
Programming Self-Organizing Systems
with the Higher-Order Chemical Language

JEAN-PIERRE BANÂTRE1, PASCAL FRADET2, YANN RADENAC1

1 INRIA / IRISA, Campus de Beaulieu, 35042 Rennes Cedex, France
2 INRIA Rĥone-Alpes, 655 avenue de l’Europe, 38330 Montbonnot, France

jbanatre@irisa.fr, Pascal.Fradet@inria.fr, yradenac@irisa.fr

Received on 17th March 2006

In a chemical language, computation is viewed as abstract mo-
lecules reacting in an abstract chemical solution. Data can be
seen as molecules and operations as chemical reactions: if some
molecules satisfy a reaction condition, they are replaced by the
result of the reaction. When no reaction is possible within the
solution, a normal form is reached and the program terminates.
In this article, we introduce HOCL, the Higher-Order Chemical
Language, where reaction rules are also considered as molecu-
les. We illustrate the application of HOCL to the specification of
self-organizing systems. We describe two case studies: an auto-
nomic mail system and the coordination of an image-processing
pipeline on a grid.

Key words: Chemical programming, higher-order multiset rewriting,
self-organization, autonomic systems, coordination

1 INTRODUCTION

The chemical reaction metaphor has been discussed in various occasions in
the literature. This metaphor describes computation in terms of a chemical so-
lution in which molecules (representing data) interact freely according to re-
action rules. Chemical solutions are represented by multisets (data-structure
that allows several occurrences of the same element). Computation proceeds

1



by rewritings which consume and produce new elements according to condi-
tions and transformation rules.

To the best of our knowledge, the Gamma formalism was the first “chemi-
cal model of computation” proposed as early as in 1986 [5] and later extended
in [6]. A Gamma program is a collection of reaction rules acting on a multiset
of basic elements. A reaction rule is made of a condition and an action. Exe-
cution proceeds by replacing elements satisfying the reaction condition by the
elements specified by the action. The result of a Gamma program is obtained
when a stable (or inert) state is reached, that is to say, when no reaction can
take place anymore. For example, the reaction

max = replacex, y by x if x ≥ y

computes the maximum element of a non empty set. The reaction replaces
any couple of elementsx andy such that the reaction condition (x ≥ y) holds
by x. This process goes on till a stable state is reached, that is to say, when
only the maximum element remains. The reaction

primes = replacex, y by y if x div y

computes the prime numbers lower or equal to a given numberN when ap-
plied to the multiset of all numbers between 2 andN (x div y is true if and
only if x dividesy).

Let us emphasize the conciseness and elegance of Gamma programs. Pro-
grams can be expressed without artificial sequentiality (i. e., unrelated to the
logic of the program). If several disjoint tuples of elements satisfy the con-
dition, the reactions can be performed in parallel. The interested reader may
find in [6] a long series of examples (string processing problems, graph prob-
lems, geometry problems, etc.) illustrating the Gamma programming style.

Let us point out that we consider the chemical reaction only as a metaphor
allowing a fresh look at programs and computation. In the same spirit, the
chemical reaction model has been used as a source of inspiration for many
different works [2]. However, there are models, like artificial chemistries [8],
which are closer to real chemical systems and, sometimes, even use real
chemistry to compute. In contrast, our research focuses on the design of
expressive and unconventional programming languages.

The Higher-Order Chemical Language (HOCL) is a higher-order exten-
sion of Gamma: chemical programs (reactions) are first-class citizens. HOCL
increases the expressive power of Gamma by allowing one to write reactions
that consume or produce other reactions. This feature greatly facilitates the

2



expression of self-organizing systems. The main objective of this article is to
illustrate these benefits through case studies. We first introduce HOCL infor-
mally using simple examples. Then, we present its use to the specification of
two self-organizing systems: an autonomic mail system and the coordination
of an image-processing pipeline on a grid.

2 THE HIGHER-ORDER CHEMICAL LANGUAGE

HOCL [4] is a higher-order extension of Gamma based on theγ-calculus [3].
Here, we present briefly and informally the features of HOCL used in the
case studies of Sections 3 and 4. The interested reader will find a much more
complete and formal presentation in [4].

In HOCL, programs, solutions, data and reactions are molecules. A pro-
gram is a solution of atoms

〈A1, . . . , An〉

that is, a multiset of atoms built using the associative and commutative opera-
tor “,”. Associativity and commutativity formalize the Brownian motion of a
chemical solution. They can always be used to reorganize molecules. Atoms
are either basic constants (integers, booleans, etc.), sub-solutions (〈M〉), pairs
(A1:A2) or reaction rules. A reaction rule is written

replace-oneP by M if C

whereP is a pattern which matches the required atoms,C is the reaction
condition andM the result of the reaction. For example,

〈(replace-onex::Intby 9 if x ≥ 10), 4, 9, 15〉 → 〈4, 9, 9〉

That reaction rule resembles a ceiling function. Its patternx::Int matches an
integer, the condition imposes the integer to be greater than10 and the action
replaces it by9. In the rest of this article, we omit types in patterns when
there is no ambiguity. For example, it is clear that the previous pattern must
select an integer since the condition isx ≥ 10; the previous reaction can be
writtenreplace-onexby 9 if x ≥ 10 instead.

Such reaction rules are said to beone-shotsince they are consumed when
they react. Reactions rules which remain after they react are calledn-shot.
Like in Gamma, there are denoted byreplaceP by M if C. The execution
of a chemical program consists in performing reactions (non deterministically

3



and possibly in parallel) until the solution becomes inert i. e., no reaction can
take place anymore. For example, the following program computes the prime
numbers lower than 10 using a chemical version of the Eratosthenes’ sieve:

〈(replacex, y by x if x div y), 2, 3, 4, 5, 6, 7, 8, 9, 10〉

The reaction removes any elementy which can be divided by another onex.
Initially several reactions are possible. For example, the couple(2, 10) can be
replaced by2, the couple(3, 9) by 3 or (4, 8) by 4 etc. The solution becomes
inert when the rule cannot react with any couple of integers in the solution,
that is to say, when the solution contains only prime numbers. The result of
the computation in our example is〈(replacex, y by x if x div y), 2, 3, 5, 7〉.

A molecule inside a solution cannot react with a molecule outside the so-
lution (the construct〈.〉 can be seen as a membrane). Reaction rules can
access the contents of a sub-solution only if it is inert. This important re-
striction introduces some sequentiality in an otherwise highly parallel model:
all reactions should be performed in a sub-solution before its content may be
accessed or extracted. So, the pattern〈P 〉matches only inert solutions whose
(inert) content matches the patternP .

Reactions can be named (or tagged) using the syntaxname = replace . . ..
Names are used to match and extract specific reactions using the same syntax
(name = x). We often use thelet operator to name reactions and assume
that

letname = M inN
def= N [(name = M)/name]

that is, the occurrences ofname in N are replaced byname = M .
We also often make use of the patternω which can match any molecule

even the “empty one”. This pattern is very convenient to extract elements
from a solution.

Using all these features, the previous example can be rewritten in order to
remove the reaction at the end of the computation:

let sieve = replacex, y by x if x div y in
let clean = replace-one〈sieve = x, ω〉by ω in

〈clean, 〈sieve, 2, 3, 4, 5, 6, 7, 8, 9, 10〉〉

The reduction proceeds as follows:

〈clean = . . . , 〈sieve = . . . , 2, 3, 4, 5, 6, 7, 8, 9, 10〉〉
∗→ 〈clean = . . . , 〈sieve = . . . , 2, 3, 5, 7〉〉
→ 〈2, 3, 5, 7〉

4



The reaction ruleclean cannot be applied until the sub-solution is inert. Only
sieve can react until all primes are computed. Then, the one-shot ruleclean
extracts the prime numbers and suppresses the reaction rulesieve.

3 AUTONOMIC SYSTEMS IN HOCL

New advances in networking and computing technology has produced an ex-
plosive growth in networked applications and information services. These
applications are more and more complex, heterogeneous and dynamic by
essence. This combination of new parameters results in application devel-
opment, configuration and management which break present computing pa-
radigms. These applications should be able to manage themselves and react
without external intervention. The goal of Autonomic Computing is to realize
computer and software systems and applications that can manage themselves
in accordance with high-level guidance from humans [11, 12].

The Chemical paradigm is well suited to express autonomic properties.
Consider the general problem of a system whose state must satisfy a number
of invariant properties but which is submitted to external and uncontrolled
changes. This system must constantly re-organize itself to satisfy the proper-
ties. Typically in a chemical setting, an invariant property is represented by
a n-shot reaction rule aiming at reaching a stable state where the property is
satisfied. An autonomic program is made of a collection of such rules which
are applied (without any external intervention) as soon as the solution is un-
stable again. This way of expressing self-management is very practical and
will be used intensively.

To support our claims, we now specify an autonomic mail system within
the higher-order chemical framework. The system consists of mail servers,
each one dealing with a particular address domain, and clients sending their
messages to their domain server. Servers forward messages addressed to other
domains to the network. They also get messages addressed to their domain
from the network and direct them to the appropriate clients.

General description: self-organization. The mail system (see Figure 1) is
described by a solution that uses several molecules:

• Messages exchanged between clients are represented by basic molecu-
les whose structure is left unspecified. We just assume that relevant
information (such as sender’s address, recipient’s address, etc.) can be
extracted using appropriate functions (such assender , recipient , body ,
senderDomain, recipientDomain, etc.).

5



A2send

A2recv

A3send

A3recv

A1
ToSend

A1Mbox

A2
ToSend

A2Mbox

A3ToSend

A3Mbox

1BToSend

1BMbox

2BToSend

2BMbox
2Brecv

1Bsend

1Brecv

APool

BPool

A1recv

A1send

2Bsend

Aput

putB

Aget

getB

Network

Figure 1
An autonomic mail system as a chemical solution.

• Solutions namedToSenddi
contain the messages to be sent by the

client i of domaind.

• Solutions namedMboxdi contain the messages received by the clienti

of domaind.

• Solutions namedPoold contain the messages that the server of do-
maind must take care of.

• The solution namedNetwork represents the global network intercon-
necting domains.

6



• A client i in domaind is represented by two active moleculessenddi

andrecvdi
.

• A server of a domaind is represented by two active moleculesputd

andgetd.

We do not specify within the system how new messages are produced by
users. In any case, the mail system has no problem to deal withToSend
solutions changing dynamically. Clients send messages by adding them to
the pool of messages of their domain. They receive messages from the pool
of their domain and store them in their mailbox.

Messages stores are represented by sub-solutions. Movement of messages
are made by reaction rules of the form:

replace A:〈msg , ωA〉, B:〈ωB〉
by A:〈ωA〉, B:〈msg , ωB〉
if Condition

which moves the messagemsg from the storeA to the storeB if Condition
is satisfied.

Figure 2 gives the molecules that route messages in a self-organizing way.
The senddi

molecule sends messages of the clienti (i. e., messages in the
ToSenddi

solution) to the client’s domain pool (i. e., thePoold solution). The
recvdi molecule places the messages addressed to clienti (i. e., messages
in the Poold solution whose recipient isi) in the client’s mailbox (i. e., the
Mboxdi

solution). Servers forward messages from their pool to the network.
They receive messages from the network and store them in their pool. The
putd molecule forwards only messages addressed to other domains thand.
The moleculegetd extracts messages addressed to domaind from the net-
work and places them in the pool of domaind. The system is a solution,
namedMailSystem, containing molecules representing clients, messages,
pools, servers, mailboxes and the network. Figure 1 represents graphically
the system with five clients grouped into two domainsA andB.

Self-healing. We now assume that a server may crash. To prevent the mail
service from being discontinued, we add an emergency server for each do-
main (see Figure 3 and 4). The emergency servers work with their own pool
as usual but are active only when the corresponding main server has crashed.
The modeling of a server crash can be done using the higher-order reaction
rule crashServerd: the active molecules representing a main server are re-
placed by molecules representing the corresponding emergency server. The

7



senddi = replace ToSenddi :〈msg , ωt〉, Poold:〈ωp〉
by ToSenddi

:〈ωt〉, Poold:〈msg , ωp〉
recvdi

= replace Poold:〈msg , ωp〉,Mboxdi
:〈ωb〉

by Poold:〈ωp〉,Mboxdi :〈msg , ωb〉
if recipient(msg) = i

putd = replace Poold:〈msg , ωp〉,Network:〈ωn〉
by Poold:〈ωp〉,Network:〈msg , ωn〉
if recipientDomain(msg) 6= d

getd = replace Network:〈msg , ωn〉,Poold:〈ωp〉
by Network:〈ωn〉,Poold:〈msg , ωp〉
if recipientDomain(msg) = d

MailSystem:〈
sendA1 , recvA1 , ToSendA1 :〈. . .〉, MboxA1 :〈. . .〉,
sendA2 , recvA2 , ToSendA2 :〈. . .〉, MboxA2 :〈. . .〉,
sendA3 , recvA3 , ToSendA3 :〈. . .〉, MboxA3 :〈. . .〉,
putA, getA, PoolA, Network, putB, getB, PoolB,

sendB1 , recvB1 , ToSendB1 :〈. . .〉, MboxB1 :〈. . .〉,
sendB2 , recvB2 , ToSendB2 :〈. . .〉, MboxB2 :〈. . .〉
〉

Figure 2
Self-organizing routing molecules and the main solution.

booleanfailure denotes a (potentially complex) failure detection mechanism.
The inverse reactionrepairServerd represents the recovery of the server.

The two moleculesUpd and(DownInd,DownOutd) represent the state
of the main serverd in the solution. They are also active molecules in charge
of transferring pending messages fromPoold to Poold′ ; then, they may be
forwarded by the emergency server.

The moleculeDownOutd transfers all messages bound to another domain
thand from the main poolPoold to the emergency poolPoold′ . The molecule
DownInd transfers all messages bound to the domaind from the emergency
poolPoold′ to the main poolPoold. After a transition from the down state to
the up state, it may remain some messages in the emergency pools. So, the
moleculeUpd brings back all the messages of emergency poolPoold′ into

8



crashServerd = replace putd, getd, Upd

by putd′ , getd′ ,DownInd, DownOutd

if failure(d)

repairServerd = replace putd′ , getd′ ,DownInd, DownOutd

by putd, getd, Upd

if recover(d)

DownOutd = replace Poold:〈msg , ωp〉,Poold′ :〈ωn〉
by Poold:〈ωp〉,Poold′ :〈msg , ωn〉
if domain(msg) 6= d

DownInd = replace Poold:〈ωp〉,Poold′ :〈msg , ωn〉
by Poold:〈msg , ωp〉,Poold′ :〈ωn〉
if domain(msg) = d

Upd = replace Poold′ :〈msg , ωp〉,Poold:〈ωn〉
by Poold′ :〈ωp〉,Poold:〈msg , ωn〉

MailSystem:〈. . . , UpA, UpB, Pool′A, Pool′B,

crashServerA, repairServerA,

crashServerB, repairServerB〉

Figure 3
Crash and self-healing molecules.

the main poolPoold to be then treated by the main server working again. In
our example, self-healing can be implemented by two emergency serversA′

andB′ and boils down to adding the corresponding self-healing molecules to
the solution.

Self-optimization. The emergency server can also be used to treat mes-
sages even if the main server is up. This improves efficiency by allowing
parallelization. We can activate the emergency server when the main server
is up with the molecules of Figure 5.

The role of the two moleculesbalanced andbalanced′ is to perform dy-
namic load balancing between the two poolsPoold andPoold′ . Pools are
balanced according to their number of messages (the functionCard returns
the cardinal of a molecule, i. e., the number of messages). We have to model
the crash of the main server when the system is running in the optimized

9



A2send

A2recv

A3send

A3recv

A1
ToSend

A1Mbox

A2
ToSend

A2Mbox

A3ToSend

A3Mbox

1BToSend

1BMbox

2BToSend

2BMbox
2Brecv

1Bsend

1Brecv putB’

getB’

DownInB’

DownOutB’

UpA

APool

BPool

A1recv

A1send

2Bsend

Aget

Aput

PoolA’

PoolB’

Network

Figure 4
Highly-available mail system.

mode. The two moleculesbalanced andbalanced′ which characterize the
optimized mode are removed and replaced by the moleculesDownInd and
DownOutd which characterize the down state. After the main server is re-
paired the system may well trigger in the optimized mode again.

Adding, this self optimizing feature to our mail system boils down to
adding these molecules to the main solution.

Self-protection. Self-protection can be decomposed in two phases: a de-
tection phase and a reaction phase. The detection phase consists mainly in

10



optimized = replace Upd

by putd′ , getd′ , balanced, balanced′

balanced = replace Poold:〈msg , ωp〉, Poold′ :〈ωs〉
by Poold:〈ωp〉, Poold′ :〈msg , ωs〉
if Card(ωp) > Card(ωs)

balanced′ = replace Poold = 〈ωp〉, Poold′ :〈msg , ωs〉
by Poold:〈msg , ωp〉, Poold′ :〈ωs〉
if Card(ωp) < Card(ωs)

crashOptd = replace balanced, balanced′

by DownInd, DownOutd

if failure(d)

MailSystem:〈. . . , optimizeA, optimizeB,

crashOptA, crashOptB〉

Figure 5
Self-optimizing molecules.

filtering data (pattern matching). The reaction phase consists in preventing
offensive data from spreading and sometimes also in counter-attacking. This
mechanism can easily be expressed with the condition-reaction scheme of
the chemical paradigm. In our mail system, self-protection is simply imple-
mented with active molecules of the following form:

self-protect = replacex, ω by ω if filter(x)

If a moleculex is recognized as an offensive data by a filter function then it is
suppressed. Variants ofself-protect would consist in generating molecules
to counter-attack or to send warnings.

Offensive data can take various forms such as spam, virus, etc. A protec-
tion against spam can be represented by the molecule:

rmSpam = replace msg , ω by ω if isSpam(msg)

which is placed in aPoold solution. The contents of the pool can only be ac-
cessed when it is inert, that is when all spam messages have been suppressed
by the active moleculermSpam.

11



Self-configuration. We now consider adaptation and configuration issues
that may arise with mobility. Assume that clients travel, move from personal
computers to mobile phones, etc. Changes of environment suggest that clients
should be able to migrate from a domain to another (closer or better suited to
their new computing environment). We assume that the booleangoTod-ei

signals to a clienti in the domaind that it should go to the domaine. Such a
migration can be described by the rulemigrated-ei

(see Figure 6).

migrated-ei
= replace senddi , recvdi ,Mboxei , ToSendei ,Mboxdi , ToSenddi

by sendei
, recvei

,Mboxdi
, ToSenddi

, 〈Fwd:i:d:e〉
if goToa-bi

forwardd-e = replace Poold:〈msg , ωp〉, 〈Fwd:i:d:e〉
by Poold:〈newMsg(msg , ei), ωp〉, 〈Fwd:i:d:e〉
if recipient(msg) = i

shortcut = replace 〈Fwd:i:a:b〉, 〈Fwd:i:b:c〉
by 〈Fwd:i:a:c〉, 〈Fwd:i:b:c〉

shortcut′ = replace 〈Fwd:i:d:d〉, ω by ω

Figure 6
Self-configuration molecules for migrations of users.

From now, the client will send and receive its messages fromPoole. It may
still have messages in its previous domain or some messages were sent before
the migration and are in the network after the migration, or other clients may
still send messages to its previous address. The migration places the tagged
molecule〈Fwd:i:d:e〉 in the solution in order to signal that messages to client
i must be forwarded from domaind to domaine. The reaction ruleforwardd-e
forwards messages between two domainsd ande, wherenewMsg(msg , r)
builds a new message whose body ismsg and recipient isr.

Notice that forward molecules accumulate when a client migrates several
times (and remain even when the client is back to its original domain). We
may prevent such forward chaining by using the moleculesshortcut and
shortcut′.

12



Remarks. All these programs could (and should) be described generically
(i. e., only once for all possible clients, source and destination domains). This
would be easily done by tagging molecules (e. g., pools, clients, etc.). To
simplify the presentation, we have described programs as if they were written
for each client (server, domain, etc.). For the same reasons, we have also left
tagging (e. g., of messages) implicit using extraction functions.

Our description should be regarded as a high-level parallel and modular
specification. It allows to design and reason about autonomic systems at an
appropriate level of abstraction. Reaction rules exhibit the essence of “auton-
omy” without going into useless details too early in the development process.
Even if we have not designed a methodology for reasoning on higher-order
chemical programs yet, basic reasoning can rely on the semantics and equiv-
alence laws of HOCL defined in [4]. The interested reader may refer to [10]
which presents a calculus of Gamma programs and its application to program
reasoning and refinement.

Let us emphasize the conciseness and modularity of the resulting programs
which rely essentially on the higher-order and chemical nature of HOCL.
The self-healing, self-optimization and self-configuration programs are par-
ticularly illustrative of the elegance and power of the approach. They are
described by independent collections of rules that are simply added to the
system without requiring other changes. Note however that a direct imple-
mentation of this system is likely to be quite inefficient and further refine-
ments are needed. This is another exciting research direction, not tackled
here.

4 COORDINATION WITH HOCL

This section presents another example of a self-organizing system. The ob-
jective is to execute a program on several resources, more precisely, on a com-
putational grid [9]. On each resource runs a process (or agent) that achieves a
part of the computation of the program and coordinates with other processes
(or agents) on other resources.

The basic application. Our application is an image-processing pipeline
(IPP) composed of two filtersF1 and F2. For example,F1 might reduce
noise and aF2 might increase contrast. The property to enforce is that fil-
terF1 must be applied before filterF2 on each image. To ensure this, images
are typed and filters are applied according to the type of images. Raw images

13



have typeA, images returned byF1 have typeB and images returned byF2

have typeC. The HOCL program implementing that pipeline is:

let runF1 = replace x::A by (F1 x) in
let runF2 = replace x::B by (F2 x) in
〈runF1, runF2, i1, i2, . . .〉

Initially, the solution has two reactions (runF1 andrunF2) applying the filters
and an arbitrary number of raw imagesi1, i2, . . . of typeA.

Basic coordination on a grid. A grid is a network of resources which in
principle, can be used transparently like a single machine to execute pro-
grams, store data, etc. A grid is a dynamic system: resources become over-
loaded, new ones become available, etc. So, before launching a program on
a grid, it is in general impossible to know what resources will be allocated
to the program. Resource allocation is determined dynamically according to
their characteristics: CPU type, load state, computing power, memory size,
connectivity, communication cost, etc.

A major challenge is to describe the coordination of the execution of pro-
grams on a grid in order to ensure some qualities of services (QoS) like effi-
ciency, security, fault-tolerance, etc.

The chemical paradigm is well suited to the coordination of programs
on a grid. Like in a chemical program where reactions occur in a parallel
and chaotic way, communications (or coordinations) occur in a parallel and
chaotic way between resources. Coordination between resources can be ex-
pressed by chemical reactions. Reactions rules specify different coordination
that may occur in a solution of resources. For example, the system program-
mer may specify the dynamic placement or the migration of tasks using re-
action rules. A load-balancing rule may specify that a task allocated to a
resource should migrate to a less loaded resource.

The IPP on a grid. The image processing pipeline is described as a solu-
tion of resources each one being represented by a sub-solution. Each resource
contains the programs that it runs. Reaction rules between sub-solutions rep-
resent the coordination between resources. Figure 7 gives a possible initial
state of the system running the pipeline. The initial solution contains several
resourcesRi. A program is a pair of the formname:〈. . .〉 when the solution
contains tasks to execute and data to process. The reactionrunFilter exe-
cutes the tasks stored in the solutionTasks of the program. The resourceR1

14



let runFilter = replace r:〈Pipe:〈Tasks:〈f :x, ωR〉, ω1〉, ω2〉
by r:〈Pipe:〈Tasks:〈ωR〉, (f x), ω1〉, ω2〉

applyF1 = replace x::A, Tasks:〈ωR〉
by Tasks:〈F1:x, ωR〉

applyF2 = replace x::B, Tasks:〈ωR〉
by Tasks:〈F2:x, ωR〉
in

〈runFilter,
R1:〈Pipe:〈applyF1, applyF2,Tasks:〈〉, i1, i2, . . .〉〉, R2:〈〉, . . .〉

Figure 7
A possible initial state of a grid runtime system for the pipeline.

contains the initial state of thePipe program. First, the rulesapplyF1 and
applyF2 find possible tasks (i. e., filter applications) and store them as pairs
filter:image in theTasks sub-solution. When the program becomes inert,
the rulerunFilter selects one of the stored tasks and runs it. The execution is
finished when the top-level solution representing the system is inert. That is
to say, when the solutionR1:〈. . .〉 is inert and its sub-solutionTasks is empty
(no task remains).

This example represents resources, programs, tasks and data as molecules.
However, it does not take profit from the grid (the application remains on a
single resource). We now coordinate the execution of the IPP to ensure two
QoS:

• efficiency, by parallelizing the execution according to the availability
of resources,

• security, by encrypting/decrypting messages sent over untrusted com-
munication links.

Parallelization. To ensure efficiency, the pipeline is spread on resources
and executed in parallel. Different migration rules can be added to the system.
Figure 8 gives such a rule (splitSPMD) and the ruletransfer that moves
messages (tasks and programs) between resources. In this part, messages

15



splitSPMD =
letmergeSPMD =

replace-one r1:〈Pipe:〈applyF1 = f, applyF2 = g,Tasks:〈〉, ω1〉, ω〉,
r2:〈Pipe:〈applyF1 = f ′, applyF2 = g′,Tasks:〈〉, ω2〉, ω′〉

by r1:〈Pipe:〈applyF1 = f, applyF2 = g,Tasks:〈〉, ω1〉, ω〉,
r2:〈ToSend:r1:〈ω2〉, ω′〉

in
replace r1:〈Pipe:〈applyF1 = f, applyF2 = g,Tasks:〈x〉, ω1〉, ω′

1〉,
r2:〈ω2〉

by r1:〈Pipe:〈applyF1 = f, applyF2 = g,Tasks:〈x1〉, ω1〉,
ToSend:r2:(Pipe:〈applyF1 = f, applyF2 = g, x2〉), ω′

1〉
r2:〈ω2〉, mergeSPMD

if Unbalanced(r1, r2) ∧ (x1, x2) = BalancedSplit(r1, r2, x)

transfer = replace r1:〈ToSend:r2:m,ω1〉, r2:〈ω2〉
by r1:〈ω1〉, r2:〈m,ω2〉

Figure 8
A possible distribution strategy of the pipeline.

could be left implicit but since they are central to the security QoS, we make
them explicit using tuples of the formToSend:r:message. ThesplitSPMD
rule describes a possible distribution strategy of the pipeline. It splits the
program in a Simple Program Multiple Data (SPMD) way. It is triggered
by the predicateUnbalanced(r1, r2) which is true when the load onr1 is
significantly higher than the load onr2. In this case, a part of (or maybe
the whole) program that is running onr1 is migrated onr2. This process
is performed by the functionBalancedSplit(r1, r2, x) which takes a set of
tasks (filter:image) and splits it into a set to be run onr1 and a set to be
run onr2. The programPipe and the images to be transfered are transformed
into messages of the formToSend:r:(Pipe:〈. . .〉). The reaction ruletransfer
will move the message to the destination resource (r). When two resources
have completed their tasks (the solutionTasks is empty and no message is

16



secureTransfer = replace r1:〈ToSend:r2:m,ω1〉, r2:〈ω2〉
by r1:〈ω1〉, r2:〈m,ω2〉
if TrustedLink(r1, r2)

∨(¬TrustedLink(r1, r2) ∧ Encrypted(m))

encrypt = replace r1:〈ToSend:r2:m,ω1〉
by r1:〈ToSend:r2:Encrypt(m), ω1〉
if ¬TrustedLink(r1, r2)

decrypt = replace r:〈m,ω〉
by r:〈Decrypt(m), ω〉
if Encrypted(m)

Figure 9
Rules for the security QoS.

pending), the reaction rulemergeSPMD merges their result (a resource sends
its result to the other). This rule will gather all partial results onto a single
resource.

Other migration and coordination rules may be defined and added to the
system. For example, we could add a rulesplitMPMD that splits the program
in a Multiple Program Multiple Data (MPMD) way.

All these rule sets specify coordination rules and can be added to the single
resource system described in Figure 7. Splits and merges may be applied
in any order on any resources. The system self-organizes to keep the load
balanced between resources. At the end, the top-level solution (the whole
system) is inert and the result is available on a single resource.

Secure communications. Here, the required QoS is to ensure secure com-
munications between resources. Either the communication takes place on a
trusted link or otherwise messages are encrypted. We replace the ruletransfer
by the three rulessecureTransfer, encrypt anddecrypt (see Figure 9). The
rules encrypt and decrypt encrypts and decrypts messages when needed.
The rulesecureTransfer moves the message only if the communication link
is trusted or if it has been encrypted (by the ruleencrypt). Like in the mail
system, these reaction rules for ensuring security are modular. They can be

17



added to the system independently from the parallelization rules.

5 CONCLUSION

This article shows how the Chemical Programming paradigm can be used
to describe self-organizing systems in a natural and elegant manner. In a
first step, we introduced an expressive chemical language (called HOCL)
whose higher-order properties allow the manipulation of programs. In HOCL,
it becomes possible to write chemical reactions to create, delete or move
around other chemical reactions. This feature is key in the description of
self-organizing systems as shown in the two examples we have developed.

Self-organizing systems behave autonomously in order to maintain a pre-
determined quality of service which may be violated in certain circumstances.
Very often, such violations may be dealt with by applying local corrections
according to pre-defined rules. These rules are easily expressed as HOCL
reactions. The mail system as well as the coordination rules for grids are non
trivial examples which illustrate self-organizing chemical computations.

To the authors’ knowledge, there has been no other attempt to program
self-organizing systems within the chemical paradigm framework. The clos-
est contributions use rule-based languages such as Prolog to specify expert
systems whose knowledge is represented as a collection of facts and (rewrite)
rules. Some attempts have been reported concerning development of self-
organizing applications on grids. The Project AutoMate [13] aims at defin-
ing self-management applications through the concept of autonomic elements
which exhibit a self-organizing behavior. P-Grid [1] is a self-organizing peer-
to-peer system. Peers run agents that store and retrieve data in the grid in a
complete decentralized and autonomic way. In organic grids [7], the orga-
nization of computation is based on the autonomous scheduling of strongly
mobile agents on a peer-to-peer network.

The contribution presented here is part of a more general research program
on the use of chemical languages as coordination languages for the descrip-
tion of grid systems and applications. The basic challenge consists in showing
that HOCL allows a clean and elegant expression of features such as program
mobility, load balancing, crash recovery, etc. Basically, the overall system is
expressed as a “soup” (represented by a multiset) of resources such as proces-
sors, storage, communication links, etc. whose organization is described by
appropriate reaction rules. Further work consists in designing generic chem-
ical operations to express more easily coordination (resource manipulation,
task and data migration, etc.) in grids. Hopefully, programming a grid will be

18



as simple as specifying chemical solutions and reaction rules to describe how
to distribute and execute them on a variety of resources.

REFERENCES

[1] Kar Aberer. (2001). P-grid: A self-organizing access structure for p2p information
systems. InProceedings of CoopIS 2001 conference, number 2172 in LNCS. Springer-
Verlag.

[2] Jean-Pierre Ban̂atre, Pascal Fradet, and Daniel Le Métayer. (2001). Gamma and the
chemical reaction model: Fifteen years after. InMultiset Processing, volume 2235 of
LNCS, pages 17–44. Springer-Verlag.

[3] Jean-Pierre Ban̂atre, Pascal Fradet, and Yann Radenac. (June 2004). Principles of chemical
programming. InFifth International Workshop on Rule-Based Programming (RULE’04).
Electronic Notes in Theoretical Computer Science 2005.

[4] Jean-Pierre Ban̂atre, Pascal Fradet, and Yann Radenac. (November 2005). Generalized
multisets for chemical programming. Research Report 5743, INRIA.

[5] Jean-Pierre Ban̂atre and Daniel Le Ḿetayer. (September 1986). A new computational
model and its discipline of programming. Research Report 0566, INRIA.

[6] Jean-Pierre Ban̂atre and Daniel Le Ḿetayer. (January 1993). Programming by multiset
transformation.Communications of the ACM (CACM), 36(1):98–111.

[7] Arjav J. Chakravarti, Gerald Baumgartner, and Mario Lauria. (2004). The organic grid:
self-organizing computation on a peer-to-peer network. InProceedings of the Autonomic
Computing Conference, pages 96–103.

[8] Peter Dittrich, Jens Ziegler, and Wolfgang Banzhaf. (2001). Artificial chemistries – a
review. Artificial Life, 7(3):225–275.

[9] Ian Foster and Carl Kesselman, editors. (1999).The grid: blueprint for a new computing
infrastructure. Morgan Kaufmann Publishers Inc.

[10] Chris Hankin, Daniel Le Ḿetayer, and David Sands. (August 1992). A calculus of
Gamma programs. InLanguages and Compilers for Parallel Computing, 5th International
Workshop, volume 757 ofLNCS, pages 342–355. Springer-Verlag.

[11] Jeffrey Kephart and David Chess. (January 2003). The vision of autonomic computing.
IEEE Computer.

[12] Manish Parashar and Salim Hariri. (2005). Autonomic computing: An overview. In
Jean-Pierre Ban̂atre, Pascal Fradet, Jean-Louis Giavitto, and Olivier Michel, editors,Un-
conventional Programming Paradigms, volume 3566 ofLNCS, pages 257–269. Springer.

[13] Manish Parashar, Hua Liu, Zhen Li, Vincent Matossian, Cristina Schmidt, Guangsen Zhang,
and Salim Hariri. (2006). AutoMate: Enabling autonomic grid applications. InCluster
Computing: The Journal of Networks, Software Tools, and Applications, Special Issue on
Autonomic Computing, volume 9. Kluwer Academic.

19


