
Under consideration for publication in J. Functional Programming 1

Compilation of a Specialized Functional
Language for Massively Parallel Computers

Pascal FRADET and Julien MALLET
IRISA, Campus de Beaulieu,

35042 Rennes, France
(e-mail: {fradet,mallet}@irisa.fr)

Abstract

We propose a parallel specialized language that ensures portable and cost-predictable im-
plementations on parallel computers. The language is basically a first-order, recursion-less,
strict functional language equipped with a collection of higher-order functions or skeletons.
These skeletons apply on (nested) vectors and can be grouped in four classes: computation,
reorganization, communication, and mask skeletons. The compilation process is described
as a series of transformations and analyses leading to spmd-like functional programs which
can be directly translated into real parallel code. The language restrictions enforce a pro-
gramming discipline whose benefit is to allow a static, symbolic, and accurate cost analysis.
The parallel cost takes into account both load balancing and communications, and can
be statically evaluated even when the actual size of vectors or the number of processors
are unknown. It is used to automatically select the best data distribution among a set
of standard distributions. Interestingly, this work can be seen as a cross fertilization be-
tween techniques developed within the Fortran parallelization, skeleton, and functional
programming communities.

1 Introduction

A good parallel programming model must be portable and cost predictable. Gen-
eral purpose languages such as Fortran achieve portability but cost estimations
are often very approximate. A precise cost analysis is especially important in this
context since the goal of parallelization is efficiency and its impact on the overall
cost is, at best, a division by a constant. So, orders of magnitude or maximum
complexities are insufficient to guide parallel implementation choices.

The approach described in this paper is based on a restricted pure functional
language that is portable and allows us to design an automatic and accurate cost
analysis. The language restrictions can be seen as enforcing a programming disci-
pline that ensures a predictable performance on the target parallel computer (there
will be no “performance bugs”). General recursion and conditionals are replaced
by skeletons that encapsulate control and data flow in the sense of (Cole, 1988)
or (Darlington et al., 1993). The skeletons, which act on (potentially nested) vec-
tors, can be grouped into four classes: the computation skeletons (classical data
parallel functions), the reorganization skeletons (creating and structuring vectors),
the communication skeletons (data motion over vectors), and the mask skeletons

2 P. Fradet and J. Mallet

(conditional data parallel functions). The skeletons and data structures have been
chosen with scientific computing in mind. Matrix computations and nested for

loops are easy to describe and many standard numerical algorithms have been ex-
pressed easily in our kernel language. Concerning the target parallel architecture,
we aimed at mimd (Multiple Instructions Multiple Data) computers with shared or
distributed memory but simd (Single Instruction Multiple Data) computers could
be accommodated as well.

The compilation process is described as a series of program transformations lead-
ing to spmd-like (Single Program Multiple Data) functional programs which can
be directly translated into true parallel code. Each compilation step transforms a
skeleton-based language into another closer to a code with explicit parallelism. The
main compilation steps consist of a size analysis, an update-in-place analysis, a
transformation making all communications explicit, transformations implementing
data distribution, and a symbolic code analysis. Note that using a functional lan-
guage avoids the dependence analysis needed by imperative languages to determine
the computations which can be executed in parallel. A key task in the compilation
of data parallelism is the choice of the distribution since it determines both the
load balancing and the communications between processors. In our approach, the
restrictions imposed by the source language make it possible to choose automati-
cally the globally best data distribution among a set of standard distributions. This
choice relies on the cost analysis which evaluates accurate parallel execution times.
One of the main challenges of our work was to tackle this problem without knowing
the actual size of vectors or the number of processors. In other words, the analysis
ought to be symbolic.

The contributions of this work are both technical and methodological.

• The compilation is efficient and original: it integrates very different analysis
techniques in a sequence of program transformations. Maybe the most impor-
tant contribution lies in the definition of the specialized language. We establish
the necessary language restrictions to ensure the accuracy of a symbolic cost
analysis. The compilation takes advantage of the analysis to choose the best
parallel implementation among a set of standard implementations. The anal-
yses for Fortran nested loops (Gupta & Banerjee, 1992; Feautrier, 1994) do
not evaluate precisely the cost of the communications. In particular, collective
communications (diffusion, translation...) cannot be automatically detected in
Fortran programs. In our approach, the analysis takes into account both
load balancing and communication costs since the collective communications
appear explicitly through communication skeletons. Most existing skeletons
implementations (Blelloch et al., 1994; Darlington et al., 1995) are based on
fixed implementations for each skeleton. This local view may lead to redis-
tributing data before each skeleton application and therefore be very ineffi-
cient. Finding the best, global distribution is more complex but more efficient
since it takes into account compromises (i.e. trading a local cost increase for
a global improvement).

• At the methodology level, this work is a rare example of cross-fertilization

Compilation of a Specialized Functional Language for Parallel Computers 3

between three different research fields: the automatic parallelization of For-

tran, skeleton based languages, and functional programming. The Fortran

community has worked on symbolic complexity analyses for subsets of For-

tran. We adapt and extend this work to define the cost analysis in our con-
text. Skeleton-based languages with their collection of data parallel functions
provide a framework to define specialized parallel languages. We build upon
this approach and provide two new collections of skeletons to the program-
mer: the communication skeletons and the mask skeletons. The community
of functional programming has produced a large body of work on typing,
program transformation, and analysis. Our compilation process, made of a
collection of program analyses and transformation, relies on this work.

The article is structured as follows. Section 2 is an overview of the compilation
process. Section 3 presents the source language and the target parallel language.
Sections 4 to 8 describe each compilation step in turn. We report some experiments
done on mimd distributed memory computers in Section 9. Section 10 justifies
a posteriori the source language restrictions, reviews related work, and suggests
directions for further research.

2 Overview

The compilation process consists of a series of program transformations:

L1
GL

// L2
EC

// L3
ABS

// L4
DIST

// L5
OPT

// L6
T RA

// Parallel Code

Each arrow represents a transformation compiling a particular task by mapping
skeleton programs from one intermediate language (Li) into another (Li+1). The
source language (L1) is composed of a collection of higher-order functions (skele-
tons) acting on vectors (see Section 3.1). It is primarily designed for a particular
domain where high performance is a crucial issue: numerical algorithms. L1 is best
viewed as a parallel kernel language embedded in a general sequential language
(e.g. C). Only, parts of programs written in L1 will be executed in parallel whereas
others parts will be executed sequentially, for example, on the host computer of the
parallel machine.

The first compilation step is the type/size analysis of L1 programs. The analysis
computes the shape (size) of all the vectors occurring in the program (Section 4).
It must infer symbolic sizes because the sizes of input vectors may be unknown at
compile time. As a byproduct, the analysis infers conditions ensuring that no vector
access error occurs at runtime.

The first transformation (L1 → L2) deals with in-place updating, a standard
problem in functional programming with aggregates (Section 5). The program is
analyzed to check that all vectors can be safely modified in place. If the program
does not pass the analysis, it must be transformed by inserting explicit vector copies.
This can be done automatically (the analysis indicates the places where to insert
copies) or manually (the programmer may want to restructure the program to insert

4 P. Fradet and J. Mallet

fewer copies). This step is also used to guarantee that vectors are either returned
as result or are explicitly deallocated (i.e. a garbage collector is not needed).

The transformation EC (L2 → L3) makes all communications explicit (Section
6). Intuitively, in order to execute an expression such as map (λx.x + y) in par-
allel, y must be broadcast to every processor before applying the function. The
transformation makes this kind of communication explicit. In the language L3, all
communications are expressed through skeletons.

The transformations from L3 to L6 concern automatic data distribution (Section
7). First, λ-abstractions and variables are removed by threading an explicit envi-
ronment throughout the program (transformation ABS, Section 7.1). This trans-
formation, reminiscent of abstraction algorithms, prepares the distribution trans-
formation DIST (L4 → L5). We consider a set of standard distributions of the
input vectors. A vector can be distributed cyclicly, by contiguous blocks, or allo-
cated to a single processor. For a matrix (vector of vectors), this gives 9 possible
distributions (cyclic cyclic, block cyclic, row cyclic, etc.). Distribution transforms
programs so that they act on a single vector whose elements represent the pro-
cessors. This implies, in particular, to change all vector accesses according to the
distribution (Section 7.2). Finally, distributed programs are optimized (OPT : L5

→ L6) using a set of local transformations (Section 7.3). After distribution, some
vector copies become useless. They are removed in order to improve the sequential
execution time. L6 programs apply on a vector of processors and simulate an spmd

code.
In order to choose the best distribution, an L4 program is transformed according

to all the possible distributions of its input parameters leading to a set of L6 pro-
grams. The symbolic cost of each version is evaluated and the smallest one chosen
(Section 8). For most numerical algorithms, the number of input vectors is small and
this approach is practical. In other cases, we would have to rely on the programmer
to prune the search space.

The transformation T RA (L6 → Parallel Code) is a straightforward translation
of the spmd skeleton program to an imperative program with calls to a standard
communication library. We currently use C with the mpi (Message Passing Inter-
face) library along with the C compiler of the host machine (Section 9 presents
experiments on an Intel Paragon XP/S and a Cray T3E).

All the transformations are automatic. Nevertheless, the user can interact with
the compiler, for example to insert explicit copies in the L1 → L2 step, or to guide
the choice of the best distribution in L5.

For each transformation Ti: Li → Li+1, three correctness properties must be
proved. First, it must be shown that the transformation Ti transforms programs of
Li into programs of Li+1, formally:

Property 1
∀Prog ∈ Li ⇒ Ti[[Prog]] ∈ Li+1.

Second, the transformation Ti must preserve the semantics of programs, formally:

Property 2

Compilation of a Specialized Functional Language for Parallel Computers 5

∀Prog ∈ Li, Ti[[Prog]] = Prog

Third, it must be checked that the update-in-place property still holds on trans-
formed programs.

Property 3
∀Prog ∈ Li (i > 1) , UP(Prog) ⇒ UP(Ti[[Prog]])

Since transformations are defined on the structure of expressions, the proofs of
these properties usually boil down to a routine inspection of the different cases. Due
to their number and length, we do not describe them in this paper. A few examples
of proofs are sketched in appendix B.

The source language comprises 16 skeletons, plus a number of other constructions
(pairs, operators, affine expressions, . . .). Further, new skeletons are added as the
language gets closer to an spmd language. Presenting the 6 compilation steps (anal-
yses and transformations) for the whole language would be lengthy and tiresome.
After presenting the complete source and target languages in the next section, we
chose to focus on a tiny sublanguage for the rest of the presentation. A simple
example (written in the sublanguage) is taken throughout the paper and illustrates
the different steps.

The treatment of a more complete language (having at least one skeleton of each
type) can be found in appendix A. The interested reader will find a description of
transformations, analyses, and proofs for the whole language in (Mallet, 1998a)1.
A previous conference paper (Mallet, 1998b) focuses on the cost analysis and can
be seen as a short introduction to this work.

3 Source and Target Languages

3.1 The source language L1

The source language L1 is basically a strict, pure, first-order, recursion-less func-
tional language, extended with a collection of higher-order functions (the skele-
tons). We have restricted ourselves to a reasonable number of standard skeletons;
new ones, especially among the computation and reorganization classes, could be
integrated as well. The main data structure is the vector which can be nested to
model multidimensional arrays.

The syntax of L1 is defined in Figure 1 (its type system will be described in
Section 4). A program is a main expression followed by definitions. A definition is
either a function definition or the declaration of input variables with their types.
The types of input vectors bear their numerical or symbolic size. An expression
(nonterminal Exp1) is either an application, a tuple, a variable, or a constant.
Functions are unary λ-abstractions, unary operators, or the predefined iterator
iterfor. It can be defined in Haskell (Hudak et al., 1992) as follows:

1 Actually, the language presented here is slightly different (it considers a larger class of mask
skeletons) than the one in (Mallet, 1998a)

6 P. Fradet and J. Mallet

Prog1 ::= Exp1 where Decl1
Decl1 ::= Decl1 Decl1 | f = Fun1 | x :: Type1

Type1 ::= (Type1, . . . , Type1) | Vect LinF1 Type1 | Int | Float | Bool
Exp1 ::= Fun1 Exp1 | (Exp1,. . . ,Exp1) | x | k
Fun1 ::= iterfor LinF1 Fun1 | Op1 | λ(x1, . . . , xn).Exp1 | f

| CompSkel1 | ReorgSkel1 | CommSkel1 | MaskSkel1
Op1 ::= + | − | ∗ | div | exp | log | cos | . . .
LinF1 ::= LinF1 + LinF1 | LinF1 − LinF1 | k∗LinF1 | x | k
CompSkel1 ::= map Fun1 | fold Exp1 Op1 | scan Exp1 Op1

ReorgSkel1 ::= zip | unzip | append | makearray LinF1

CommSkel1 ::= brdcast LinF1 | transfer LinF1 LinF1

| rotate LinF1 | scatter LinF1

| gather LinF1 | allgather | allbrdcast
MaskSkel1 ::= polyn λ(x1, . . . , xn).Ineq1 Fun1 Fun1

Ineq1 ::= Ineq1 ∧ Ineq1 | LinF1 < LinF1 | LinF1 = LinF1

x, x1, . . . , xn ∈ VarIdent. f ∈ FunIdent. VarIdent ∩ FunIdent = ∅. k ∈ Constant.

Figure 1. Skeleton language L1.

-- iterfor e f x = f(e ...,f(2,f(0,x))...)

iterfor e f x = let until p f x = if p x then x else until p f (f x)

in (snd.until(\(x,_)->x>e)(\(i,x)->(i+1,f(i,x))))(0,x)

iterfor n f a behaves like a loop; it applies n + 1 times its function argument f

on a. Further, it makes the current loop index (henceforth called iterator index)
accessible to its function argument.

Four classes of skeleton manipulate vectors: computation, reorganization, com-
munication, and mask skeletons.

The computation skeletons are the classical higher order functions map, fold and
scan. For example, the fold skeleton is defined, using the standard array library of
Haskell (Hudak et al., 1999) as:

-- fold e f [a0;...;an] = f(...f(f(e,a0)...,an)

fold e f v = iterfor n (\(i,acc)->f(acc,v!i)) e

where n = sizeRange (bounds v) - 1

Many other computation skeletons could have been considered. Note that fold or
scan expressions are considered as parallel constructs only if their operator (Op1) is
associative. Otherwise, they are compiled, analyzed, and implemented as sequential
constructs.

The four reorganization skeletons are zip, unzip, makearray, and append. They
allow the programmer to create and restructure vectors. The skeleton zip transforms
a pair of vectors into a vector of pairs. The skeleton unzip transforms a vector of
pairs into a pair of vectors. The skeleton append appends its two vector arguments.
The skeleton makearray a b creates a vector of size a of elements b, for example:

makearray 5 1 = [1; 1; 1; 1; 1]

Compilation of a Specialized Functional Language for Parallel Computers 7

There are seven communication skeletons which describe families of data motion
within vectors. When applied to a vector representing the parallel machine (as in L6

programs), these motions will denote (and will be implemented as) communications.
They have been chosen because of their availability on parallel computers as hard-
wired or optimized communication routines. The first three have type Vect n α →
Vect n α (i.e. they map a vector of size n to a vector of the same size):

• brdcast e v returns a vector whose elements are equal to the e + 1th element
of v. It can be expressed in Haskell as follows:

-- brdcast i [a0;..;ai;..;an] = [ai;...;ai]

brdcast e v = array (0,n) [(i,v!e) |i<-[0..n]]

where n = sizeRange (bounds v) - 1

• transfer s d v returns a vector identical to v except for the d + 1th element
that has the value of the s + 1th element of v.

• rotate d v returns a vector whose elements are equal to the elements of v but
shifted circularly of d positions to the right.

The next three communication skeletons have type Vect m (Vect n α) → Vect m

(Vect n α).

• gather i m returns a matrix such that its i + 1th row is equal to the i + 1th
column of m and other elements are equal to m’s,

• scatter i m returns a matrix such that its i + 1th column is equal to the
i + 1th row of m and other elements are equal to m’s,

• allgather m returns the transpose of m.

Finally, allbrdcast v has type Vect n α → Vect n (Vect n α) and returns a vector
whose elements are equal to v.

The mask skeletons are the only form of conditional provided by L1. They are
a family of data-parallel skeletons, written polyn, where n is less or equal to the
number of dimensions of its vector argument. For example, poly1 applies on a vector
of type Vect n α and polyk on a vector of type Vect n1 (. . . (Vect nk α) . . .). The
skeleton polyk p f1 f2 v applies the function f1 to the elements of v contained in the
k-dimensional polytope2 described by the predicate p and the function f2 on the
elements outside the polytope. For example, poly2, which takes a matrix (vectors
of vectors) as argument, can be defined in Haskell as follows:

poly2 p f g v

= array (0,n)

[(i,array (0,m) [(j,if p(i,j) then f(v!i!j) else g(v!i!j))

| j<-[0..m]])| i<-[0..n]]

where n = sizeRange (bounds v) - 1

m = sizeRange (bounds (v!0) - 1

2 An n-dimensional polytope is a finite n-dimensional polyhedron. An n-dimensional polyhedron
is a set of points whose integer coordinates (i1, . . . , in) satisfy a set of inequalities between affine
expressions. An affine expression has the form a1 x1 + . . . + an xn + an+1 where xi denotes a
variable and ai a constant.

8 P. Fradet and J. Mallet

j

i

Figure 2. Data motion (brdcast 0) and mask skeleton (poly2 (λ(i, j).(i < j))).

Note also that poly1 (λi.i = i) f Id is equivalent to map f .
In order to enable a precise symbolic cost analysis, additional syntactic restric-

tions are necessary. The scalar arguments of communication skeletons, of the iterfor

operator, of mask skeletons, and of makearray must be affine expressions of vari-
ables denoting iterator indexes or sizes. This restriction is formalized by the non-
terminal LinF1 which defines affine expressions of such variables. We rely on the
type system with simple subtyping (described in the next section) to ensure that
variables in LinF1 expressions are only index or size variables.

Also, if the grammar makes the first order restriction clear it does not restrict
the use of recursion. The constraint that user-defined functions are not recursive
must be checked separately (i.e. check that the call graph is acyclic).

Example 1
The following simple program will be used throughout the paper to illustrate the
compilation steps.

f m where

m :: Vect n (Vect n (Float, Float))
f = λm.(poly2 (λ(i, j).(i < j)) (+) (−) (brdcast 0 m), m)

where m is a matrix of pairs of integers.
First, brdcast 0 m builds a matrix made of copies of the first row of m (the data

movements are depicted by arrows in the left matrix of Figure 2). Then, the pairs
belonging to the upper triangle of the matrix are summed (represented by white
dots in the right matrix of Figure 2) and the ones belonging to the lower triangle
(represented by black dots) are subtracted (poly2 (λ(i, j).(i < j)) (+) (−)). The
result is a pair composed of the computed matrix and the initial one.

The interested reader will find other examples of L1 programs in appendix C
(namely, LU decomposition and the n-body problem).

3.2 The language L6

The target language L6 expresses spmd computations. A program acts on a single
vector (which is given the special type Vectproc) whose elements represent the pro-
cessors or, more precisely, their local data spaces. An L6 program is a composition

Compilation of a Specialized Functional Language for Parallel Computers 9

of parallel computations separated by communications. Typically a program has
the following form:

. . .pimap f ◦ Comm ◦ pimap g . . .

where pimap is a version of map that makes the processor index accessible to its
function. The language L6 introduces new versions of skeletons acting on the vector
of processors. In particular, the new versions of communication skeletons express the
same data motions as before but on the vector of processors. They model effective
communications and will be implemented as such.

Prog6 ::= FunComm6

FunComm6 ::= FunComm6 ◦ Comm6 | Comm6 ◦ FunComm6

| piterfor FunComm6 | pimap Fun6 | Comm6

Comm6 ::= pbrdcast | ptransfer | protate
| pscatter | pgather | pallgather | pallbrdcast

Exp6 ::= Fun6 Exp6 | (Exp6,. . . ,Exp6) | x | k
Fun6 ::= iterforuc Fun6 | Op6 | λ(x1, . . . , xn).Exp6

| CompSkel6 | ReorgSkel6 | CommSkel6 | MaskSkel6
Op6 ::= + | − | . . . | dealloc | copy | update | lookup
CompSkel6 ::= map Fun6 | folduc Op6 | scanuc Op6

ReorgSkel6 ::= zip | unzip | append | makearrayuc

CommSkel6 ::= brdcastuc | transferuc | rotateuc | scatteruc

| gatheruc | allgatheruc | allbrdcastuc

MaskSkel6 ::= polyn λ(x1, . . . , xn).Ineq6 Fun6 Fun6

Ineq6 ::= Ineq6 ∧ Ineq6 | LinF6 < LinF6 | LinF6 = LinF6

LinF6 ::= LinF6 + LinF6 | LinF6 − LinF6

| k∗LinF6 | p∗LinF6 | n∗Expi6 | x | k
Expi6 ::= div (Expi6, p) | mod (Expi6, p) | ip

x, x1, . . . , xn ∈ VarIdent. ip ∈ ProcIdent. p ∈ ProcNb. k ∈ Constant. n ∈ SizeIdent.

Figure 3. Skeleton language L6.

The syntax of L6 is defined Figure 3. A program is a parallel function FunComm6

applied to a vector of processors. A parallel function is either the composition (◦)
of a parallel function with a communication, an iteration piterfor LinF6 FunComm6

(which applies LinF6 + 1 times the parallel computation FunComm6 to the vector
of processors), or a parallel computation pimap Fun6 (which applies Fun6 on each
processor). The skeleton pimap can be defined as:

-- pimap f [a0;...;ap] = [f(0,a0) ;...;f(p,ap)]

pimap f proc = array (0,p) [(i,f(i,(proc!i)))|i<-[0..p]]

where p = sizeRange(bounds proc) - 1

The nonterminal Comm6 gathers the new versions of the communication skele-
tons (pbrdcast, ptransfer, protate, pgather, pscatter, pallgather, and
pallbrdcast). They describe the same data motion as before but on the vector of
processors. The previous communication skeletons remain in L6 in an uncurried

10 P. Fradet and J. Mallet

version (commuc). They are used locally on the processors (they occur only inside
pimaps) and represent local data motion.

Let us describe the communication skeleton pbrdcast. Before the call of this
communication, each local processor memory is a 3-tuple of the form (index of the
broadcasting processor, value, local memory). The broadcasting processor takes the
value (second element of its triple) and send it to the other processors. The resulting
vector of processors has elements of the form (broadcast value, local memory). Its
functional semantics in Haskell is:

-- pbrdcast [(e,a0,b0);...;(e,ap,bp)] = [(ae,b0);...;(ae,bp)]

pbrdcast proc = array (0,p) [let (_,_,md) = proc!i

in (i,(buf,md))|i<-[0..p]]

where e = first(proc!0)

buf = snd(proc!e)
p = sizeRange (bounds proc) - 1

The sequential skeletons are similar to L1. The only differences lie in the argu-
ments of mask skeletons and new versions of communication and reorganization
skeletons. The polytope argument of the mask skeleton may now include mod-
ulo and integer division (as expressed by the nonterminals LinF6 and Expi6 in L6).
Uncurried versions of the communication and reorganizing skeletons are introduced
(e.g. brdcastuc(e, v) = brdcast e v). Furthermore, Op6 includes four new functions:
explicit vector copy and deallocation (copy, dealloc), lookup which accesses one
element of its vector argument (lookup (e, v) = v!e) and update which modifies
one vector element:

update(e,x,v)

= array (0,n) [(i,if i = e then x else v!i) | i<-[0..n]]

where n = sizeRange (bounds v) - 1

The implementation of L6 programs is relatively straightforward. Functions in-
side pimaps represent the sequential programs to be executed by all processors
in parallel. They will be compiled into sequential code using standard techniques.
Communication skeletons (such as pbrdcast) will be implemented as calls to a
standard communication library.

Example 2
If the rows of the matrix m are distributed by blocks on the processors, our simple
example is transformed into the following L6 program:

pimap λ(ip, (buf, x)).(poly2 (λ(i, j).ip ∗ b + i < j) (+) (−)
◦ makearrayuc(n, buf), x)

◦ pbrdcast ◦ pimap λ(ip, x).(0, lookup(0, x), x)

where m is supposed to have n rows and b is the block size (i.e. n divided by the
number of processors).

The first parallel computation (pimap λ(ip, x).(0, . . .)) prepares the communica-
tion (pbrdcast) which broadcasts the first row of the matrix to all the processors.
Then, the vector creation (makearrayuc) and the mask skeleton (poly2) are applied
locally in parallel.

Compilation of a Specialized Functional Language for Parallel Computers 11

4 Type and Size Inference

Type/Size inference has several objectives:

• it checks that programs are well typed.
• it ensures that all vector computations are well defined. For example, brdcast

is defined only if its index argument is within the bounds of its vector argu-
ment.

• it makes sure that some arguments are affine expressions depending only on
vector sizes and iterator indexes.

• it computes the symbolic size of each vector expression.

Size inference can be seen both as a static analysis to compute the size of each
vector-typed expression and as a type system to enforce constraints. The static and
symbolic evaluation of sizes is made possible by several restrictions:

1. the argument and result of iterfor have the same size,
2. indexes and sizes, used by accesses and creations, are affine expressions,
3. vectors are homogeneous; that is, all the elements of a vector have the same

size.

Types are represented as size types whose syntax is described in Figure 4. Vectors
are associated with their size and basic types are either scalar types (integers Int,
floating point numbers Float, or booleans Bool), Size, or Index types. Intuitively,
an expression has type Size if it is a constant, the size of an input vector, or an
affine expression of Size variables. Similarly, an expression has type Index if it is
an iterator index, has type Size or is an affine expression of Index variables. Size

and Index types bear an affine expression denoting their symbolic value.
For example, the size type Sizen → Vect n Int indicates that the function takes

an integer n and returns a vector of size n.

T ::= TExp → TExp

TExp ::= (TExp, TExp) | Vect A TExp | α | B

B ::= Int | Float | Bool | IndexA | SizeA

A ::= A + A | A − A | k∗A | x | k

x ∈ SizeVar, α ∈ SizeType and k ∈ Constant.

Figure 4. Size types

The type system integrates subtyping based on the following hierarchy:

Sizea ⊆ Indexa ⊆ Int ⊆ Float

The subtype relation Sizea ⊆ Indexa indicates that loop indexes may depend on
sizes but vector sizes cannot be defined in terms of loop indexes. The subtyping
rules for functions, pairs, etc. are the usual ones. The inference rules, described in
Figure 5, are of the form

C, Γ ` e : T, C1

12 P. Fradet and J. Mallet

which means that e has size type T with size constraints C1 in the environment
Γ with the subtyping constraints C. If the size constraints C1 are satisfied by the
input parameters then the evaluation of e will not produce any vector access error.

Some rules just express unification in terms of an equality constraint between
size types. For example, in the rule [appl], the constraint α = γ unifies the actual
and formal parameters. Some others adds constraints on sizes.

• The rule [const] gives the smallest (most precise) type according to the
subtyping relation (i.e. Size) to constants.

• The type of an addition or a subtraction of affine expressions (rule [linf1]),
is the most general type of its two subexpressions. Further, it introduces a
constraint denoting the value of the result as an affine expression. For example,
the expression (n+1), where n is a vector size of type Sizen, has the size type
Sizes along with the constraint {s = n + 1}. Note that the rule for other
operators (e.g. multiplication) must be different since they do not preserve
affinity in general.

• The rule [brd] forces the first argument of brdcast to have type Index. It
also introduces the constraints (0 ≤ s1 ≤ s) which enforce that this index is
within the bounds of the second (vector) argument. For example, the typing
of brdcast 5 v, where v has the size type Vect n Int, produces the constraint
{5 ≤ n} in order to ensure that the index of the broadcast element lies within
the bounds of v.

• The rule [poly2] states that the polytope must be defined using arguments
of type Index. It also constrains the two functions to have the same type
(including sizes if they have a vector argument) (α1 = α2 and β1 = β2).

As described the type system is monomorphic. This can be too harsh a limitation
since user defined functions could be used only for specific vector sizes. However,
since user defined functions are not recursive, all the calls can be replaced by the
corresponding function definitions. Such a preliminary unfolding amounts to making
the type system polymorphic.

The rules in Figure 5 constitute a small representative subset of the inference
system. The rules for other skeletons are similar and the rules for subtyping are the
usual ones. The inference rules can be turned into an algorithm using standard tech-
niques of subtype inference (e.g. (Mitchell, 1991)) and of polyhedric computations
(e.g. (Wilde, 1993)).

Satisfiability of the size constraints is made easy by the fact that constraints are
inequalities between affine expressions. The solutions of a set of such constraints can
be seen as the points of a convex polyhedron. The dimensions of this polyhedron
are the variables denoting sizes and occurring in the inequalities. These variables
can be the size variables introduced by the inference (denoted by si in the rules)
or the symbolic sizes used to express input vector sizes. If s1,. . . , sp are the p

size variables and n1,. . . , nq the q symbolic sizes occurring in the constraints, the
tuple (s1, . . . , sp, n1, . . . , nq) belongs to the convex polyhedron defined by the affine
inequalities.

Compilation of a Specialized Functional Language for Parallel Computers 13

C, Γ ` e : α, C1 C, Γ ` f : γ → β, C2

C, Γ ` f e : β, C1 ∪ C2 ∪ {α = γ} [APP]
C, Γ ∪ {y : α} ` y : α, {} [VAR]

C, Γ ` e1 : α1, C1 C, Γ ` e2 : α2, C2

C, Γ ` (e1, e2) : (α1, α2), C1 ∪ C2
[PAIR]

C, Γ ` k : Sizek, {}
[CONST]

∀k ∈ [1, 2] C, Γ ` ek : αsk , Ck C ` α ⊆ Index

C, Γ ` e1 Op e2 : αs3 , C1 ∪ C2 ∪ {s1 Op s2 = s3}
[LINF1]

where Op ∈ {+,−}

C, Γ ` e : β, C1 C ` β ⊆ α

C, Γ ` e : α, C1
[COER]

C, Γ ` e : Indexs1 , C1

C, Γ ` brdcast e : Vect s α → Vect s α, C1 ∪ {0 ≤ s1 < s} [BRD]

∀k∈ [1, 2] C, Γ∪{i : Index , j : Index} ` ek : Index, C, Γ ` fk : αk → βk, Ck

C, Γ ` poly2 λ(i, j).e1 ≤ e2 f1 f2 : Vect s1 (Vect s2 α1) → Vect s1 (Vect s2 β1),
C1 ∪ C2 ∪ {α1 = α2, β1 = β2}

[POLY2]

Figure 5. Size inference (extract).

Satisfiability amounts to normalizing the constraints to get only inequalities of
affine expressions and checking that the obtained polyhedron is not empty. The
projection of the polyhedron on (n1, . . . , nq) defines the conditions that the input
vector sizes must fulfill to prevent access errors. The projection can detect unavoid-
able access errors (the projection is empty) or guarantee their absence without
further conditions (the projection is the complete q-dimensional space).

The solutions of a size variable s are found by projecting the polyhedron on the
dimensions ni of the symbolic sizes and the dimension corresponding to s. Each
size variable is expressed as an affine expression of symbolic sizes and we use size
types to annotate each program expression. Note that testing for emptiness and
projection are standard operations of polyhedric libraries (e.g. (Wilde, 1993)).

Example 3

Let us illustrate the size analysis on our small example:

(poly2 (λ(i, j).i < j) (+) (−) (brdcast 0 m), m)

We have

14 P. Fradet and J. Mallet

m :: Vect n (Vect n (Float, Float))
poly2 (λ(i, j).i < j) (+) (−) : Vect s1 (Vect s2 (Float, Float))

→ Vect s1 (Vect s2 Float)
brdcast 0 m : Vect s3 (Vect s4 (Float, Float))

with the following set of constraints:

{s1 = s3, s3 = n, s2 = s4, s4 = n, 0 ≤ 0 ≤ s2}

By projecting on the n dimension we get: s1 = n, s2 = n, s3 = n, s4 = n and, for
example, the mask skeleton has the size type:

poly2 (λ(i, j).i < j) (+) (−) : Vect n (Vect n (Float, Float))
→ Vect n (Vect n Float)

5 Update-in-place Analysis

As we use a pure functional language and want to manipulate vectors as efficiently
as possible, we have to tackle the update-in-place problem. The solution must be
precise and fully automatic. But, since this step may have a tremendous impact
on runtime costs, it should also yield useful feedback and allow programmers to
keep complete control of their programs. As a consequence, the update-in-place
analysis is the first step of our compilation chain. The programmer is only able to
read and change programs at this stage. Indeed, the next transformations (e.g. the
distribution, Section 7) change considerably the source program which may become
incomprehensible for the programmer.

Our approach relies on extracting an abstract representation of possible execution
traces which are then used to check whether all vectors can be modified in place
or not. The abstract execution trace represents the vector access sequences carried
out during the program evaluation. If these access sequences do not satisfy some
criteria, two possibilities arise:

• either copy operations are automatically inserted in the program so that the
criteria hold. Functionally, this new operator is the identity function but will
be implemented by copying its vector argument.

• or the faulty subexpressions and violated criteria are pointed out to the pro-
grammer who may insert copies manually or restructure the program before
a new analysis.

The same abstract sequences are used to ensure that that all vectors are either
returned as result or explicitly deallocated (using a new operation dealloc). In the
following, we present the update-in-place analysis (at a fairly high and intuitive
level) and return to the deallocation problem at the end of this section.

In order to check the updated in place property, we statically compute a runtime
trace which corresponds to the sequence of vector accesses during execution of the
program. This information is similar to the sequences calculated in (Kastens &
Schmidt, 1986) which, in general, are described by grammars.

Each vector is annotated by labels (e.g. l1) which serve to represent sharing. The
basic vector accesses may be a read (lr1 denotes a read of the vector with label l1), a

Compilation of a Specialized Functional Language for Parallel Computers 15

write (l2 lw1) which produces a vector annotated with a fresh label (here l2), a copy
(l2 lc1 where l2 is a fresh label), a vector deallocation (lf1), or vector display (lp1) which
indicates that the vector is returned in the final result. A concrete access sequence
is either a sequential composition of sequences (EV2 ◦ EV1, where the accesses of
EV1 are made before the accesses of EV2), a parallel composition (EV1‖EV2 which
represents any interleaving of EV1 and EV2 accesses), or a vector access.

In order to represent finitely all the possible sequences of accesses, abstract access
sequences are described as regular expressions of concrete sequences. An abstract
sequence can be a concrete sequence, the union of abstract sequences EV1+EV2

(i.e. EV1 or EV2), or the repeated composition of abstract sequences (EV1◦)∗EV2

(i.e. EV2 followed by zero or more occurrences of EV1). In (Mallet, 1998a), we
present computation of the access sequences as an abstraction of an instrumented
semantics for the language L1. This allows us to prove the correctness of the static
analysis with respect to the instrumented semantics.

Intuitively, vectors can be safely updated in place if no access of the form l2 lw1 ,
lf1 , or lp1 is followed by an access on the form lr1,

l2 lc1,
l2 lw1 , lf1 , or lp1 in the program

access sequence. In other words, after a write to a vector (say, labeled l1) there
should not be accesses to the previous version (i.e. l1). If this holds, it is clear that
the update/write can be done in place.

We say that an access follows another access if they appear, either in a sequential
composition (◦), or, since it does not enforce any specific order, in a parallel com-
position (‖). The update-in-place condition amounts to checking for each created,
copied or modified vector that no access follows a write on this same vector. Let
EV be the access sequence of the program, the condition is expressed formally by

UP (EV) = ∀l.UPl(EV)

The condition for a specific vector (UP l) is defined in Figure 6. The condition UP l

for an access sequence EV1◦EV2, and a l-labeled vector, is that either the vector
is not written in EV2 and the condition holds on EV1, or the vector is written in
EV2 and the vector is not accessed in EV1 and the condition holds on EV2. In the
parallel composition case, the condition is that either one sequence does not contain
an access to l and the condition holds for the other, or no write to l occurs in both
sequences. Finally, the condition UP l holds on the sequence EV1+EV2 if it holds
on both sequences EV1 and EV2. For a sequence of the form (EV1◦)∗EV2, it holds
if, either the vector is not accessed in EV2 and the condition holds in EV1, either
the vector is not written in EV1 and EV2.

Programs can be automatically transformed so that they respect the property
UP. Any sequence not satisfying the property UP contains accesses to a vector
(annotated by) l following a write to l. Since each access is associated to a unique
operation, the faulty writes are easy to find. To ensure the update in place property,
it is sufficient to insert an explicit copy before each such write operation in the
program.

Another possibility is to let the user restructure the program in order to make the
program respect the property. This way, the user keeps complete control of the costs
induced by the program and may potentially minimize the number of necessary

16 P. Fradet and J. Mallet

UP l(EV1◦EV2) = (UP l(EV2)∧ 6 ∃ lA ∈ EV1) ∨(UP l(EV1)∧ 6 ∃ lW ∈ EV2)

UP l(EV1‖EV2) = (UP l(EV2)∧ 6 ∃ lA ∈ EV1) ∨(UP l(EV1)∧ 6 ∃ lA ∈ EV2

∨(6 ∃ lW ∈ (EV1‖EV2))
UP l(EV1+EV2) = UP l(EV1) ∧ UP l(EV2)
UP l((EV1◦)∗EV2) = (6 ∃ lW ∈ EV1∧ 6 ∃ lW ∈ EV2) ∨ (UP l(EV2)∧ 6 ∃ lA ∈ EV1))
UP l() = true otherwise

with A ∈ {p, c, r,w, f},W ∈ {w, f, p}.

Figure 6. Conditions on Sequences of Accesses

copies. In this case, the access sequence computed by the analysis indicates the
operation that violates the condition UP .

Example 4
The analysis of our example

(poly2 (λ(i, j).i < j) (+) (−) (brdcast 0 m), m)

produces the following access information:

(l3p‖l′p3 ‖lp1‖l
′p
1)◦(l3 lw2 ‖l′3 l′w2)◦(l2 lw1 ‖l′2 l′w1)

where the outer vector of m is annotated by the label l1, and its inner vectors by
l′1.

The condition UP is violated for the vector annotated l1 which is written and
returned as result as well. So, an explicit copy is inserted just before the write on
l1 (done by the skeleton brdcast) leading to:

(poly2 (λ(i, j).i < j) (+) (−) (brdcast 0 (copy m)), m)

The functional language community has proposed many different update-in-place
analyses. They are either syntactic criteria (Schmidt, 1985), semantics-based anal-
yses (Kastens & Schmidt, 1986; Sestoft, 1989), or type systems (Wadler, 1990;
Guzmán & Hudak, 1990). Most of them analyze whether a function parameters or
instances of specific types can be implemented as a global variable. In our context,
we want to check that each vector (taken as input or dynamically created) could be
updated in place. The type-based approach of (Wadler, 1990) meets this require-
ment, however it was not precise enough to prove that the property still held on
programs obtained after the distribution transformation. Our main motivation to
design a more precise analysis was to be able to prove that the update-in-place
property was preserved by the successive transformations.

The same abstract sequences are used to enforce that vectors are explicitly deal-
located. This allows us to avoid the need for a garbage collector. This is particularly
important to guarantee that our cost analysis evaluates real runtime costs. On ab-
stract sequences, the criteria are that every vector is either written, deallocated, or
displayed as result. Any vector which is not accessed anymore must be explicitly
deallocated. If the criteria are not satisfied, dealloc operations are automatically
inserted just after the last use of vectors. One remaining problem is that pairs

Compilation of a Specialized Functional Language for Parallel Computers 17

are allocated in the heap. Since the language L1 is based on vectors, the memory
allocated for pairs is quite small in practice and our implementation does not in-
clude a garbage collector. However, it would be more satisfactory either to explicitly
deallocate pairs (as we do for vectors), or to implement them in the runtime stack.

6 Making Communications Explicit

Recall that the target language corresponds to spmd code, that is to say, a program
is a sequence made of local computations (a function applied by each processor) fol-
lowed by communications (a communication skeleton) between processors. All data
appearing in computations must be local to the processors. In programming terms,
it means that a function to be executed in parallel must be closed. However, there
might be expressions in L2 including free variables that induce communications not
expressed by communication skeletons. For example, in the expression

poly2 (λ(i, j).i < j) (fold e (+)) (fold 0 (+)) m

the variable e occurs free in an expression (fold e (+)) supposed to be executed
locally on each processor.

The transformation EC produces expressions in the intermediate language L3,
very similar to L2, but in which no free variable occurs in the functional arguments
of map or polyn. It aims at making parallel functions closed and is related to λ-
lifting (Johnsson, 1985). The transformation EC is defined by local transformations
applied iteratively to the program until a fixpoint is reached. In Figure 7, which
describes the rule for poly2, C denotes a context and FV[[Fun]] denotes the free
variable of Fun.

The skeleton poly2 is transformed so that its free variables are abstracted. Each
element of the matrix argument is now associated with the free variables’ values.
This is done using the size (type) of the matrix argument m×n (previously inferred)
and a composition of the skeletons makearray, map, and zip.

When the free variables are vectors, they must be explicitly deallocated after
function application to preserve the explicit deallocation property (Section 5).

EC[[C[poly2 P Fun1 Fun2]]]
= C[λv.poly2 P (λ((x1, ..., xp), x).dealloc (x1,. . .dealloc (xq,Fun1 x). . .))

(λ((x1, ..., xp), x).dealloc (x1,. . .dealloc (xq,Fun2 x). . .))
(map zip (zip (makearray m (makearray n (x1, ..., xp)),v)))]

with poly2 P Fun1 Fun2 : Vect m (Vect n α) → Vect m (Vect n β)
and FV [[Fun1]] ∪ FV [[Fun2]] = {x1, ..., xp}, 1 ≤ p,
and ∀ 1 ≤ i ≤ q, xi : Vect ni a,∀q + 1 ≤ i ≤ p, xi : α 6= Vect ni a

Figure 7. Transformation EC(extract).

Example 5
Assuming that the matrix m has size n × n, the above example

18 P. Fradet and J. Mallet

poly2 (λ(i, j).i < j) (fold e (+)) (fold 0 (+)) m

is transformed into

(λv.poly2 (λ(i, j).i < j) (λ(e, v).fold e (+) v) (λ(e, v).fold 0 (+) v)
(map zip (zip (makearray n (makearray n e), v)))) m

A n × n matrix of integers e is built and zipped with m. The distribution of the
value e to local processors will be made explicit by the next compilation step which
distributes matrices and introduces communication skeletons.

7 Distribution

This step is decomposed in three transformations. The transformation ABS replaces
program variables by combinators. DIST transforms the resulting program accord-
ing to a distribution choice for each input vector. Afterwards, some optimizations
become possible and are described as program transformations. This transformation
chain produces spmd programs and can be described as

L3
ABS

// L4
DIST

// L5
OPT

// L6

7.1 ABS Transformation

The transformation ABS is comparable to the abstraction algorithms used to com-
pile the β-reduction with combinators (Turner, 1979). For example, the SKI abstrac-
tion algorithm suppresses the variable x from an expression E by transforming E

into the expression [x]E such that

([x]E)x = E

In our case, each expression E is transformed into an expression ABS[[E]]−→X such
that

(ABS[[E]]−→X)−→X = (E,
−→
X)

where −→
X is made of nested pairs representing the free variables of E. Initially −→

X

represents the program input variables. More generally, −→X represents the environ-
ment which is explicitly threaded throughout the program (taken as argument and
returned as result by each sub-expression). This is the data structure that will be
distributed over the vector of processors. The transformation ABS also unfolds
the program. Each function call is replaced by its definition. A L4 program is a
variable-free, call-less expression.

The rules of ABS for our sublanguage are given in Figure 8. In order to express
the transformation, new functions are introduced. First, as can be expected, envi-
ronment management is expressed using combinators. The family of restructuring

combinators extract
−→
X ,

−→
Y (defined as λ

−→
X.

−→
Y) restructures and accesses the envi-

ronment. For example, the standard combinators fst and snd can be expressed as
extract(x,y),x and extract(x,y),y respectively. The function ftuple2 takes two func-
tions and a pair and applies the first (resp. second) function to the first (resp.
second) pair component. Composition ◦ (Fun1 ◦ Fun2 = λx.Fun1(Fun2 x)) and

Compilation of a Specialized Functional Language for Parallel Computers 19

a curried pair operator (pair = λx.λy.(x, y)) are introduced. Finally, new uncurried
versions of functions are needed (e.g. brdcastuc(e, v) = brdcast e v).

The initial call of ABS on a program Prog is ABS[[Prog]]−→X where −→
X are the

Prog’s free variables. The transformed program is

(extract(x,y),x◦ABS[[Prog]]−→X)−→X

where (extract(x,y),x deletes the threaded environment and yields the final result.
The ABS transformation propagates variable values to the places they are used.

An access to a variable x now returns a pair made of its value extracted from the
environment −→

X and the environment itself. For functions with several arguments
(e.g. brdcast), the initial function is substituted by its version with one argument.
For example, the expression brdcast v x is transformed into brdcastuc(v, x).

Note that, due to the previous transformation EC, the rule for poly2 does not
apply recursively ABS on Fun1 and Fun2 because they are closed.

ABS [[Fun Exp]]
−→
X = ABS [[Fun]]

−→
X ◦ ABS[[Exp]]

−→
X if Fun 6= brdcast

ABS [[brdcast Exp]]
−→
X = ftuple2 brdcastuc Id ◦ extract(a,(b,c)),((a,b),c)

◦ ftuple2 Id (ABS [[Exp]]
−→
X)

ABS [[(E1,E2)]]
−→
X = extract((a,b),(a,b)),((a,a),b)

◦ ftuple2 (ABS [[E1]]
−→
X) (ABS [[E2]]

−→
X) ◦ extractx,(x,x)

ABS [[x]]
−→
X = extract

−→X ,(x,−→X) (x ∈ −→
X)

ABS [[k]]
−→
X = pair k

ABS [[copy]]
−→
X = ftuple2 copy Id

ABS [[poly2 P Fun1 Fun2]]
−→
X

= ftuple2 (poly2 P Fun1 Fun2) Id

Figure 8. Transformation ABS (extract).

Example 6
Our simple example

(poly2 (λ(i, j).i < j) (+) (−) (brdcast 0 (copy m)), m)

is transformed into the variable-free expression

(ftuple2 (poly2 (λ(i, j).i < j) (+) (−) ◦ brdcastuc ◦ pair 0 ◦ copy) id

◦ extractx,(x,x))(m)

It duplicates (combinator extractx,(x,x)) its argument, then applies the composition
of skeletons (poly2 . . . ◦ . . . ◦ copy) to the first component and the identity to
the second one (returned as result).

7.2 DIST Transformation

A distribution d can be seen as a function restructuring vectors. Intuitively, trans-
forming the program P according to the distribution d amounts to starting from

20 P. Fradet and J. Mallet

the equivalent program P ◦ d−1 ◦ d and pushing d−1 to the left until the program is
of the form d′−1 ◦ P ′ ◦ d. After transformation, the program (P ′) takes and returns
a single vector whose elements can be seen as the local memory of each processor.
We give to this data structure the special type Vectproc.

Distributions

The data distributions define the allocation of data on the processors. They are
functions of the type α → Vectproc p α where p is the number of processors.

We consider a fixed set of standard distributions. For a vector, there are three
distributions: block, cyc and seq.

• The distribution block p breaks up the vector in p blocks of contiguous el-
ements and allocates each block to a processor (e.g. block 2 [1; 2; 3; 4] =
[[1; 2]; [3; 4]]).

• The distribution cyc p distributes cyclicly each vector element on the p pro-
cessors (e.g. cyc 2 [1; 2; 3; 4] = [[1; 3]; [2; 4]]).

• seq yields a vector with a single processor containing the data vector (e.g.
seq [1; 2; 3; 4] = [[1; 2; 3; 4]]).

They can described using the general distribution dist defined as

dist b p v

= array (0,p-1)

[(i,array (0,m) [(j,v!((div j b)*p*b+i*b+mod j b))

|j<-[0..m]]) |i<-[0..p-1]]

where m = (div (rangeSize (bounds v)) p) - 1

This function distributes cyclicly blocks of size b on p processors. So, let s be the
size of v, we have:

• block p v = dist (div s p) p v,
• cyc p v = dist 1 p v,
• seq v = dist s 1 v.

A degenerate case is the distribution of a scalar data. The distribution const p

allocates its scalar argument to each processor in a vector of processors of size p

For example, const 5 0 = [0; 0; 0; 0; 0].
These distributions can be combined using higher-order functions (dp and de)

to deal with nested vectors and pairs.
The distribution dp d1 d2 allocates a pair on the processors. The first pair com-

ponent is allocated according to the distribution d1 and the second one according
to d2. The result is a vector of processors containing pairs. For example,

dp seq seq ([1; 2], [10; 20]) = [([1; 2], [10; 20])]

The distribution de d1 d2 allocates the top-level vector according to d1 and the
inner vectors according to d2. This distribution takes a vector of vectors and returns
a processor vector of vectors of vectors. For matrices (vector of vectors), this entails
9 different distributions: sequential (de seq seq), row block (de (block p) seq), ...

Compilation of a Specialized Functional Language for Parallel Computers 21

Example 7
A row cyclic distribution on two processors:

de (cyc 2) seq [[1; 2]; [3; 4]; [5; 6]; [7; 8]] = [[[1; 2]; [5; 6]]; [[3; 4]; [7; 8]]]

A row cyclic, column block distribution on 4 processors:

de (cyc 2) (block 2) [[1; 2]; [3; 4]; [5; 6]; [7; 8]] = [[[1]; [5]]; [[2]; [6]]; [[3]; [7]]; [[4]; [8]]]

Each distribution defines a bijection. We write blocki, cyci, seqi, consti, dei, and
dpi for the corresponding inverse distributions.

Transformation Rules

The transformation DIST assumes that ABS has been applied and that the pro-
gram is of the form Fun

−→
X where −→

X represent the program input parameters.
Let d be the distribution of input parameters considered, then Fun is rewritten
into the equivalent program Fun ◦ d−1 ◦ d. We do not consider different choices
of distribution for dynamically allocated vectors. Vectors created by makearrayuc

are allocated on a single processor and copied vectors (produced by copy) are
distributed as their copy. Considering other distributions for these vectors would
potentially entail communications. In this respect, it is very similar to the problem
of redistribution that we mention in the future work section (Section 10.3).

Figure 9 presents the transformation rules required by our simple example. It uses
functions (pimap, pbrdcast, lookup, . . .) presented along with the target language
in Section 3.2. The rules propagate the inverse distribution d−1 to the left. Note
that since that an inverse distribution d−1 has type Vectproc p α → α, a function
Fun having the type τ1 → τ2 is transformed into a function FunComm with type
Vectproc p τ1 → Vectproc p τ2.

The rule for the composition F1 ◦ F2 ◦ di consists in transforming first the
function F2 ◦ di. This yields an equivalent expression of the form di′ ◦ F ′

2. Then,
the transformation is recursively called on F1 ◦ di′. The final expression is of the
form di′′ ◦ F ′

1 ◦ F ′
2 where F ′

1 and F ′
2 are spmd functions acting on a unique vector

of processors.
The transformation of the restructuring combinator extractx,(x,x) (which dupli-

cates its argument) consists in duplicating the local memory of each processor.
The resulting inverse distribution is an inverse distribution that distributes its pair
argument identically (dpi di di).

The rules for copy and the identity function Id consist in applying it to the local
memory of each processor. The inverse distribution is unchanged. In the same way,
distributing the pair k function (where k is a constant) consists in applying the
function to each local memory. The resulting inverse distribution distributes the
first component of its pair argument according to consti p (where p is the number
of processors) and the second according to the original distribution (di).

The rule for the mask skeleton poly2 modifies the index in the inequalities de-
scribing the polytope (P) according to the distribution. After transformation, each
processor applies the mask skeleton to its local vector. The inequalities still define a

22 P. Fradet and J. Mallet

DIST [[F1 ◦ F2 ◦ di]]
= let di’ ◦ F2’ = DIST [[F2 ◦ di]]

in DIST [[F1 ◦ di’]] ◦ F2’

DIST [[extractx,(x,x) ◦ di]]

= dpi di di ◦ pimap (extract(ip,x),(x,x))
DIST [[Fun ◦ di]]

= di ◦ pimap (Fun ◦ extract(ip,x),x) where Fun ∈ {copy, Id}
DIST [[pair k ◦ di]]

= dpi (consti p) di ◦ pimap (pair k ◦ extract(ip,x),x)
with di: Vectproc p α → α

DIST [[poly2 P F1 F2 ◦ dei (blocki p) seqi]]
= dei (blocki p) seqi

◦ pimap (λ(ip, v).poly2 (P ◦ λ(i1, i2).(ip ∗ b + i1, i2)) F1 F2 v)
with blocki p : Vectproc p (Vect b α) → Vect n α
DIST [[brdcastuc ◦ dpi (consti p) (dei (blocki p) seqi)]]

= dei (blocki p) seqi
◦ pimap (λ(ip, (buf, (e, v))).brdcastuc(0, (update (0,buf ,v))))
◦ pbrdcast ◦ pimap (λ(ip, (e, v)).(div (e, b), lookup (mod (e, b),v),(e, v)))

with blocki p : Vectproc p (Vect b α) → Vect n α
DIST [[ftuple2 F1 F2 ◦ dpi di1 di2]]

= let di’1 ◦ F’1 = DIST [[F1 ◦ di1]]
di’2 ◦ F’2 = DIST [[F2 ◦ di2]]

in dpi di’1 di’2 ◦ FUS [[(F’1, F’2)]]

Figure 9. Transformation DIST (extract).

polytope thanks to the restricted set of distributions. This key property would not
hold for more general forms of distribution. Figure 9 presents the transformation
rule for a row block distribution only (a more complicated generic rule exists also).
Note that the symbolic size computed by the size inference (Section 4) is used by
this rule. The rule is based on the fact that an element whose indexes are (i1, i2)
in the distributed matrix has indexes (ip ∗ b + i1, i2) in the initial matrix (where ip

denotes the processor index and b the size of blocks, that is the number of rows n

divided by the number of processors p). For example, the expression

poly2 (λ(i, j).i < j) f g

applied to a 8×8 matrix returns the matrix given in Figure 10 where the function f

has been applied on white dots and g on black ones. After a row block distribution
on 4 processors, each processor must apply poly2 on the elements contained in their
local memory The local function f must be applied to the elements (i, j) such that
2 ∗ ip + i < j.

In order to give the idea of the transformation for the communication skeleton
brdcastuc, let us consider a specific distribution: dei (blocki 2) seqi i.e. the inverse
of a row block distribution on 2 processors. The transformed expression consists
of a local access to the matrix (preparing the communication), a communication
pbrdcast and a brdcastuc executed by each processor. For example, let b be the
size of blocks, the expression brdcastuc ◦ dei (blocki 2) seqi is transformed into:

Compilation of a Specialized Functional Language for Parallel Computers 23

bProc 0

Proc 1

Proc 2

Proc 3

j

i

Figure 10. Impact of a row block distribution on poly2 (λ(i, j).i < j) f g

dei (blocki 2) seqi

◦ pimap λ(ip, (buf, (e, v))).(brdcastuc(0,update(0, buf, v)))
◦ pbrdcast ◦ pimap λ(ip, (e, v)).(div (e, b), lookup (mod (e, b), v, (e, v)))

The first function builds a triple containing the number of the broadcasting pro-
cessor, a value lookup (mod (e, b), x) (on the broadcasting processor it will be the
value to broadcast), and the local memory. Then, the value is broadcast (pbrdcast),
bound to buf, integrated in the local matrix (update) to be copied locally to all the
vector elements (brdcastuc).

FUS [[(pimap F1,pimap F2)]]
= pimap (ftuple2 F1 F2 ◦ (λ(ip, (x, y)).(F1(ip, x), F2(ip, y))))

FUS [[(F1 ◦ F2,pimap (λ(ip, x).x))]]
= FUS[[(F1, pimap (λ(ip, x).x))]] ◦ FUS [[(F2, pimap (λ(ip, x).x))]]

FUS [[(pbrdcast,pimap (λ(ip, x).x))]]
= pimap (λ(ip, (a, (c, d))).((a, c), d)) ◦ pbrdcast

◦ pimap (λ(ip, ((a, b, c), d)).(a, b, (c, d)))
. . .
FUS [[(F1,F2)]]

= FUS[[(F1,pimap (λ(ip, x).x))]] ◦ FUS [[(pimap (λ(ip, x).x),F2)]]

Figure 11. Transformation FUS (extract).

The distribution of the function pair ftuple2 consists in propagating the distri-
butions associated with each function and merging the resulting spmd functions in
a single parallel function.

Merging is performed by the auxiliary transformation FUS (Figure 11). When
each function of the pair is a pimap then the pair is rewritten into a single pimap

function. Otherwise, we have to sequentialize the two functions (last rule of Fig-
ure 11). Each function is associated with the identity function for the vector of
processors (i.e. pimap (λ(ip, x).x)) and composed together. The fusion of a com-
munication function and the identity requires to restructure the local data of the
processors before and after the communication operation (to thread the unused
element of the pair argument). For example, in the case of a pbrdcast, the number
of the broadcasting processor and the value to broadcast must be in the first and

24 P. Fradet and J. Mallet

second components of the local processor memory. The reorganization is carried out
by pimap (λ(ip, (a, (c, d))).((a, c), d)) and pimap (λ(ip, ((a, b, c), d)).(a, b, (c, d))).

Example 8
Given a row block distribution de (block p) seq, our example is transformed into
the spmd function:

pimap λ(ip, (x, y)).(poly2 (λ(i, j).ip ∗ b + i < j) (+) (−) x, y)
◦ pimap λ(ip, (buf, (x, y))).brdcastuc(0,update (0, buf, x), y)
◦ pbrdcast ◦ pimap λ(ip, (x, y)).(0, lookup (0, x), (x, y))
◦ pimap λ(ip, x).(copy x, x)

Given a column block distribution (de seq (block p)), we would get the following
function:

pimap λ(ip, (x, y)).(poly2 (λ(i, j).i < ip ∗ b + j) (+) (−) x, y)
◦ pimap λ(ip, x).(brdcastuc(0, (copy x)), x)

7.3 Optimizing Transformations

The transformations described in this section aim at simplifying and optimizing
local (sequential) and parallel computations. This step is described as a set of local
program transformations. For example, the following rules are applied:

• merging of pimaps

pimap F ◦ pimap G = pimap (λ(ip, v).F (ip, G(ip, v)))

• merging of rotates

rotateuc ◦ ftuple2 f rotateuc = rotateuc ◦ λ(e1, (e2, v)).(f e1 + e2, v)

In the rest of this section, we concentrate on an optimization that removes vector
allocations (copy or makearrayuc) that have been made useless by the distribution.
The impact of this optimization on performances can be considerable.

The local optimization rules are described as rewrite rules in Figure 12. In order
to preserve the update-in-place property (Section 5), these local transformations are
applied only if they do not violate a criterion on access sequences. This condition
remains implicit in the rules.

There are two classes of rules: transformations propagating the vector allocation
to the left of the expression (P.n rules) and transformations performing the elimina-
tion (E.n rules). Elimination becomes possible when an allocation has been shifted
next to its deallocation.

Propagation transformations amount to delaying vector allocations. The rule
[P.1] transforms function applications whose argument contains an allocation.

For example, the expression

dealloc (brdcastuc(1, x), copy y)

is transformed into

(dealloc ◦ ftuple2 Id copy)(brdcastuc(1, x), y)

Compilation of a Specialized Functional Language for Parallel Computers 25

Fun1(Exp1,...,Expi−1,Fun2 Expi,...,Expn)
⇀↽ Fun1 ◦ ftuplen Id . . . Id Fun2 . . . Id

(Exp1,...,Expi−1,Expi,...,Expn)
if copy, makearrayuc ∈ Fun2 [P.1]

pimap (λ(ip, (x1, ..., xn)).Exp) ◦ pimap (ftuplen Fun1. . . Funn ◦ Fun)
⇀↽ pimap (λ(ip, (x1, ..., xn)).Exp[xi 7→ Funi xi])

◦ pimap ftuplen Fun1. . . Id . . . Funn ◦ Fun
if Funi is closed and copy, makearrayuc ∈ Funi [P.2]

brdcastuc ◦ ftuple2 Fun copy
⇀↽ λ(e, v).makearrayuc(n, lookup (Fun e, v))

where copy : Vect n α → Vect n α [P.3]
dealloc ◦ ftuple2 copy Fun

⇀↽ Fun ◦ extract(x,y),y [E.1]

Figure 12. Copy Elimination (extract)

The rule [P.2] applies to a composition of pimaps and propagates the vector
allocation occurring in the first pimap into the second one.

The rule [P.3] indicates that copying a vector and broadcasting its ith value is
similar to fetching and duplicating the ith value. The copy is transformed into a
makearrayuc and the allocation is shifted to the left.

The rule [E.1] applies to the case where an allocated vector is immediately freed.
It eliminates both the vector allocation and its deallocation.

Example 9
The previous distributed version of our example with a column block distribution
which is

pimap λ(ip, (x, y)).(poly2 (λ(i, j).i < ip ∗ b + j) (+) (−) x, y)
◦ pimap λ(ip, x).(brdcastuc(0, copy x), x)

is transformed into

pimap λ(ip, (x, y)).(poly2 (λ(i, j).i < ip ∗ b + j) (+) (−) x, y)
◦ pimap λ(ip, x).(makearrayuc(n, lookup (0, x), x))

using rules [P.1] and [P.3]. The copy of the complete matrix is avoided and replaced
by the allocation of a single row.

8 Cost Analysis

This step aims at automatically evaluating the cost of L6 programs in order to
select the most efficient distribution. The complexity analysis is based on polytope
volume computations ((Tawbi, 1994), (Pugh, 1994), (Clauss, 1996)), and yields
accurate symbolic costs. This approach is made possible by the restrictions of L1

and the fixed set of data distributions considered. Together, they guarantee that
the cost of all transformed source programs can be expressed as a sum of polytope
volumes.

26 P. Fradet and J. Mallet

The goal is to find the most efficient L6 program among the different distribu-
tion choices considered. First, an abstraction function CA transforms programs into
their symbolic parallel cost. Costs are expressed using inequalities, sums, and max-
ima. Then, standard methods to compute the volume of polytopes are applied to
get a symbolic cost in polynomial form. Finally, symbolic costs are simplified and
compared using a symbolic math package.

8.1 Cost Abstraction

The abstraction function CA extracts cost information from parallel programs. The
main rules are shown in Figure 13. We use a non-standard notation for indexed
sums: we write

∑
i { 0≤i

i≤n} instead of
∑n

i=0. This notation is needed because poly-
topes (introduced by the polyn skeletons) may be defined by more than two in-
equalities.

The abstraction relies heavily on the size information present in types (see Section
4). The cost of (pimap Fun) is the maximum of the costs of Fun on each proces-
sor. Communication costs are expressed as polynomials whose constants depend on
the target computer. For example, the cost of pbrdcast involves the parameters
αtransf and αinit which denote respectively the time of one-word transfer between
two processors and the message startup time on the parallel computer considered.
Further, we use the function size which returns a polynomial representing the sym-
bolic size of the argument type. Basic arithmetic operators are also given a machine
dependent cost (αOp). One has to set those constants to adapt the analysis for a
specific parallel machine. The cost of the mask skeleton poly2 is the sum of the
cost of the first function for elements belonging to the polytope λ(i, j).Ineq and
of the cost of the second one for elements belonging to the complementary (writ-
ten Ineq). The complementary polytope is expressed as the difference between the
whole (i, j)-domain and the polytope λ(i, j).Ineq. This is a standard operation of
polyhedric libraries that yields a union of polytopes.

The obtained cost expression is then applied to symbolic arguments and reduced
in order to remove all the λ-abstractions. Since we deal with terminating programs,
any abstracted expression will have a normal form. Moreover, since costs do not
depend on scalar values the normal form boils down to generalized sums (G-sum)
and generalized maxima (G-max). A G-sum is of the form

∑
i1,...,in

{Ineq} Poly

where Ineq are inequalities made of affine expressions of loop indexes and vector
sizes and Poly is a polynomial whose variables are vector sizes or the processor
number. A G-max is of the form

k
max
i=0

Ei and denotes the maximum among the
expressions E0, . . . , Ek.

Let us emphasize that writing the source program in L1 is crucial to get an ac-
curate symbolic cost. First of all, without a severe limitation of the use of recursion
no precise cost could be evaluated in general. Further, the restrictions imposed by
L1 ensure that the mask skeletons (which limit conditional application to polytope
domains), the communication and the computation skeletons all have a complexity
which depends polynomially on vector sizes. Their costs can be described as nested
sums. Another important restriction is that expressions involving iteration indexes

Compilation of a Specialized Functional Language for Parallel Computers 27

CA[[Fun1 ◦ Fun2]] = (λx. CA[[Fun1]](Fun2 x) + CA[[Fun2]] x)

CA[[pimap Fun]] = (λx.
p−1
max
ip=0

CA[[Fun]](ip, x!ip))

where pimap Fun : Vectproc p α → Vectproc p β
CA[[pbrdcast]] = (λx.(αtransf ∗ size β + αinit) ∗ p)
where pbrdcast : Vectproc p (α, β, γ) → Vectproc p (β, γ)
CA[[Op]] = (λx.αOp)
CA[[poly2 λ(i, j).Ineq Fun1 Fun2]]

= (λx.
∑

i,j

{
0≤i<n1
0≤j<n2

Ineq

}
CA[[Fun1]](x!i)

+
∑

Ineq′∈Ineq

∑
i

{
0≤i<n1
0≤j<n2

Ineq′

}
CA[[Fun2]](x!i))

where poly2 λ(i, j).Ineq Fun1 Fun2 : Vect n1 (Vect n2 α) → Vect n1 (Vect n2 β)

Figure 13. Cost Abstraction Function CA (extract).

(mask skeletons, communication skeletons and iterfor bounds) are affine. This re-
striction, expressed by the nonterminal LinF1 in the definition of L1, along with
the standard distributions considered which keep vector accesses affine, ensures that
the inequalities of G-sums are affine.

Example 10
The following expression is extracted from our example after a column block dis-
tribution.

pimap λ(ip, (x, y)).(poly2 (λ(i, j).i < ip ∗ b + j) (+) (−) x, y)

Its cost is expressed as

Ccol ≡
p−1
max
ip=0

∑

i,j

{
0≤j<b∧0≤i<n

i<ip∗b+j

}
α+ +

∑
i,j

{
0≤j<b∧0≤i<n

ip∗b+j≤i

}
α−

8.2 Symbolic Cost Analysis

If the vector sizes and the number of processors are known at compile time, the
cost comparison is done directly by evaluating the value of the abstracted cost
expression. An enumeration of the polytope points makes it possible to obtain the
accurate numerical value of the execution time on the target machine. The best
distribution is that whose cost value is the smallest.

For unknown vector sizes, the cost computation consists of a symbolic evaluation
which yields a polynomial expression. This computation is decomposed into two
transformations: the first one evaluates polytope volumes symbolically by reusing
existing techniques and the second one removes G-maxs by calculating the maxi-
mum value of the polynomial.

28 P. Fradet and J. Mallet

Parametrized Polytope Volume Computation

The method of Clauss (Clauss, 1996) makes it possible to obtain an accurate com-
putation of the polytopes volumes. The computation principle is based on the fact
that such a volume is equal to an extension of polynomials (Ehrhart’s pseudo-
polynomials), such that the coefficients of its monomials vary according to the
remainder of integer division of the symbolic sizes by a constant.

However, this method cannot be simply extended when the processor number is
unknown at compile time. In this case, the coefficients of affine expressions in the
inequalities can contain an unknown. The volume of this kind of polytope cannot
be represented by a pseudo-polynomial.

When we want to keep the number of processors as a parameter, the technique
described in (Tawbi, 1994) can be used. It consists in cutting out the polytope by
breaking up the inequalities into several subsets such that each of them contains only
two inequalities for each variable and that the lower limit is lower than the upper
limit (to rule out null polytopes). After this step, traditional formulae of symbolic
summation can be applied and polytope volumes are expressed by polynomials
whose variables are symbolic sizes. Integer divisions are approximated by their
real division minus a constant representing the average difference between the two
operations (e.g. b i

2c is approximated by i
2 − 1

4). The evaluated cost is no longer
absolutely accurate but the introduced approximations appear to be negligible in
practice.

Example 11
Using Tawbi’s technique, Ccol is simplified into

p−1
max
ip=0

(
b2 (α+ − α−) ip + b2

(α+

2
+

α+

2
+ (p − 1)α−

))

G-max removal

Before comparing symbolic costs, G-maxs occurring in cost expressions must be
removed. This can be done by computing the maximum value taken by the poly-
nomial on the symbolic interval of the G-max. This calculation is based on the fact
that a polynomial defined over a finite interval [0..n] reaches its maximum value
at 0, n, or one of the zeros of its derivative. There can be several maximums de-
pending on conditions on symbolic sizes. A G-max can be rewritten as a collection
of polynomials, each polynomial being defined on an interval (i.e. the conditions
on sizes) where a zero of the derivative maximizes the original expression. This
technique removes G-maxs without any approximations. It may however creates
complex symbolic expressions for high-degree polynomials. In such cases, simpler,
approximated solutions exist (e.g. considering only the bounds of the interval).

Example 12
With the hypothesis α+ ≡ α−, the former expression of Ccol is simplified into

p−1
max
ip=0

(
b2 (α+ − α−) ip + b2

(α+

2
+

α+

2
+ (p − 1)α−

))
= b2pα+

Compilation of a Specialized Functional Language for Parallel Computers 29

8.3 Symbolic Cost Comparison

The last task is to compare the symbolic costs obtained for different distribution
choices. It amounts to computing the symbolic intervals where the difference of
two costs (i.e. polynomials) is positive or negative. Symbolic math packages such
as Maple (Char et al., 1992) can be used for solving this problem. It may be the
case that a distribution is definitely better than another and Maple will determine
it. But in general, it will depend on sizes and the number of processors. In such
cases, Maple can be seen as a simplifier that will produce symbolic conditions (e.g.
Cost1 > Cost2 iff n > p). The programmer may have to indicate if these conditions
are satisfied or not. Another (automatic) solution is to use these conditions as
run-time tests which choose between several versions of the program.

For our example, the column block distribution is always better than the row
block one because local computations are identical in both cases but the column
distribution does not entail any communication between processors.

9 Translation and Experiments

9.1 Translation

The spmd programs produced by the compilation chain are translated into a sequen-
tial language with calls to a communication library. In the current implementation,
we use the C language and the mpi library (Clarke et al., 1994). These are de facto
standards which guarantee portability across many different parallel machines.

Since functions are strict, first-order, and vectors are single-threaded (property
guaranteed by the update-in-place transformation, Section 5), the translation of L6

programs into C is straightforward. The single program executed by all the proces-
sors is made of the local functions (argument of pimaps), the loops (piterfor), and
calls to mpi. The composition (◦) is simply translated, locally, by the sequence (;);
it does not represent a synchronization barrier. The only synchronization between
processors is introduced through parallel communications (e.g. pbrdcast).

The transformation T RA of local functions is a straightforward translation into
C. For example, the expression e1 + e2 will be translated in

{ int tmp1;

<evaluation of e1>; tmp1 = res;

<evaluation of e2>;
res = tmp1+res

}

Since functions are strict and, in essence, first order, they are implemented by
C functions. Sequential skeletons such as brdcastuc, copy, etc. are translated into
nested loops. Memory management is implemented using the C library functions
malloc and free. The translation of communications amounts to calling the corre-
sponding communication function of mpi (recall that we have restricted ourselves to
communication skeletons having a direct counterpart in the functions implemented
in standard libraries such as mpi).

30 P. Fradet and J. Mallet

In all cases, symbolic sizes present in types are needed by the code generation.
For example, the vector size is required by the translation of the sequential com-
munication skeleton brdcastuc (to set the corresponding loop bound), and by the
translation of the parallel communication pbrdcast (to set the size of the message).

9.2 Prototype

The compiler has 9 stages. A parser produces an abstract syntactic tree starting
from the initial program. The size analysis is similar to a type inference. It uses the
library of polyhedric computations PolyLib (Wilde, 1993) to check the coherence
of constraints and to determine the overall size constraints. The update in place
transformation first approximates sharing and the access sequence of the execu-
tion. It then checks the property UP for the abstract access sequences and may
insert automatically vector copies and deallocations. The transformations making
communications explicit and distribution are simple syntactic transformations. The
symbolic cost analysis is relatively complex to implement. Indeed, the cost com-
putation must inter-operate with PolyLib and Maple. The optimization and the
translation towards the target language (C+mpi) are also syntactic transforma-
tions which can be implemented directly. Lastly, the production of object code is
carried out by the C compiler available on the target machine and by linking with
the mpi library.

The compilation stages made up of syntactic transformations are easily written
in Haskell. The static analyses are more complex to implement. For our exper-
iments, some compilation steps, such as the destructive update step and most of
the symbolic cost computation, were done manually.

9.3 Experiments

We have performed experiments on an Intel Paragon XP/S and a Cray T3E with
a handful of standard linear algebra programs (LU, Cholesky factorization, Jacobi
iteration, ...). The experiments have two objectives. First, we study the adequacy
between the theoretical execution times produced by the cost analysis and those
measured in practice. Then, we compare the performances of L1 programs with
other implementations (standard sequential C code, hpf, the skeleton language
Nesl, and the linear algebra library Scalapack).

Figure 14 gives the execution times, both measured and theoretical (i.e. statically
evaluated), for LU decomposition on a Cray T3E with a row cyclic distribution and
a row block distribution. The number of processors varies between 1 and 16 and we
give times for two matrix sizes (1024x1024 and 2048x2048). The differences between
the theoretical cost and the measured cost are less than 6 %. Such differences are
very hard to avoid. Our cost model does not take into account low level software
and hardware mechanisms like routing protocols or local cache policies. Even if we
can adapt the communication cost to the topology, we cannot model every low-
level functionality available on the target computer. The execution times on the
Paragon with the same example show the same differences with the theoretical

Compilation of a Specialized Functional Language for Parallel Computers 31

0

5

10

15

20

25

30

0 2 4 6 8 10 12 14 16

Time
in s

Proc. Nb.

meas cyc. ×
×

×

×

×
×

meas bloc. ×

×

×

×

×
×

theo cyc.
theo bloc.

(a) n = 1024

0

50

100

150

200

250

0 2 4 6 8 10 12 14 16

Time
in s

Proc. Nb.

meas cyc. ×
×

×

×

×
×

meas bloc. ×

×

×

×

×
×

theo cyc.
theo bloc.

(b) n = 2048

Figure 14. Theoretic (theo) and Measured (meas) Times for LU Decomposition on a
Cray T3E.

cost. Our experiments suggest that the cost analysis is portable. It is sufficient
to change the constants representing the basic operations costs to obtain a fairly
faithful estimation of the actual execution times.

Figure 15 gathers the execution times obtained for LU decomposition, Cholesky
factorization, the Householder method, the Jacobi iteration, and the n-body prob-
lem on the Intel Paragon. For all programs, the distribution chosen by the cost
analysis proved to be the best one in practice.

We compared the sequential execution of L1 programs with standard (and por-
table) C versions taken from (Press et al., 1986). We also compared our parallel
implementation with High Performance Fortran (a manual distribution approach).
No significant sequential or parallel runtime penalty seems to result from program-
ming using skeletons, at least for such regular algorithms. We believe that the
important differences for Jacobi and Nbody are due to the inability of the hpf

compiler to recognize collective communications in general.
We compared our code with the parallel implementation of Nesl, a skeleton-

based language (Blelloch et al., 1994). The work on the implementation of Nesl has
mostly been directed towards simd machines. On the Paragon, the Nesl compiler
distributes vectors uniformly on processors and communications are not optimized.
Not surprisingly, the parallel code is very inefficient (at least fifty times slower than
our code).

32 P. Fradet and J. Mallet

LU (n=256) LU (n=512) Cholesky (n=1024)

Proc. Skel. Seq. hpf Skel. Seq. hpf Skel. Seq. hpf

1 2.14 1.73 2.16 14.77 13.61 15.36 67.45 53.17 65.40
2 1.34 × 1.38 8.43 × 8.67 35.54 × 35.97
4 0.93 × 0.95 5.25 × 5.41 21.35 × 20.65
8 0.76 × 0.77 3.23 × 3.38 14.81 × 13.10
16 0.66 × 0.67 2.97 × 3.06 11.55 × 9.53
32 0.62 × 0.61 2.57 × 2.67 9.91 × 7.83

Householder (n=1024) Jacobi (n=512) N body (n=2048)

Proc. Skel. Seq. hpf Skel. Seq. hpf Skel. Seq. hpf

1 318.16 308.17 325.44 63.42 55.10 56.20 125.15 122.76 127.86
2 159.04 × 164.13 32.98 × 29.81 62.99 × 91.77
4 82.12 × 84.62 17.19 × 16.83 31.53 × 49.04
8 44.59 × 46.32 7.66 × 10.19 15.51 × 27.39
16 26.68 × 27.03 3.90 × 6.93 7.59 × 17.35
32 17.98 × 18.23 1.98 × 5.19 3.64 × 12.68

Figure 15. Times (in s) for Skeletons and hpf on Intel Paragon XP/S.

LU (n=512) Householder (n=1024) Cholesky (n=1024)

Proc. Skel. Scalapack Skel. Scalapack Skel. Scalapack

1 14.77 3.78 318.16 56.35 67.45 55.80
2 8.43 2.4 159.04 35.23 35.54 34.95
4 5.25 1.84 82.12 22.57 21.35 21.80
8 3.23 1.66 44.59 16.27 14.81 15.56
16 2.97 1.50 26.68 12.82 11.55 12.56
32 2.57 1.41 17.98 10.83 9.91 11.32

Figure 16. Times (in s) for Skeletons and Scalapack on Intel Paragon XP/S.

Finally, we have considered Scalapack, an optimized library of linear algebra
programs designed for distributed memory mimd parallel computers (Choi & Don-
garra, 1995). In Scalapack, the user may explicitly indicate the data distribution.
So, we indicated the best distribution found by the cost analysis in each Scalapack

program considered. If our code on 1 processor is much slower than its Scalapack

equivalent (between 3 to 6 times slower), the difference decreases as the number of
processors increases (typically, 1.8 times slower on 32 processors). We believe that

Compilation of a Specialized Functional Language for Parallel Computers 33

much of this difference comes from the machine specific routines used by Scalapack

for performing matrix operations (the Blas library). This suggests a possible in-
teresting extension of our source language. The idea would be to extend L1 with
new skeletons corresponding to the Blas operations in order to benefit from these
machine specific routines.

Note that Scalapack allows block cyclic distributions with a variable size of
blocks which are a more general form of distribution than ours. This enables the
programmer sometimes to find a better compromise between communication costs
and load balancing by guessing the right block size. This is the case for the Cholesky
factorization where the optimal distribution is block cyclic with a size of blocks
between one and the vector size divided by the number of processors. Integrating
block cyclic distributions (with a variable size of blocks) within our framework is not
obvious. First, the combination of such distributions and the polyn skeletons gives
rise to expressions whose cost cannot be expressed as polytopes. Second, it is clear
that an exhaustive analysis of all possible distributions would become unrealistic in
this case. Extending the cost analysis to this kind of distributions would presumably
require approximations and interactions with the user.

10 Conclusions

We have presented the compilation of a skeleton-based language for parallel com-
puters. Our compilation process makes use of a variety of techniques: typing, static
analyses, program transformations, polytope volume computation. Working by pro-
gram transformations in a unified framework simplifies the correctness proofs of the
implementation. One can show independently for each step that the transformation
preserves the semantics and that the transformed program respects the restrictions
enforced by the target language. We could have described the complete compila-
tion process in terms of program transformations as in (Douence & Fradet, 1998).
However, the spmd-like skeleton programs of L6 (strict, first order functions and
single-threaded arrays) are so close to C code that it was more pragmatic to reuse
the C compiler. The most important characteristic of our approach is the source
language restrictions. We now review and justify them.

10.1 Source language restrictions

Most L1 restrictions were guided by our need for an accurate, symbolic cost analysis.
Relaxing any of the following restrictions would not be possible without changing
drastically the approach.

• Restricted recursion. Disallowing general recursion is requisite for an accurate
cost analysis. The existence of a fixpoint operator in the language makes
complexity analysis undecidable. Skeletons are a way to tame recursion since
the data and control flow are known a priori.

• Restricted vector manipulations. The symbolic cost analysis requires the sym-
bolic size of all vectors. This information is inferred by the size analysis. In

34 P. Fradet and J. Mallet

order to do so, the size of a vector should not depend on scalar values but
only on constants or parameter sizes. A program observing this condition is
called “shapely” (Jay & Steckler, 1998). For example, a skeleton filter p pro-
ducing a vector made only of the elements of its vector argument satisfying
the predicate p cannot be allowed. It would produce vectors whose size is
unpredictable.

• Restricted conditionals. One cannot associate an accurate cost to condition-
als whose test depends on scalar values. Only the maximum, the minimum,
or, with probabilistic information, the average complexity could be evaluated
in this case. Moreover, to reuse the powerful tools based on polytopes, costs
must be defined by affine (in)equations depending on symbolic sizes and iter-
ator indexes. In order to ensure the affinity of cost expressions, conditionals
are constrained to be mask skeletons whose condition characterizes a convex
polytope. Typing enforces that the condition is an affine expression of sym-
bolic sizes and iterator indexes only. If this condition were expressed as a
polynomial, its cost could not be expressed as the volume of a polytope.

• Restricted communication skeletons. The communications involved by L1 pro-
grams must be statically predictable. This is ensured by enforcing the argu-
ments of the communication skeletons to be of type Index or Size in order to
infer their symbolic values at compile time.

The following restrictions were chosen because they entailed simplifications or a
more efficient implementation. They could be relaxed to a certain extent.

• The communication skeletons considered are standard collective communi-
cation primitives (broadcast, translation...) which are either hard-wired or
optimized on many parallel machines. However, new communication skele-
tons could be taken into account. Similarly, the collections of computation
and reorganization skeletons could be extended.

• We have considered only nested vectors, not multi-dimensional arrays. Nested
vectors are general but make a distinction between dimensions. For example,
some operations on columns are less easily expressed than the same operations
on rows. It would be possible to include new families of skeletons acting on
2D or 3D matrices.

• User defined functions are first order. We feel that higher order functions (and
the use of closures) would make the analyses and the implementation much
more complex. However, a simple solution to relax this restriction would be to
use a preliminary transformation removing higher order functions (e.g. (Chin,
1990)).

10.2 Related work

The existing specialized languages for data parallelism are generally based on re-
stricted forms of recursion. These restrictions are either syntactic constraints on
the form of recursive calls or the fixpoint operator is replaced by a collection of
skeletons.

Compilation of a Specialized Functional Language for Parallel Computers 35

The Alpha language (Wilde, 1994) is a first order, strongly typed, functional
language. An Alpha program is a system of recursive functions where the argu-
ments within recursive calls are restricted to be affine expressions of the function
parameters. These restrictions make it possible to define precise static analyses and
lead to efficient implementations on mimd machines (Quinton et al., 1995). Alpha

was initially introduced to express systolic algorithms and may seem too restricted
to express less regular programs. A possibility is to relax the affinity restriction, as
in the systolic language Crystal (Chen et al., 1991), but the static analyses lose
their precision.

The Fortran community has studied automatic data distribution through par-
allel cost estimation (Gupta & Banerjee, 1992; Chatterjee et al., 1993). If the com-
plete Fortran language (unrestricted conditional, indexing with runtime value,
...) is to be taken into account, communication and computation costs cannot be
accurately estimated. In practice, the approximated cost may be far from the real
execution time leading to a bad distribution choice. (Tawbi, 1994), (Pugh, 1994)
and (Clauss, 1996) focus on a subset of Fortran: loop bound and array indexes
are affine expressions of the loop variables. This restriction allows them to compute
a precise symbolic computation cost based on polytopes. Unfortunately, using this
approach to estimate communication costs is not realistic. Indeed, the cost would be
expressed in terms of point-to-point communications without taking into account
hard-wired communication primitives (Feautrier, 1994). These approaches estimate
real costs too roughly to ensure that a good distribution is chosen.

The skeletons of (Cole, 1988; Darlington et al., 1993) can be seen as hard-wired
parallel schemes (e.g. divide-and-conquer, pipe, etc.). Each skeleton comes with a
fixed, optimal, distribution and implementation; this may entail a (costly) redistri-
bution before each skeleton. This approach cannot exploit the nested parallelism
expressed by the combination of skeletons (e.g. only the parallelism of the top-
level map would be taken into account in the expression map (map (+1))). The
skeletons of (Darlington et al., 1995) include classic higher-order functions (map,
fold, scan) and coordination and distribution skeletons. In the same vein, Südholt
(Südholt, 1997) introduces high-level distribution skeletons much more general than
hpf distributions. In these approaches, data distribution is explicit and chosen by
the programmer. The skeletons of (Blelloch et al., 1994; Cai & Skillicorn, 1995)
can be nested and facilitate the expression of algorithms having several levels of
parallelism. Finally, (Shafarenko, 1995) introduces skeletons to describe sophisti-
cated data motions into multi-dimensional arrays. A type inference with subtyping
is used to detect particular data motions (e.g. collective communications such as
translations or broadcasts). Shafarenko’s skeletons are much more general than the
communication skeletons of L1 and may describe complex communication schemes
whose cost can only be approximated.

The skeleton community have defined several static analyses (size, cost) for spe-
cialized languages. Jay (Jay & Steckler, 1998) defines a shape analysis for a polymor-
phic imperative language with arrays (the FISh language). Programs are restricted
to be “shapely”, i.e. the shape (size) of arrays does not depend on scalar values.
This restriction makes it possible to evaluate statically the size of arrays. However,

36 P. Fradet and J. Mallet

the numerical size of input arrays must be known at compile time. The analysis is
not symbolic and may have the same complexity as the source program. Nitsche
(Nitsche, 2000) aims at detecting “shapely” expressions in a standard functional
language. The “shapeliness” property is undecidable in general. His analysis only
finds a subset of “shapely” expressions. Herrmann (Herrmann & Lengauer, 1998)
defines a size analysis for functional language with nested lists. The analysis is
symbolic but incomplete (recursive functions makes the problem undecidable).

The implementation of skeleton languages are based on cost analyses. (Gorlatch
et al., 1999) defines precise communication costs for combination of scan and fold
skeletons on several parallel topologies (hypercube, mesh, ...). (Cai & Skillicorn,
1995), (Rangaswami, 1996) and (Jay, 2000) define cost analyses for skeleton-based
languages. Their skeletons are less restricted than ours leading to an approximate
parallel cost (communication or/and computation). Furthermore, the costs are not
symbolic: the size of input matrices and the number of processors are supposed
to be known. (Bratvold, 1993) and (Michaelson et al., 1998) uses cost estimations
based on profiling to choose the distribution for each skeleton. Such experimental
approaches do not ensure good and portable parallel performances for different
machines, number of processors, or sizes of inputs.

Most implementations use cost information to apply local, cost-reducing, trans-
formations (Darlington et al., 1993) or to choose the best distribution for each
skeleton (Bacci et al., 1999). In both cases, implementation decisions are local and
no arbitration of tradeoffs is possible.

In our approach, we start from a high level language (L1) where skeletons can
be freely nested and obtain a skeleton language (L6) with explicit distribution,
communication, and allocation similar to the source language of (Darlington et al.,
1995). Contrary to local optimization approaches, we consider a global distribution
and cost analysis, and we are able to select the best implementation (among a
restricted set of choices).

10.3 Future Work

The preliminary results obtained by our prototype are promising but more exper-
iments are necessary to assess both the expressiveness of the language and the
efficiency of the compilation. The expressiveness may be evaluated by encoding a
significant set of examples requiring high performances. The algorithms introduced
in the Cowinchan set (Wilson, 1994) seem a good starting point since they were
conceived to test the expressiveness and the elegance of parallel programming lan-
guages. It would be possible and useful to introduce new computation skeletons or
to let the user call (possibly recursive) sequential C functions from L1 programs.
For the latter option, the user should also provide the symbolic cost of the C func-
tions and indicate whether they update some vector arguments (in such case, copies
must be performed before the call).

Experiments are also necessary to evaluate more thoroughly the precision of the
cost analysis, in particular, the costs associated with the communication primitives.
Another field of experimentation is the evaluation of our compilation process for

Compilation of a Specialized Functional Language for Parallel Computers 37

simd machines. For such parallel machines, the cost of synchronization is negligible,
but the load balancing of computations is of primary importance to obtain good
performances. Our cost analysis seems reusable in this context. Experiments are
needed to support this claim and may also suggest new optimizations specific to
simd machines.

Another research direction is to study dynamic redistributions chosen at compile-
time. Some parallel algorithms (e.g. Alternative Direction Implicit Integration (Go-
lub & Ortega, 1993)) are much more efficient in the context of dynamic data redis-
tribution. A completely automatic and precise approach to this problem would be
possible in our framework. However, this would lead to a search space of exponen-
tial size. A possible solution to this problem is to consider (high-level) interactions
with the user.

The language L1 introduces only data parallelism. However, certain algorithms
are more easily expressed in the form of control parallelism such as “divide and
conquer” algorithms. The extension of the language L1 with such skeletons would
be useful to increase the expressiveness of the language. (Herrmann & Lengauer,
1999) describes the compilation of “divide and conquer” skeletons into nested se-
quential and parallel loops. This can be seen as transforming control parallelism
into data parallelism. So, a solution to accommodate control parallelism in our ap-
proach would be to characterize a class of control parallelism skeletons that can be
transformed into L1.

More generally, skeletons appear to be an interesting technique to the design
of domain specific languages (dsls). They make it possible to describe high-level
languages enjoying important properties without preventing further extensions (by
adding new skeletons). We believe that this approach to dsls deserves more con-
sideration.

Acknowledgements: Thanks are due to Rémi Douence, Mario Südholt, and the
anonymous referees for their useful comments.

References

Bacci, B., Gorlatch, S., Lengauer, C., & Pelagatti, S. (1999). Skeletons and transformations
in an integrated parallel programming environment. Pages 13–27 of: Parallel computing
technologies. LNCS 1662.

Blelloch, G. E., Hardwick, J. C., Sipelstein, J., Zagha, M., & Chatterjee, S. (1994). Im-
plementation of a portable nested data-parallel language. Journal of Parallel and Dis-
tributed Computing, 21(1), 4–14.

Bratvold, T. (1993). A Skeleton-Based Parallelising Compiler for ML. Pages 23–33 of:
Proc. of the International Workshop on Parallel Implementation of Functional Lan-
guages.

Cai, W., & Skillicorn, D. (1995). Calculating recurrences using the Bird-Meertens formal-
ism. Parallel processing letters, 5(2), 179–190.

Char, B. W., Geddes, K. O., Gonnet, G. H., Leong, B. L., Monagan, M. B., & Watt, S. M.
(1992). Maple V language reference manual. Springer-Verlag.

Chatterjee, S., Gilbert, J. R., Schreiber, R., & Teng, S. (1993). Automatic array alignment

38 P. Fradet and J. Mallet

in data-parallel program. Pages 16–28 of: Proc. of the ACM Symposium on Principles
of Programming Languages.

Chen, M., Choo, Y., & Li, J. (1991). Crystal: Theory and Pragmatics of Generating
Efficient Parallel Code. Chap. 7, pages 255–308 of: Szymanski, Boleslaw K. (ed), Parallel
functional languages and compilers. ACM Press.

Chin, W. N. (1990). Automatic methods for program transformation. Ph.D. thesis, Imperial
College.

Choi, J., & Dongarra, J. J. (1995). Scalable linear algebra software libraries for distributed
memory concurrent computers. Pages 170–177 of: Proc. of the IEEE Workshop on
Future Trends of Distributed Computing Systems.

Clarke, L., Glendinning, I., & Hempel, R. (1994). The MPI Message Passing Interface
Standard. Pages 213–218 of: Programming environments for massively parallel dis-
tributed systems: working conference of the IFIP.

Clauss, P. (1996). Counting solutions to linear and nonlinear constraints through Ehrhart
polynomials: Applications to analyze and transform scientific programs. Pages 278–285
of: Proc. of the ACM International Conference on Supercomputing.

Cole, M. (1988). A skeletal approach to the exploitation of parallelism. Pages 667–675
of: Proc. of the CONPAR. Cambridge University Press.

Darlington, J., Field, A. J., Harrison, P. G., Kelly, P. H. J., Sharp, D. W. N., Wu, Q., &
While, R. L. (1993). Parallel programming using skeleton functions. Pages 146–160 of:
Proc. of the PARLE. LNCS 694.

Darlington, J., Guo, Y. K, To, H. W., & Jing, Y. (1995). Skeletons for structured parallel
composition. Pages 19–28 of: Proc. of ACM Symposium on Principle and Practice of
Parallel Programming.

Douence, R., & Fradet, P. (1998). A systematic study of functional language implemen-
tations. Acm transactions on programming languages and systems, 20(2), 344–387.

Feautrier, P. (1994). Toward automatic distribution. Parallel processing letters, 4(3),
233–244.

Fox, G., Johnson, M., Lyzenga, G., Otto, S., Salmon, J., & Walker, D. (1988). Solving
problems on concurrent processors. Prentice-Hall.

Golub, G. H., & Ortega, J. M. (1993). Scientific computing: An introduction with parallel
computing. Boston, MA, USA: Academic Press.

Gorlatch, S., Wedler, C., & Lengauer, C. (1999). Optimization rules for programming
with collective operations. Pages 492–499 of: Proc. of symp. on parallel and distributed
processing.

Gupta, M., & Banerjee, P. (1992). Demonstration of automatic data partitioning tech-
niques for parallelizing compilers on multicomputers. IEEE Transactions on Parallel
and Distributed Systems, 3(2), 179–193.

Guzmán, J. C., & Hudak, P. (1990). Single-threaded polymorphic lambda calculus. Pages
333–343 of: Proc. of the Symposium on Logic in Computer Science. IEEE Computer
Society Press.

Herrmann, C., & Lengauer, C. (1998). Size inference of nested lists in functional programs.
Pages 347–364 of: Proc. of the International Workshop on Implementation of Functional
Languages. University College, London.

Herrmann, C., & Lengauer, C. (1999). Parallelization of divide-and-conquer by translation
to nested loops. Journal of functional programming, 9(3), 279–310.

Hudak, P., Peyton Jones, S., Walder, P., Boutel, B., Fairbairn, J., Fasel, J., Guzman,
M. M., Hammond, K., Hughes, J., Johnsson, T., Kieburtz, D., Nikhil, R., Partain, W.,

Compilation of a Specialized Functional Language for Parallel Computers 39

& Peterson, J. (1992). Report on the programming language haskell. Sigplan notices,
27(5).

Hudak, P., Peyton Jones, S., Wadler, P., Hughes, John, Augustsson, L., Barton, D., Boutel,
B., Burton, W., Fasel, J., Hammond, K., Hinze, R., Johnsson, T., Jones, M., Launchbury,
J., Meijer, E., Peterson, J., Reid, A., & Runciman, C. (1999). Standard Libraries for
the Haskell 98 Programming Language. Research report. Yale university.

Jay, B. (2000). Costing parallel programs as a function of shapes. Science of computer
programming, 37(1), 207–224.

Jay, B., & Steckler, P. (1998). The functional imperative: shape! Pages 139–153 of:
European Symposium on Programming. LNCS 1381.

Johnsson, T. (1985). Lambda lifting: Transforming programs to recursive equations. Pages
190–203 of: Functional Programming Languages and Computer Architecture. LNCS 201.

Kastens, U., & Schmidt, M. (1986). Lifetime analysis for procedure parameters. Pages
53–69 of: European Symposium on Programming. LNCS 213.

Mallet, J. (1998a). Compilation d’un langage spécialisé pour machine massivement par-
allèle. Doctorat d’université, Dec. 1998, Rennes I, Ifsic.

Mallet, J. (1998b). Symbolic cost analysis and automatic data distribution for a skeleton-
based language. Pages 688–697 of: Euro-par’98 parallel processing. LNCS 1470.

Michaelson, G., Scaife, N., Bristow, P., & King, P. (1998). Engineering a parallel compiler
for SML. Pages 213–226 of: Proc. of the International Workshop on Implementation of
Functional Languages. University College, London.

Mitchell, J.C. (1991). Type inference with simple sub-types. Journal of Functional Pro-
gramming, 1(3), 245–286.

Nitsche, T. (2000). Shapeliness analysis of functional programs with algebraic data types.
Science of computer programming, 37(1), 225–252.

Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, Brian P. (1986). Numerical
recipes in FORTRAN The art of scientific computing. Cambridge University Press.

Pugh, W. (1994). Counting solutions to presburger formulas: How and why. Pages 121–134
of: Proc. of the conference on programming language design and implementation.

Quinton, P., Rajopadhye, S., & Wilde, D. (1995). On deriving data parallel code from a
functional program. Pages 766–773 of: Proc. of the International IEEE Symposium on
Parallel Processing.

Rangaswami, R. (1996). A cost analysis for a higher-order parallel programming model.
Ph.D. thesis, Edinburgh University.

Schmidt, D. A. (1985). Detecting global variables in denotational definitions. ACM toplas,
7(2), 299–310.

Sestoft, P. (1989). Replacing functional parameters by global variables. Pages 39–53 of:
Proc. of the Conference on Functional Programming Languages and Computer Archi-
tecture.

Shafarenko, A. (1995). Symmetries in data parallelism. The computer journal, 38(5),
365–380.

Südholt, M. (1997). The transformational derivation of parallel programs using data-
distribution algebras and skeletons. Ph.D. thesis, Technische Universität Berlin.

Tawbi, N. (1994). Estimation of nested loops execution time by integer arithmetic in
convex polyhedra. Pages 217–223 of: Proc. of international symposium on parallel
processing.

Turner, D. A. (1979). A new implementation technique for applicative languages. Software
– practice and experience, 9, 31–49.

40 P. Fradet and J. Mallet

Wadler, P. (1990). Linear types can change the world! Pages 561–581 of: Programming
concepts and methods. North Holland.

Wilde, D. (1993). A library for polyhedral operations. Publication Interne 785. IRISA.

Wilde, D. (1994). The ALPHA language. Tech. rept. 2295. INRIA.

Wilson, G. (1994). Assessing the usability of parallel programming systems: The cowichan
problems. Proc. of the ifip working conference on programming environments for mas-
sively parallel distributed systems.

Compilation of a Specialized Functional Language for Parallel Computers 41

A Transformations & Analyses (Addendum)

We describe here additional rules for the size inference and the transformations.
Along with the rules shown in the main text, there is at least one rule for each
skeleton class. The reader is referred to (Mallet, 1998a) for complete descriptions.

A.1 Size Inference

C ` Int ⊆ α Op ∈ {+,−}
C, Γ ` Op : (α, α) → α, {} [OP]

C, Γ ` e : αs1 , C1 C ` α ⊆ Float

C, Γ ` k ∗ e : αs2 , C1 ∪ {s2 = k ∗ s1}
[LINF2]

C, Γ ` e : Indexs1 , C1 C, Γ ` f : (Indexs2 , β) → γ, C2 C1∪C2 ⇒ {1 ≤ s2 ≤ s1}
C, Γ ` iterfor e f : α → α, C1 ∪ C2 ∪ {α = β = γ} [ITE]

C, Γ ∪ {x1 : α1, ..., xn : αn} ` e : β, C1

C, Γ ` λ(x1, ..., xn).e : (α1, ..., αn) → β, C1
[ABS]

C, Γ ` zip : (Vect s1 α, Vect s2 β) → Vect s1 (α, β), {s1 = s2}
[ZIP]

C, Γ ` e : Sizes, C1

C, Γ ` makearray e : α → Vect s α, C1
[MAK]

C, Γ ` e : β1, C1 C, Γ ` f : (β2, α) → β3, C2

C, Γ ` fold e f : Vect s α → β1, C1 ∪ C2 ∪ {β1 = β2 = β3}
[FOLD]

A.2 Distribution

Abstraction Transformation

ABS[[λ
−→
X .Exp]]

−→
Y = ABS[[extract(a,b),a ◦ ABS [[Exp]]

−→
X]]

−→
Y

ABS[[iterfor Exp Fun]]
−→
X = iterforuc (ABS [[Fun]]

−→
X)

◦ extract(a,(b,c)),(b,(c,a)) ◦ ftuple2 Id (ABS[[Exp]]
−→
X)

ABS[[Op]]
−→
X = ftuple2 Op Id

ABS[[zip]]
−→
X = ftuple2 zip Id

ABS[[makearray Exp]]
−→
X = ftuple2 makearrayuc Id

◦ extract(a,(b,c)),((a,b),c) ◦ ftuple2 Id (ABS[[Exp]]
−→
X)

ABS[[fold Exp Op]]
−→
X = ftuple2 (folduc Op) Id

◦ extract(a,(b,c)),((b,a),c) ◦ ftuple2 Id (ABS[[Exp]]
−→
X)

42 P. Fradet and J. Mallet

Distribution Transformation

DIST [[iterforuc F ◦ dpi (loci p) di]]
= let di ◦ F’= DIST [[F ◦ dpi (loci p) di]]

in di ◦ piterfor F’ with di :Vect p α → α
DIST [[dealloc ◦ dpi di1 di2]]

= di2 ◦ pimap (λ(ip, x).dealloc x)
DIST [[Op ◦ consti k p]]

= consti k p ◦ pimap (λ(ip, x).if ip = k then Op x else x)
DIST [[zip ◦ dpi fdi fdi]]

= fdi ◦ pimap (λ(ip, x).zip x)
DIST [[zip ◦ dpi (dei fdi di1) (dei fdi di2)]]

= dei fdi (dpi di1 di2) ◦ pimap (λ(ip, x).zip x)
DIST [[folduc Op ◦ dpi seqi (consti k p)]]

= consti 0 p ◦ pimap (λ(ip, (e, v)).if ip = 0 then folduc Op(e, v) else e)
◦ ptransfer ◦ pimap (λ(ip, (v, e)).(k, 0, e, v))

DIST [[folduc Op ◦ dpi (blocki p) (consti k p)]]
= consti k p

◦ pimap (λ(ip, (v1, v2)).if ip = k then folduc Op (v1, v2) else 1Op)
◦ pgather ◦ pimap (λ(ip, (v1, v2)).(k,folduc Op (v1, 1Op), v2))

if Op is commutative
DIST [[folduc Op ◦ dpi (cyci p) (consti k p)]]

= consti k p
◦ pimap (λ(ip, (v1, v2)).if ip = k then folduc Op (v1, v2) else 1Op)
◦ pgather ◦ pimap (λ(ip, (v1, v2)).(k,folduc Op (v1, 1Op), v2))

if Op is commutative
DIST [[folduc Op ◦ dpi (cyci p) (consti k p)]]

= consti k p
◦ pimap (λ(ip, (v1, v2)).if ip = k then folduc Op (cyci p v1, v2) else 1Op)
◦ pgather ◦ pimap (λ(ip, x).(k,x))

DIST [[makearrayuc ◦ dpi (consti k p) (consti k p)]]
= consti k p ◦ pimap (λ(ip, (e, x)).makearrayuc(e,x))

A.3 Cost Analysis

CA[[λ(x1, ..., xn).e]] = λ(x1, ..., xn).CA[[e]]
CA[[Fun Exp]] = CA[[Fun]](Exp)+ CA[[Exp]]
CA[[(Exp1, Exp2)]] = CA[[Exp1]] + CA[[Exp2]]
CA[[x]] = 0
CA[[k]] = 0
CA[[iterforuc Fun]] = (λx.

∑
i

{
0≤i
i≤s

}
CA[[Fun]](i, x))

where iterforuc Fun : (Indexs, α) → α
CA[[copy]] = (λx.αcopy∗size α) where copy : α → β
CA[[dealloc]] = (λx.αdea∗size α) where dealloc : (α, β) → β
CA[[zip]] = (λx.αzip ∗ n) where zip : (Vect n α, Vect n β) → γ
CA[[makearrayuc]] = (λx.αmake ∗ e ∗ size α) where makearrayuc : (β, α) → Vect e α
CA[[folduc Op]] = (λx.

∑
i

{
0≤i
i<n

}
(CA[[Op]](x!i) + αfol))

where folduc Op : Vect n α, β) → γ
CA[[brdcastuc]] = (λx.αbr ∗ n ∗ size α) where brdcastuc : (α, Vect n α) → Vect n α

Compilation of a Specialized Functional Language for Parallel Computers 43

B Examples of Proofs

The compilation process is proven correct by showing for each transformation step
three properties (cf. Section 2). Proofs are mainly simple structural inductions. We
sketch here the proof for the property 1 for the abstraction ABS and the property 2
for the distribution transformation DIST .

B.1 Proof of the Property 1

The source language of the transformation ABS is L3 which is the language L1 with
two additional functions copy and dealloc and such that the argument functions
of the skeleton polyn are closed.

The target language of ABS is L4 whose syntax is:

Prog4 ::= Fun4 VarTuple4

Fun4 ::= Fun4 ◦ Fun4 | iterforuc Fun4 | Op4 | extract(VarTuple4,VarTuple4)

| ftuplen Fun4 ...Fun4

| CompSkel4 | ReorgSkel4 | CommSkel4 | MaskSkel4
Op4 ::= + | − | ∗ | div | exp | log | cos | . . . | copy | dealloc

CompSkel4 ::= map Fun4 | folduc Op4 | scanuc Op4

ReorgSkel4 ::= zip | unzip | append | makearrayuc

CommSkel4 ::= brdcastuc | transferuc | rotateuc | scatteruc

| gatheruc | allgatheruc | allbrdcastuc

MaskSkel4 ::= polyn λ(x1, . . . , xn).Ineq4 Fun4 Fun4

Ineq4 ::= Ineq4 ∧ Ineq4 | LinF4 < LinF4 | LinF4 = LinF4

LinF4 ::= LinF4 + LinF4 | LinF4 − LinF4 | k∗LinF4 | x | k

VarTuple4 ::= (VarTuple4,...,VarTuple4) | x

The property 1 is expressed as:
∀P ∈ Prog3, (ABS[[P]]−→X)−→X ∈ Prog4 where −→X are the free variables of P .
The proof of this property boils down to the proof of the corresponding properties

on (recursive) non-terminals of L3. That is:

• ∀E ∈ Exp3,ABS[[E]]−→X ∈ Fun4 where −→X contains the free variables of E

• ∀F ∈ Fun3,ABS[[F]]−→X ∈ Fun4 where −→X contains the free variables of F

This proof is done by structural induction. We show only the case of pairs.
Let E1, E2 ∈ Exp3, we have

ABS[[(E1,E2)]]
−→X = extract((a,b),(a,b)),((a,a),b)

◦ ftuple2 (ABS[[E1]]
−→X) (ABS[[E2]]

−→X) ◦ extractx,(x,x)

By induction hypothesis, we have ABS[[E1]]
−→X ∈ Fun4 and ABS[[E2]]

−→X ∈ Fun4.
So ftuple2 (ABS[[E1]]

−→X) (ABS[[E2]]
−→X) ∈ Fun4 and the right hand side expression

belongs to Fun4.

44 P. Fradet and J. Mallet

B.2 Proof of the Property 2

To prove that the distribution transformation preserves the semantics, we show, for
each transformation rule, that the left-hand side expression is semantically equal
to the right-hand side one.

For example, in order to prove the poly2 rule, we use the Haskell definition of
the inverse distribution dei (blocki p) seqi :

dei (blocki p) seqi proc

= array (0,p*b-1)

[(ip*b+i, array (0,n-1) [(j,proc!ip!i!j)| j<-[0..n-1]])

| i<-[0..b-1], ip<-[0..p-1]]

where p = sizeRange(bounds proc)

b = sizeRange(bounds proc!0)

n = sizeRange(bounds proc!0!0)

Let dei (blocki p) seqi : Vectproc p (Vect b (Vect n α)) → Vect m (Vect n α),
Then, for all proc : Vectproc p (Vect b (Vect n α))
(poly2 P F1 F2 ◦ dei (blocki p) seqi) proc

= poly2 P F1 F2 (dei (blocki p) seqi proc)
◦ definition

= poly2 P F1 F2

(array (0,p*b− 1) [(ip*b+i, array (0,n− 1) [(j,proc!ip!i!j)
| j<-[0..n− 1]]) | i<-[0..b− 1], ip<-[0..p− 1]])

dei definition
= array (0,p ∗ b − 1)

[(ip*b+i, array (0,n− 1)
[(j,if P(ip*b+i,j) then F1(proc!ip!i!j) else F2(proc!ip!i!j))

| j<-[0..n− 1]]) | i<-[0..b− 1], ip<-[0..p− 1]]
poly2 definition + ! definition

= dei (blocki p) seqi

(pimap λ(ip, v).(array (0,b − 1) [(i, array (0,n− 1)
[(j,if P(ip*b+i,j) then F1(v!i!j) else F2(v!i!j))

| j<-[0..n− 1]])| i<-[0..b− 1]]) proc)
dei definition + pimap definition

= dei (blocki p) seqi

(pimap (λ(ip, v).poly2 P ◦ λ(i, j).(ip ∗ b + i, j) F1 F2 v) proc)
poly2 definition

= (dei (blocki p) seqi

◦ pimap (λ(ip, v).poly2 P ◦ λ(i, j).(ip ∗ b + i, j) F1 F2 v)) proc

◦ definition
Thus,

poly2 P F1 F2 ◦ dei (blocki p) seqi

= dei (blocki p) seqi ◦ pimap (λ(ip, v).poly2 P ◦ λ(i, j).(ip∗ b+ i, j) F1 F2 v

= DIST [[poly2 P F1 F2 ◦ dei (blocki p) seqi]]

Compilation of a Specialized Functional Language for Parallel Computers 45

C Examples of Programs

C.1 LU decomposition

The LU decomposition computes the decomposition of a square matrix M in two
matrices L (triangular lower) and U (triangular higher) such as M = L ∗ U .

The L1 program implementing this algorithm is given Figure C 1. This program
takes a matrix M of float of size n×n and returns a matrix containing the matrices
L and U . The algorithm consists of an iteration (main function LU). At the kth
step, the loop body determines the kth row and the kth column of the matrix result.
This calculation is carried out by elimination by taking the element of the row k−1
and the column k − 1 as pivot. The function calc applies the function fcalc to all
the elements having indexes of row and column greater than k. This computation
is iterated until the calculation of the nth row and the nth column. A Fortran

version of this program can be found in (Press et al., 1986).

LU(M) where
M :: Vect n (Vect n Float)
LU = iterfor (n − 1) loop
loop = λ(k, a).calc(fac(apivot(colrow(k, a))))
calc = λ(k, a, row, piv).poly2 (λ(i, j).k ≤ i ∧ k ≤ j) fcalc first

(map zip3(zip3(a, row, piv)))
fcalc = λ(a, row, piv).a − row ∗ piv
fac = λ(k, a, row, col, piv).(k, a, row,map (map /) (map zip (zip (col, piv))))
apivot = λ(k, a, row, col).(k, a, row, col,map (brdcast (k − 1)) row)
colrow = λ(k, a).(k, a,brdcast (k − 1) a,map (brdcast (k − 1)) a)
zip3 = λ(x, y, z).map p2t (zip (x,zip (y, z)))
p2t = λ(x, (y, z)).(x, y, z)
first = λ(x, y, x).x

Figure C 1. LU decomposition in L1.

C.2 The n-body problem

The n-body problem concerns the simulation of N particles interacting via a long-
range force such as gravity.

The L1 program given Figure C 2 evaluates the new configuration of N particles
after one unit of time. It takes a vector V of size N of a 7-tuple of floats. Each
tuple element represents parameters of one particle (coordinates, speed, weight,
...) and returns a vector containing the new parameters of particles. The main
iteration computes the interaction between each pair in turn (function loop). This
function takes two copies of the initial vector, shifts the second copy to the right in
order to compute (function floop) the interaction between each pair of particles.
After (N − 1)/2 iterations, the interactions of all pairs have been computed. The
resulting vector contains the new configurations induced by the interactions of the
N particles. A Fortran version of this program can be found in (Fox et al., 1988).

46 P. Fradet and J. Mallet

NBODY (V) where
V :: Vect N (Float, Float, Float, Float, Float, Float, Float)
NBODY = λv.end(iterfor (div (N − 1) 2) loop (v, v))
loop = λ(i, (p, q)).floop (p, rotate 1 q)
floop = λ(p, q).unzip (map assign(zip3(p, q, (calc(zip (p, q))))))
calc = λv.map (txyz.fac.sq.dxyz) v
dxyz = λ((pm, px, py, pz, a, b, c), (qm, qx, qy, qz, a, b, c)).

(pm ∗ qm, px − qx, py − qy, pz − qz, 0)
sq = λ(a, b, c, d, e).(a, b, c, d, ((b ∗ b) + c ∗ c) + (d ∗ d))
fac = λ(a, b, c, d, e).(a/(e ∗ (sqrt e)), b, c, d, e)
txyz = λ(a, b, c, d, e).(a ∗ b, a ∗ c, a ∗ d)
assign = λ((pm, px, py, pz, pfx, pfy, pfz), (qm, qx, qy, qz, qfx, qfy, qfz), (tx, ty, tz)).

((pm, px, py, pz, pfx − tx, pfy − ty, pfz − tz),
(qm, qx, qy, qz, qfx + tx, qfy + ty, qfz + tz))

end = λ(p, q).map plus(zip (p, rotate (−(÷N 2)) q))
plus = λ((a1, b1, c1, d1, pfx, pfy, pfz), (a2, b2, c2, d2, qfx, qfy, qfz)).

(pfx + qfx, pfy + qfy, pfz + qfz)
zip3 = λ(x, y, z).(map p2t(zip (zip (x, y), z)))
p2t = λ((x, y), z).(x, y, z)

Figure C 2. N-bodies in L1.

