
Classical Coordination Mechanisms

in the Chemical Model

J.-P. Banâtre∗ P. Fradet† Y. Radenac∗

In memory of Gilles Kahn

The essence of this paper stems from discussions that the first author (Jean-Pierre Banâtre) had with Gilles

on topics related with programming in general and chemical programming in particular. Gilles liked the

ideas behind the Gamma model [6] and the closely related Berry and Boudol’s CHAM [7] as the basic

principles are so simple and elegant. The last opportunity Jean-Pierre had to speak about these ideas to

Gilles, was when he presented the LNCS volume devoted to the Unconventional Programming Paradigms

workshop [1]. The 10 minutes appointment (at that time, he was CEO of INRIA) lasted a long time. Gilles

was fine and in good humor, as often, and he was clearly happy to talk about a subject he loved. He spoke

a lot about λ-calculus, the reduction principle, the β-reduction. . . a really great souvenir!

Abstract

Originally, the chemical model of computation has been proposed as a sim-
ple and elegant parallel programming paradigm. Data is seen as “molecules”
and computation as “chemical reactions”: if some molecules satisfy a prede-
fined reaction condition, they are replaced by the “product” of the reaction.
When no reaction is possible, a normal form is reached and the program termi-
nates. In this paper, we describe classical coordination mechanisms and parallel
programming models in the chemical setting. All these examples put forward
the simplicity and expressivity of the chemical paradigm. We pay a particu-
lar attention to the chemical description of the simple and successful parallel
computation model known as Kahn Process Networks.

∗INRIA/IRISA, Université de Rennes 1, Campus de Beaulieu, 35042 Rennes Cedex, France,
{jbanatre,yradenac}@irisa.fr
†INRIA Rhône-Alpes, 655, avenue de l’Europe, 38330 Montbonnot, France

Pascal.Fradet@inria.fr

1



1 Introduction

The Gamma formalism was proposed twenty years ago to capture the intuition
of computation as the global evolution of a collection of atomic values interacting
freely [6]. Gamma can be introduced intuitively through the chemical reaction
metaphor. The unique data structure in Gamma is the multiset which can be
seen as a chemical solution. A simple program is made of a reaction condition
and an action. Execution proceeds by replacing elements satisfying the reaction
condition by the elements specified by the action. The result of a Gamma
program is obtained when a stable or inert state is reached, that is to say, when
no more reactions can take place.

For example, the computation of the maximum element of a non empty
multiset of comparable elements can be described by the reaction rule

replacex, y by x if x ≥ y

meaning that any couple of elements x and y of the multiset such that x is
greater or equal to y is replaced by x. This process goes on till a stable state
is reached, that is to say, when only the maximum element remains. Note
that, in this definition, nothing is said about the order of evaluation of the
comparisons. If several disjoint pairs of elements satisfy the condition, reactions
can be performed in parallel.

Gamma can be formalized as a multiset AC-rewriting language. The Gamma
formalism, and its derivative works as summarized in [2], is based on finite mul-
tisets of basic values. However, this basic concept can be extended by allowing
elements of multisets to be reactions themselves (higher-order multisets), to have
an infinite multiplicity (infinite multisets) and even to have a negative multiplic-
ity (hybrid multisets). In [4], we have investigated these unconventional multiset
structures (higher-order, infinite and hybrid multisets) and shown how they can
be interpreted in a chemical programming framework. In particular, we have
introduced the γ-calculus, a minimal higher-order calculus that summarizes the
fundamental concepts of chemical programming. From this basic language, we
have derived HOCL (the Higher Order Chemical Language), a programming
language built by extending the γ-calculus with constants, operators, types and
expressive patterns. The reflexive CHAM [10] is another approach to higher-
order multiset programming.

The objective of this paper is to show how many well-known parallel mecha-
nisms from basic mutual exclusion to Kahn Process Networks can be expressed
in the same unified framework: the chemical model. This work illustrates one
more time the expressivity of chemical languages. It also paves the way to
formal comparisons of classical coordination structures and models.

2 The higher-order chemical language

The HOCL language [4] is a higher-order extension of Gamma based on the
γ-calculus [3]. Here, we present briefly and informally the features of HOCL

2



used in this article. The interested reader will find a more complete and formal
presentation in [4].

In HOCL, programs, solutions, data and reaction rules are all molecules. A
program is a solution of atoms

〈A1, . . . , An〉

that is, a multiset of constants, reaction rules and (sub-)solutions. The asso-
ciativity and commutativity of the operator “,” formalize the Brownian mo-
tion within a chemical solution. These laws can always be used to reorganize
molecules in solutions. Atoms are either basic constants (integers, booleans, etc.),
pairs (A1:A2), sub-solutions (〈M〉) or reaction rules. A reaction rule is written

oneP byM if C

where P is a pattern which selects some atoms, C is the reaction condition and
M the result of the reaction. If P matches atoms which satisfy C, they are
replaced by M . For example,

〈(onex::Int by x+ 1 if x div 2), 4, 9, 15〉 −→γ 〈5, 9, 15〉.

The pattern x::Int matches any integer, the condition imposes the integer to
be even and the action replaces it by the next odd integer. In the rest of this
article, we omit types in patterns when there is no ambiguity.

Such reaction rules are said to be one-shot since they are consumed when
they react. In Gamma, rewrite rules were outside the multiset and remained as
long as they could be applied. In HOCL, such recursive rules are called n-shot
and, like in Gamma, there are written as

replaceP byM if C.

The execution of a chemical program consists in performing reactions (non de-
terministically and possibly in parallel) until the solution becomes inert i.e., no
reaction can take place anymore. For example, the following HOCL program
computes the prime numbers lower than 10 using a version of the Eratosthenes’
sieve:

〈(replacex, y by x if x div y), 2, 3, 4, 5, 6, 7, 8, 9, 10〉.

The reaction removes any element y which can be divided by another one x.
Initially several reactions are possible. For example, the pair (2, 10) can be
replaced by 2, the pair (3, 9) by 3 or (4, 8) by 4, etc. The solution becomes inert
when the rule cannot react with any pair of integers in the solution, that is to
say, when the solution contains only prime numbers. Even if there are many
possible executions, the result of the computation in our example is always
〈(replacex, y by x if x div y), 2, 3, 5, 7〉.

A molecule inside a solution cannot react with a molecule outside the solution
(the construct 〈.〉 can be seen as a membrane). Reaction rules can access the
content of a sub-solution only if it is inert. This important restriction allows

3



to control the evaluation order in an otherwise highly non deterministic and
parallel model. All reactions should be performed in a sub-solution before its
content may be accessed or extracted. So, the pattern 〈P 〉 matches only inert
solutions whose content matches the pattern P .

Rules can be named (or tagged) using the syntax

name = replaceP byM if C.

Names are used to match and extract specific rules using the same syntax
(name = x). We often use the let operator to name rules and assume that

let name = M inN def= N [(name = M)/name]

that is, the occurrences of name in N are replaced by name = M .
We also often make use of the pattern ω which can match any molecule or

nothing. This pattern is very convenient to extract elements from a solution.
Using all these features, the Eratosthenes’ sieve can be rewritten in order to

remove the n-shot reaction rule sieve at the end of the computation:

let sieve = replacex, y by x if x div y in
let clean = one〈sieve = x, ω〉byω in

〈clean, 〈sieve, 2, 3, 4, 5, 6, 7, 8, 9, 10〉〉

The reduction proceeds as follows:

〈clean = . . . , 〈sieve = . . . , 2, 3, 4, 5, 6, 7, 8, 9, 10〉〉
∗−→ 〈clean = . . . , 〈sieve = . . . , 2, 3, 5, 7〉〉
−→ 〈2, 3, 5, 7〉

The reaction rule clean cannot be applied until the sub-solution is inert. The
rule sieve reacts until all primes are computed. Then, the one-shot rule clean
extracts the prime numbers and suppresses the reaction rule sieve.

3 The basic coordination structures of HOCL

HOCL is a programming language that, as explained below, provides some
primitive coordination structures: namely, parallel execution, mutual exclusion,
the atomic capture and the serialization and parallelization of computations.

3.1 Parallel execution

When two reactions involve distinct tuples of elements, both reactions can occur
at the same time.

For example, when computing the sum of a multiset of integers:

〈42, 6, 14, 5, 2, 8, 5, 42, 89, add = replacex, y by x+ y〉

several reactions involving the rule add may occur at the same time provided
that the couples of integers involved are distinct. Parallel execution relies on a
fundamental property of HOCL: mutual exclusion.

4



3.2 Mutual exclusion

The mutual exclusion property states that a molecule cannot take part to several
reactions at the same time. For example, several reactions can occur at the
same time in the previous solution (e.g., (42,89) at the same time as (5,5), etc.).
Without mutual exclusion, the same integer could occur in several reactions at
the same time. In this case, our previous program would not represent the sum
of a multiset since, for example, 89 would be allowed to react with 2 and 6 and
be replaced by 91 and 95.

3.3 Atomic capture

Another fundamental property of HOCL is the atomic capture. A reaction rule
takes all its arguments atomically. Either all the required arguments are present
or no reaction occurs. If all the required arguments are present, none of them
may take part in another reaction at the same time.

Atomic capture is useful to express non blocking programs. For example,
the famous dining philosophers problem can be expressed in HOCL as follows.
Initially the multiset contains N forks (i.e., N pairs Fork:1, . . . , Fork:N) and
the two following n-shot reaction rules eat and think:

eat = replace Fork:f1, Fork:f2
by Phi:f1
if f2 = f1 + 1 mod N

think = replace Phi:f
by Fork:f, Fork:(f + 1 mod N)
if true

The eat rule looks for two adjacent forks Fork:f1 and Fork:f2 with f2 = f1 +
1 mod N and “produces” the eating philosopher Phi:f1. This reaction relies on
the atomic capture property: the two forks are taken simultaneously (atomicity)
and this prevents deadlocks. The think rule “transforms” an eating philosopher
into two available forks. This rule models the fact that any eating philosopher
can be stopped non deterministically at anytime.

3.4 Serialization

A key motivation of chemical models in general, and HOCL in particular, is to
be able to express programs without any artificial sequentiality (i.e., sequential-
ity that is not imposed by the logic of the algorithm). However, even within
this highly unconstrained and parallel setting, sequencing of actions can be ex-
pressed. Sequencing relies on the fact that a rule needing to access a sub-solution
has to wait for its inertia. The reaction rule will react after (in sequence) all
the reactions inside the sub-solution have completed.

The HOCL program that computes all the primes lower than a given integer
N can be expressed by a sequence of actions that first computes the integers

5



from 1 to N and then applies the rule sieve:

〈〈iota, N〉, thensieve〉

where
thensieve = one〈iota = r, x, ω〉by sieve, ω

iota = replacexby x, x− 1 if x > 1
sieve = replacex, y by x if x div y

The rule iota generates the integers from N to 1 using the notation x to denote
a distinguished (e.g., tagged) integer. The one-shot rule thensieve waits for the
inertia of the sub-solution. When it is inert, the generated integers are extracted
and put next to the rule sieve (iota and the tagged integer 1 are removed). The
wait for the inertia has serialized the iota and sieve operations.

Most of the existing chemical languages share these basic features. They all
have conditional reactions with atomic capture of elements. On the other hand,
they usually do not address fairness issues.

4 Classical coordination in HOCL

In this section, we consider well known coordination mechanisms and express
them in HOCL. Most of them are communication patterns between sequential
processes. We first show how to model such sequential processes as chemical
solutions. Then, we propose a chemical version of communications using ren-
dezvous, shared variables, Linda primitives and Petri nets.

4.1 Sequential processes in HOCL

In order to represent sequential and deterministic processes in the chemical
model, we encode them at a fairly low level. For instance, the program counter
and addresses of instructions will be represented explicitly. It should be clear
that syntactic sugar could be used to express sequential processes (and many
subsequent communication schemes) more concisely. However, for simplicity
and uniformity reasons, we will stick to pure and basic HOCL programs.

A process is a solution made of:

• a local store storing variables represented by pairs of the form name:value;

• a code represented by a sequence of instructions encoded by pairs of the
form address:instruction where address is an integer and instruction is a
reaction rule to modify local variables;

• a program counter PC:address recording the next instruction to be exe-
cuted.

A process is an inert solution that contains both the program to execute and its
local store. A reaction rule, named run, executes the current instruction (i.e.,
the instruction pointed to by PC) of processes.

6



For example, the process P = {TEMP : = X; X : = Y; Y : = TEMP; } that
swaps the content of two variables X and Y is represented by the sequence of
instructions:

code ≡

 1:〈assign(TEMP,X)〉,
2:〈assign(X,Y)〉,
3:〈assign(Y,TEMP)〉

where assign(A,B) is the rule

assign(A,B) ≡ one A:a, B:b
by A:b, B:b

which performs the assignment A : = B.
Assuming an initial store where the local variables X, Y and TEMP have the

values 10, 23 and 0 respectively, the process P in its initial state is represented
by the solution

〈P:〈PC:1,X:10,Y:23,TEMP:0, code〉, run〉

with
run = replace p:〈PC:a, a:〈c〉, ω〉

by p:〈PC:(a+ 1), a:〈c〉, c, ω〉

The run rule extracts the instruction pointed to by PC from the list of instruc-
tions and increments the program counter. The rule representing the instruction
(i.e., c) reacts and modifies the local store. When the solution representing the
process is inert again, the run rule can be applied again. In our example, it is
easy to convince oneself that the solution will be rewritten into the final inert
solution

〈P:〈PC:4, X:23, Y:10, TEMP:10, code〉, run〉

Since there is no instruction at address 4, the run rule cannot react anymore.
Other instructions are easily defined, for example:

• the neg rule
neg(A) ≡ one A:a

by A:(not a)

corresponds to the statement A : = not A.

• the add rule

add(A,B,C) ≡ one A:a, B:b, C:c
by A:(b+ c), B:b, C:c

corresponds to the statement A : = B + C.

• the jmp instruction
jmp(b) ≡ one PC:a

by PC:b

sets PC to a new address.

7



• the ncondJmp instruction

ncondJmp(B, b) ≡ one PC:a,B:k
by B:k, PC:(if k then a else b)

sets PC to a new address or leaves it unchanged depending on the value
of the boolean variable B.

The run rule can be placed into a solution with several processes like:

〈run, P1:〈. . .〉, . . . , Pn:〈. . .〉〉

In absence of coordination rule, run will rewrite all processes step by step po-
tentially in parallel or non-deterministically. We now describe coordination
(communication, synchronization) instructions between two (or more) processes.
Contrary to standard imperative instructions which are of the form a:〈i〉 (i.e.,
within a solution), coordination instructions will be of the form a:i:x:y (i.e., in
tuples). They cannot be executed by the run rule. The coordination mechanism
relies on specific reaction rules taking as parameters all actors (processes, shared
variables, queues, etc.) involved in the interaction.

4.2 Rendezvous in HOCL

We consider concurrently executing processes communicating by atomic, in-
stantaneous actions called “rendezvous” (or sometimes, “synchronous message
passing”). If two processes are to communicate, and one reaches the point at
which it is ready to communicate first, then it stalls until the other process is
ready as well. The exchange (communication) is atomic in that it is initiated
and completed in a single uninterruptable step. Examples of rendezvous mod-
els include Hoare’s communicating sequential processes (CSP) [11] and Milner’s
calculus of communicating systems (CCS) [13].

Rendezvous models are particularly well-suited to applications where re-
source sharing is a key element, such as client-server database models and mul-
titasking or multiplexing of hardware resources. A key feature of rendezvous-
based models is their ability to cleanly model nondeterminate interactions.

In HOCL, the rendezvous is represented as an atomic capture of two pro-
cesses in a particular state. The sender should be ready to send something and
the receiver should be ready to receive. The rule runRdV, below, implements a
rendezvous communication in one atomic step:

runRdV = replace p1:〈PC:a, a:send:p2:x, x:k, ω1〉,
p2:〈PC:b, b:recv:p1:y, y:l, ω2〉

by p1:〈PC:(a+ 1), a:send:p2:x, x:k, ω1〉,
p2:〈PC:(b+ 1), b:recv:p1:y, y:k, ω2〉

The communication between two processes p1 and p2 takes place when the
active instruction of p1 is of the form send:p2:x (“send the value of variable
x to p2”) and the active instruction of p2 is of the form recv:p1:y (“place the

8



value received from p1 in variable y”). The value of x is placed into y and both
program counters are incremented.

Typically, a collection of sequential processes communicating by rendezvous
will be represented by a solution of the form:

〈run, runRdV, P1:〈. . .〉, . . . , Pn:〈. . .〉〉

The reaction run will execute (in parallel and non-deterministically) processes
unwilling to communicate. At the same time, runRdV will execute (potentially
several) pairs of processes waiting for a rendezvous.

4.3 Shared variables

Local variables are inside the solution representing the associated process. Shared
variables are represented by data in the top-level solution containing the pro-
cesses. For example, the shared variable X whose value is 3 is represented as:

〈. . . , Pi:〈. . .〉, . . . ,X:3〉

A shared variable is manipulated using two instructions:

• a:Wshare:X:Y which writes the value of the local variable Y in the shared
variable X;

• a:Rshare:X:Y which reads the value of the shared variable Y and stores
it in the local variable X.

The associated reaction rules are

runWshare = replace p:〈PC:a, a:Wshare:x:y, y:k, ω〉,
x:l

by p:〈PC:(a+ 1), a:Wshare:x:y, y:k, ω〉,
x:k

runRshare = replace p:〈PC:a, a:Rshare:x:y, x:k, ω〉,
y:l

by p:〈PC:(a+ 1), a:Wshare:x:y, x:l, ω〉,
y:l

To let processes communicate using shared variables A and B, the system is
represented by a solution of the form:

〈run, runWshare, runRshare, P1:〈. . .〉, . . . , Pn:〈. . .〉, A:0, B:841〉

Again, the atomic capture of reaction rules is key to ensure the atomicity of
the operations on shared variables. If several processes want to write the same
shared variable concurrently, an ordering will be non-deterministically chosen.

9



4.4 Linda primitives in HOCL

The Linda model of communication [8] has mainly two operations, out and
in, that modify a unique data structure called a tuple space. The operation
out(X1: · · · :Xn) stores a tuple l1: · · · :ln (where li is the value of the variable
Xi) in the tuple space. The operation in(X1: · · · :Xn) removes a tuple that
matches the given tuple pattern. The tuple pattern contains variable names or
constants. A corresponding tuple must be the same size and the constants must
concur. Then, the ith variable Xi is assigned to the ith value. In HOCL these
are implemented by the two following reaction rules:

runLindaOut = replace p:〈PC:a, a:out:r, ωP 〉
by p:〈PC:a, a:out:r, ωP 〉,

r

runLindaIn = replace p:〈PC:a, a:in:r, ωP 〉
by p:〈PC:a, a:in:r, ωP 〉,

r

In both rules, the variable r stands for a one-shot rule that is extracted to be
executed. In a out-rule, r has the following form:

one p:〈PC:a, a:out:r, X1:l1, . . . , Xn:ln, ωp〉,
TS:〈ω〉

by p:〈PC:(a+ 1), a:out:r, X1:l1, . . . , Xn:ln, ωp〉,
TS:〈l1: . . . :ln, ω〉

Conversely, in a in-rule, r has the following form:

one p:〈PC:a, a:in:r, X1:l′1, . . . , Xn:l′n, ωp〉,
TS:〈l1: . . . :ln, ω〉

by p:〈PC:(a+ 1), a:in:r, X1:l1, . . . , Xn:ln, ωp〉,
TS:〈ω〉

The in and out operations are implemented in a two-step fashion. In the first
step, the corresponding rule is extracted. The instruction name in or out is
converted to in or out to prevent a second shot, and the PC is not incremented.
In the second step, the extracted one-shot rule looks for all the data it needs
inside the process p (read or write variables) and inside the tuple space TS
(matched tuple). It increments the PC and resets the instruction name to in or
out.

The extracted one-shot rule corresponding to a in-rule is blocked until a
tuple matching l1: . . . :ln is found in the considered tuple space, and so the cor-
responding process is blocked too. The pattern l1: . . . :ln may contain variables
and constants (e.g., 1:x).

Consider the server process of the Server-Clients example from [8]. A server
treats a stream of requests encoded as a triple (“request”, index, data) in the
tuple space. Starting from index 1, the server extracts such a triple from the

10



tuple space, assigns data to its local variable req, treats the request and produces
the result as a triple (“response”, index, data) in the tuple space. The index is
then incremented to treat the next request. The C-Linda code implementing
the server is shown in Figure 1.

server()

{
int index = 1;

...

while (1) {
in("request", index, ? req);

...

out("response", index++, response);

}
}

Figure 1: Server in C-Linda

Figure 2 shows the encoding of this program into HOCL. The sequential code
of the process is similar. The in and out operations are encoded using the two
one-shot rules request and response. The rule request extracts a tuple of the form
(“request”:i:X) where i is the current index and assigns the data X to the local
variable req. The rule response stores a tuple of the form (“response”:i:X) where
X is the value of the local variable req and increments the current index i. In
both cases, the program counter is incremented and the in and out instructions
are reset to an executable form.

4.5 Petri nets in HOCL

A Petri net [14] consists in places and transitions. A place may contain any
number of tokens. A transition takes some tokens from its input places and
produces tokens in its output places.

The notions of places and transitions are very close to the chemical notions
of solutions and reaction rules. We represent a place as a solution of tokens
〈Tok,Tok, . . .〉 and transitions as reaction rules rewriting atomically input and
output places. Places and transitions are named Pi and tj respectively. For
example, a transition t1 taking two tokens from P1 and producing one token
into P2 is represented by the rule

t1 = replace P1:〈Tok,Tok, ω1〉, P2:〈ω2〉
by P1:〈ω1〉, P2:〈Tok, ω2〉

The main issue is that two transitions consuming tokens in the same place (that
has enough tokens) cannot be fired simultaneously since a sub-solution can only
take part to one reaction at a time.

An alternative encoding, that allows two transitions with common input
places to be fired concurrently is to represent a token in place Pi as the constant

11



〈run, runLindaIn, runLindaOut, TS:〈〉,
Server:〈 index:1,

PC:0,
req:0,
0:in:request ,
. . .
n:out:response,
(n + 1):jmp(0)

〉, . . .
〉

with request = one Server:〈PC:a, a:in:r, index:i, req:j, ωp〉,
TS:〈(“request”:i:X), ω〉

by Server:〈PC:(a + 1), a:in:r, index:i, req:X, ωp〉,
TS:〈ω〉

response = one Server:〈PC:a, a:out:r, index:i, req:j, ωp〉,
TS:〈ω〉

by Server:〈PC:(a + 1), a:out:r, index:(i + 1), req:X, ωp〉,
TS:〈(“response”:i:X), ω〉

Figure 2: Encoding of the C-Linda server into HOCL

Pi. All tokens are placed in the top-level solution and the previous transition
t1 would be expressed as:

t1 = replace P1,P1 by P2

The drawback of this encoding is to prevent the expression of inhibitor arcs. An
inhibitor arc from place P to t enables the transition t to fire only if no tokens
are in the place P . Testing the absence of elements with the second encoding
is a global operation which cannot be expressed as a single atomic rule. With
the first encoding, inhibitor arcs can be encoded easily by testing whether a
sub-solution is empty. For example:

t2 = replace P1:〈Tok, ω1〉, P2:〈〉, P3:〈ω3〉
by P1:〈ω1〉, P2:〈〉, P3:〈Tok, ω3〉

The Petri net shown in Figure 3 (taken from [14]) represents a readers-writers
synchronization, where the k tokens in place P1 represent k processes which may
read and write in a shared memory represented by place P3. Up to k process
may be reading concurrently, but when one process is writing, no other process
can be reading or writing.

The encoding of that Petri net in HOCL is the solution given in Figure 4.
Tokens are represented by constants, and the four transitions are represented
by four n-shot rules. For instance, the rule t2 takes and removes one token P1
and k tokens P3, and generates one token P4.

12



Figure 3: Petri net of a readers-writers synchronization

let t1 = replace P1, P3 by P2 in
let t2 = replace P1, P3, . . . , P3︸ ︷︷ ︸

k

by P4 in

let t3 = replace P2 by P1, P3 in
let t4 = replace P4 by P1, P3, . . . , P3︸ ︷︷ ︸

k

in

〈t1, t2, t3, t4, P1, P3, . . . , P3︸ ︷︷ ︸
k

〉

Figure 4: Encoding of the Petri net in HOCL

5 Kahn Process Networks in a chemical setting

The Kahn Process Network (KPN) model of computation [12] assumes a network
of concurrent autonomous and deterministic processes that communicate over
unbounded FIFO channels. Communication is asynchronous and point to point;
it is based on a blocking read primitive and a non-blocking send primitive.
Each process in the network is specified as a sequential program that executes
concurrently with other processes. A KPN is deterministic, meaning that the
result of the computation is independent of its schedule.

5.1 A simple example

Gilles Kahn gave in [12] an example made out of the three following sequential
processes:

13



Process f(integer in U,V; integer out W) ;

Begin integer I ; logical B ;

B := true ;

Repeat Begin

I := if B then wait(U) else wait(V) ;

print (I) ;

send I on W ;

B := not B ;

End ;

End ;

Process g(integer in U ; integer out V, W ) ;

Begin integer I ; logical B ;

B := true ;

Repeat Begin

I := wait(U) ;

if B then send I on V else send I on W ;

B := not B ;

End ;

End ;

Process h(integer in U ; integer out V; integer INIT ) ;

Begin integer I ;

Repeat Begin

I := wait(U) ;

send I on V ;

End ;

End ;

A process writes the value of a local variable X on a channel C using the
command send X on C. It reads the channel C and stores the value in the local
variable X using the command X := wait(C).

The network is built using one instance of each process f and g and two
instances of process h (with its third parameter set to 0 and 1) and connecting
them using the FIFO channels X, Y, Z, T1 and T2. Using par for the parallel
composition, the network is specified as

f(Y,Z,X) par g(X,T1,T2) par h(T1,Y,0) par h(T2,Z,1) ;

A graphical representation of the complete network is given by Figure 5 where
nodes represent processes and arcs communication channels between processes.

5.2 Chemical queues

In KPNs, communication between processes uses queues to implement asyn-
chronous communication. In HOCL, a queue can be represented by a solution
of pairs rank :value. That solution includes also two counters CW (resp. CR)
storing the rank to write (resp. to read) a value. Using the operation send, a
producer adds a value at the rank CW and increments the counter CW. Using

14



Figure 5: Graphical representation of the KPN example

the operation wait, a consumer takes the value at rank CR and increments
the counter CR. The counters CW and CR are always present in the solution
representing the queue. Initially, the queue is empty and both counters are
equal.

The send X on C operation is represented in HOCL by the instruction
a:send:C:X and X := wait(C) by a:wait:C:X. The corresponding rules are:

runSend = replace p:〈PC:a, a:send:q:u, u:k, ω〉,
q:〈CW:cw, ωQ〉

by p:〈PC:(a+ 1), a:send:q:u, u:k, ω〉,
q:〈CW:(cw + 1), cw:k, ωQ〉

runWait = replace p:〈PC:a, a:wait:q:u, u:k, ω〉,
q:〈CR:cr, cr:l, ωQ〉

by p:〈PC:(a+ 1), a:wait:q:u, u:l, ω〉,
q:〈CR:(cr + 1), ωQ〉

The instructions send and wait can be seen as a rendezvous between a process p
and a queue q. That implementation supports unbounded queues but does not
allow a producer and a consumer to access the same queue at the same time.
We present other possible encoding at the end of the section.

5.3 Chemical KPNs

Typically, a KPN is represented by several sequential processes and queues in the
main solution. The solution contains also the three reaction rules run, runSend
and runWait which can be performed at the same time (as long as they do not
involve the same queues or processes). Chemical reactions make the network
evolve according a unspecified, non-deterministic and parallel schedule. The
only synchronization constraints are enforced by queues. Of course, even if
there is much potential interleaving, the functional semantics of chemical KPNs
is deterministic.

15



The example of section 5.1 can be written in HOCL using the previous
encoding for sequential commands (see section 4.1) and queues as follows:

processF (u, v, w) ≡
〈PC:0,
I:0, B:true,
0:〈ncondJmp(B, 3)〉,
1:wait:u:I,
2:〈jmp(4)〉,
3:wait:v:I,
4:〈print, I〉,
5:send:w:I,
6:〈neg(B)〉,
7:〈jmp(0)〉〉

processG(u, v, w) ≡
〈PC:0,
I:0,B:true,
0:wait:u:I,
1:〈ncondJmp(B, 4)〉,
2:send:v:I,
3:〈jmp(5)〉,
4:send:w:I,
5:〈neg(B)〉,
6:〈jmp(0)〉〉

processH(u, v, init) ≡
〈PC:0,
I:0,
0:send:v:init,
1:wait:u:I,
2:send:v:I,
3:〈jmp(1)〉〉

The processes have local variables (I and B, or just I) and their program
counter set to 0. The network of Figure 5 is represented by the following solution:

〈processF (Y,Z,X), processG(X,T1,T2),
processH(T1,Y, 0), processH(T2,Z, 1),
Y:〈CW:0,CR:0〉, Z:〈CW:0,CR:0〉, X:〈CW:0,CR:0〉,
T1:〈CW:0,CR:0〉, T2:〈CW:0,CR:0〉,
run, runWait, runSend〉

The solution is made of four instances of processes, five queues (initially empty),
and the reaction rules implementing sequential execution (run) and communi-
cation (runWait, runSend). Our implementation remains close to the original
example, the key difference being that sequential execution and communications
are made explicit by reaction rules.

5.4 Other implementations of queues

We conclude our study of KPNs by presenting some other possible implemen-
tations of queues in the same chemical framework.

Bounded queues

A bounded queue is a solution q:n:〈. . .〉 tagged by its name q and maximum size
n. If a queue is bounded, the corresponding counters are incremented modulo
its maximum size n. The rule runSendB is now a blocking primitive since it
may only react when the queue is not full:

runSendB = replace p:〈PC:a, a:send:q:u, u:k, ω〉,
q:n:〈CW:cw, CR:cr, ωQ〉

by p:〈PC:(a+ 1), a:send:q:u, u:k, ω〉,
q:n:〈CW:(cw + 1) mod n, CR:cr, cw:k, ωQ〉

if (cw + 1) mod n 6= cr

16



runWaitB = replace p:〈PC:a, a:wait:q:u, u:k, ω〉,
q:n:〈CR:cr, cr:l, ωQ〉

by p:〈PC:(a+ 1), a:wait:q:u, u:l, ω〉,
q:n:〈CR:(cr + 1) mod n, ωQ〉

The queue is full when the next free rank (CW + 1) is equal modulo n to CR.
In this case, the send operation blocks.

Non exclusive queues

When a queue is represented by a sub-solution, it cannot react simultaneously
with several processes, especially between one producer and one consumer. In
this case, using independent atoms to represent a queue solves this problem and
the representations of all queues are mixed together. The two counters of a
queue are tagged by the name of the queue (CW:q:cw, CR:q:cr ). The values
are also tagged and are represented as triples q:r:v (name of queue, rank, value).
The reaction rules implementing writing and reading become:

runSendNEx = replace p:〈PC:a, a:send:q:u, u:k, ω〉,
CW:q:cw

by p:〈PC:(a+ 1), a:send:q:u, u:k, ω〉,
CW:q:(cw + 1), q:cw:k

runWaitNEx = replace p:〈PC:a, a:wait:q:u, u:k, ω〉,
CR:q:cr, q:cr:l

by p:〈PC:(a+ 1), a:wait:q:u, u:l, ω〉,
CR:q:(cr + 1)

These operations are no longer rendezvous with the queue but instead with the
counter CW for runSendNEx and the counter CR and an individual value for
runWaitNEx. The same queue can be written and read at the same time as
long as it has at least one value.

6 Conclusion

Originally, the Gamma formalism was invented as a basic paradigm for parallel
programming [6]. It was proposed to capture the intuition of a computation
as the global evolution of a collection of atomic values evolving freely. Gamma
appears as a very high level language which allows programmers to describe
programs in a very abstract way, with minimal constraints and no artificial
sequentiality. In fact, from experience, it is often much harder to write a se-
quential program in Gamma than a parallel one. Later, it became clear that a
necessary extension to this simple formalism was to allow elements of a multiset
to be Gamma programs themselves, thus introducing higher-order. This lead
to the HOCL language used in this paper.

The idea behind the present paper was to show how traditional coordi-
nation mechanisms can be readily described in a chemical setting. Basically,

17



the chemical paradigm (as introduced in HOCL) offers four basic properties:
mutual exclusion, atomic capture, parallelization and serialization. We have
exploited these properties in order to give a chemical expression of well known
coordination schemes. After presenting how to encode sequential processes as
chemical solutions, we have expressed the CSP rendezvous, shared variables,
Linda’s primitives, Petri nets and Kahn Process Networks in HOCL. All these
examples put forward the simplicity and expressivity of the chemical paradigm.
A natural research direction would be to complete and use these descriptions in
the same chemical framework to compare and classify the different coordination
schemes.

The chemical paradigm has been used in several other areas. For example,
an operating system kernel [15] has been specified in Gamma and proved correct
in a framework inspired by the Unity logic [9]. The system is represented as a
collection of quadruples (Pi, Si,Mi, Ci) where Si, Mi, and Ci represent respec-
tively the state, the mailbox and the channel associated with process Pi. The
Pi’s are functions called by the system itself. The system includes rules such as

replace(Pi, Si,Mi, Ci) by(P ′i , S
′
i,M

′
i , C

′
i) if Ready(Pi, Si)

An important aspect of this work is the derivation of a file system (written in
Gamma) by successive refinements from a temporal logic specification.

More recently, we have used HOCL to specify autonomic systems [5]. Such
self-organizing systems behave autonomously in order to maintain a predeter-
mined quality of service which may be violated in certain circumstances. Very
often, such violations may be dealt with by applying local corrections. These
corrections are easily expressed as independent HOCL reaction rules. Compar-
isons with models related to HOCL and the underlying γ-calculus may be found
in [4]. We do not come back on these comparisons here.

As a final comment, let us point out that, unlike Gamma, HOCL allows
reaction rules (programs) to be elements of multisets, to be composed by taking
(resp. returning) reactions as parameters (resp. result) and to be recursive (as
expressed by the replace rule). In that sense, it complies with the principle
stated in the conclusion of Gilles’s paper [12]:

“A good concept is one that is closed under arbitrary composition
and under recursion.”

Acknowledgments

Thanks are due to the anonymous reviewers for their comments and suggestions.

References

[1] Jean-Pierre Banâtre, Pascal Fradet, Jean-Louis Giavitto, and Olivier
Michel, editors. Unconventional Programming Paradigms (UPP’04), vol-

18



ume 3566 of LNCS, Revised Selected and Invited Papers of the Interna-
tional Workshop, 2005. Springer-Verlag.

[2] Jean-Pierre Banâtre, Pascal Fradet, and Daniel Le Métayer. Gamma and
the chemical reaction model: Fifteen years after. In Multiset Processing,
volume 2235 of LNCS, pages 17–44. Springer-Verlag, 2001.

[3] Jean-Pierre Banâtre, Pascal Fradet, and Yann Radenac. Principles of chem-
ical programming. In S. Abdennadher and C. Ringeissen, editors, Pro-
ceedings of the 5th International Workshop on Rule-Based Programming
(RULE 2004), volume 124 of ENTCS, pages 133–147. Elsevier, June 2005.

[4] Jean-Pierre Banâtre, Pascal Fradet, and Yann Radenac. Generalised mul-
tisets for chemical programming. Mathematical Structures in Computer
Science, 16(4):557–580, August 2006.

[5] Jean-Pierre Banâtre, Pascal Fradet, and Yann Radenac. Programming self-
organizing systems with the higher-order chemical language. International
Journal of Unconventional Computing, 2007.

[6] Jean-Pierre Banâtre and Daniel Le Métayer. Programming by multiset
transformation. Communications of the ACM (CACM), 36(1):98–111, Jan-
uary 1993.

[7] Gérard Berry and Gérard Boudol. The chemical abstract machine. Theo-
retical Computer Science, 96:217–248, 1992.

[8] Nicholas Carriero and David Gelernter. Linda in Context. Communications
of the ACM, 32(4):444–458, 1989.

[9] K. Mani Chandy and Jayadev Misra. Parallel Program Design : A Foun-
dation. Addison-Wesley, 1988.

[10] Cédric Fournet and Georges Gonthier. The reflexive CHAM and the join-
calculus. In Proceedings of the 23rd ACM Symposium on Principles of
Programming Languages, pages 372–385. ACM Press, 1996.

[11] C. A. R. Hoare. Communicating sequential processes. Communications of
the ACM, 21(8):666–677, August 1978.

[12] Gilles Kahn. The semantics of a simple language for parallel programming.
Information processing, 74:471–475, 1974.

[13] Robin Milner. A Calculus of Communicating Systems, volume 92 of Lecture
Notes in Computer Science. Springer-Verlag, 1980.

[14] Tadao Murata. Petri nets: Properties, analysis and applications. Proceed-
ings of the IEEE, 77(4):541–580, 1989.

[15] Héctor Ruiz Barradas. Une approche à la dérivation formelle de systèmes
en Gamma. PhD thesis, Université de Rennes 1, France, July 1993.

19


