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In this position paper, we question the rationale behind the de-
sign of unconventional programming languages. Our questions
are classified in four categories: the sources of inspiration for
new computational models, the process of developing a program,
the forms and the theories needed to write and understand non-
classical programs and finally the new computing media and the
new applications that drive the development of new program-
ming languages.
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1 INTRODUCTION

In this position paper, we do not take a definite position on non-classical
programming languages nor do we address a particular concept or approach.
Instead, we ask questions and put forward key issues about the design of fu-
ture programming languages. The questions we have selected emphasize the
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issues which should guide the development of new programming languages.
The field of unconventional “computing models”, which is devoted to the
study of thecomplexityof problems using a predefined set of (more or less
exotic) basic operations, is not under focus here.

We postulate that the development of new programming languages is driven
by the quest of newexpressive power. The literature on programming lan-
guage contains a wealth of informal claims on the relative expressive power
of programming languages. However, this very notion remains difficult to
formalize: for instance, we cannot compare the set of computable functions
that a programming language can represent, because nearly all programming
languages are universal. As far we know, there are only a few attempts to for-
malize this notion of expressiveness, see [13, 20]. These works mainly rely
on the idea of translating a language into another, using a limited and prede-
fined form of translation (if any translation is allowed, a universal language
can be the target of the translation of any other one). However, these notions
fail to explain why object-oriented languages (likeC++ or Java ) are usually
considered as more expressive than their imperative counterpart (likeC).

We do not try here to develop a theoretical framework able to formalize
this kind of concept. We investigate the programming language design space
by other means. We advocate that the expressiveness of a programming lan-
guage can be informally evaluated by considering four criteria :

• the notion of computation embodied into the language,

• the support of the development process,

• the support for reasoning on programs,

• the applications for which it is well suited.

In the rest of this paper, we will try to discuss these four criteria with respect to
the recent development of non-classical (natural) computational paradigms:
the sources of inspiration for new computational models (section 2), the pro-
cess of developing a program (section 3), the forms and the theories needed to
write and understand non-classical programs (section 4) and finally the new
computing media and the new applications that drive the development of non-
classical programming languages (section 5). Examples of non-classical (nat-
ural) computational paradigms we have in mind are given by the amorphous
computing project [7], the autonomic computing initiative [17] and the devel-
opment of various bio-inspired and chemical computing approaches [6, 8].
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2 METAPHORS FOR COMPUTATIONS

Programming paradigms, or their concrete instantiations in programming lan-
guages, do not come “out of the blue”. They are inspired either by the pecu-
liarities of a computer or by a metaphor of what a computation should be.
As sources of inspiration, we can cite: the typewriter for the Turing machine;
desk, scissor and trash can for user-interfaces; classification and ontology
for the object based languages; building and architecture for design patterns;
meta-mathematical theory (λ-calculus) for functional programming. Con-
sidering the programming languages history, it seems that the most fruitful
metaphors have been based on artifacts, notions and concepts that structure a
domain of abstract activities (office, mathematics). For example, logic pro-
gramming is based on the slogan “computation is deduction”, while func-
tional programing relies on the “computation is function application” mani-
festo.

We are now experiencing a renewed period of proposals based on “natural
metaphors”: artificial chemistry [12], DNA computing [4], quantum comput-
ing [21], P systems [1], PPSN (parallel problem solving from nature: sim-
ulated annealing, evolutionary algorithms, etc.) [3], cell and tissue comput-
ing [5]. . . to name a few. This is not to say that the metaphors of the bio-
logical and physical world were absent until now. On the contrary, formal
neurons and cellular automata, both inspired by biological notions and mo-
tivated by biological abilities, have been elaborated from the very origin of
computer science with names like W. Pitts and W. S. McCulloch (formal neu-
rons,1943), S. C. Kleene (inspired by the previous for the notion of finite state
automata,1951), J. H. Holland (connectionist model,1956), J. Von Neumann
(cellular automata,1958), F. Rosenblatt (the perceptron,1958), etc.

This opposition between the relatively few impacts of natural metaphors in
everyday programming language compared to the large widespread of meta-
phors of other human specific activities, asks the following questions:

• What are the benefits of natural metaphors compared to metaphors of
human activities ? To answer which needs, to support which applica-
tions, to answer which failures ?

• What are the links between Physics and Computation ? Physics obvi-
ously determines the phenomena that can be used for computing (the
hardware). However, to what extent can it be a source of inspiration
for programming ? For instance, what is the impact on programming
of Feynman’s lectures on the physics of the computation [14] ? What
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lessons have we learned from the “analog computation” developed dur-
ing the 50’s and the 60’s ?

• What are the links between Biology and Computation ? Biology is ob-
viously a source of inspirations for new computational models. Com-
puter scientists are desperately looking for design principles to achieve
systems with properties usually attributed to life: self-sustaining sys-
tems, self-healing systems, self-organizing systems, autonomous sys-
tems, etc. However, do we understand and agree on the meaning of
these characteristics ? For example, the properties of living organisms
are often exhibited at a collective level at a large scale and on the long
time, not at the level of an individual: a species, robust against the
variations of its environment, does not mean that the individuals adapt
easily to these variations.

• Have we exhausted the metaphor of human activities (engineering, lib-
eral art, economics, math, literature, philosophy, etc.) ? For instance,
logic and meta-mathematics are tightly coupled with computer science.
What about geometry or topology ? The geometrization of physics
since the end of the nineteenth century is a major trend but it does not
seem to appear in computation (however, see [15]).

• Is the physical world a good source of inspirations ? In other words,
are the relationships between physical objects a good framework to
conceptualize the relationships between immaterial objects like soft-
ware or computation ? For example,synchronous languages[10] make
the assumptions that the reaction to events are instantaneous. Despite
the apparent violation of physical laws, this model is very successful to
reason and implement real-time applications.

3 PROGRAMMING IN THE SMALL AND PROGRAMMING IN THE
LARGE

3.1 Programming in the Small
The slogan [23]:

program= data-structures+ algorithms

has shaped our approach of what a program is.

• Is this manifesto still relevant to the new programming, paradigms,
problems and applications ?
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• What are the new data-structures offered by the chemical, tissue and
other computing paradigms ?

• May unconventional languages suggest new algorithms or only a speed-
up of existing ones ?

Control structures are the means by which we organize the set of compu-
tations that must be done to achieve a given task. Organizing natural com-
putations seems very difficult: think about how to implement sequentiality in
chemical computation (e.g. how to start a given chemical reaction in a test
tube only whenever the equilibrium of another one has been reached ?) . This
issue is perhaps related to Landin’s splitting of a programming language into
two independent parts: (a) the part devoted to the data and their primitive op-
erations supported by the language, and (b) the part devoted to the expression
of the functional relations amongst them and the way of expressing things in
terms of other things (independently of the precise nature of these things)[18].
An example of the latter is the notion of identifier and the rule about the con-
texts in which a name is defined, declared or used. The appropriate choice
of data and primitive yields an “API” or a “problem-oriented”, “domain spe-
cific”, “dedicated” language. A good choice of the features in the second
part can make a language flexible, concise, expressive, adaptable, reusable,
general. So,

• What are the new control structures of non-classical programming lan-
guages ?

• Are the new programming paradigms concentrating only on dedicated
and specialized data-structures and operations well fitted to optimize
some costly specialized task ? Or is there also some emergence ofnew
ways of expressing things in term of other things?

3.2 Programming in the Large

Research on chemical computing, biological computation, quantum comput-
ing, etc., mainly focuses on the complexity of small algorithmic tasks (sort-
ing, prime factorization, etc.). These studies illustrate only the “programming
in the small” task and do not address the problem of the “programming in the
large”, that is the issues raised by the support of large software architecture,
the interconnection of modules, the hiding of information, the capitalization
and the reuse of existing code, etc. Programming in the large is certainly one
of the major challenges a programming language must face.

5



Concepts ofmodules, packages, functors, classes, objects, mixins, design
patterns, framework, components, middleware, software buses, etc., have
been developed to face these needs. And, following some opinions,have
failed to produce flexible and robust systems? :

• Is this “failure” a consequence of the existing programming languages
or of our methods of software development ?

• Why are the programming paradigms discussed here, more fitted to
fight against this fragility and inflexibility ?

• Which features help to discover/localize/correct program errors or reli-
ably to live with ?

3.3 The Disappearing “Software Life Cycle”

For many reasons, the notion of monolithic, standalone, single author pro-
gram is vanishing. The classic “separate compilation and linking” model of
compiler-based languages is not suitable for very large and heterogeneous
systems. After the use of preprocessing and code generation tools, pro-
grammers have invented dynamic linking, templates, multi-stage compila-
tion, aspects weaving, just-in-time compilation, automatic update, push and
pull technologies, deployment, etc. In the same time, our systems must in-
clude thousands of disparate components, partial applications, services, sen-
sors, actuators on a variety of hardware, written by many developers around
the world (and not always in a cooperative fashion).

• In which ways can the new programming paradigms contribute to these
trends ?

? Gerald Jay Sussman, in 1999, has written as a justification of the amorphous computing
project: “Computer Science is in deep trouble. Structured design is a failure. Systems, as cur-
rently engineered, are brittle and fragile. They cannot be easily adapted to new situations. Small
changes in requirements entail large changes in the structure and configuration. Small errors in
the programs that prescribe the behavior of the system can lead to large errors in the desired be-
havior. Indeed, current computational systems are unreasonably dependent on the correctness of
the implementation, and they cannot be easily modified to account for errors in the design, errors
in the specifications, or the inevitable evolution of the requirements for which the design was
commissioned. (Just imagine what happens if you cut a random wire in your computer!) This
problem is structural. This is not a complexity problem. It will not be solved by some form of
modularity. We need new ideas. We need a new set of engineering principles that can be applied
to effectively build flexible, robust, evolvable, and efficient systems.” [22].
See also the notes of the debate “Object have failed” organized by R. Gabriel at OOPSLA2002:
www.dreamsongs.org .
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4 THE FUTURE OF SYNTAX, SEMANTICS, ETC.

4.1 The Future of Syntax
The question of syntax always causes intemperate reactions. There is a large
trend to become “syntax independent”. For example, standards like XML
provide flexible and generic tools to translate a deep representation to various
surface expressions. In programming languages, features like overloading,
preprocessor, macro, combinators, . . . , are also used to tailor the syntax in
order to offer to the user an interface close to the standard of the applica-
tion domain. The Mathematica system is a good example of such achieve-
ment. However, the deep representation is exclusively relying on the notion
of terms.

• Do new programming paradigms require new syntax such as diagram-
matic, visual, kinesthetic, . . . , representations ? Or does a program
necessarily need to be represented as a tree of symbols ?

4.2 Semantics and theoretical models
The influence of logic in the study of the semantics of programming lan-
guages is preeminent. However, the new programming models seem to put
an emphasis on the notion ofdynamical systems. So:

• What is “the right” mathematical framework allowing the manipula-
tion of dynamical systems in conformity with the concepts of software
architectures ?

• Can we expect a cross fertilization between theoretical computer sci-
ence and control system theory ?

• Considering the distributed nature of computer resources and applica-
tions, can we develop a theory ofdistributed dynamical systems without
a global time or a global state?

• Are the new paradigms suited to the development of a notion of “ap-
proximate”, “ probabilistic”, “ fuzzy”, “ non-deterministic” computations?
Can they handle in a better way uncertainty and incomplete informa-
tion ?

• Is it possible to define a useful notion ofopen systems† within the
new paradigms ? What are the mechanisms and control structures of
openness ? How can we maintain coherence and adequate behaviour of
open systems ?

† i.e., a system that interacts with an unpredictable environment
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4.3 Validation and verification

A program’s destiny is to be executed in order to accomplish some task. But
in order to be sure that the task will be well accomplished, we have developed
several concepts and techniques like: typing, static analysis, abstract interpre-
tation, bisimulation, model checking, testing, proofs, validation, correctness
by construction. . . These techniques consider the program as an object of
study.

• Are these techniques adaptable to the new paradigms ? For instance,
what can be the type of a DNA in a test tube ? What can be the “cor-
rectness by construction” of an amorphous program ? Is it possible to
model-check P systems ?

These techniques share the same approach: establishing efficiently and
as automatically as possible, some assertions about programs. This will un-
doubtedly imposes some (severe ?) limitations on the kind of assertions which
can be proved or inferred. Assertions should not to be larger than programs
or more difficult to establish than to develop programs.

• Are there opportunities for other approaches ? Instead of ensuring stat-
ically anda priori the correct execution of a program, would not it be
possible to modify it incrementally so that it achieves its prescribed
task ? This approach [2, 16] is tightly coupled with notions likeevolu-
tion, emergence, self-organization, learning. . .What other approaches
of program correction can be supported by the new paradigms ?

• More generally, how can the programmer be helped in creating, under-
standing, proving, enhancing, debugging, testing and reusing programs
in the new paradigms ?

It would be also very interesting to investigate how very high-level lan-
guages can bridge the gap between specification languages and lower-level
implementation oriented languages. In this context, we consider as very
promising methods which allow to derive programs from specifications in a
systematic way. Such methods can rely on specific calculi and disciplines as
proposed by E.W. Dijstra in [11] or as applied in the Chemical Programming
setting [9].
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5 NEW APPLICATIONS, NEW OPPORTUNITIES

5.1 New Computing Resources

Most programming languages often reflect a sequential dogma: they modify
a global state step-by-step. This is also true at the hardware level, even in our
parallel machines: we partition the processing element between a very big
passive part: the memory, and a few very fast processing parts: the proces-
sors. While this dogma was adapted to the early days of computers (it can be
implemented with as little as2250 transistors), it is likely to become obsolete
as the numbers of resources increases (109 transistors by2007). New devel-
opments such as nano-technologies or3D circuits, or more simply parallel
multichips systems can potentially provide thousand times more resources.

• Can new programming paradigms take profit from all this available
computational power ? The technological progress focused on quan-
titative improvements of current hardware architecture and little effort
has been spent on investigating alternative computing architecture. The
point here is not to change from the silicon medium to another one, but
to fully exploit the silicon potential! What can we do with this “ocean
of gates” ?

Advances in nanosciences and in biological sciences are being used to
drive innovation in the design of novel computing architectures based on
biomolecules. The ability of DNA and RNA nucleotides to perform massively
parallel computations to solve difficult, NP-hard, computational problems are
now recognized and DNA molecules will be utilized to construct two- and
three-dimensional physical nanostructures, thus providing the ability to self-
assemble physical scaffolds.However, we already met such opportunities in
the past, for instance with optoelectronics: FFT comes at virtually no cost,
switching too, etc. But until now, optoelectronic devices have had little im-
pact on computation. An explanation can be that the operations provided are
too rigid and cannot be integrated easily into a more generic framework to
allow ease of use and the generality of the applications.

• Are the new paradigms generic enough ? Can they be integrated into
mixed-paradigms languages ? Can we harness the computational power
of the new paradigms within more classical languages ? What is the
price of mixing them ? If they are supported by dedicated new hard-
ware, can we interconnect these hardware and make them cooperate at
a little cost ?
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• Should we draw a line between bio-inspired (quantum-inspired, chemistry-
inspired,xxx-inspired. . . ) programming languages and bio-based (quantum-
based, chemistry-based,xxx-based. . . ) hardware ?

• If hardwareevolves towardsbioware, shouldsoftwareevolve towards
wetware?

5.2 Programming Immense Interaction Networks

An area of explosive growth in computing is that of the Internet or the World
Wide Web. Computing over the Web provides challenges asking for the de-
velopment of new paradigms. One important challenge is to ensure global
properties of the network as a whole. This challengeexactly meetsthe chal-
lenge raised by the programming of smart materials or biological devices:
“how do we obtain coherent behavior from the cooperation of large numbers
of unreliable parts that are interconnected in unknown, irregular, and time
varying ways ?”‡ .

• Is there an unified framework that can be useful to reason generically
on the collective behavior at a population level, both at a very large
scale (the mobile phone network, the WWW) and at the small scale
(nanodevice) ?

• What is missing in the current established algorithmic approach, archi-
tecture design and formal methods, to handle the issues of tolerance,
trust, cooperation, antagonism and control of complex global systems
properly ?

6 CONCLUDING REMARKS

In this position paper, we have considered the impact of new computing hard-
ware and metaphors (e.g. bio-inspired, DNA, chemical or quantum comput-
ing) on programming languages issues. These unconventional point of views
trigger new questions on basic notions such as data structures, algorithms,
syntax and semantics and lead up to reconsider the software development
cycle, the verification, reasoning and implementation of programs. Clearly,
non-classical programming languages are becoming an ebullient area of re-
search. We believe that the most interesting developments are yet to come.

‡ Gerald L. Sussman, speaking about the programming of programmable materials [19].
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The formulation of these questions have benefited from the numerous in-
teractions that have taken place between the participants of the “Unconven-
tional Programming Paradigms” (UPP04) workshop¶ [8] as well as the “ The
Grand Challenge in Non-Classical Computation International Workshop”§ .
We would like to thanks P. Dittrich at the University of Jena, P. Prusinkiewicz
at the University of Calgary and Antoine Spicher at the University of Evry
for stimulating discussions, thoughtful remarks and warm support. The com-
ments of the anonymous reviewers have greatly improved the english of the
paper.

REFERENCES

[1] (2002). The P Systems Web Page.http://psystems.disco.unimib.it/ .

[2] (2004). The Organic Computing Page.http://www.organic-computing.org .

[3] (from 1990). PPSN - Parallel Problem Solving from Nature. Proceedings published from
1994 as LNCS volumes.http://ls11-www.cs.uni-dortmund.de/PPSN/ .

[4] (from 1995). International Meeting on DNA Computing. Proceedings published from
1995 to 2000 as AMS DIMACS volume and then published as LNCS volume.http:
//hagi.is.s.u-tokyo.ac.jp/dna/ .

[5] (from 1995). IPCAT - Information Processing in Cells and Tissues. Proceedings published
by World Scientific and as special issues of the Biosystems journal.

[6] (from 1998). UMC - Unconventional Computation. Proceedings published at Springer.
http://www.cs.auckland.ac.nz/CDMTCS/conferences/uc/uc.html .

[7] Abelson, Allen, Coore, Hanson, Homsy, Knight, Nagpal, Rauch, Sussman, and Weiss.
(2000). Amorphous computing.CACM: Communications of the ACM, 43.

[8] Jean-Pierre Ban̂atre, Pascal Fradet, Jean-Louis Giavitto, and Olivier Michel, editors. (2005).
Unconventional Programming Paradigms, Revised Selected and Invited Papers of the In-
ternational Workshop UPP 2004, Le Mont-Saint-Michel, France. Springer-Verlag, LNCS,
Vol. 3566.
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