
Symbolic computation of latency for dataflow graphs
(abstract)

Adnan Bouakaz Pascal Fradet Alain Girault
INRIA; Univ. Grenoble Alpes
first.last@inria.fr

I. MOTIVATION

We present the symbolic computation of data-flow graphs
latency, with two variants: the multi-iteration latency and the
input-output latency. These are important timing constraints
that are usually used in the design of real-time control sys-
tems. The input-output latency is particularly useful for real-
time control systems since it is the maximum delay between
sampling data from sensors and sending control commands to
the actuators.

Latency analysis can either be performed at compile time,
for design space exploration, or at run-time, for resource man-
agement and reconfigurable systems. However, this analysis
has an exponential time complexity, which may cause a huge
run-time overhead or make design space exploration unaccept-
ably slow. We propose to compute the latency symbolically,
i.e., as a function of parameters of the given data-flow graph.
By parameters, we mean the input and output rates of the data-
flow actors, as well as their execution times. Such functions
can be quickly evaluated for each different configuration or
checked w.r.t. different quality-of-service requirements.

II. DEFINITIONS AND BASIC NOTIONS

We are given a data-flow graph G made of edges of the
form A

p q−−→B with two actors A and B such that A produces
p tokens each time it fires while B consumes p tokens each
time it fires. Besides, we are given the execution time tA of A
and tB of B. Essentially, G is a parameterized version of an
SDF graph [7] where rates and execution times can be formal
parameters. As with any SDF graph, we can solve the system
of balance equations to find the iteration of the graph [7].
E.g., for the simple graph A

p q−−→B, there is a single balance
equation zAp = zBq, where zX denotes the number of firings
of actor X in the iteration.

The repetition vector of this simple graph is:

[zA =q/ gcd(p, q), zB =p/ gcd(p, q)]

Finally, the load imposed by actor X is the product zXtX .

In this work, we focus on as soon as possible (ASAP)
scheduling of consistent graphs without auto-concurrency. In
such self-timed executions, an actor fires as soon as it becomes
idle (no auto-concurrency) and has enough tokens on its input
channels. We assume that there are sufficient processing units,
e.g., there are as many processors as actors or all actors are
implemented in hardware. ASAP scheduling allows the graph
to reach its maximal throughput. Such schedules are naturally
pipelined and composed of a prologue followed by a steady
state that repeats infinitely.

The multi-iteration latency LG(n) of the first n iterations
of a graph G is equal to the finish time of the last firing of its
first n iterations (time is counted from the very first firing).

The period PG of the execution of a graph G is the average
length of an iteration, formally defined as:

PG = lim
n→∞

LG(n)

n
(1)

The input-output latency `G(n) of the nth iteration of
a graph G is equal to the time between the start time of
the first firing and the finish time of the last firing of the
nth iteration. The definition given in [6] is slightly different
but in our context (graphs with initially empty channels) the
two definitions are equivalent. The input-output latency of the
complete execution `G is defined as the maximal latency over
all iterations:

`G = max
n=1..∞

`G(n) (2)

III. SYMBOLIC COMPUTATION

We first derive analytic formulas for the multi-iteration
latency of the first n iterations (i.e., LG(n)) of graph G =

A
p q−−→B. Since we are interested in the (approximation of)

the minimum achievable latency, we assume that buffers are
unbounded. There are two cases depending on whether A or
B imposes the highest load.

Fig. 1: ASAP schedule and multi-iteration latency LG(2)

of graph G = A
p q−−→ B in the case zAtA ≥ zBtB (p = 5,

q = 3, tA = 14, tB = 8). Each box represents the firing and
execution time of one actor

• Case zAtA ≥ zBtB , i.e., A imposes a higher load than B.
As illustrated in Fig. 1, actor A never gets idle and PG = zAtA.
Therefore, we have:

LG(n) = nPG + ∆A,B (3)

such that ∆A,B is the remaining execution time for actor B
after actor A has finished its firings of the nth iteration (∆A,B

is constant over all iterations). The formulas for ∆A,B can be
found in [2].

• Case zAtA < zBtB : see [2].

For a chain A
p1 q1−−−−→ B

p2 q2−−−−→ C → · · · → Z of
actors, we compute an upper bound of the multi-iteration
latency of the first n iterations, denoted L̂A→Z (we omit n
for the sake of conciseness). We first compute exactly LA→B .
However, since this computation assumes that the producer
can run consecutively, it cannot be applied between B and C.



We compute an upper bound linearization of the firings of B
such that they are consecutive and ∀j ≤ nzB . fBu(j) ≥ fB(j)
(details are in [2]). The intuition is to transform each actor for
which the execution has gaps (e.g., B in Fig. 1) into a virtual
actor having the same load but without any gap, so that we
can compute the latency for each edge of the chain.

We actually use two upper bound linearization methods
to make the firings of B consecutive: (i) The Push method
pushes all firings of B to the right end to get rid of all the
gaps; (ii) The Stretch method increases the execution time of
B in order to fill the gaps over an infinite execution. They are
incomparable and there are graphs for which either Push or
Stretch is better. Since the two methods are not costly to try,
we apply both and take the minimum.

For a general acyclic SDF graph G, we represent it as a set
of maximal chains G(G), that is, chains from a source actor to a
sink actor. We then compute the multi-iteration latency of each
such chain g, and we finally have: LG(n) = max

g∈G(G)
{Lg(n)}.

Regarding the input-output latency, we can compute the
maximum input-output latency of the nth iteration of a
chain G, denoted `G(n), from its multi-iteration latency:
`G(n) = LG(n) minus the start time of the first firing of the
source actor in the nth iteration. If the source actor A imposes
the highest load among all actors of the graph or if all the
channels are unbounded, then the source actor never gets idle
and achieves the maximal throughput (otherwise, buffer sizes
must be taken into account, see [2]). It follows that:

`G(n) = LG(n)− (n− 1)zAtA (4)

For an arbitrary chain G, we also make use of a backward
linearization technique to compute a safe upper bound of `G.

IV. RESULTS

We have evaluated our approach for computing the multi-
iteration latency using millions of randomly generated chains.
The experiments show that the average over-approximation is
negligible when the number of firings per iteration of the graph
is small. Indeed, if there are many harmonious rates (recall
that, when p divides q or q divides p, the computed latency
for A

p q−−→ B is exact), then the computed latency remains
close to the exact value. Then, the average over-approximation
increases to reach its peak (approximately 2.5%) at around
fifty firings per iteration. This is because the exact values
of latency at these points are small and hence the over-
approximation is more noticeable. Then, the average over-
approximation decreases and converges to zero for graphs with
large latencies.

Table I presents our results for five real applications: the
H.263 decoder, the data modem and sample rate converter
from the SDF3 benchmarks [8], the Fast Fourier Transform
(FFT), and the time delay equalizer (TDE) from the StreamIt
benchmarks [9]. All these graphs have a chain structure. Table I
shows that our approach gives exact results for most of these
benchmarks. Production and consumption rates of channels of
these graphs are quite harmonious (p divides q or q divides p),
for which our approach performs very well.

Finally, we evaluate our approach for computing the input-
output latency using 105 randomly generated chains. The
experiment shows that our analysis over-approximates the

TABLE I: Multi-iteration latency computation for real
benchmarks.

graph PG LG(1) L̂G(1)/LG(1) L̂G(2)/LG(2)
(a) modem 32 62 1 1

(b) sample con. 960 1000 1.022 1.011
(c) H.263 dec. 332046 369508 1 1

(d) FFT 78844 94229 1 1
(e) TDE 17740800 19314069 1 1

exact computation, on average, by at most 13%. The over-
approximation is less noticeable for graphs with large input-
output latencies.

V. RELATED WORK

Few symbolic results about SDF graphs can be found in the
literature. The results reported here and in [2], [3] on symbolic
latency are the first of their kind.

For the symbolic throughput computation, [4] consider the
token timestamp vector ~si, where each entry corresponds to
the production time of tokens in the ith iteration of the graph.
Then, the authors use the max-plus algebra to express the
evolution of the token timestamp vector: ~si = M~si−1. They
have proved that the eigenvalue of matrix M is equal to the
period of the graph.

[5] presents a parametric throughput analysis for SDF
graphs with bounded parametric execution times of actors but
constant rates. Since rates and delays are non-parametric, the
SDF-to-HSDF transformation is possible and the throughput
analysis is based on the MCM of the resulting HSDF graph.

A different analytic approach to estimate lower bounds
of the maximum throughput is to compute strictly periodic
schedules instead of ASAP schedules (e.g., [1]). This approach
is similar to our Stretch linearization method to compute the
latency of the graph. We have however found that using both
Push and Stretch methods usually gives better results.

REFERENCES

[1] B. Bodin, A. Munier-Kordon, and B. de Dinechin. Periodic schedules for
cyclo-static dataflow. In Symposium on Embedded Systems for Real-time
Multimedia, pages 105–114, 2013.

[2] A. Bouakaz, P. Fradet, and A. Girault. Symbolic analysis of dataflow
graphs (extended version). Technical Report 8742, INRIA, 2016.

[3] A. Bouakaz, P. Fradet, and A. Girault. Symbolic buffer sizing for
throughput-optimal scheduling of dataflow graphs. In Proceedings of the
2016 IEEE 22nd Real-Time and Embedded Technology and Applications
Symposium, 2016.

[4] M. Geilen. Synchronous dataflow scenarios. ACM Trans. Embed.
Comput. Syst., 10(2):16:1–16:31, 2011.

[5] A. H. Ghamarian, M. C. W. Geilen, T. Basten, and S. Stuikj. Parametric
throughput analysis of synchronous data flow graphs. In Conf. on Design,
Automation and Test in Europe, pages 116–121, 2008.

[6] A. H. Ghamarian, S. Stuijk, T. Basten, M. C. W. Geilen, and B. D.
Theelen. Latency minimization for synchronous data flow graphs. In
Euromicro Conf. on Digital System Design Architectures, Methods and
Tools, pages 189–196, 2007.

[7] E. A. Lee and D. G. Messerschmitt. Synchronous data flow. In
Proceedings of the IEEE, pages 1235–1245, 1987.

[8] S. Stuijk, M. Geilen, and T. Basten. SDF3: SDF for free. In Int. Conf.
on Application of Concurrency to System Design, pages 276–278, 2006.

[9] W. Thies and S. Amarasinghe. An empirical characterization of stream
programs and its implications for languages and compiler design. In
Int. Conf. on Parallel Architectures and Compilation Techniques, pages
365–376, 2010.


