
Type checking for a multiset rewriting language

Pascal Fradet and Daniel Le Métayer
Irisa/Inria

Campus de Beaulieu,
35042 Rennes, France
[fradet,lemetayer]@irisa.fr

Abstract. We enhance Gamma, a multiset rewriting language, with a

notion of structured multiset. A structured multiset is a set of addresses

satisfying speci�c relations which can be used in the rewriting rules of

the program. A type is de�ned by a context-free graph grammar and a

structured multiset belongs to a type T if its underlying set of addresses

satis�es the invariant expressed by the grammar de�ning T . We de�ne

a type checking algorithm which allows us to prove mechanically that a

program maintains its data structure invariant.

Keywords: multiset rewriting, graph grammars, type checking, invariant, veri-
�cation.

1 Gamma: motivations and limitations

Gamma is a kernel language which can be introduced intuitively through the
chemical reaction metaphor [2, 3]. The unique data structure is the multiset
which can be seen as a chemical solution. A simple program is a pair (Condi-
tion, Action) called a reaction. Execution proceeds by replacing in the multiset
elements satisfying the condition by the products of the action. The result is
obtained when a stable state is reached, that is to say when no more reactions
can take place. The following is an example of a Gamma program computing
the maximum element of a non-empty set.

max : x , y , x ≤ y ⇒ y

x ≤ y speci�es a property to be satis�ed by the selected elements x and y. These
elements are replaced in the set by the value y. Nothing is said in this de�nition
about the order of evaluation of the comparisons. If several disjoint pairs of
elements satisfy the condition, the reactions can be performed in parallel. Let
us consider as another introductory example, a sorting program. We represent a
sequence as a set of pairs (index, value) and the program exchanges ill-ordered
values until a stable state is reached and all values are well-ordered.

sort : (i, x) , (j, y) , (i < j) , (x > y) ⇒ (i, y) , (j, x)

The interested reader may �nd in [2] a longer series of examples (string process-
ing problems, graph problems, geometry problems, . . .) illustrating the Gamma
style of programming and in [3] a review of contributions related to the chemical
reaction model. The fundamental quality of the language is the possibility of
writing programs without any arti�cial sequentiality (sequentiality which is not
imposed by the logic of the program). This makes program derivation easier [1]
and naturally leads to the construction of programs suitable for execution on
parallel machines. But our experience with Gamma has also highlighted some
weaknesses of the language. In particular, the language does not make it easy to
structure data or to specify particular control strategies. An unfortunate conse-
quence is that the programmer sometimes has to resort to tricky encodings to
express his algorithm. For instance, the exchange sort algorithm shown above
is expressed in terms of multisets of pairs (index,value). Also, it is di�cult to
reach a decent level of e�ciency in any general purpose implementation of Gam-
ma, partly because the underlying structure of the data (and control) is not
exposed to the compiler. Such information could be exploited to improve the
implementation [5] but it can usually not be recovered by an automatic analysis
of the program. So, the lack of structuring facility is detrimental both for rea-
soning about programs and for implementing them. In this paper, we propose a
solution to this problem which does not jeopardize the basic qualities of the lan-
guage. Our proposal is based on a notion of structured multiset which is a set of
addresses satisfying speci�c relations and associated with values. The relations
express a form of neighborhood between the molecules of the solution; they can
be used in the reaction condition of a program or transformed by the action.
In our framework, a type is de�ned in terms of rewrite rules on the relations
of a multiset. A structured multiset belongs to a type T if its underlying set of
addresses satis�es the invariant expressed by the rewrite system de�ning T . The
paper de�nes a type checking algorithm which allows us to prove mechanically
that a program maintains its data structure invariant.

We de�ne the notion of structured multiset and structured program in section
2. The notion of structuring types is introduced in section 3 with a collection of
examples illustrating the programming style of Structured Gamma. In section
4, we describe a checking algorithm and illustrate it with several examples. The
conclusion presents several applications built upon the ideas developed in this
paper.

2 Syntax and semantics of Structured Gamma

A structured multiset is a set of addresses satisfying speci�c relations. As an
example, the list [5; 2; 7] can be represented by a structured multiset whose set
of addresses is {a1, a2, a3} and associated values are V al(a1) = 5, V al(a2) =
2, V al(a3) = 7. Let succ be a binary relation and end a unary relation; the
addresses satisfy

succ a1 a2 , succ a2 a3 , end a3

A Structured Gamma program is de�ned in terms of pairs of a condition and an
action which can:

� test/modify the relations on addresses,
� test/modify the values associated with addresses.

As an illustration, an exchange sort for lists can be written in Structured Gamma
as:

Sort = succ x y , x > y ⇒ succ x y , x := y , y := x

The two selected addresses x and y must satisfy the relation succ x y and their
values x and y are such that x > y. The action exchanges their values and leaves
the relation unchanged.

In order to de�ne the syntax and semantics of Structured Gamma, we con-
sider three basic domains:

� R: set of relation symbols,
� A: set of addresses,
� V: set of values.

We note A(M) the set of addresses occurring in the multiset M .

Syntax The syntax of Structured Gamma programs is described by the follow-
ing grammar:

< Program > ::= ProgName = [< Reaction >]∗

< Reaction > ::= < Condition > ⇒ < Action >
< Condition > ::= r x1 . . . xn | fBool(x1, . . . , xn) | <Condition>, <Condition>
< Action > ::= r x1 . . . xn | x := fV(x1, . . . , xn) | < Action >, < Action >

where r (∈ R) denotes a n-ary relation, xi is an address variable, xi is the value
at address xi and fX is a function from Vn to X.

As can be seen in the Sort example, x refers to the value of address x when
it is selected in the multiset. The evaluation order of the basic operations of an
action (in particular, assignments) is not semantically relevant. In order to �t
with this design choice, a valid Structured Gamma program must satisfy two
additional syntactic conditions:

� If x occurs in the reaction then x occurs in the condition.
� An action may not include two assignments to the same variable.

Semantics A structured multiset M can be seen as M = Rel + V al where

� Rel is amultiset of relations represented as tuples (r, a1, . . . , an) (r ∈ R, ai ∈
A)

� V al is a set of values represented by triplets of the form (val, a, v) (a ∈
A, v ∈ V)

For example, the structured multiset shown at the beginning of this section can
be noted:

{(succ, a1, a2), (succ, a2, a3), (end, a3), (val, a1, 5), (val, a2, 2), (val, a3, 7)}

A valid structured multiset is such that an address x does not have more than
one value (i.e. x occurs at most once in V al). On the other hand, there may be
several occurrences of the same tuple in Rel. Also, we do not enforce that

A(Rel) ⊆ A(V al) nor that A(V al) ⊆ A(Rel)

So, allocated addresses may not to possess a value or may have a value but
not occur in any relation (although, in this case, they cannot be accessed by a
Structured Gamma program and may be garbage collected).

In order to de�ne the semantics of programs, we associate three functions
with each reaction C ⇒ A:

� a boolean function T (C) representing the condition of application of a reac-
tion:
T (C)(a1, . . . , ai, b1, . . . , bj) = (val, a1, a1) ∈ V al ∧ . . . ∧ (val, ai, ai) ∈ V al

∧ (val, b1, b1) ∈ V al ∧ . . . ∧ (val, bj , bj) ∈ V al ∧ bCc

� A function C(C) representing the tuples selected by the condition (i.e. the
relations and values occurring in C):
C(C)(a1, . . . , ai, b1, . . . , bj) = {(val, a1, a1), . . . , (val, ai, ai),

(val, b1, b1), . . . , (val, bj, bj)} + dCe

� A function A(A) representing the tuples added by the action (i.e. the rela-
tions occurring in A, the values selected but unchanged by the reaction and
assigned values):

A(A)(a1, . . . , ai, b1, . . . , bj , c1, . . . , ck) = {(val, a1, a1), . . . , (val, ai, ai)}+dAe

where

� (a1, . . . , ai) denotes the set of non-assigned variables whose value occurs in
the reaction,

� (b1, . . . , bj) denotes the set of assigned variables occurring in the condition
C,

� (c1, . . . , ck) denotes the set of variables occurring only in the action A.

and d e and b c are de�ned by:

dX1, X2e = dX1e + dX2e bX1, X2c = bX1c ∧ bX2c
dr x1 . . . xne = {(r, x1, . . . , xn)} br x1 . . . xnc = (r, x1, . . . , xn) ∈ Rel
df(x1, . . . , xn)e = ∅ bf(x1, . . . , xn)c = f(x1, . . . , xn)
dx := f(x1, . . . , xn)e = {(val, x, f(x1, . . . , xn))}

The semantics of a Structured Gamma program P = C1 ⇒ A1, . . . , Cm ⇒
Am applied to a multiset M is de�ned as the set of normal forms of the following
rewrite system:

M −→P GC(M) if ∀{x1, . . . , xn} ⊆ A(M) ∀i ∈ [1 . . .m] ¬T (Ci)(x1, . . . , xn)

M −→P M−C(Ci)(x1, . . . , xn)+A(Ai)(x1, . . . , xn, y1, . . . , yk) (with yi 6∈ A(M))

if ∃{x1, . . . , xn} ⊆ A(M) and ∃i ∈ [1 . . .m] such that T (Ci)(x1, . . . , xn)

If no tuple of addresses satis�es any condition then a normal form is found.
The result is the accessible structure described by the relations. Addresses which
do not occur in Rel are removed from V al. More precisely:

GC(Rel + V al) = Rel + {(val, a, v) | (val, a, v) ∈ V al ∧ a ∈ A(Rel)}

Otherwise, a tuple of addresses (x1, . . . , xn) and a pair (Ci, Ai) such that
T (Ci)(x1, . . . , xn) are non-deterministically chosen. The multiset is transformed
by removing C(Ci)(x1, . . . , xn), allocating fresh addresses y1, . . . , yk and adding
A(Ai)(x1, . . . , xn, y1, . . . , yk).

Correspondence between Structured Gamma and original Gamma

Compared to the original Gamma formalism, the basic model of computation
remains unchanged. It still consists in repeated applications of local actions in
a global data structure. Actually, our way to de�ne the semantics of Structured
Gamma programs is very close to a translation into equivalent pure Gamma
programs.

Rather than providing a formal de�nition of the translation, we illustrate
it with the exchange sort program which is de�ned as follows in Structured
Gamma:

Sort = succ x y , x > y ⇒ succ x y , x := y , y := x

and can be rewritten in pure Gamma as:

Sort = (val, x, x) , (val, y, y) , (succ, x, y) , x > y
⇒ (succ, x, y) , (val, x, y) , (val, y, x)

3 Structuring types

Structured multisets can be seen as a syntactic facility allowing the programmer
to make the organization of the data explicit. We are now in a position to
introduce a new notion of type which characterizes the structure of a multiset.
We provide a formal de�nition of types and we illustrate them with a collection
of examples.

3.1 Syntax and semantics of structuring types

Syntax The syntax of types is de�ned by the following grammar:
<TypeDeclaration> ::= TypeName = <Prod> , [<NonTerminal> = <Prod>]∗

<NonTerminal> ::= NTName x1 . . . xn

<Prod> ::= r x1 . . . xn | <NonTerminal> | <Prod> , <Prod>

where r (∈ R) is an n-ary relation (n > 0), and xi is a variable denoting an
address.

A type de�nition resembles a context-free graph grammar. For example, lists
can be de�ned as

List = L x
L x = succ x y , L y
L x = end x

The de�nition of a type T can be associated with a rewrite system (noted ;T)
which can fold any multiset of type T in the start symbol T . It amounts to reverse
the grammar rules and to consider '=' symbols as ';T ' and nonterminal names
N as relations. We keep the same notation NTx1 . . . xp to denote a nonterminal
in a type de�nition or a relation in the rewrite system associated with a type.
The correct interpretation is usually clear from the context. For example, the
rewrite system associated with the type List is noted:

L x ;List List
succ x y , L y ;List L x
end x ;List L x

This system rewrites any multiset of type List into the atom List.
We note | M | the multiset restricted to relations (| Rel + V al |= Rel).

De�nition 1 A multiset M has type T (noted M:T) i� | M | ∗
;T {T }.

Let us point out that ;T reductions must enforce that if a variable of the lhs
does not occur in the rhs it does not occurs in the rest of the multiset. This is
a global operation and such rewriting systems are clearly not Structured Gam-
ma programs. This global condition is induced by the semantics of Structured
Gamma programs which enforces variables of the rhs not occurring in the lhs to
be fresh.

3.2 Examples of types

Abstract types found in functional languages such as ML can be de�ned in
a natural way in Structured Gamma. For example, the type corresponding to
binary trees is

Bintree = B x
B x = node x y z , B y , B z
B x = leaf x

However, structuring types make it possible to de�ne not only tree shaped
but also graph structures. Actually, the main blessing of the framework is to
allow concise de�nitions of complicated pointer-like structures. To give a few
examples, it quite easy to de�ne common imperative structures such as

� doubly-linked lists:

Doubly = L x
L x = succ x y , pred y x , L y
L x = end x

� lists with connections to the last element:

Last = L x z
L x z = succ x y , last x z , L y z
L x z = succ x z , last x z , end z

� circular lists:

Circular = L x
L x = L′ x z , L′ z x
L x = succ x x
L′ x y = L′ x z , L′ z y
L′ x y = succ x y

� binary trees with linked leaves:

Binlinked = L x y z
L x y z = left x u , L u y v , R x v z
L x y z = left x y , R x y z
R x y z = right x u , succ y v , L u v z
R x y z = right x z , succ y z

3.3 Programming using structuring types

Many programs are expressed more naturally in Structured Gamma than in
pure Gamma. The underlying structure of the multiset can be described by a
type whereas in pure Gamma we had to encode it using tuples and tags. Let
us give a few examples of Structured Gamma programs whose description in
pure Gamma is cumbersome. Note that the syntax of programs is extended to
account for typed programs (ProgName : TypeName = . . .).

Iota takes a singleton [a] and yields the list [a; a − 1; . . . ; 1].

Iota : List = end a , a > 1 ⇒ succ a b , end b , b := a − 1

MultB takes a binary tree and yields a leaf whose value is the product of all the
nodes and leaves values of the original tree.

MultB : Bintree = node a b c , leaf b , leaf c ⇒ leaf a , a := a ∗ b ∗ c

In order to get more potential parallelism, we may also add the rules

node a b c , node b d e, leaf c ⇒ node a d e, a := a ∗ b ∗ c
node a b c , leaf b , node c d e ⇒ node a d e, a := a ∗ b ∗ c

Types can also be used to express precise control constraints. For example, lists
can be de�ned with two identi�ed elements used as pointers to enforce a speci�c
reduction strategy.

Listm = L0 x
L0 x = m1 x , succ x y , L1 y
L0 x = succ x y , L0 y
L1 x = m2 x , L2 x
L1 x = succ x y , L1 y
L2 x = succ x y , L2 y
L2 x = end x

The type de�nition enforces that m1 identi�es a list element located before
the list element marked by m2. Assuming an initial list where m1 marks the
�rst element and m2 the second one, we can describe a sequential sort.

SeqSort : Listm =
m1 a , m2 b , a > b ⇒ m1 a , m2 b , a := b , b := a

m1 a , m2 b , succ b c , a ≤ b ⇒ m1 a , m2 c , succ b c
m1 a , m2 b , end b ,

succ a c , succ c d , a ≤ b ⇒ m1 c , m2 d , end b , succ a c , succ c d

In fact, Listm can be shown more precisely to be a re�nement of List. We
come back to this issue in the conclusion.

To summarize, Structured Gamma retains the spirit of Gamma while provid-
ing means to declare data structures and to enforce speci�c reduction strategies
(e.g. for e�ciency purposes).

4 Static type checking

The natural question following the introduction of a new type system concerns
the design of an associated type checking algorithm. In the context of Structured
Gamma, type checking must ensure that a program maintains the underlying
structure de�ned by a type. It amounts to the proof of an invariant property. We
propose a checking algorithm based on the construction of an abstract reduction
graph which summarizes all possible reduction chains from a condition C to a
unique nonterminal. We describe its application to some examples, suggesting
that the algorithm is precise enough to tackle most common cases.

4.1 The basic idea

First, let us note that values and assignments are not relevant for type checking.
So, we may consider multisets and rewriting rules restricted to relations. Also,
we assume that checking is done relatively to a given type T .

A reduction step of a multiset by a Structured Gamma program is of the form
M + C −→P M + A where C and A represent multisets of relations matching
a reaction of the program. The algorithm has to check that the application of
every reaction of the program leaves the type of the multiset unchanged. In other
terms, for any reaction C ⇒ A and multiset M + C of type T it checks that
M + A is of type T (i.e. M + A

∗
;T {T }).

The checking algorithm is based on the observation that if M + C has type
T , there must be a context X (X ⊆ M) such that C + X reduces by ;T to a
unique nonterminal NT x1 . . . xp (possibly T). The reduction of a term C(= C0)
to a nonterminal NT x1 . . . xp can be described as

C0 + X0 ;T C1 C1 + X1 ;T C2 . . . Cn + Xn ;T {NT x1 . . . xp}

Each step is an application of a ;T rule which reduces at least a component of
Ci and Xi is a basic context. Basic contexts are the smallest (possibly empty)
multisets of relations needed to match the lhs of a reduction rule. They are
therefore completely reduced by the reduction rule.

The context X = X0 + . . . + Xn must be produced by the reduction of M ,
that is

M
∗
;T M ′ + X

and the ;T reduction of the multiset M + C can then be described as

M + C
∗
;T M ′ + X + C

∗
;T M ′ + {NTx1 . . . xp} ∗

;T {T }

Now, if A + X reduces to the same unique nonterminal NTx1 . . . xp, then

M + A
∗
;T M ′ + X + A

∗
;T M ′ + {NTx1 . . . xp} ∗

;T {T }1

and the type of the multiset is maintained.
It is su�cient to check the property A + X

∗
;T {NTx1 . . . xp} for every

possible reduction chain from C to a nonterminal NTx1 . . . xp with context X .
To get round the problem posed by the unbounded length of such chains, we
consider residuals Ci up to renaming of variables.

4.2 A checking algorithm

The type checking algorithm consists in examining in turn each reaction of the
program.

TypeCheck (P, T) = ∀(C, A) of P. Check (A, T, Build (C, {C}, T))

For each reaction C ⇒ A, a reduction graph summarizing all possible reduc-
tion chains from C to a nonterminal is built by Build. Then, Check veri�es that
for any reduction chain and context X of the graph from C to a nonterminal,

1 The global conditions on this reduction are ensured by the validity of the reduction

of M +C and the fact that variables of A are either variables of C or fresh variables.

A+X reduces to the same nonterminal. These functions are described in Figure
1.

Build takes an initial graph made of the root C. The reduction graph is
such that nodes are residuals Ci which are all di�erent (even up to renaming

of variables) and edges are of the form Ci
X,σ−→ Cj . This notation indicates that

Ci + X ;T σCj where X is a basic context and σ is a variable renaming.

Build (C, G, T)
if C is a nonterminal then return G else
let CX = {(Ci, Xi) | C + Xi ;T Ci} in CX is a �nite set

(up to fresh variable renaming)
for each (Ci, Xi) in CX do

if ∃Cj ∈ G and σj such that Ci = σjCj then G := G + C
Xi,σj−→ Cj

else G := G + Ci + C
Xi,id−→ Ci ; G := Build(Ci, G, T)

od
return G

Check (A, T, G)
let S = {(X0 + σ1X1 + . . . + σ1 ◦ . . . ◦ σn Xn, σ1 ◦ . . . ◦ σn+1 {NT x1 . . . xp})

| C0
X0,σ1−→ C1

X1,σ2−→ . . . Cn

Xn,σn+1−→ {NT x1 . . . xp} ∈ G}
and C = {(X0 + σ1X1 + . . . + σ1 ◦ . . . ◦ σi−1 Xi−1, σ1 ◦ . . . ◦ σi Ci)

| C0
X0,σ1−→ . . .

Xi−1,σi−→ Ci ∈ G and ∃Ci
X,σx−→ . . . Ci ∈ G

and ∃Ci
Y,σy−→ . . . N ∈ G (N a nonterminal)

and 6 ∃ j < i | Cj
Z,σz−→ . . . Cj ∈ G}

in ∀(X, Y) ∈ S ∪ C. Reduces_to (A + X, Y, T)

Reduces_to (X, Y, T)
if X=Y then True
else if X is irreducible then False
else let {X1, ..., Xn} the set of all possible residuals of X by a ;T reduction

in
∨n

i=1
Reduces_to (Xi, Y, T)

Fig. 1. Type checking functions

The structure of Build is a depth �rst traversal of all possible reduction chains.
The recursion stops when C is a nonterminal or is already present in the graph.
CX is the set of basic contexts and residuals denoting all the di�erent ;T

reductions of C. If a residual Ci in already present in the graph, that is, there

is already a node Cj such that Ci = σjCj , then the edge C
Xi,σj−→ Cj is added

to the graph. Otherwise, a new node Ci is created and the edge C
Xi,id−→ Ci is

added.

The function Check takes the graph as argument and performs the following
veri�cations:

� For every simple path from the root to a nonterminal N with context X , it
checks that A + X

∗
;T N .

Let us focus on the meaning of a path C0
X0,σ1−→ C1 . . .

Xn,σn+1−→ {NT x1 . . . xp}.
By de�nition, we have

C0 + X0 ;T σ1C1, . . . , Cn + Xn ;T σn+1{NT x1 . . . xp}

thus

C0 + X0 + σ1X1 + . . . + σ1 ◦ . . . ◦ σn Xn
∗
;T σ1 ◦ . . . ◦ σn+1{NT x1 . . . xp}

So, the context and nonterminal (X, N) associated with the above path
are X = X0 + σ1X1 + . . . + σ1 ◦ . . . ◦ σn Xn and N = σ1 ◦ . . . ◦ σn ◦
σn+1 {NT x1 . . . xp}.

� For every simple path with context X from the root to a residualCi belonging
to a cycle, it checks that A + X

∗
;T Ci. In fact, it is su�cient to check this

property for the �rst residual belonging to a cycle occurring on the path
from the root and only for cycles which may lead to a nonterminal.

The veri�cations that the action A with context X can be reduced to Y are
implemented by function Reduces_to(A + X, Y, T). It simply tries all the ;T

reductions on the term A + X using a depth �rst strategy. If a path leading to
Y is found then True is returned. If Reduces_to �nds out that all the normal
forms of A + X by ";T " are di�erent from Y , it returns False which entails the
failure of the veri�cation (TypeCheck(P, T) = False).

The termination of TypeCheck is ensured by the following observations:

� The reduction graph is �nite. Using the context-free nature of types and
equality up to renaming, it is easy to show that the number of nodes and
edges is bounded.

� It is possible to �nd a well-founded decreasing ordering for ;T reductions
ensuring the termination of Reduces_to.

The type checking is correct if it ensures that the type of a program is
invariant throughout the reduction. The proof amounts to showing a subject
reduction property.

Property 1 ∀P, M1 : T M1 −→P M2 and TypeCheck(P, T) ⇒ M2 : T

The proof of this property and a more detailed presentation of the algorithm
can be found in a companion paper [6].

4.3 Examples

Even if the theoretical complexity of the algorithm is prohibitive, the cost seem-
s reasonable in practice. We take here a few examples to illustrate the type
checking process at work.

Example 1. Let us take the Iota program working on type List. The program
is

Iota : List = end a , a > 1 ⇒ succ a b , end b , b := a − 1

Operations on values are not relevant for type checking and we consider the
single reduction rule

end a ⇒ succ a b , end b

The type de�nition and associated rewriting system are:

List = L x L x ;List List
L x = succ x y , L y succ x y , L y ;List L x
L x = end x end x ;List L x

The type checking amounts to the call

Check((succ a b, end b), List, Build(end a, {end a}, List))

There is a single ;List reduction of end a+X (with X a basic context), namely

end a ;List L a

So, CX = {(L a, ∅)} and, since L a is a nonterminal, the reduction graph is

end a
∅,id−→ L a

There is a single simple path and we are left with checking
Reduces_to ((succ a b , end b), L a, List)

The set of possible residuals of (succ a b , end b) is {(succ a b , L b)}, so
Reduces_to ((succ a b , L b), L a , List) is recursively called. The set of possible
residuals of (succ a b , L b) by a ;List reduction is {L a} and Reduces_to
(L a, L a, List) = True. So, TypeCheck(Iota, List) = True and we conclude that
the �List� invariant is maintained.

Example 2. Let us consider a program performing an insertion at the end of a
list of type Last.
Wrong : Last =
succ x z , last x z , end z ⇒ succ x z , succ z t , last x t , last z t , end t

Obviously this program is ill-typed. If the list has more than two elements,
the �rst elements would still point to z whereas t is the new last element. The
de�nition of the rewriting system of Last is:

L x z ;Last Last
succ x y , last x z , L y z ;Last L x z
succ x z , last x z , end z ;Last L x z

There is a single reduction sequence from the condition to a nonterminal:

succ x z , last x z , end z ;Last L x z

but,
succ x z , succ z t , last x t , last z t , end t 6;Last L x z

and the �Last� invariant is not maintained.
However, if we consider the insertion program:

Add : Last = succ x y, last x z ⇒ succ x t, succ t y, last x z, last t z

There is one reduction sequence from the condition to a nonterminal:

succ x y , last x z , L y z ;Last L x z

and it is easy to check that
succ x t, succ t y, last x z, last t z, L y z ;Last succ x t, last x z, L t z

;Last L x z
and the �Last� invariant is maintained.

5 Conclusion

We have applied the framework developed in this paper in three di�erent areas:
program re�nement, coordination and type systems for imperative languages.
We sketch these applications in turn.

� Structured Gamma can serve as a basis for program re�nements leading
to e�cient implementations. The basic source of ine�ciency of any �naïve�
implementation of Gamma is the combinatorial explosion entailed by the
semantics of the language for the selection of reacting elements. As point-
ed out in [5], most of the re�nements leading to e�cient optimizations of
Gamma programs can be expressed as speci�c selection orderings. Several
re�nements are introduced in [5] which shows that they often lead to e�cient
well-known implementations of the corresponding algorithms. This result is
quite satisfactory from a formal point of view because it shows that there is a
continuum from speci�cations written in Gamma to lower-level and e�cient
program descriptions. These re�nements, however, had to be checked manu-
ally. Using Structured Gamma as a basis, we can provide general conditions
ensuring the correctness of program re�nements [6]. The basic idea, which
was already alluded to in section 3.3, consists in considering multiset (and
type) re�nements as the addition of extra relations between addresses. These
relations are used as further constraints on the control in order to impose a
speci�c ordering for the selection of elements.

� Coordination languages [4, 9], software architecture languages [8] and con-
�guration languages [12] were proposed as a way to make large applications
more manageable and more amenable to formal veri�cations. They are based

on the principle that the de�nition of a software application should make a
clear distinction between individual components and their interaction in the
overall software organization. We have used Structured Gamma as a coor-
dination language by interpreting the addresses in the multisets as names
of individual entities to be coordinated [13]. Their associated value de�nes
their behavior (in a given programming language which is independent of
the coordination language) and the relations correspond to communication
links. A structuring type provides a description of the shape of the overall
architecture. An important advantage of our approach is that coordinators
can be checked statically (using the algorithm of section 4) to ensure that
they preserve the style of the architecture.

� The type systems currently available for imperative languages are too weak
to detect a signi�cant class of programming errors. For example, they cannot
express the property that a list is doubly-linked or circular. Such structures
can be speci�ed naturally using a subset of structuring types that we call
"shape types". We have proposed a syntax for a smooth integration of shape
types in C [7]. Shapes are manipulated by reactions which can be statically
checked and translated in pure C. The programmer can still express pointer
manipulations with the expected constant time execution and bene�t from
the additional guarantee that the property speci�ed by the structuring type
is an invariant of the program. The graph types approach [11] shares the same
concern. In their framework, a graph is de�ned using a canonical spanning
tree (called the backbone) and auxiliary pointers. Only the backbone can be
manipulated by programs and some simple operations may implicitly involve
non-constant updates of the auxiliary pointers. In contrast, shape types do
not privilege any part of the graph and all operations on the structure appear
explicitly in the rewrite rules.

Directions for further research include other application areas such as the
speci�cation of networks of processors and various extensions like the use of
context-sensitive grammars to describe structuring types.

Acknowledgments. This work was supported by Esprit Basic Research project
9102 Coordination.

References

1. J.-P. Banâtre and D. Le Métayer, The Gamma model and its discipline of pro-
gramming, Science of Computer Programming, Vol. 15, pp. 55-77, 1990.

2. J.-P. Banâtre and D. Le Métayer. Programming by multiset transformation, Com-
munications of the ACM, Vol. 36-1, pp. 98-111, January 1993.

3. J.-P. Banâtre and D. Le Métayer. Gamma and the chemical reaction model: ten

years after, Coordination programming: mechanisms, models and semantics, Im-

perial College Press, 1996.

4. N. Carriero and D. Gelernter, Linda in context, Communications of the ACM,

Vol. 32-4, pp. 444-458, April 1989.

5. C. Creveuil. Techniques d'analyse et de mise en ÷uvre des programmes Gamma,
Thesis, University of Rennes I, 1991.

6. P. Fradet and D. Le Métayer, Structured Gamma, Irisa Research Report PI-989,
March 1996.

7. P. Fradet and D. Le Métayer, Shape types, In Proc. of the 24rd ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, January 1997.

8. D. Garlan and D. Perry, Editor's Introduction, IEEE Transactions on Software
Engineering, Special Issue on Software Architectures, 1995.

9. A. A. Holzbacher, A software environment for concurrent coordinated program-

ming, Proc. First int. Conf. on Coordination Models, Languages and Applications,
Springer Verlag, LNCS 1061, pp. 249-266, April 1996.

10. P. Inverardi and A. Wolf. Formal speci�cation and analysis of software architec-

tures using the chemical abstract machine model, IEEE Transactions on Software
Engineering, Vol. 21, No. 4, pp. 373-386, April 1995.

11. N. Klarlund and M. Schwartzbach. Graph types. In Proc. 20th Symp. on Princ.
of Prog. Lang., pp. 196-205. ACM, 1993.

12. J. Kramer, Con�guration programming. A framework for the development of

distributable systems, Proc. COMPEURO'90, IEEE, pp. 374-384, 1990.
13. D. Le Métayer, Software architecture styles as graph grammars, in Proc. of the

ACM SIGSOFT'96 4th Symposium on the Foundations of Software Engineering,
1996, pp. 15-23.

