd

if failure(d)

The active molecules representing a main server are re-
placed by molecules representing the corresponding emer-
gency server. The booleanfailure denotes a (potentially
complex) failure detection mechanism. The inverse reac-
tion:

repairServerd = replace putd′ , getd′ ,
DownInd, DownOutd

by putd, getd, Upd

if recover(d)

5

Figure 1. Mail system.

Figure 2. Highly-available mail system.

represents the recovery of the server.
The two moleculesUpd and (DownInd,DownOutd)

represent the state of the main serverd in the solution. They
are also active molecules in charge of transferring pend-
ing messages fromPoold to Poold′ ; then, they may be for-
warded by the emergency server.

The moleculeDownOutd transfers all messages bound
to another domain thand from the main poolPoold to the
emergency poolPoold′ .

DownOutd = replace Poold = 〈msg, ωp〉,
Poold′ = 〈ωn〉

by Poold = 〈ωp〉,
Poold′ = 〈msg, ωn〉

if domain(msg) 6= d

The moleculeDownInd transfers all messages bound to the
domaind from the emergency poolPoold′ to the main pool
Poold.

DownInd = replace Poold = 〈ωp〉,
Poold′ = 〈msg, ωn〉

by Poold = 〈msg, ωp〉,
Poold′ = 〈ωn〉

if domain(msg) = d

After a transition from theDown state to theUp state, it
may remain some messages in the emergency pools. So, the
moleculeUpd brings back all the messages of emergency
poolPoold′ into the the main poolPoold to be then treated
by the main server working again.

Upd = replace Poold′ = 〈msg, ωp〉,
Poold = 〈ωn〉

by Poold′ = 〈ωp〉,
Poold = 〈msg, ωn〉

In our example, self-healing can be implemented by two
emergency serversA′ andB′ and boils down to adding the
following molecules to the solution:

MailSystem = 〈. . . , UpA, UpB, Pool′A, Pool′B,
crashServerA, repairServerA,
crashServerB, repairServerB〉

Self-optimization. The emergency server can also be
used to treat messages even if the main server is up. This

improves efficiency by allowing parallelization. We can ac-
tivate the emergency server when the main server is up as
follows:

optimized = replace Upd

by putd′ , getd′ , balanced, balanced′

The role of the two moleculesbalanced andbalanced′ is
to perform dynamic load balancing between the two pools
Poold andPoold′ .

balanced = replace Poold = 〈msg, ωp〉, Poold′ = 〈ωs〉
by Poold = 〈ωp〉, Poold′ = 〈msg, ωs〉
if Card(ωp) > Card(ωs)

balanced′ = replace Poold = 〈ωp〉, Poold′ = 〈msg, ωs〉
by Poold = 〈msg, ωp〉, Poold′ = 〈ωs〉
if Card(ωp) < Card(ωs)

We have to model the crash of the main server when the
system is running in the optimized mode.

crashOptd = replace balanced, balanced′

by DownInd, DownOutd

if failure(d)

The two moleculesbalanced and balanced′ which char-
acterize the optimized mode are removed and replaced by
the moleculesDownInd andDownOutd which character-
ize the down state. After the main server is repaired the
system may well trigger in the optimized mode again.

Adding, this self optimizing feature to our mail system
boils down to adding the following molecules to the previ-
ous solution:

MailSystem = 〈. . . , optimizeA, optimizeB,
crashOptA, crashOptB〉

Self-protection. Self-protection can be decomposed in
two phases: a detection phase and a reaction phase. De-
tection consists mainly in filtering data (pattern matching).
Reaction consists in preventing offensive data to spread and
sometimes also in counter-attacking. This mechanism can
easily be expressed with the condition-reaction scheme of
the chemical paradigm. In our mail system, self-protection
is simply implemented with active molecules of the follow-
ing form:

self-protect = replace x by ∅ if filter(x)

6

If a moleculex is recognized as an offensive data by a fil-
ter function then it is suppressed. Variants ofself-protect
would consist in generating molecules to counter-attack or
to send warnings.

Offensive data can take various forms such as spam,
virus, . . . A protection against spam can be represented by
the molecule:

rmSpam = replace msg by ∅ if isSpam(msg)

which is placed in aPoold solution. The contents of the
pool can only be accessed when it is inert, that is when
all spam messages have been suppressed by the active
moleculermSpam.

Self-configuration. We now consider adaptation and con-
figuration issues that may arise with mobility. Assume
that clients travel, move from personal computers to mobile
phones, etc. Changes of environment suggest that clients
should be able to migrate from a domain to another (closer
or better suited to their new computing environment). We
assume that the booleangoTod-ei

signals to a clienti in the
domaind that it should go to the domaine. Such a migra-
tion can be described as follows:

migrated-ei
= replace senddi , recvdi ,

Mboxei
, ToSendei

Mboxdi
, ToSenddi

by sendei
, recvei

,
Mboxdi , ToSenddi , 〈Fwd:i:d:e〉

if goToa-bi

From now, the client will send and receive its messages
from Poole. It may still have messages in its previous do-
main or some messages were sent before the migration and
are in the network after the migration, or other clients may
still send messages to its previous address. The migration
places the tagged molecule〈Fwd:i:d:e〉 in the solution in
order to signal that messages to clienti must be forwarded
from domain (pool)d to domaine. The forward program
between two domainsd ande is:

forwardd-e =
replace Poold = 〈msg, ωp〉, 〈Fwd:i:d:e〉

by Poold = 〈newMsg(msg, ei), ωp〉
if recipient(msg) = i

wherenewMsg(msg, r) builds a new message whose body
is msg and recipient isr.

Notice that forwards accumulate when a client migrates
several times (and remain even when the client is back to its
original domain). We may prevent such forward chaining
by using the following molecules:

shortcut = replace 〈Fwd:i:a:b〉, 〈Fwd:i:b:c〉
by 〈Fwd:i:a:c〉, 〈Fwd:i:b:c〉

shortcut′ = replace 〈Fwd:i:d:d〉 by ∅

All these programs could (and should) be described
generically (i.e. only once for all possible clients, source
and destination domains). This would be easily done by
tagging molecules (e.g. pools, clients, etc.). To simplify the
presentation, we have described programs as if they were
written for each client (server, domain, etc.). For the same
reasons, we have also left tagging (e.g. of messages) im-
plicit using extraction functions.

Our description should be regarded as a high-level par-
allel and modular specification. It allows to design and rea-
son about autonomic systems at an appropriate level of ab-
straction. Let us emphasize the beauty of the resulting pro-
grams which rely essentially on the higher-order and chem-
ical nature of Gamma. The self-healing, self-optimization
and self-configuration programs are particularly illustrative
of the elegance and power of the approach. A direct im-
plementation of this program is likely to be quite inefficient
and further refinements are needed; however, this is another
exciting research direction, not tackled in the present paper.

5 Conclusion

In this paper, we have presented a higher-order exten-
sion of a multiset transformation language, called Gamma,
which can be described using a chemical reaction metaphor.
Let us emphasize that the higher-order property of our
model makes it much more powerful and expressive than
the original Gamma [3] or than the Linda language as de-
scribed in [5]. We have studied the application of this for-
malism to the specification of autonomic systems through
examples. Autonomic systems are described as molecules
and transformation rules. These rules may apply as soon as
a predefined condition holds, this happening without exter-
nal intervention. In other words, the system configures and
manages itself to face predefined situations.

Our chemical mail system shows that our approach is
well-suited to the abstract description of autonomic sys-
tems. Reaction rules exhibit the essence of “autonomy”
without going into useless details too early in the develop-
ment process. A very distinctive and valuable property of
our description is its modularity. Properties are described
by independent collections of molecules and rules that are
simply added to the system without requiring other changes.

Other authors have proposed to describe autonomous
systems (such as robots) and plan their behavior in terms of
chemical ”machinery” [6]. Although the problem is quite
different from the one considered here, the simplicity and
elegance of the chemical metaphor is well illustrated.

We do not pretend that our approach solves all prob-
lems in a straightforward manner. We simply believe that
this unconventional model of programming is well-suited
to abstract and modular descriptions of self-managing (au-
tonomic) systems. It may well be a source of inspiration for

7

the design of new specification languages dedicated to au-
tonomic systems. Formal studies of Gamma programs can
be carried out to prove properties on them like [4] does. For
example, “not losing any messages” can be an interesting
property to prove for our mail system. Finally, the language
could be improved to avoid the clumsy encodings (e.g. by
adding data structures) and other high level facilities.

References

[1] J.-P. Ban̂atre, P. Fradet, and D. Le Ḿetayer. Gamma and
the chemical reaction model: Fifteen years after. InMultiset
Processing, volume 2235 ofLNCS, pages 17–44. Springer-
Verlag, 2001.

[2] J.-P. Ban̂atre, P. Fradet, and Y. Radenac. Principles of chem-
ical programming. InRULE’04, ENTCS. Elsevier, 2004. To
appear ...

[3] J.-P. Ban̂atre and D. Le Ḿetayer. Programming by multi-
set transformation.Communications of the ACM (CACM),
36(1):98–111, Jan. 1993.

[4] H. Barradas. Systematic derivation of an operating sys-
tem kernel in Gamma. Thesis (in french), University of
Rennes 1, France, July 1993.

[5] N. Carriero and D. Gelernter. Linda in Context.Communi-
cations of the ACM, 32(4):444–458, 1989.

[6] A. D’Angelo. Using a chemical metaphor to implement au-
tonomous systems. InTopics in Artificial Intelligence, vol-
ume 992 ofLNAI, pages 315–322, Florence, Oct. 1995.

[7] N. Dershowitz and Z. Manna. Proving termination with mul-
tiset orderings. Communications of the ACM, 22(8):465–
476, Aug. 1979.

[8] J. Kephart and D. Chess. The vision of autonomic comput-
ing. IEEE Computer, Jan. 2003.

[9] D. Le Métayer. Software architecture styles as graph gram-
mars. InProceedings of the 4th ACM SIGSOFT symposium
on Foundations of software engineering, pages 15–23. ACM
Press, 1996.

[10] D. Mentŕe, D. Le Métayer, and T. Priol. Formalization and
verification of coherence protocols with the Gamma frame-
work. InProceedings of the 5th International Symposium on
Software Engineering for Parallel and Distributed Systems
(PDSE-2000). ACM, June 2000.

[11] D. Patterson, A. Brown, P. Broadwell, et al. Recovery ori-
ented computing (ROC): Motivations, definition, techniques
and case studies. Technical Report CSD-02-1175, Univer-
sity of California at Berkeley, Mar. 2002.

8

