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Abstract
We present a formal approach to minimize the num-
ber of voters in triple-modular redundant (TMR)
sequential circuits. Our technique actually works
on a single copy of the TMR circuit and considers a
large class of fault models of the form “at most one
Single-Event Upset (SEU) or Single-Event Transient
(SET) every k clock cycles”. Verification-based voter
minimization guarantees that the resulting TMR
circuit (i) is fault tolerant to the soft-errors defined
by the fault model and (ii) is functionally equivalent
to the initial TMR circuit. Our approach operates
at the logic level and takes into account the input
and output interface specifications of the circuit.
Its implementation makes use of graph traversal
algorithms, fixed-point iterations, and binary deci-
sion diagrams (BDD). Experimental results on the

ITC’99 benchmark suite indicate that our method
significantly decreases the number of inserted vot-
ers, yielding a hardware reduction of up to 55%
and a clock frequency increase of up to 35% com-
pared to full TMR. As our experiments show, if
the SEU fault-model is replaced with the stricter
fault-model of SET, it has a minor impact on the
number of removed voters. On the other hand,
BDD-based modelling of SET effects represents a
more complex task than the modelling of an SEU
as a bit-flip. We propose solutions for this task
and explain the nature of encountered problems.
We address scalability issues arising from formal
verification with approximations and assess their
efficiency and precision.
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1 Introduction1

Circuit tolerance towards soft (non-destructive, non-permanent) errors is an important research2

topic. As technology shrinks, the risk of system failures due to soft errors increases, which is3

especially dangerous in safety-critical industries (e.g., space, transport, nuclear, etc.). Natural4

radiation, such as neutrons of cosmic rays and alpha particles of packing or solder materials, is a5

common source of soft errors [20, 34, 42, 47]. There are two main types of soft errors: Single-Event6

Upsets (SEUs) (i.e., bit-flips in Flip-Flops (FFs)) and Single-Event Transients (SETs) (i.e. glitches7

propagating in the combinational circuit). Since an SET may lead to several bit-flips, SETs are8

more general than SEUs.9

Triple-Modular Redundancy (TMR) proposed by von Neumann [45] remains the most popular10

fault tolerance technique in Field-Programmable Gate Arrays (FPGAs) to mask both types of11

soft-errors. In its original form, TMR relies on three redundant copies of an original system12

receiving the same inputs, as shown in Figure 1. A majority voter is inserted after each of the13

triplicated primary outputs. If at most one redundant module returns incorrect values, the voter14
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will return the correct result, therefore masking one possible error. An implementation example of15

the majority voter is also depicted in Figure 1. The voter always returns the majority bit among16

its three inputs provided that a fault does not occur in its own logic.17
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Figure 1 TMR scheme proposed by von Neumann, with n primary inputs, m primary outputs, and a
voter after each primary output.

Manual introduction of TMR [24] into a circuit design is often a tedious and error-prone18

process. Hence, several CAD tools automatically implement TMR for fault tolerant FPGA19

designs [6, 19,37,44,46].20

In a triplicated sequential circuit, adding voters at the primary outputs is not sufficient in21

general. Indeed, an error may remain in a memory cell long enough until another error corrupts22

a different redundant copy of the circuit. In that case, the final vote may produce an incorrect23

output. Moreover, single voters cannot mask errors occurring within the voting logic itself. A24

solution to these problems is to insert a triplicated voter after each memory cell (as depicted in25

Figure 2). This is sufficient to mask any SET in the combinational circuit (even within voters)26

and to prevent errors from remaining in cells 1. However, full TMR greatly increases both the27

hardware overhead and the critical path, which directly influences the circuit performance. Thus,28

the overall TMR throughput is degraded whereas it should be the main advantage of TMR over29

time-redundant fault-tolerance techniques.30

From the functional point of view, introducing a voter per cell is excessive in most cases.31

Intuitively, this is because some voters are useless, either because faults at this stage will be32

captured by another voter “later” in the circuit, or because some faults are naturally masked by33

1 Of course, two upsets occurring at the same cycle in two different copies may not be masked; triplication does
not provide enough redundancy for multiple upsets.
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Figure 2 Full TMR with triplicated voters after the p internal FFs and the m primary outputs.

the logic. But, to the best of our knowledge, there is no tool dedicated to voter minimization in34

TMR that guarantees fault-tolerance according to a user-defined fault model. The main existing35

research trends in TMR have been providing probabilistic solutions and not absolute ones (see36

Section 8).37

In this paper, we propose an automatic and optimized transformation process for TMR on38

digital circuits. Our transformation inserts as few voters as possible, while guaranteeing to mask39

all errors of the considered fault-model.40

We consider circuits described at the gate level (i.e., netlists of AND, OR, NOT gates plus41

FFs – also called memory cells). This level has two main advantages:42

gate level netlists can be described by an elementary language, which simplifies correctness43

proofs;44

it is easier to prevent synthesis tools from optimizing (undoing) our transformation at this late45

design stage.46

Since the main contributors to Soft-Error Rate (SER) at frequencies below 1 GHz are the FFs [27],47

we focus first on errors caused by SEUs (i.e., bit-flips in FFs). We consider fault models of the48

form “at most one bit-flip within K cycles” denoted by SEU (1,K).49

However, SETs in high-speed Integrated Circuits (ICs) have become a growing concern [8,25,35].50

An SET is a voltage pulse (glitch) caused by a particle. It may propagate through the combinational51

logic provided that it is not logically masked by the circuit functionality. As a result, the outputs52

of the combinational circuit might be glitched and be incorrectly latched by memory cells. Due53

to the non-deterministic nature of the propagated glitch, it can be latched by none, some, or all54

memory cells it reaches. Thus, since an SET may lead to several corrupted memory cells (bit-flips),55



4 A static analysis for the minimization of voters in fault-tolerant circuits

SETs subsume SEUs. In response, we expand our approach to fault-models of the form “at most56

one SET within K clock cycles” denoted by SET (1,K).57

The proposed voter-minimization methodology is based on a static analysis that checks whether58

an error in a single copy of the TMR circuit may remain after K cycles. If not, protecting the59

primary outputs with voters is sufficient to mask the error. If, for instance, the circuit is a pipeline60

without feedback loops, then any bit-flip will propagate to the outputs and will thus disappear61

before K cycles, where K is the length of the longest path. But if the state of the circuit is still62

erroneous after K cycles (in the form of an incorrect value stored in one of its memory cells),63

then there is a potential error accumulation since, according to the SEU/SET(1,K) models,64

another soft-error may occur in another copy of the circuit. It may lead to two incorrect redundant65

modules of the TMR circuit and the loss of its fault-tolerance properties. In this case, additional66

voters are needed to prevent an error accumulation and mask all errors circulating inside one67

redundant module before the next soft-error may occur.68

Our static analysis consists of four steps. The first step, described in Section 2, is purely69

syntactic and finds all loops in the circuit. Error accumulation can be prevented by keeping70

enough voters to cut all loops.71

In many cases, a digital circuit resets (or overwrites) some memory cells, which may mask72

errors. Detecting such cases allows further useless voters to be removed. This second step is73

performed by a semantic analysis (Section 3) taking into account the logic of the circuit.74
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Figure 3 Use-case of the semantic analysis: voters are needed only at F1 and the primary output out.

Figure 3 shows a simple example where the previous syntactic analysis is not able to suppress75

any voter because each FF is in a self-loop. Our semantic analysis can catch the behavior of F176

that changes its value every cycle. Since F1 controls the multiplexers before F2, F3, and F4, all77

these FFs will be rewritten each other cycle. Consequently, even if a fault occurs in one of these78

three FFs, it will be eventually re-written with new correct data coming from the primary input79

in. The semantic analysis indicates that it is sufficient to protect F1 and the primary output with80

majority voters.81

Circuits are also often supposed to be used in a specific context. For instance, a circuit82

specification may assume that a start signal occurs every x cycles and outputs are only read83

y cycles after each start. When such assumptions exist, taking them into account makes the84

semantic analysis more effective. Section 4 and Section 5 explain how to integrate such input and85

output specifications respectively.86

Our analysis has been implemented based on graph algorithms and fixed point iterations using87

Binary Decision Diagrams (BDDs). We have tested several safe approximations and trade-offs88

between cost and precision. The implementation and experiments are presented in Section 7.89

Related work on TMR and voter insertion strategies are reviewed in Section 8. We summarize our90

contributions and sketch a few extensions in Section 9.91

This article extends and revises the work presented in [10]. Section 6, presenting the extension92
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of the approach to SET, is new. Sections 3 and 7 present and assess respectively a new abstract93

domain; explanations and examples have been added throughout.94

2 Syntactic Analysis95

We consider a triplicated circuit with voters but we actually work on a single copy of this circuit96

that abstracts the triplicated version. The effect of insertion or removal of voters can be represented97

and analyzed on such a single copy of the TMR circuit. We model a sequential circuit C as a98

directed graph GC where each vertex represents a FF (memory cell or latch) and an edge x→ y99

exists whenever there is at least one combinational path between the two FFs x and y in C. An100

error in a cell x may propagate, in the next clock cycle, to all cells connected to x by an edge in101

this graph. Note that this is an over-approximation since the error may actually be masked by102

some logical operation.103

Under the fault model SEU (1,K), error accumulation is the situation where an error remains104

in the circuit K clock cycles after the SEU that caused it. Any circuit C without feedback loop105

will return, after an SEU, to a correct state before K clock cycles, provided that K is larger than106

the maximal length of the paths in GC . In environments with high levels of ionizing radiations107

(e.g., space, particle accelerators), K is bigger than 1010 [5]. For comparison, Soft-Error Rate108

(SER) can be as small as 10−10 bit-upset/day for Virtex FPGAs in terrestrial conditions [7]. So,109

even if our approach can deal with any K, we can safely assume that K is larger than the max110

length of all paths in GC . It follows that error accumulation can only be caused by cycles in GC ,111

which must therefore be cut by removing vertices. Removing a vertex in GC amounts to protecting112

the corresponding memory cells with a voter in the triplicated circuit.113

The best solution to cut all cycles in GC is to find the Minimum Vertex Feedback Set (MVFS),114

i.e., the smallest set of vertices whose removal leaves GC without cycles. This standard graph115

problem is NP-hard [32]. While there exist good polynomial time approximations [22], the exact116

algorithm was efficient enough to be used in all our experiments with relatively small circuits (less117

than 200 FFs).118

Having a voter after each cell belonging to the MVFS prevents error accumulation. This simple119

graph-based analysis is very effective with some classes of circuits. In particular, it is sufficient to120

remove all internal voters in pipelined architectures such as logarithm units and floating-point121

multipliers (see Table 1).122

However, this approach is not effective for many circuits due to the extensive use of loops in123

circuit synthesis from Mealy machine representation. In such circuits, most cells are in self-loops124

(e.g., D-type flip-flops with Enable input). This entails many voters if the syntactic analysis is125

used alone. However, if the circuit functionality is taken into account, we can discover that such126

memory cells may not lead to erroneous outputs. Detecting such cases requires to analyze the127

logic (semantics) of the circuit. We address this issue in the following section.128

3 Semantic Analysis129

The semantic analysis first computes the Reachable State Set (RSS) of the circuit with a voter130

inserted after each memory cell in the MVFS. Then, for each cell m ∈ MVFS, it checks whether131

its voter is necessary: (i) First, the voter is removed and all possible errors (modeled by the chosen132

fault-model in each state of RSS) are considered; (ii) If such an error leads to error accumulation,133

then the voter is needed and kept.134
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Table 1 Voter Minimization, Syntactic Analysis Step

Circuit FFs Syntactic

Da
ta

Fl
ow

I. Pipelined FP multiplier 8x8 [21] 121 0
Pipelined logarithm unit [21] 41 0
Shift/Add multiplier 8x8 [33] 28 28

ITC’99 [16](subset)
Co

nt
ro

l
Fl

ow

b01 Flows comparator 5 3
In

te
ns

iv
e b02 BCD recognizer 4 3

b03 Resource arbiter 30 29
b06 Interrupt handler 9 3
b08 Inclusions detector 21 21
b09 Serial converter 28 21

3.1 The precise logic domain D1135

Correct and erroneous values are represented by the four-value logic domain D1:136

D1 = {0, 1, 0, 1}137

where 0 and 1 represent erroneous 0 and 1, respectively. The truth tables of standard operations138

in this four-value logic are given in Table 2. The operators AND and OR gates can mask errors:139

x ∨ 1 = 1 x ∧ 0 = 0 0 ∧ 1 = 0 1 ∨ 0 = 1140

Since we work on circuits that abstracts their TMR version, a 0 (resp. 1) in a cell means that one141

of its three copies may have the incorrect value 1 (resp. 0). A 0 (resp. 1) means that all three142

memory cells have the same correct value 0 (resp. 1). This interpretation assumes that any SET143

affects only one copy of the TMR circuit.144

The err function models bit-flips and represents a bit corruption in one of three copies in the145

TMR circuit:146

err(0) = 1 err(1) = 0147

The vot function models the effect of a voter on the TMR version of the circuit and corrects an148

error:149

vot(1) = 0 vot(0) = 1150

It corresponds, in the TMR version that it abstracts, to the majority voter depicted in Figure 2.151

Finally, for any x ∈ {0, 1}, vot(err(x))=x.152

3.2 Semantic analysis with D1153

A sequential synchronous circuit with M memory cells and I primary inputs is formalized as a154

discrete-time transition system with the transition relation δ : {0, 1}M × {0, 1}I 7−→ {0, 1}M . We155

abuse the notation and use M (resp. I) to denote both the number and the set of memory cells156

(resp. inputs) of the circuit. The state of a circuit is the values of its cells and the initial state s0157
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Table 2 Operators for the 4-value logic domain D1.

0 1
0 0 1

1 1 1 1 1
1 1
1 1

0 1
0 0 0 0 0
1 0 1

0 0
0 0

NOT err vot
0 1 0

1 0

1 1

𝟏 𝟎
1 0

𝟏 1 1
𝟎 0 0

𝟏 𝟎

1 0
𝟏 1 1
𝟎 0 0

1
0 1

𝟏 0 0 0
𝟎 1

OR AND

is obtained after the circuit reset. ∆(S) denotes the function returning the set of states obtained158

from the set S after one clock cycle. Formally159

∆(S) = {s′ | ∃i. ∃s ∈ S. δ(s, i) = s′}160

∆ applies the transition function δ to all states of its argument set and all possible inputs. The161

set of reachable states RSS is defined by the following iteration:162

S0 = {s0}
Si+1 = Si ∪∆(Si)

(1)163

Starting from the initial state, we compute the set of reachable states by accumulating states164

obtained by applying ∆ iteratively. The set of possible states being finite, the iteration reaches a165

fixed point equal to the RSS and denoted2 by {s0}∗∆.166

The second phase is to check whether the suppression of voters may lead to an error accumulation167

under the chosen fault-model. Let δV be the transition relation of a circuit equipped with a voter168

after each cell in a given set V , and let ∆V be its extension to sets. δV is defined as:169

δV ((m1, . . . ,mM
), i) = δ((m′1, . . . ,m′M ), i)

where ∀ 1 ≤ j ≤M, m′j =
{

vot(mj) if mj ∈ V
mj otherwise

170

This checking process is described by Algorithm 1.171

We start with the circuit equipped with a voter after each cell in the MVFS (line 1). For172

each such cell m, we check whether its voter suppression entails error accumulation. Bit-flips are173

introduced in all possible cells and states of RSS according to the fault-model (line 5):174 ⋃
mi∈M

RSS [mi ← err(mi)]175

The transition function corresponding to the circuit with the current set of voters (V ) is176

applied K times (∆K
V ), where K is the number of clock cycles in the fault model (SEU(1,K)).177

2 We will use this notation with other initial states and transition functions.
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Algorithm 1 Semantic Analysis – Main Loop
Input : MVFS ; // The minimum vertex feedback set.

∆; // The circuit transition function.
s0; // The initial state.

Output : V ; // The subset of vertices (i.e., memory cells) after which a voter is needed.
1: V := MVFS ;
2: RSS := {s0}∗∆;
3: forall m ∈ MVFS
4: V := V \{m};
5: S := ∆K

V (
⋃

mi∈M RSS [mi ← err(mi)]);
6: if ErrAcc(S) then
7: V := V ∪ {m};
8: return V

The resulting set of states shows error accumulation if there exists an erroneous cell in at least178

one state of this set, which we capture with the predicate ErrAcc in line 6. ErrAcc is defined as:179

ErrAcc(S)⇔ ∃s ∈ S. ∃m ∈ s. m = 0 ∨m = 1180

If the set S does not show error accumulation, the voter is useless and can indeed be suppressed.181

Otherwise the voter is re-introduced (line 7).182

In practice, ∆ is applied a small number of times dictated by the circuit functionality and183

available analysis time. It is always safe to stop the iterative computation before reaching K; the184

only drawback would be to infer an error accumulation when there is none. The number of ∆185

applications can be also adjusted to the available analysis time. In our experiments, the analysis186

time limit was set to 20 minutes and K to 50. Furthermore, the iteration is stopped:187

if the current set of states is errorless, then there cannot be error accumulation (no error can188

reappear);189

or, if the erroneous current set is the same as the previous one, a fixed point is reached and190

there is an error accumulation.191

The order in which the cells in the MVFS are analyzed (line 2 in Algorithm 1) may influence192

the number of removed voters. It follows that the result of removing voters one-by-one is not193

unique, it depends on the order the voters are chosen. We use the following heuristic to chose the194

ordering of voter selection: starting from the MVFS of memory cells with voters, we first sort it195

according to the number of successive memory cells that each cell has in the netlist (the number of196

successors in GC). Then, we consider primarily the removal of voters that lead to the corruption197

of the smallest number of cells in the next clock cycle. The voters whose removal may lead to a198

large number of corrupted cells are considered last. We found out that following this ordering, we199

are able to suppress more voters than with a random ordering or with the ordering relying on the200

number of preceding memory cells in the netlist.201

3.3 More Abstract Logic Domains202

The aforementioned method is precise but costly since it considers all possible inputs. In general,203

keeping track of the relations between indeterminate inputs is not very useful. Fortunately, our204

technique can be used as it is with other, more abstract, logic domains. There are several domains205

that retain enough precision and allow larger circuits to be analyzed.206
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The 4-value logic domain D2 decreases the state space explosion that occurs with D1:207

D2 = {0, 1,U,U}208

The abstract value U represents a correct value (either 0 or 1) and U represents any (possibly209

erroneous) value (i.e., 0, 1, 0, or 1). A vector of n inputs is represented as a unique vector210

(U, . . . ,U) with D2 whereas 2n vectors had to be considered with D1. The truth tables of standard211

operations in D2 are given in Table 3.212

Table 3 Operators for the 4-value logic domain D2.

NOT err(x) vot(x)
0 1 U 0

1 0 U 1

U U U U

𝐔 U U U

0 1 U 𝐔
0 0 1 U

1 1 1 1
U U 1 U U

𝐔 U 1 U U

1
U

𝐔0 1 U
0 0 0 0 0
1 0 1 U U
U 0 U U

𝐔 U U0
U

U

x

OR AND

In contrast with D1, a gate with two erroneous values cannot produce a correct one. Logical213

masking of errors can only occur with two operations: 0 ∧U and 1 ∨U. This is sufficient to take214

into account the masking performed by explicit signals (e.g., resets).215

Typical examples where the semantic analysis with D2 is more effective are circuits that use216

D-type FFs with an enable input driven by a Finite State Machine (FSM) encoded in the circuit.217

The syntactic approach would keep a voter for each such cell (they are in self-loops). The semantic218

analysis can detect that such cells are regularly overwritten by fresh inputs. For example, the219

resource arbiter b03 in Section 7 is such a circuit. After initialization, its finite state machine220

forces 12 cells (fu1-fu4, ru1-ru4, grant_o[3:0]) to be overwritten with fresh values every other221

cycle. The semantic analysis (using D1 or D2) is able to show that those cells, although in self222

loops, do not need to be protected by voters.223

Another approximate logic domain is the 16-values logic domain D3, where a memory cell is224

encoded as a subset of its four possible values. It is defined as the powerset of D1:225

D3 = P({0, 1, 0, 1})226

A value A in D3 is the set of all possible values that its memory cell can take at this stage of227

the analysis. For example, a fully determinate value is represented by a singleton (e.g., {0} for a228

correct 0 or {0} for a bit-flipped 1), an unknown but uncorrupted value by the set {0, 1}, and a229

completely unknown value by the set {0, 1, 0, 1}.230

The operators of D3 are the power set extensions of the operators of D1.231

A ∧3 B = {x | x = a ∧1 b, a ∈ A, b ∈ B}
A ∨3 B = {x | x = a ∨1 b, a ∈ A, b ∈ B}
¬3A = {x | x = ¬1a, a ∈ A}

err3(A) = {x | x = err1(a), a ∈ A}
vot3(A) = {x | x = vot1(a), a ∈ A}

232
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where ∧1 ∨1, ¬1, err1, and vot1 denote the and, or, not, err, and vot operators of D1 as defined233

in Table 2.234

This domain is a trade-off in terms of precision between D1 and D2. The main advantage of235

D3 over D1 is the prevention of state explosion, since a vector of n unknown and uncorrupted236

inputs is represented as a unique vector ({0, 1}, . . . , {0, 1}). Contrary to D2, D3 remains able237

to represent logical masking such as {0} ∧3 {0, 1} = {0} or {1} ∨3 {1, 0} = {1}. D3 can be238

seen as retaining precise information about the possible values and corruptions but ignoring the239

relationships between different inputs.240

3.4 Summary241

We have presented a semantic analysis to minimize the number of voters in TMR circuits. Using242

several logic domains, we can represent the internal circuit state with various levels of precision.243

The functional behavior of a circuit under random inputs is taken into account to analyse how244

an error may propagate through it. Algorithm 1 and domain encodings have been implemented245

in Ocaml using the BDD library CUDD [43] and MLCuddIDL [30]. Transition systems and246

sets of states are expressed as BDD formulae [15]. Section 7 provides more details about the247

implementation and experimental results. In the two next sections, we improve the analysis by248

specifying and considering assumptions on inputs and outputs. This permits us to better express249

real-life circuit behavior and to improve the precision of the analysis.250

4 Inputs Specification251

Circuits are often designed to be used in a specific context where some input signals must occur252

at definite timings. Taking into account assumptions about the context may make the semantical253

analysis much more precise, in particular, when the logical masking of corrupted cells depends254

on specific inputs (e.g., a start control signal). Our approach is to translate these specifications255

into an interface circuit feeding the original circuit with the specified inputs. The analysis of256

the previous section can be applied to the resulting combined circuit. As a consequence, error257

accumulation is checked with the method described in Section 3.2, but under the constraints258

specified by the interface. The only small adjustment needed in Algorithm 1 is to make sure that259

errors are introduced only in the cells of the original circuit and not in the cells of the interface260

circuit. educe We use ω-regular expressions to specify circuit interfaces. An ω-regular expression261

specifies constraints using vectors of {0, 1, ?}, which replace primary inputs by 0, 1, or leave them262

unchanged (? being the wild card). Consider, for instance, a circuit with two primary inputs263

[i1, i2], then the expression ([1, 0] + [0, 1]).[?, ?]ω specifies that the circuit first reads either i1 = 0264

and i2 = 1, or i1 = 0 and i2 = 1, and then proceeds with no further constraints.265

In general, specifications need non-determinism to describe a partially specified or a non-266

deterministic context. Hence, the aforementioned ω-regular expression can also be seen as a267

Non-deterministic Büchi Automaton (NBA) that reads inputs and replaces them by 0, 1, or leaves268

them unchanged (?). Such a translation to NBA can be performed in linear time.269

For instance, the expression ([1, 0] + [0, 1]).[?, ?]ω can be represented as the two-state NBA270

of Figure 4 (a): in the first state, it reads inputs and returns either the outputs [1, 0] or [0, 1]271

(regardless of the inputs). Then, the automaton goes (and stays) in the second state where inputs272

are read and produced as outputs. The indices in ?1 and ?2 allow to identify the inputs according273

to their position.274

To generate a circuit from an ω-regular expression, we first convert the corresponding NBA into275

a deterministic automaton as follows. Each nondeterministic edge is made deterministic using new276

inputs (sometimes referred to as oracles). If a vertex has n nondeterministic outgoing edges, adding277
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(a)

1 2

[?
1
, ?

2
]/[1, 0]

[?
1
, ?

2
]/[0, 1]

[?
1
, ?

2
]/[?

1
, ?

2
]

(b)

1 2

[0, ?
1
, ?

2
]/[1, 0]

[1, ?
1
, ?

2
]/[0, 1]

[?
0
, ?

1
, ?

2
]/[?

1
, ?

2
]

Figure 4 Input interface as a NBA (a) and its deterministic version (b).

log2(n) new inputs is sufficient. For example, the specification ([1, 0] + [0, 1]).[?, ?]ω can be made278

deterministic by adding a single additional input i. The automaton (see Figure 4 (b)) now reads279

three inputs: if i is 0 (resp. 1) it produces [1, 0] (resp. [0, 1]). The resulting deterministic automaton280

is then translated into an interface circuit using standard logic synthesis techniques [17, p.118]. If281

the original circuit has I inputs, the resulting interface circuit will have I + a (a new inputs to282

make it deterministic) inputs and I outputs. It is then plugged by connecting its outputs to the283

inputs of the circuit to be analyzed.284

A typical example where an input specification is useful is the circuit b08 of Section 7. Such285

a circuit has a start input signal and 8-bit data input. Its input interface specification can be286

expressed as the following ω-regular expression:287

([1, ?, ?, ?, ?, ?, ?, ?, ?].[0, ?, ?, ?, ?, ?, ?, ?, ?]17)ω (2)288

A start signal is first raised and the input data is read. For the next 17 cycles, data is processed289

and start is kept to 0. This process is repeated over and over. Since start is raised every 18290

clock cycles, the internal data registers are rewritten periodically with new data, as they can keep291

erroneous data only until the next start signal. The circuit also has an internal FSM which can292

be corrupted but the periodic start ensures that it returns to its initial state every 18 cycles.293

Consequently, error accumulation is impossible for any K > 18, and no voters (except implicit294

voters at primary outputs) need to be inserted.295

5 Outputs Specification296

Consider another example, similar to the previous one, with 2 inputs, 1 output, and where some297

waiting can occur before raising the start signal. Formally, the input interface would be:298

([0, ?]∗.[1, ?].[0, ?]17)ω (3)299

This interface does not guarantee that start will be raised before K clock cycles. Since the300

analysis must consider the case where start is not raised, it may detect error accumulation even301

though start would ensure logical masking. However, if it is known that the primary outputs302

are not read before some useful computation triggered by the start signal completes, a better303

analysis can be performed.304

We specify the output interface by adding to each vector of the input interface a vector of305

{0, 1} indicating whether the corresponding outputs are read (1) or not read (0). For instance,306

the output interface of the previous example, where the single bit output is read only after start307

is raised, can be specified as308

(([0, ?] : [0])∗.([1, ?] : [0]).([0, ?] : [1])17)ω (4)309

It states that the output is not read ([0]) until the start signal is raised. Then, the output is310

read ([1]) during 17 cycles.311
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The extended ω-regular expression is translated into an NBA as in Section 4, then made312

deterministic, and finally translated into a sequential circuit. The corresponding interface circuit313

will additionally produce 0 or 1 signals to filter the useless and needed outputs respectively. Each314

such signal is connected using an AND gate to the corresponding primary output of the original315

circuit. The final configuration with the surrounding interface circuit is shown in Figure 5.
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Figure 5 Original circuit with the surrounding interface circuit.
316

The property to check must now be refined to allow error accumulation as long as no error317

propagates to the filtered primary outputs. Recall that when an error occurs, it is allowed to318

propagate to outputs (or final voters) within the next K clock cycles since no additional soft-error319

can occur during that time. If there is an error accumulation, the analysis must further ensure320

that no error can propagate to outputs after the K cycles i.e., when additional errors occur which321

could not be masked by final voters.322

The refined property check discussed in the previous paragraph is performed by lines 6-15 of323

Algorithm 2. If an error accumulation is detected in the reached state set S, K cycles after a fault324

occurrence (line 6), then we calculate all states S∗∆V
that can be reached after these K cycles325

(line 7). Then, we iteratively simulate the occurrences of additional errors (line 9-12) separated by326

at least K steps. E0 (line 7) represents the circuit reachable state space with only one fault. Ei327

represents the reachable state space after at most i+ 1 errors separated from one another by at328

least K clock cycles. The global fixpoint Ei (line 13) represents the set of all possible states that329

can be reached after all possible sequence of errors allowed by the fault model. It can now be330

checked that none of these states leads to the propagation of an error to the (filtered) primary331

outputs (line 13).332

Since this computation is done assuming that voters operate correctly, we must ensure that no333

error accumulate in a cell followed by a voter. Indeed, in that case, if a similar error occurs in a334

second copy of the circuit, the voter would fail to mask it. The function ErrProp (line 13) detects335

if there is a reachable state where a memory cell with a voter or a primary output is corrupted336

and prevents the voter under consideration (m) to be removed. We assume that each primary337

output is represented by a new memory cell. Let out, vot and cor be predicates denoting whether338

a cell represents an output, a cell protected by a voter or is corrupted respectively, then ErrProp339

is defined as:340

ErrProp(Ei) ⇔ ∃s ∈ Ei. ∃m ∈ s. (out(m) ∨ vot(m)) ∧ (cor(m))341

These criteria are safe but sometimes too strict. Consider, for instance, a circuit with a342

sequence of two enabled flip-flops (i.e., with self loops) that produce significant output only two343

cycles after the enable signal is set. Both cells may be protected by voters to break self loops and344

prevent error accumulation. However, no voter is necessary since error accumulation can occur345

only when no significant output is produced. Indeed, when the enable signal is set, new input346

and intermediate results will overwrite the (possibly corrupted) cells and a correct output will be347

produced. If we first try to remove the first voter, our algorithm will detect that an error can348
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remain in the first cell after K steps. That cell will in turn corrupt the second one still protected349

by a voter. Hence, the condition ErrProp will prevent removing the first voter whereas starting350

with the second or removing both voters would have been possible. Therefore, a useful refinement351

of Algorithm 2 is, whenever ErrProp is true only because of error accumulation before some352

voters (and no error propagates to the output), to iterate and check whether all these voters can353

be removed.354

Algorithm 2 Semantic Analysis with Output Specification
Input : MVFS ; // The minimum vertex feedback set.

∆; // The circuit transition function.
s0; // The initial state.

Output : V ; // The subset of vertices (i.e., memory cells) after which a voter is needed.
1: V := MVFS ;
2: RSS := {s0}∗∆;
3: forall m ∈ MVFS
4: V := V \{m};
5: S := ∆K

V (
⋃

mi∈M RSS [mi ← err(mi)]);
6: if ErrAcc(S) then
7: E0 := {S}∗∆V

;
8: i := 0;
9: repeat

10: i+ +;
11: Ei := Ei−1 ∪ ( ∆K(

⋃
mi∈M Ei−1 [mi ← err(mi)]) )∗∆V

;
12: until Ei = Ei−1;
13: if ErrProp(Ei) then
14: V := V ∪ {m};
15: return V ;

Output interfaces are especially useful for circuits whose outputs are not read before some355

input signal is raised and some computation is completed. For instance, the shift/add multiplier356

(see Section 7) waits for a start signal. During that time, errors may accumulate in internal357

registers and propagate to the outputs, which are not read. When start occurs, fresh input data358

is read and written to internal registers (which are thus reset). The outputs are read only after359

the multiplication is completed and a done signal is raised.360

Note that output interfaces allow to model Transient Error Tolerance (TET) where all errors361

at primary outputs are not necessarily critical. For instance, if erroneous outputs are considered362

non-critical within a specified number of cycles, output interfaces can express it and allow further363

optimizations. In this case, the optimized TMR configuration is tuned to particular system364

requirements. Such quality guided optimizations are investigated on MPEG decoding in [26,36] to365

select gates whose hardening maximize fault-tolerance.366

6 Extension to Single-Event Transients367

In the previous sections, we considered single event upsets and the corresponding fault-models368

SEU(1,K), corresponding to “at most one bit-flip every K cycles”. Hereafter, we extend our369

approach to single event transients, in particular, the fault model SET (1,K) which can be read370

as “at most one SET within K clock cycles”.371

An SET occurs when a high-energy particle strikes a combinational logic element [25]. Such372
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a particle causes a transient voltage disturbance, which can propagate on wires and possibly be373

latched by several memory cells. Due to the non-deterministic nature of the propagated glitch,374

it can be latched by none, some, or all memory cells it reaches. Consequently, an SET can375

potentially lead to several corrupted memory cells (i.e., several SEUs). In this section, we present376

the extension of our previous analysis to SET.377

6.1 Precise modeling of SETs378

As opposed to an SEU, the effect of an SET depends on the logical propagation (and possible logical379

masking) of the signal perturbation through the combinational part. Such signal perturbation or380

glitch is latched in a non-deterministic manner. From now on, a signal can take 3 values: a logical381

one, a logical zero, or a glitch written �.382

Signal := 0 | 1 | �383

A glitch can be masked in a combinatorial circuit by or(�, 1) = 1 or and(�, 0) = 0. The precise384

modelling of a glitched signal in a TMR circuit requires the knowledge of its correct value (present385

in the corresponding signals of the two other redundant modules). Consequently, the precise386

domain D1 is extended as Dt to model a glitch propagation in a combinatorial circuit of one387

redundant module:388

Dt = {0, 1, 0, 1, 0�, 1�}389

where 0� and 1� represent respectively a glitched 0 and 1. That is, 0� represents a glitch at one390

point of the circuit such that the value in the two other redundant copies is 0. A glitch on an391

incorrect signal with the value 0 (resp. 1) will be represented by the signal value 1� (resp. 0�).392

One example that illustrates the difference between a glitch and a corrupted value is:393

D1 : 0 ∨1 1 = 1 Dt : 0� ∨t 1� = 1�
394

While in the first case, an or gate with corrupted but stable signals returns a correct value, in395

the second case, the glitch propagates.396

While the precise domain D1 requires the aforementioned extension to Dt, the domains D2397

and D3 can overapproximate such glitch behavior with no extension. In particular, a glitched398

signal, as well as any possibly wrong stable signal, takes the value U in D2. A glitched 1 (resp. 0)399

can be represented as {1, 0} (resp. {0, 1}) in D3.400

A glitch propagated to a memory cell is non-deterministically latched as true or false. It401

follows that the precise glitch modelling in Dt implies that any glitched signal 0� (resp. 1�) is402

non-deterministically latched as a correct 0 or as an incorrect 1 (resp. as a correct 1 or as an403

incorrect 0). This non determinism may lead to a significant state space growth in D1. The404

domains D2 and D3 avoid this inconvenience since glitched signals are expressed in the same logic405

as the latched values.406

To take into consideration all possible effects of an SET, it is necessary to calculate the set of407

reachable states for all cases of SET injections. These cases include a fault injection either at the408

output of a logical gate/a memory cell or the mutually exclusive corruption of branches of a wire409

split. The union of the state spaces that can be reached in each of these corruption cases forms410

the reachable state set.411

The precise SET modeling in Dt imposes significant computational overhead. Its two important412

bottlenecks are the need to consider all possible SET injection points and all possible non413

deterministic choices when a glitch is latched. Both points can been taken into account by a414

transition function that expresses a circuit state change during a clock cycle with an SET and415

returns a set of possibly corrupted states. In the next Section, we propose a safe approximation of416

the precise SET modeling in domains D1, D2, and D3.417
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6.2 Safe SET over-approximation418

If a memory cell is connected by a combinational path to a component (wire or gate) where an419

SET occurs, this cell may be corrupted. We should find all sets of cells that can be corrupted420

at the same clock cycle to find the worst case. Each of these sets has a common combinational421

sub-circuit, in other words, a common combinational cone. The apex of such a cone is either the422

output of a memory cell or a primary input. A cone apex fully identifies a cone and the memory423

cells belonging to this cone.424

D Q

D Q

primary 
input

D Q

logic

logic

logic

c1

f1

f2

f3

c2

c3

p1

Figure 6 Combinational cones for SET modeling.

In Figure 6, the cone with apex at c1 includes both cells c2 and c3. The cone with apex at p1425

also includes {c1, c2}. The cones with apexes at c3 and c2 contain {c1} and {c2} respectively.426

As a result, the worst case scenario of any SET that happens inside a cone j is the union of all427

possible simultaneous corruptions of the memory cells ms(j) in this cone. The power set P (ms(j))428

is the set of all possible memory cell corruption configurations.429

As soon as all corruption configurations are found, a new error injection procedure can be defined430

and used in both Algorithms 1 and 2 which remain the same. In particular, instead of mutually431

exclusive bit-flips injection to a state space S, expressed for SEU as (
⋃

mi∈M S [mi ← err(mi)]),432

the corruption of the RSS by an SET is computed as the disjunction of possible simultaneous433

memory cells corruptions of the sets included in the cones after memory cells M or primary434

inputs I:435

⋃
j∈(M∪I)

 ⋃
p∈P (ms(j))

S
[ ⋂

mi∈p

mi ← err(mi)
]436

where ms(j) is the subset of memory cells located in the cone with an apex at a memory cell or a437

primary input j.438

Such corruption procedure is a safe over-approximation in the precise (Dt) and approximate439

(D2, D3) domains. The complexity bottleneck of the approach is the power-set computation with440

a large number of memory cells in a single cone. However, in the case of the approximate logic441

domains D2 and D3, we can consider only the worst case scenario: the simultaneous corruption of442

all memory cells in a cone (without calculation of its powerset), computed as:443

⋃
j∈(M∪I)

S

 ⋂
mi∈ms(j)

mi ← err(mi)

444

It may happen that the result of such SET insertion includes corrupted states that are not445

reachable because it does not take into consideration the internal error-masking capabilities of the446
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Table 4 Voter Minimization, SEU model, Boolean domains D1 | D2 | D3.

Circuit FFs Syn. Semantic Sem.Inp. Sem.Out.

Da
ta

Fl
ow

In
t. D1 D2 D3 D1 D2 D3 D1 D2 D3

Pipelined FP mult. [21] 121 0 0 0 0 0 0 0 0 0 0
Pipelined log unit [21] 41 0 0 0 0 0 0 0 0 0 0
Shift/Add mult. [33] 28 28 19 19 19 19 19 19 8 8 8

ITC’99 [16](subset)

Co
nt

ro
l

Fl
ow

b01 Flows comparator 5 3 3 3 3 3 3 3 3 3 3

In
te

ns
iv

e b02 BCD recognizer 4 3 2 3 3 2 3 3 2 3 3
b03 Resource arbiter 30 29 17 29 17 17 29 17 17 29 17
b06 Interrupt handler 9 3 3 3 3 3 3 3 3 3 3
b08 Inclusion detector 21 21 21 21 21 0 21 0 0 21 0
b09 Serial converter 28 21 20 20 – 20 20 – 20 20 –

A ‘–’ denotes an out of time termination of the analysis (>20 mins).
The “Syn.” column shows the results of the syntactic analysis.

combinational circuit. Nevertheless, we will see in the experiments that, for the analysis presented447

in this paper, such over-approximation is an appropriate choice.448

7 Experimental results449

The presented voter minimization technique has been implemented in Ocaml using the BDD450

library CUDD [43] and the OCaml interface MLCuddIDL [30]. Transition systems and set of451

states are expressed as BDD formulae [15].452

The introduced logic domains (D1, D2, and D3) are encoded with multiple bits (two for D1453

and D2; four for D3) and the associated operators (e.g., Tables 2 and 3) are expressed as logic454

formulae over those bits. For instance, the values of D1 can be encoded with two bits (a, b) as:455

1 as (1, 1)456

0 as (1, 0)457

0 as (0, 0)458

1 as (0, 1)459

In this encoding, the first bit a is the correctness bit, and the second one b is the value bit.460

The NOT operator of D1 can be represented by the function:461

¬1(a, b) = (a, ¬b)462

We used the Quine-McCluskey algorithm to simplify the boolean functions corresponding to the463

AND and OR operators of D1. The AND operator is encoded as:464

∧1((a1, b1), (a2, b2)) = (a3, b3)465

where a3 = ((a1 ∧ a2) ∨ (a1 ∧ ¬b1) ∨ (a2 ∧ ¬b2) ∨ (¬a2 ∧ (¬b1 ∧ b2)) ∨ (¬a1 ∧ (¬b2 ∧ b1))
b3 = b1 ∧ b2

466
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And the OR operator is encoded as:467

∨1((a1, b1), (a2, b2)) = (a3, b3)468

where a3 = ((a1 ∧ a2) ∨ (a1 ∧ b1) ∨ (a2 ∧ b2) ∨ (¬a1 ∧ (¬b1 ∧ b2)) ∨ (¬a2 ∧ (¬b2 ∧ b1))
b3 = b1 ∨ b2

469

An encoding is needed for all the presented abstract domains. At least three different values470

for each bit (0, 1, and an incorrect value) must be encoded. Such an encoding cannot be replaced471

with circuit simulation or emulation where only logical one and zero are available.472

BDDs proved to be quite efficient to express the data structures and the processing required473

by our technique. We made use of Rudell’s sifting reordering [39] while building and applying474

the transition function. It allowed the semantic analysis of circuits up to 100 memory cells on a475

standard PC (Intel Core i5-2430M/2Gb-DDR3). For comparison, without reordering, the negative476

impact of big BDD structures on the algorithm performance was observed already for circuits477

with 20-30 memory cells. We did not put much efforts in the optimization but we believe that478

there remain much opportunities for improvement.479

We used both fault-models SEU(1,K) and SET (1,K) with K = 50, which allows K cycles/-480

transitions to be computed effectively (∆K). The obtained results are a fortiori valid for any481

K ≥ 50. However, for non-restrictive trivial input/output specification and small circuits, it is482

not worth to choose higher K values since all reachable states might be visited within a small483

number of execution steps K, and no further optimization will be achieved even if we continue the484

execution. When all reachable states are visited the execution can be stopped even if K steps have485

not been fully performed. Thanks to the encoding of input/output specification into the circuit486

structure (Section 5), the reachable states also contain the information about the values of input487

signals and the relevance of primary outputs (for the error-propagation analysis). The number of488

steps K needed to explore the whole state space varies depending on the specification and circuit489

complexity. For small circuit (e.g., b02, b01) with simple input/output specification (e.g., only the490

reset at the very beginning), we visit all reachable states in K < 10 steps. On the other hand,491

for larger circuits (shift/add multipliers or the circuit b08) with explicit complex input/output492

interface specifications (FSMs with 10 and more states), a higher value of K is rewarding and493

allows us to catch error masking behaviors that happen regularly (e.g., circuit restarts or returns494

to the initial state in cyclic FSMs within every 30-40 cycles).495

Our analysis has been applied to common arithmetic units taken from the OpenCores project [21]496

and from the ITC’99 benchmark suite [16]. For each circuit, we defined non-restrictive input-output497

specification for the sake of generality. For the majority of the circuits, the input pattern specifies498

only synchronous reset at its initialization phase and no further reset (b01, b02, b03, b04, b06, b09).499

Such non-restrictive patterns may reduce achievable optimizations, which could be significantly500

increased if more details about the behavior of the surrounding circuit were provided. However,501

for the shift/add multiplier [33] the input-output specification is dictated by its functionality. The502

produced output is relevant only two cycle after the start signal has been raised (one cycle to503

fetch new data plus at least one cycle to process it). Since we should not assume when the output504

is read out, we suppose that the data output may be read at any time two cycles after the last505

start and until the next start. As a result, our semantic analysis with this output specification506

shows that only the 8 product bits should be protected by voters.507

Circuit b08 represents a group of self-stabilizing circuits that return to their initial state (and508

wait for the next start) within a bounded number of cycles (for b08, this period is 8 cycles).509

Additionally, by functionality, the circuit is supposed to be restarted periodically. The correspond-510

ing input and output specification allowed us to suppress all voters. We would like to highlight511

that any circuit with internal counters has a similar behavior of self-stabilization (the shift/add512
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Table 5 Voter Minimization, SET model, Boolean domains D1 | D2 | D3.

Circuit FFs Synt. Semantic Sem.Inp. Sem.Out.

Da
ta

Fl
ow

In
t. D1 D2 D3 D1 D2 D3 D1 D2 D3

Pipelined FP mult. [21] 121 0 0 0 0 0 0 0 0 0 0
Pipelined log unit [21] 41 0 0 0 0 0 0 0 0 0 0
Shift/Add mult. [33] 28 28 – 19 – – 19 – – 8 –

ITC’99 [16](subset)

Co
nt

ro
l

Fl
ow

b01 Flows comparator 5 3 3 3 3 3 3 3 3 3 3

In
te

ns
iv

e b02 BCD recognizer 4 3 2 3 3 2 3 3 2 3 3
b03 Resource arbiter 30 29 – 29 – – 29 – – 29 –
b06 Interrupt handler 9 3 3 3 3 3 3 3 3 3 3
b08 Inclusion detector 21 21 – 21 21 – 21 0 – 21 0
b09 Serial converter 28 21 – 20 – – 20 – – 20 –

A ’–’ denotes an out of time termination of the analysis (>20 mins)
’Syn.’ column shows the results of syntactic analysis

multiplier is another example).513

Table 4 summarizes the results of the analysis on those circuits in D1, D2, and D3, with the514

fault-model SEU(1,K). The column FFs shows the total number of memory cells in the original515

circuit, while the other columns show the number of remaining voters in the TMR circuit after516

the syntactic and semantic steps (without, with input, with input and output interfaces). In each517

case, we give the results obtained with the three logic domains.518

The syntactic step eliminates all voters in circuits with a pipelined architecture such as adders,519

multipliers, or logarithmic units. With rolling pipelined architectures, a control part and a looped520

dataflow circuit may require voter protection (e.g., none of the 28 voters of the shift/add multiplier521

are removed with only the syntactic analysis).522

In general, control intensive circuits require a protection of their FSMs. Almost all memory523

cells of the serial flow comparator (b01) or the serial-to-serial converter (b09) have to be protected.524

Nevertheless, our analysis is capable of suppressing a significant amount of voters in many control525

intensive circuits. A circuit is usually composed of data and control flow parts and we can expect526

that most voters in the data flow part can be suppressed.527

The logic domain D2 is, most of the time, precise enough. However, correcting a bit-flip in D2528

(e.g., 0→ U→ U) looses information. In some circuits, like b03 and b08, substantial logical error529

masking is performed by an FSM and the analysis fails to detect it.530

The precision of the domain D3 allows us to achieve better optimizations than the domain D2531

in circuits b03 and b08 (see Table 4). With D3, the corrupted FSM will recover to a precise state,532

while with D2 its cells will recover to the correct unknown value U. This precise state plays a533

crucial role to show that the rest of the circuit, that depends on this FSM, will be cleaned up too.534

535

The results for SET (1,K) are shown in Table 5. The number of suppressed voters did not536

change with D2. However, even the proposed approximations in Section 6.2 does not help to537

resolve the complexity problem for some circuits when analyzed with D1 and D3. The bottleneck538
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results from the large number of corruption combinations if a single combinatorial cone includes539

many memory cells. For example, in the circuit b03, there is an FSM of 2 cells where each cell is540

connected through a combinatorial circuit to 26 memory cells (mainly controlling their enable541

signals). As a result, to approximate the impact of an SET in this FSM, we have to calculate all542

possible corruption combinations of 26 cells, which is 226 configurations. The circuits that could543

not be analysed are marked by ∗ in Table 5.544
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Figure 7 Logic Domain Comparison: Reachable State Space Size.
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Figure 8 Logic Domain Comparison: Size Ratio of RSS.

The scalability of logic domains D1, D2, and D3 has also been compared. Figure 7 presents545

the growth of the RSS Si after i iterations (see Section 3) for the b03 and b06 circuits. The fixed546

point is reached with less iterations in D2, and the number of states grows exponentially for D1547

versus linearly for D2. The same behavior is observed in all considered circuits.548

The logic domain D3 reaches the fixed-point as fast as D1 while keeping the same precision.549

This fact is demonstrated in Table 6 where we measured the number of cycles to calculate the550

RSS for each domain (the column “# iterations”). The column “seconds” gives the execution551

time spent to calculate the RSS, and the last column ,“# BDD nodes”, gives the complexity of552

the RSS BDD representation in terms of allocated BDD nodes. On the one hand, the number of553
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Table 6 Time and memory resources to calculate the RSS.

δ, sec # iterations seconds # BDD nodes

b0
1

D1 0.037 9 0.01 156
D2 0.037 6 0.01 78
D3 0.060 6 0.01 151

b0
2

D1 0.020 9 0.005 81
D2 0.020 9 0.04 66
D3 0.024 9 0.01 127

b0
3

D1 0.42 17 2.53 1506
D2 0.44 7 0.28 311
D3 875.670 7 235.13 668

b0
6

D1 0.044 8 0.024 473
D2 0.052 6 0.018 130
D3 0.056 6 0.02 256

b0
8

D1 0.364 40 3.14 27813
D2 0.356 5 0.02 324
D3 41.49 5 48.08 1222

b0
9

D1 31.332 32 27.57 2919
D2 0.852 20 1.04 446
D3 >1000 - - -

BDD nodes allocated to represent the RSS in larger circuits (b03, b08, b09) is much smaller with554

D3 than with D1. On the other hand, the BDD structures in D3 require more variables and are555

more time consuming to manipulate. The domain D3 overapproximates the RSS (see Section 3.3),556

which leads to less allocated nodes in the larger circuits. While it allows us to keep the necessary557

precision for optimizations comparable to the ones allowed by D1, our existing implementation of558

D3 would require further optimizations to be considered as an interesting compromise.559

The bar graph of Figure 8 shows the ratio of the size of the RSS in D1 to the corresponding560

size in D2. The RSSs in D1 are several orders larger than the corresponding ones in D2. The most561

computation demanding step of the whole analysis is checking error propagation (see Section 5).562

A prohibiting growth of BDD structures representing the set of states Ei was observed with D1563

for circuits of around 30 memory cells. The logic domain D2 allows the analysis (with input and564

output interfaces) of much larger circuits, up to 100 cells.565

In order to evaluate the benefits of our analysis, TMR has been applied to the benchmarks566

with the minimized set of voters. The inserted voters are triplicated following the practice in567

the existing industrial tools to avoid a single-point of failure and to protect against SETs. The568

final circuits have been synthesized with Synplify Pro with no optimization applied (Resource569

Sharing, FSM Optimization, etc.). As a case study, we have chosen Flash-based ProASIC3 FPGA570

as a synthesis target. Its configuration memory is immune to soft-errors [34] and data memory is571

protected with voters. Table 7 compares the size and maximum frequency of the circuit with full572

TMR (i.e., voters after each FF) versus TMR with the optimized number of voters. The gains573
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Table 7 Frequency and area gain of optimized vs full TMR.

TMR circuit voters MHz gain hw gain
Da

ta
Fl

ow
In

te
ns

. Pipelined FP Multiplier 8x8 121 60.5 2338
Optimized 0 71.0 17.4% 1831 21.7%

Pipelined logarithm unit 41 128.3 693
Optimized 0 184.1 43.5% 447 35.5%

Shift/Add multiplier 8x8 28 106.0 537
Optimized 8 108.0 1.9% 408 24.0%

b01 Flows comparator 5 162.6 126
Optimized 3 162.6 0% 114 9.5%

Co
nt

ro
l

Fl
ow

In
te

ns
iv

e

b02 BCD recognizer 4 181.9 69
Optimized 2 206.6 13.6% 60 13.1%

b03 Resource arbiter 30 81.6 594
Optimized 17 109.0 33.6% 576 3.0%

b06 Interrupt handler 9 144.8 168
Optimized 3 144.8 0% 134 20.2%

b08 Inclusions detector 21 115.4 484
Optimized 0 142.4 23.4% 216 55.4%

b09 Serial converter 28 89.4 584
Optimized 20 95.0 6.3% 565 3.3%

are presented in terms of the required FPGA hardware Core Cells (hw column) and maximum574

synthesizable frequency (MHz column). The gain in the maximum frequency depends on the575

location of the removed voters (in the circuit critical path or not). The reduction in area directly576

depends on the number of suppressed voters (up to 55%).577

Instead of using symbolic simulation with BDDs, we could have chosen a satisfiability-based578

approach and have encoded the same algorithm as a bounded model checking problem. We could579

benefit from the efficiency of SAT solvers and possibly improve the scalibility of our algorithms.580

However, since we use multi-value logic domains and the error-correction/-injection operators581

vot and err, a SAT-based approach would require a non-trivial circuit orchestration. This option582

offers nonetheless a possible avenue for future research.583

8 Related work584

Existing industrial tools for applying TMR into FPGA protect against both kinds of soft error,585

SEUs and SETs. They include the Xilinx XTMR tool [6,46], BYU/Los Alamos National Laboratory586

B-TMR [37], Synopsys’s Synplify Premier [44], and Mentor Graphics Precision Hi-Rel [19]. In587

these tools, TMR is applied to circuit parts chosen by the user and, thus, the resulting circuits588

might not be fault-tolerant unless voters are inserted after each memory cell and primary circuit589

outputs. [19] proposes a protection technique against SEUs that requires only memory cells590

triplication with a majority voter insertion. But this approach relies on the assumption that591
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only memory cells are influenced by radiation particles and that no signal perturbations in a592

combinatorial circuit occur. Thus, unlike our technique, the technique of [19] protects only against593

SEUs and not against SETs.594

While our static analysis uses exclusively logical masking to tolerate transient errors, many595

other works rely on electrical and latching-window properties of hardware to estimate the chance596

that errors will not manifest in failures. This is the primary reason why a good part of research on597

voter insertion, Selective Triple-Modular Redundancy (STMR), and partial hardware redundancy598

mainly focus on probabilistic approaches [2, 28,31,40]. Contrary to our approach, they are not599

interested in formal guarantees that the final circuit tolerates a fault-model. [31] shows how600

selective voter insertion minimizes the negative timing impact of TMR. In [38], probabilities are601

used to apply TMR on selected portions of the circuit (STMR). In [40], STMR of combinational602

circuits specifies input interfaces using input signal probabilities. The main advantage of STMR603

over TMR is that the area of the STMR circuit is roughly two-thirds of the area of the TMR circuit.604

An original probabilistic-based idea is given in [29] that allows a certain level of degradation in605

output correctness in order to optimize TMR at a Data Flow Graph (DFG) abstraction level.606

While this technique is originally dedicated to heterogenous systems, it could be applied to Digital607

Signal Processing (DSP) hardware as well. Since the proposed methods are probabilistic, some608

errors may propagate to primary outputs. In our approach, the circuit is guaranteed to mask all609

possible errors of the considered fault model.610

Other works use model-checking to guarantee user-defined fault-tolerance properties [3, 41].611

[41] investigates which memory cells in SpaceWire node have to be protected so that even under612

an SEU occurrence the circuit keeps its functional properties, expressed as 39 assertions in linear613

temporal logic. If a cell is protected (fabricated with a special technology), an SEU cannot corrupt614

it. On the other hand, a protected cell consumes more power than a non-protected memory cell.615

As a result of verification-guided replacement of protected cells by their non-protected alternatives,616

a 4.45X reduction in power has been achieved. The work [3] formally proves that some system617

properties of ATM controller are kept if an SEU happens. The authors evaluate the probability to618

obtain the expected property under faults.619

Another group of formal studies investigates sequential circuit robustness symbolically [4, 23]620

or by interpolation [13]. Since robustness is introduced probabilistically these work combine both621

formal and probabilistic worlds.622

While the aforementioned formal studies do not address voter minimization, their approaches623

to fault-tolerance and robustness are related to our work.624

It is worth noticing that the introduced reachability analysis with multi-value encoding can be625

also interpreted within the well-known tainting dataflow-based analysis [18] and path sensitisation626

theories [14]. The former assigns a security-related mark to each information bit and tracks its627

propagation, just like we tag some bits as erroneous. The later approaches check if there is a628

path so that a signal change along that path alters the output. In our case, the signal change629

corresponds to an error injection, e.g., a bit-flip, and we check whether this change can propagate630

to corrupt the output.631

9 Conclusion632

We proposed a logic-level verification-guided approach to minimize the number of voters in TMR633

circuits that guarantees a user-defined fault-model to be masked. Our approach is based on634

reachable state set computations and input/output interface specifications. In order to avoid635

analyzing the triplicated circuit, we introduced three logic domains, which allowed us to perform636

the analysis on a single copy of the circuit. Our analysis shows that some voters are useless and637
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can be safely removed from the TMR application. We have used as case studies several arithmetic638

circuits as well as the benchmark suite ITC’99. They show that our technique allows not only639

a significant reduction in the amount of hardware resources (up to 35% for data flow intensive640

circuits and up to 55% for control flow intensive ones), but also a significant increase in the clock641

rate, compared to the full TMR method that inserts a voter after each memory cell.642

We demonstrated that the choice of the logic domain influences the scalability of the analysis643

and its precision. We considered both SEU and SET fault-models and explained the modeling644

methodology. As the experimental results show, the same level of optimization can be reached645

for both fault-models, but the SET model implies a potentially large number of corruption646

combinations to be examined, which can cause an analysis bottleneck.647

In this article, we have only considered hardware redundancy (TMR) but our approach also648

applies to time redundancy. Time-redundant schemes mask errors by voting on re-computed data.649

Such schemes reuse the combinational part of the circuit and have a lower hardware overhead650

at the price of a lower throughput. We have proposed new fault-tolerance techniques based on651

time-redundancy in [12] and [11]. We have demonstrated in [9] how the present voter minimization652

technique could be applied to them.653

Further research directions include taking into account other optimization criteria such as654

frequency and allowing the analysis of large circuits by making our approach modular. We review655

these issues in turn.656

Frequency maximization657

Voters ordering, discussed in Section 3.2, could also take into account other optimization criteria658

than voter minimization. For instance, we may increase the maximum synthesizable frequency by659

removing first the voters on the critical path. However, removing a voter from the critical path660

may make another path critical. Thus, the choice of the next voter to remove depends not only661

on the existing ordering but also on the current critical path. However, the critical path strategy662

may not result in the minimal number of voters. In this sense, the two criteria “number of voters”663

and “synthesizable frequency” are orthogonal, and bi-criteria optimization must be studied.664

Modularity665

Applying our analysis in a modular manner can increase its scalability and, consequently, the666

applicability of the proposed technique to large circuits. The hierarchical compositional design of667

today’s circuits makes it natural to decompose a circuit to the IPs of its block-by-block structure.668

Such structural partitioning requires the deep design understanding and has already been used669

in the model checking of Intel CPUs [1]. In our case, the presented analysis can be applied to670

circuit sub-components after the decomposition. After the minimization of internal voters in each671

sub-circuit, the components should be interconnected again to rebuild the whole design. However,672

the interconnection wires should include voters to guaranty the fault-tolerance property of the final673

optimized circuit. Such an approach is not optimal even if the local input/output specifications674

are precise, because some of the interconnection voters may be redundant. Only a global analysis675

on the blocks containing such wire with a voter (as an input or output wire) can safely remove676

interconnection voters.677

If a decomposition in sub-circuits is not known, the circuit netlist has to be automatically678

divided and the input-output specifications of its parts have to be found. These steps by themselves679

present complex tasks and require deep investigation. Here, we sketch some preliminary ideas680

about how these problems can be solved. First, a circuit netlist can be separated according to681

some syntactic criteria, e.g., the circuit cuts should be performed at wires that are included in682
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the biggest number of sequential loops. Such an approach eliminates as many sequential loops as683

possible by reducing the number of sequential loops in each sub-component. It limits the number684

of potential points where the voters have to be inserted.685

After the circuit decomposition, our semantic analysis can be applied to each of its sub-parts.686

The main difficulty lies in the identification of input/output specification of each sub-circuit to687

perform the local semantic analyses. Figure 9 presents three cases of the circuit separation: a)688

sequential, b) parallel, and c) feedback decomposition.689

c1 c2 c1
c2

a) b)

c)

i2

c1
i1 o1 o2

c2

Figure 9 a) sequential, b) parallel, and c) feedback circuit decomposition.

While the input/output specification for c1 and c2 sub-circuits can be extracted from the690

global specification in the parallel decomposition (case b, Figure 9), the sequential and feedback691

decompositions (cases a and c) create unknown internal specifications (marked in red). They have692

to be found for each sub-part. Consider, for instance, the unknown input specification i2 for the693

sequential decomposition (case a). The signals in i2 are the outputs o1. Since the netlist c1 and694

its input specification i1 fully describe the behavior of c1, o1 and i2 can be described by the same695

NBA. In the worst case, such NBA could be as big as c1 multiplied by the size of i1, which can696

be prohibitive for the following semantic analysis of c2 sub-circuit. Consequently, the extracted697

NBA should be over-approximated to lower the complexity. Naturally, the over-approximation698

may influence the precision of the further semantic voter minimization in c2. The feedback699

decomposition is even more complex because of the mutual dependency between sub-components700

c1 and c2.701

These modularity issues are complex but important and valuable since many other static702

analyses of circuits could benefit from them.703
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