
Under consideration for publication in Math. Struct. in Comp. Science

Generalized Multisets

for Chemical Programming

J.-P. Banâtre1, P. Fradet2 and Y. Radenac1

1INRIA/IRISA, Université de Rennes 1, Campus de Beaulieu, 35042 Rennes Cedex, France
{jbanatre,yradenac}@irisa.fr

2INRIA Rhône-Alpes, 655 avenue de l’Europe, 38330 Montbonnot, France
Pascal.Fradet@inria.fr

Received 3rd November 2005; Revised 21st March 2006

Gamma is a programming model where computation can be seen as chemical reactions

between data represented as molecules floating in a chemical solution. This model can be

formalized as associative, commutative, conditional rewritings of multisets where rewrite

rules and multisets represent chemical reactions and solutions, respectively. In this

article, we generalize the notion of multiset used by Gamma and present applications

through various programming examples. First, multisets are generalized to include

rewrite rules which become first-class citizen. This extension is formalized by the

γ-calculus, a chemical model that summarizes in a few rules the essence of higher-order

chemical programming. By extending the γ-calculus with constants, operators, types and

expressive patterns, we build a higher-order chemical programming language called

HOCL. Finally, multisets are further generalized by allowing elements to have infinite

and negative multiplicities. Semantics, implementation and applications of this extension

are considered.

1. Introduction

The Gamma formalism was proposed in (Banâtre & Le Métayer 1993) to capture the

intuition of computation as the global evolution of a collection of atomic values interacting

freely. Gamma can be introduced intuitively through the chemical reaction metaphor. The

unique data structure in Gamma is the multiset which can be seen as a chemical solution.

A simple program is made of a reaction condition and an action. Execution proceeds by

replacing elements satisfying the reaction condition by the elements specified by the

action. The result of a Gamma program is obtained when a stable state is reached, that

is to say, when no more reactions can take place.

For example, the computation of the maximum element of a non empty multiset can

be described by the reaction rule

replacex, y by x if x ≥ y

meaning that any couple of elements x and y of the multiset is replaced by x if the

J.-P. Banâtre, P. Fradet and Y. Radenac 2

condition is fulfilled. This process goes on till a stable state is reached, that is to say,

when only the maximum element remains. Note that, in this definition, nothing is said

about the order of evaluation of the comparisons. If several disjoint pairs of elements

satisfy the condition, the reactions can be performed in parallel.

Gamma can be formalized as a multiset rewriting language. The literature about

Gamma, as summarized in (Banâtre, et al. 2001), is based on finite multisets of basic

values. However, one may think of extensions to this basic concept by allowing elements

of multisets to be reactions themselves (higher-order multisets), to have an infinite mul-

tiplicity (infinite multisets) and even to have a negative multiplicity (hybrid multisets).

In this paper, we investigate these unconventional multiset structures (higher-order, in-

finite and hybrid multisets) and show how they can be interpreted in a chemical program-

ming framework. Section 2 presents the multiset as a mathematical structure and how it

has been used to express programs. Section 3 presents the γ-calculus, a small higher-order

calculus that summarizes the fundamental concepts of chemical programming. Section 4

introduces HOCL, a programming language built by extending the γ-calculus with con-

stants, operators, types and more expressive patterns. Section 5 presents the extensions

of HOCL needed to handle explicitly, positive or negative, finite or infinite, multiplicities.

Section 6 proposes a representation of multisets suited to the implementation of these

extensions. We conclude in Section 7 with a review of related work and a few perspectives.

2. A quick survey of the concept of multiset

2.1. Multiset as a mathematical structure

The notion of multiset is a concept appearing in many areas of mathematics and computer

science. Intuitively, multisets are a generalization of sets in which elements can occur

more than once. The number of occurrences of an element is called its multiplicity. The

multiset {a, a, b}, which is not a set, is distinct from {a, b}; the multiplicity of a is 2 in the

former and 1 in the later. The word multiset has been coined by De Bruijn in a private

communication with D. Knuth (Knuth 1981); other terms have appeared here and there

in the literature such as bag, heap, sample, occurrence set, etc. A survey of the theory

of multisets can be found in (Blizard 1991).

Even if the concept of multiset is very present in mathematics, logic and, more and

more, in computer science, it has long been eclipsed by the classical Cantorian view of

a set. Cantor states that a given element can appear only once in a set. We will not go

into details here, but it is clear that this vision suffers some limitations; a well-known

representation of numbers is a collection of units, for example the number 5 can be

represented as | | | | | which looks like a multiset of |. Cantor states that every | is

a different “instance” of | and may be distinguished from the other |’s, however this

looks a bit artificial. In some way, multiset theory can be considered as a non-classical

(i.e. non-cantorian) set theory.

So far, we have implicitly assumed that the multiplicity of multiset elements was pos-

itive and finite. An intriguing extension of multisets, called hybrid multisets, has been

introduced in (Loeb 1992). Hybrid multisets can contain elements with either positive

Generalized Multisetsfor Chemical Programming 3

or negative multiplicity. For example, the roots of the polynomial fraction x−1
(x−2)2(x−3)

can be represented as the hybrid multiset {1, 2−2, 3−1}. Multiplicities of elements are

denoted by the exponent; roots of polynomials under the fraction bar are denoted by a

negative membership.

Finally, it is interesting to get rid of finiteness limitations and consider infinite multi-

sets. Infinity can come from an infinity of different elements (e.g. all integers) or from an

element with an infinite multiplicity. The later form, called multiplet, is the only form of

infinity that we will consider here. For example, the multiplet {1∞} represents a multiset

containing an unbounded number of 1’s.

2.2. Multiset as a programming structure

Coming back to Computer Science, the article of (Dershowitz & Manna 1979) introduced

a multiset ordering and used it to prove program termination. Actually, given a well-

founded ordering on elements of the multiset, it is possible to derive a well-founded

ordering on multisets themselves. This nice result allows elegant proofs of termination

which otherwise could be awkward. Without going into details, let us mention several

areas of computer science where multisets are used: Petri nets, databases, logics, formal

language theory, rewriting systems, etc. More can be found in (Calude, et al. 2001).

From Dershowitz & Manna’s work, stemmed another fruitful idea (later called the

Chemical Metaphor): the Gamma formalism where computation was presented as multi-

set rewriting (Banâtre & Le Métayer 1993). Gamma has been a source of inspiration in

many unexpected areas as described in (Banâtre et al. 2001). Gamma is a simple model

operating on multisets of basic data. A natural extension of Gamma is to generalize

multisets so that they may contain not only data but also programs (reaction rules).

This is the first extension presented in this article in the form of a higher-order chemical

calculus. We proceed by extending that simple model into an expressive Higher-Order

Chemical Language: HOCL.

Another extension concerns infinite multiplets and their use in HOCL. These infinite

multisets can be atomically handled as any element (for example, it is possible to atom-

ically extract an infinite multiplet from a chemical solution), but it is also possible to

select a finite subset of the infinite multiset to react with other elements while leaving

the multiplet unchanged (as it still contains an infinity of elements!).

Finally, we consider the introduction of hybrid multisets and the interpretation of neg-

ative multiplicities in a programming context. There are several possible interpretations;

the one we take consists in seeing an element with a negative multiplicity as an anti-

element (an annihilator). For example, if an element such as 2−5 appears in a multiset it

is interpreted as “annihilate” five 2’s. Of course, the extensions can be combined to allow

elements with a negative and infinite multiplicity. For example, 2−∞ will instantaneously

delete the 2’s present or added in the multiset whatever their number of occurrences.

J.-P. Banâtre, P. Fradet and Y. Radenac 4

3. The γ-calculus: a higher-order chemical model

In this section, we introduce a higher-order chemical model called the γ-calculus (Banâtre,

et al. 2005a, Banâtre, et al. 2005b). γ-expressions are made of molecules. A molecule can

M ::= x ; variable

| γ(P)bM1c.M2 ; γ-abstraction (reaction rule)

| M1, M2 ; multiset

| 〈M〉 ; solution

P ::= x ; matches any molecule

| P1, P2 ; matches a compound molecule

| 〈P 〉 ; matches an inert solution

Grammar 1: Syntax of molecules in the γ-calculus.

be (cf. Grammar 1) (1) a variable x that can represent any molecule, (2) a γ-abstraction

(γ(P)bM1c.M2) where P is the pattern which determines the format (or type) of the ex-

pected molecule, M1 is an optional reaction condition and M2 the result of the reaction,

(3) a compound molecule (M1, M2) built with the associative and commutative construc-

tor “,”, or (4) a solution denoted by 〈M〉 which isolates a molecule M from the others.

The model is completed by a small pattern language to match multisets or solutions.

Molecules can be freely organized using the associativity and commutativity (AC) of

the multiset constructor “,”:

(M1, M2), M3 ≡ M1, (M2, M3) M1, M2 ≡ M2, M1

These rules can be seen as a formalization of the Brownian motion of chemical solutions.

The operator ≡ denotes the syntactic equality of two molecules. Two molecules are

syntactically equal if any of them can be rewritten in the other one by the AC operations

and by the renaming of bound variables.

A solution 〈M〉 is a membrane that encapsulates a molecule M . Molecules inside a

solution cannot react or be rearranged with molecules outside that solution. However,

molecules can be explicitly added to (or extracted from) solutions by reactions.

To avoid notational clutter, we omit outermost parentheses, parentheses around a

solution, parentheses in multisets and we assume that γ-abstractions associate to the

right. For example, the γ-abstraction (γ(x)bC1c.(x, (x, (γ(〈y〉)bC2c.y)))) will be written

γ(x)bC1c.x, x, γ(〈y〉)bC2c.y.

Another distinctive feature of chemical models is the reaction concept. In our model, it

is represented by a conditional rewrite rule called the γ-reduction. In order to represent

conditions, we assume an encoding for the booleans true and false, for example:

true
def

= γ〈x〉.γ〈y〉.x and false
def

= γ〈x〉.γ〈y〉.y

A γ-abstraction without reaction condition is equivalent to a γ-abstraction with true as

condition (i.e. γ(P).M ≡ γ(P)btruec.M).

Generalized Multisetsfor Chemical Programming 5

Reactions are formalized by the γ-reduction, a rewrite rule of the form:

(γ(P)bCc.M), N → φM if match(P, N) = φ ∧ φC
∗
→ true

If a γ-abstraction “meets” a closed molecule N that matches the pattern P (modulo

a substitution φ) and satisfies the reaction condition C (i.e. φC reduces to true), then

they may react. The γ-abstraction γ(P)bCc.M and the molecule N are replaced by the

molecule φM (i.e. the body of the abstraction after substitution).

Substitution maps pattern variables to molecules e.g. φ = {x 7→ true, y 7→ false}. A

substitution is applied to a molecule using the following rules

φx
def

= M if φ = {. . . , x 7→ M, . . . }

φ (M1, M2)
def

= (φM1), (φM2)

φ〈M〉
def

= 〈φM〉

φ(γ(P)bCc.M)
def

= γ(P)bCc.φ|P M

where φ|P is the substitution φ restricted to the variables that do not occur in P .

Pattern-matching can either succeed (it returns a substitution φ) or fail (it returns

fail). The operator ⊕ (defined below) denotes the composition of two (compatible) sub-

stitutions. Pattern-matching is formalized as follows:

match(x, M) = {x 7→ M}

match(〈P 〉, 〈M〉) = match(P, M) ∧ Inert(M)

match((P1, P2), (M1, M2)) = (match(P1, M1)) ⊕ (match(P2, M2))

match(P, M) = fail otherwise

A variable matches any molecule, a pattern 〈P 〉 matches any inert solution 〈M〉 (i.e. no

reaction can take place within M) such that P matches M . This entails that a molecule

can be extracted from its enclosing solution only when it has reached an inert state. It

is an important restriction that permits to order (sequentialize) rewritings.

A pattern P1, P2 matches any compound molecule M1, M2 such that P1 matches M1,

P2 matches M2 and the two substitutions are compatible. Since patterns are non linear,

variables occurring in P1 and P2 must match identical molecules. The operator ⊕ is

defined as follows to ensure that property:

φ2 ⊕ φ1 =

{

φ2 ◦ φ1 if ∀x ∈ Dom(φ1) ∩ Dom(φ2). φ1x ≡ φ2x

fail otherwise

fail⊕ x = x ⊕ fail = fail

where the composition of compatible substitutions is such that (φ2 ◦ φ1)M
def

= φ2(φ1M).

An execution consists in γ-reductions (“chemical” reactions) until the solution repre-

senting the program becomes inert and no further rewriting is possible. Besides AC rules

which can always be applied, there are two structural rules:

locality
M1 → M2

M, M1 → M, M2
solution

M1 → M2

〈M1〉 → 〈M2〉

The locality rule states that if a molecule M1 can react then it can do so whatever its

context M . The solution rule states that reactions can occur within nested solutions.

J.-P. Banâtre, P. Fradet and Y. Radenac 6

largestPrime10 =

let sieve = replace〈x〉, 〈y〉by〈x〉 if x div y in

letmax = replace〈x〉, 〈y〉by〈x〉 if x ≥ y in

〈〈〈2〉, . . . , 〈10〉, sieve〉, (γ〈x〉.x, max)〉

Program 1: Computes the largest prime number lower than 10.

This model of computation is intrinsically non-deterministic and parallel. As long as

reactions involve disjoint molecules, they can take place simultaneously in a solution.

Consider, for example, the solution 〈(γ(x, y).x), true, false〉, it may reduce to two distinct

inert solutions (〈true〉 or 〈false〉) depending on the application of AC rules and whether

x will match true or false.

The γ-calculus is close to the γ-calculus of (Berry & Boudol 1992), but it is simpler

since it uses only one rewriting rule (the γ-reduction). Further details are provided when

we present related work in section 7.

The γ-calculus is quite expressive and can easily encode the λ-calculus. The following

translation gives a possible encoding for the strict λ-calculus. The function [[·]] takes a

λ-term and returns its translation as a γ-term.

[[x]]
def

= x

[[λx.E]]
def

= γ〈x〉.[[E]]

[[E1 E2]]
def

= 〈[[E1]]〉, (γ〈f〉.f, 〈[[E2]]〉)

The standard call-by-name λ-calculus can also be encoded but the translation is slightly

more involved. As in the λ-calculus, recursion, integers, booleans, data structures, arith-

metic, logical and comparison operators can be defined within the γ-calculus. We do not

give their precise definitions here since they are similar to their definitions as λ-terms.

From now on, we will give our examples assuming these extensions (a pair of molecules

is written M1:M2).

Note that abstractions (γ(P)bCc.M) disappear in reactions: they are said to be one-

shot. It is easy (using recursion) to define n-shot reactions which do not disappear after

reacting. We write them replaceP by M if C as in Gamma. Formally:

replaceP by M if C
def

= let rec f = γ(P)bCc.M, f in f

Each time f reacts, it generates M and a copy of itself. For instance, the following

program

〈〈2〉, 〈10〉, 〈5〉, 〈8〉, 〈11〉, 〈8〉, replace〈x〉, 〈y〉by〈x〉 if x ≥ y〉

computes the maximum of a multiset of integers. The reaction rule does not disappear and

reacts as long as there are at least two integers in the solution. The resulting inert solution

is 〈〈11〉, replace〈x〉, 〈y〉by〈x〉 if x ≥ y〉. Note that each integer is inside a solution so

that the reaction can match exactly two integers (replace x, y by . . . would match any,

possibly compound, molecule). This encoding is made useless in the next section using

types and the ability to match molecules of designated types.

Generalized Multisetsfor Chemical Programming 7

Program 1 is the higher-order chemical version of the sieve of Eratosthenes used to

compute the largest prime number lower than 10. The execution proceeds as follows:

〈〈〈2〉, . . . , 〈10〉, sieve〉, (γ〈x〉.x, max)〉
∗
→ 〈〈〈7〉, 〈5〉, 〈3〉, 〈2〉, sieve〉, (γ〈x〉.x, max)〉
∗
→ 〈〈7〉, 〈5〉, 〈3〉, 〈2〉, sieve, max〉
∗
→ 〈〈7〉, sieve, max〉

First, the n-shot reaction sieve computes all prime numbers. It selects two integers x

and y such that x divides y (so, y is not a prime number) and replaces them by x

(i.e. removes y). Several sieve reactions can take place in parallel as long as they involve

different pairs of integers. When the sub-solution becomes inert (i.e. all prime numbers

have been computed), the abstraction γ〈x〉.x, max extracts the inert solution and adds

the prime numbers to the reaction max which computes their maximum. The final inert

solution is 〈〈7〉, sieve, max〉. The one-shot reaction rule γ〈〈i〉, x〉.〈i〉 could be used to

remove reactions and return only the integer as result.

4. HOCL: a higher-order chemical language

HOCL is a programming language based on the previous model extended with expres-

sions, types, pairs, empty solutions and naming (see Grammar 2). Expressions consist

in integer, boolean, string constants and associated operations. This extension, already

used in the previous section, is very standard and does not need further explanation. We

also reuse the notation replace . . .by . . . if . . . for n-shot (recursive) reaction rules. We

present each other extension in turn.

4.1. Types

The functional core of HOCL (the expressions) is statically typed using standard types

(see Grammar 2). We do not describe the typing rules which are the same as any (first-

order) statically typed functional language. The chemical style of programming has been

designed to be very flexible. In particular, solutions contain usually molecules of differ-

ent types (e.g. reactions, integers, etc.). Therefore, it would not make sense to enforce

homogeneous solutions and compound molecules are typed using the universal type ?.

Any type is a subtype of ? (∀T, T � ?). Types are particularly useful in patterns where

they serve to select values. The associated pattern-matching rule is

match(x::T, N) = {x 7→ N} if Type(N) � T

We make use of type inference to circumvent type annotations in patterns. For instance,

we may write γ(x)bV c.x + 1 instead of γ(x::Int)bV c.x + 1 since the type of x can be

statically inferred.

4.2. Pairs

This extension, denoted here by A1:A2, is very standard. Note that the elements of a

pair are atoms and not multisets. Pairs of multisets would play a role similar to solutions

by providing a way of isolating compound molecules from each other.

J.-P. Banâtre, P. Fradet and Y. Radenac 8

Solutions

S ::= 〈M〉 ; solution

| 〈〉 ; empty solution

Molecules

M ::= x ; variable

| M1, M2 ; compound molecule

| A ; atom

Atoms

A ::= x ; variable

| [name =]γ(P)bV c.M ; one-shot reaction rule, possibly named

| S ; solution

| V ; basic value

| (A1:A2) ; pair

Basic Values

V ::= x | 0 | 1 | . . . | V1 + V2 | −V1 | . . . ; integer, boolean and string expressions

| true | false | V1 ∧ V2 | . . .

| V1 = V2 | V1 ≤ V2 | . . .

| “string” | V1@V2 | . . .

Patterns

P ::= x::T ; matches any molecule of type T

| ω ; matches any molecule even empty

| name = x ; matches a named reaction

| 〈P 〉 ; matches an inert solution

| (P1:P2) ; matches a pair

| P1, P2 ; matches a compound molecule

Types

T ::= B ; basic type

| T1 × T2 ; product type

| ? ; universal type

Basic Types

B ::= Int | Bool | String

Grammar 2: Syntax of HOCL programs.

Generalized Multisetsfor Chemical Programming 9

The rule for pattern-matching pairs is:

match((P1:P2), (N1:N2)) = φ1 ⊕ φ2 if match(P1, N1) = φ1 ∧ match(P2, N2) = φ2

4.3. Empty solutions

The notion of empty solution in HOCL comes from the pattern ω which can match any

molecules even the “empty one” (introduced below). This pattern is very convenient to

extract elements from a solution. For example, the following reaction extracts 1’s from

its solution argument.

rmunit = replace〈x, ω〉by〈ω〉 if x = 1

The pattern ω matches the rest of the solution which is returned as result. If the solution

contains only a 1 then ω matches the empty molecule and the empty solution is returned:

rmunit, 〈2, 1, 3〉 → 〈2, 3〉 and rmunit, 〈1〉 → 〈〉

The rule for pattern-matching ω is just

match(ω, M) = {ω 7→ M}

The “empty molecule” is introduced by the rule for patterns on the form (P, ω).

match((P, ω), M) =

{

(match(P, M1)) ⊕ (match(ω, M2)) if M ≡ M1, M2

(match(P, M)) ⊕ (match(ω, ∅)) otherwise

When a molecule M is decomposed into M1, M2 to match a pattern P1, P2, one of M1 or

M2 can now be the empty molecule ∅. Reaction rules involving ω patterns need a special

treatment. Consider, for example, the reaction

(replace〈x, ω〉by ω), 〈1〉, 2

With the usual reduction rules, this molecule would reduce to ∅, 2 which is not a legal

molecule. Only the empty solution is legal, so if a reaction produces the empty molecule

it must be reduced as follows

〈(γ(P)bCc.M), N, X〉 → 〈X〉 if match(P, N) = φ ∧ φC ∧ φM ≡ ∅

with X possibly empty. The reaction takes into account its enclosing solution and becomes

global. When a reaction produces a non-empty molecule it is reduced locally as usual.

4.4. Naming

Reactions can be named (or tagged) using the syntax name = γ(P) Note that if

others atoms can be named using pairs (e.g. name:a), it would not be appropriate to use

pairs to tag reactions since they would not be able to react with other molecules anymore.

Names are used to match and extract specific reactions. The rule for pattern-matching

named reaction is

match((name = x), (name = N)) = {x 7→ N}

J.-P. Banâtre, P. Fradet and Y. Radenac 10

We assume that when the let operator names a reaction, that name is kept in the solution:

letname = M inN
def

= N [(name = M)/name]

that is, the occurrences of name in N are replaced by name = M . For example, in

the following example, the reaction incrementing the integer is named succ. After an

arbitrary number of increments, the reaction stop removes succ from the solution:

let succ = replacexby x + 1 in

let stop = γ((succ = x), ω).ω in

〈1, succ, stop〉

This example also illustrates non-determinism in HOCL since the resulting solution may

be any integer.

4.5. Example of a distributed versions system (DVS)

As a more involved example, we consider several persons editing concurrently a document

made out of a set of files. These editors are distributed over a network and each one works

on one node of that network. Each node is independent from the others. Each editor makes

his own modifications in the files and commits them locally on his node. So each editor

keeps a local version (and its history) of these files. That version consists in the start files

and several ordered patches applied to them: this history is called a branch. From time

to time, two or more editors merge their branches so that an editor propagates (pushes)

its modifications to others and/or get changes from other editors.

The following example is inspired from Monotone, a distributed version control system

(http://venge.net/monotone/). Versions are identified by a hash (Sha1) which is used

to check whether two branches are identical (denoted by b1 6= b2). The system can also

identify modifications applied to a branch b1 that have not been taken into account in an-

other branch b2 (denoted by b1 6⊂ b2). The system provides also the function Merge(b1, b2)

which returns a branch that contains all modifications from two given branches b1 and

b2. If a conflict occurs, the initiator of the merge must resolve it. For simplicity sake, we

assume in this example that the function Merge always succeeds: either there is not any

conflict, or if any conflict occurs it is solved by an editor.

An editor can express his dependency on modifications made by other editors. If the

editor on node Ni depends on modifications made by editor on node Nj then the boolean

function Serve(bi, bj) will be true. In other words, modifications present in the branch bi

should be propagated to the branch bj . They may be both dependent on each other. Since

any branch can merge with any other branch, editors have to organize themselves so that

all modifications from all editors are taken into account sooner or later. For example, the

Serve function may induce a tree where modifications may be propagated from the root

to the leaves and vice versa. Or they may be organized as a ring, or any other structure.

Regularly, a freeze (snapshot) of the document is made to release a new version to users.

This is performed by a call to the function NewRelease.

The overall system is described by Program 2. It consists in a solution containing

all branches bi. The reaction rule edit represents the edition of any branch. It adds a

Generalized Multisetsfor Chemical Programming 11

dvs =

let edit = replace bbyEdit(b) in

let push = replace b1, b2

by b1,Merge(b1, b2)

if Serve(b1, b2) ∧ b1 6⊂ b2

in

let sync = replace b1, b2

by Merge(b1, b2),Merge(b2, b1)

if Serve(b1, b2) ∧ Serve(b2, b1) ∧ b1 6= b2

in

let crash = replace b1 by Start if Crash(b1) in

let freeze = replace (edit = e), xby x in

letnewVersion = replace 〈b1, x〉byNewRelease(b1), 〈b1, edit , x〉 in

〈〈B1, . . . , Bn, edit , push , sync, crash , freeze〉,newVersion〉

Program 2: Distributed Versions System.

modification to a branch, a call to the function Edit . Reaction rules push and sync

merge branches: push propagates modifications in one way, and sync synchronizes two

branches. If a node crashes (Crash(bi)), the editor loses the corresponding branch. The

reaction rule crash resets the corresponding branch to an empty branch (Start). At any

time, the reaction freeze can initiate a snapshot of the document by removing the edition

rule edit to stop any modification. When the solution becomes inert, all branches linked

by a Serve relation are up to date and the reaction newVersion can occur. It uses a

branch that has all the modifications (it depends on the relations Serve) to release a

new version (a call to NewRelease) and regenerates the system by adding the rule edit

to allow new modifications for the next release. Figure 1 gives a possible state reached

by a system with 5 editors. The edition is pending and two releases have been made

(Version1 and Version2).

This example illustrates several properties of HOCL:

— The execution is non-deterministic. Any two branches may react to merge their dif-

ferences (if at least one of them serves the other). Merges (reactions push and sync)

may not occur each time a modification is made on a branch. In fact, editions and

merges are asynchronous: several editions may occur before a merge.

— The execution is potentially parallel. Several editions may occur at the same time and

several merges may happen at the same time if they deal with disjoint branches.

— The system is autonomic in that it is self-repairing. If a crash occurs, we lose a branch,

but a simple push or sync with another branch allows to recover all modifications that

have been propagated (however the editor loses all his local non-propagated modifi-

cations). Other autonomic properties may be included in a chemical program. The

interested reader is referred to (Banâtre, et al. 2004) for more details on autonomic

chemical programs.

— The specification is higher-order and manipulates reaction rules to express coordina-

J.-P. Banâtre, P. Fradet and Y. Radenac 12

tion. The freeze reaction removes the edit rule to stop edition. The newVersion rule

waits for inertia to call NewRelease which illustrates a basic sequentiality coordina-

tion. The newVersion rule relaunches also the system by re-generating the solution

with the rule edit .

5. Multiplets, infinite and hybrid multisets

Another generalization is to extend the class of multisets to infinite multisets and ele-

ments with a negative multiplicity. The extension amounts to introducing operations to

explicitly manipulate the finite or infinite, positive or negative, multiplicity of elements.

The syntax of these extensions are summarized in Grammar 3.

5.1. Multiplets

A multiplet is a finite multiset of identical elements. This notion relies on an equality

relation between elements. Considering multiplets of reaction rules would cause semantic

problems as it would require an equality relation between programs; whereas multiplets

of solutions would pose implementations issues. In this paper, we limit ourselves to mul-

tiplets of basic values (integers, booleans, strings). In HOCL multiplets are defined and

matched using an exponential notation (see Grammar 3):

— if v is a basic value then vk (k > 0) denotes a multiplet of k elements v. Similarly,

in a reaction, xk denotes a multiplet of k elements. The variable x must have a basic

type (x::B).

— in order to match multiplets, the language of patterns is extended likewise. A pattern,

P k matches any multiplet of k identical elements matching P .

Semantically, a multiplet vk is just a shorthand for k identical v’s. Formally:

v1 def

= v and vk def

= v(k−1), v if k > 1

B2

edit
B1

sync

crash

freeze
pushB4

Version1
B3

B5
newVersion

Version2

Figure 1. A possible state of the DVS.

Generalized Multisetsfor Chemical Programming 13

Molecules

M ::= . . . ; as before

| V V2

1 ; multiplet with an integer expression V2

Basic Values

V ::= . . . ; as before

| [−]∞ ; positive and negative infinity

Patterns

P ::= . . . ; as before

| P k ; matches a finite size multiplet k ∈
� ∗

| P x ; matches multiplets of any size

| P x ; matches all elements of a multiplet

Grammar 3: HOCL extended with multiplets, infinite and negative multiplicities.

Semantically, a pattern P k is just a shorthand for the nonlinear pattern defined by

P 1 def

= P and P k def

= P k−1, P if k > 1

For example, the reaction replacing four 1’s by four 2’s can be specified as

γ(x4)bx = 1c.24 or equivalently γ(x, x, x, x)bx = 1c.2, 2, 2, 2

Another elementary example is the n-shot reaction rule computing the root set of a

multiplet by removing repeatedly pairs of identical elements:

toSet1 = replacex2 by x

In the Jackpot! program (Program 3), the reactions choose pick up nondeterministically

an element from the solutions representing the three wheels of a slot machine. The win

reaction checks if the three drawn symbols are identical, i.e. if it can match a multiplet

of size 3.

let choose = γ〈x::String, ω〉.x in

letwheel = 〈“cherry”, “lemon”, “bell”, “bar”, “plum”, “orange”, “melon”, “seven”〉 in

letwin = γ(x::String)3.“Jackpot!” in

〈wheel, wheel, wheel, choose, choose, choose, win〉

Program 3: The Jackpot! program.

5.2. Variable-sized multiplets

A first generalization of multiplets is to allow variables in the exponentiation of constants

or patterns. The size of a multiplet becomes dynamic.

J.-P. Banâtre, P. Fradet and Y. Radenac 14

Let v be a basic constant and V an integer expression, then vV denotes a multiplet.

If the normal form of V is the integer k then vV ≡ vk. We assume in this section that

k > 0. If k = 0 the multiplet is empty and is treated in much the same way as a ω-variable

which has matched the empty molecule (cf. Section 4.3). The case of a negative exponent

is dealt with in Section 5.4.

A pattern P x matches any strictly positive number of identical basic values. Formally:

match(P x, (V1, . . . , Vk)) = match(P, V1) ⊕ {x 7→ k} if k > 0 ∧ ∀i, j ∈ [1, k].Vi = Vj

The substitution returned by a successful match maps the exponent variable x to the

number of matched values.

For example, the n-shot reaction computing the root set of a multiplet of the previous

section can be expressed using variable sized multiplet matching:

toSet2 = replacexn by x if n > 1

Whereas the previous version (toSet1) eliminated duplicates two by two, the rule toSet2

eliminates a variable number of (potentially greater than 2) duplicates at each step.

Another example is a quite natural specification of integer division (see Program 4).

The program makes use of two values R and Q which can be distinct strings for example.

intdiv = γ(x:d).

let cluster = replace (d, Rd)by(d, Q) in

〈Rx, d, cluster〉

Program 4: Integer division.

The dividend x is translated into the multiplet Rx whereas the divisor d is left as an

integer. The integer division of x by d is performed by grouping d occurrences of R’s and

replacing them by one occurrence of Q. When the solution becomes inert, the multiplicity

of Q represents the quotient and the multiplicity of R represents the remainder. For

example, the division of 7 by 2 is performed as follows:

〈cluster, 2, R7〉 → 〈cluster, 2, R5, Q〉 → 〈cluster, 2, R3, Q2〉 → 〈cluster, 2, R, Q3〉

5.3. Infinite multiplets

Another generalization consists in infinite multiplets. Let v be a basic value or a variable

with a basic type, then v∞ denotes an infinite multiplet made of an infinity of copies

of v. Formally:

v∞
def

= M such that Card(M) = ∞∧ ∀x ∈ M. x = v

We do not introduce patterns of the form P∞ to match an infinity of identical elements.

Indeed, extracting an infinity of elements from an infinity would not be well defined.

Instead we introduce a pattern matching all occurrences of a constant in the solution.

Using such patterns, infinite multiplets can be manipulated as a single atomic molecule.

Generalized Multisetsfor Chemical Programming 15

The pattern P x matches all identical atoms occurring in the enclosing solution. For-

mally:

matchM (P x, N) = match(P, a) ⊕ {x 7→ Card(N)} ∧ (∀a′ ∈ N.a′ = a)

∧ a 6∈ M

The substitution returned by a successful match maps the variable x to the finite or

infinite multiplicity of the matched value.

Note that pattern matching must take an additional argument (here M) representing

the remaining of the enclosing solution to check that all occurrences have been taken into

account. The reduction of a reaction with such patterns is of the form:

〈(γ(P)bCc.X), N, M〉 → 〈φX, M〉 if matchM (P, N) = φ ∧ φC

The complete solution is taken by the reaction and no other reaction in the same solution

may occur in parallel. Taking atomically all identical elements of a solution is intrinsically

a global operation.

For example, the n-shot reaction computing the root set of a multiplet of the previous

sections can now be expressed as follows:

toSet3 = replacexn by x if n > 1

All duplicates of an element are removed in one reaction rule. For example, the solution

〈a10, b4, toSet3〉 is rewritten in two steps:

〈a10, b4, toSet3〉 → 〈a, b4, toSet3〉 → 〈a, b, toSet3〉

As another example, consider the traditional quicksort program where a set of integers

has to be compared with a predefined pivot. In order to distinguish the pivot from the

other integers, we assume that the pivot has a special type Pivot (e.g. a type synonym

of Int). In the following solution all integers lower or equal to the pivot are removed. We

consider the pivot as a infinite multiplet of an integer of type Pivot (5∞ here):

〈5∞, 8, 3, 6, 4, 5, 3, replace(p::Pivot), x, ω by ω if x ≤ p〉

As the number of pivots is infinite, all possible reactions may be carried out indepen-

dently. This is a way of expressing the fact that the pivot is a read only element and as

such can be accessed concurrently. The use of read only elements in chemical specifica-

tions has been proposed in (Chaudron 1994).

A standard way of accommodating infinite objects in programming (e.g. in lazy func-

tional languages) is to use generators and on-demand evaluation. Following this idea, we

would represent infinite multiplets, for example the multiplet 4∞, as

gen4 = replace xby x, x if(x = 4)

However, this encoding suffers several problems: its implementation lead to termination

issues, it makes difficult to manipulate infinite multiplets (e.g. removing them), the prop-

erty v∞, v∞ ≡ v∞ is not satisfied, and a solution containing an infinite multiplet would

never be inert.

J.-P. Banâtre, P. Fradet and Y. Radenac 16

5.4. Negative multiplicities

Hybrid multisets (Blizard 1990, Loeb 1992) are a generalization of multisets where the

multiplicity of elements can be negative. A molecule v−1 can be viewed as a piece of

“antimatter” or an anti-v. Positive and negative multiplets of the same value cannot

cohabit in the same solution, they merge into one multiplet whose exponent is the sum

of their exponent. Assuming a representation of negative values v−1, a negative multiplet

is defined as:

v−k def

= v−k+1, v−1 if − k < −1

The pattern P−1 is defined as matching (the representation of) v−1 such that match(P, v).

The pattern P−k is defined as k occurrences of P−1 :

P−k def

= P−k+1, P−1 if − k < −1

The representation of negative values using reaction rules consuming elements such as

killv = γ(x, ω)bx = vc.ω would not be sufficient. The intended semantics enforces that v

and v−1 cannot be in a solution at the same time. There is no guarantee about when a re-

action killv will react. When negative multiplicities are allowed, the negative and positive

multiplets of the identical elements must be merged after each reaction before proceed-

ing with other reactions. In other words, reactions become global rewritings w.r.t. their

solution. We define this merging process using the new reduction relation ↪→ defined by

the two following rules (where X is a molecule possibly empty):

〈v, v−1, X〉 ↪→ 〈X〉

The rule for reactions becomes

match(P, N) = φ ∧ φC ∧ 〈φM, X〉
∗

↪→ 〈Y 〉 ∧ 〈Y 〉 6↪→ 〈Z〉

〈(γ(P)bCc.M), N, X〉 → 〈Y 〉

A reaction takes a molecule (N) matching its pattern but also the remaining of the

solution (X). The positive and negative multiplets occurring in the result of the reaction

(φM) are simplified with the other multiplets occurring in X . A reduction step is global

and consists in a reaction followed by a normalization by ↪→.

Variable sized and infinite multiplet with negative multiplicities are defined exactly

the same way as before. We match and produce values v−1 instead of v. In any case, a

solution must be normalized using ↪→ between two successive reactions.

As an example of use of negative multiplicities, rational numbers p
q

are represented by a

molecule which contains the prime factorization of p and q but with negative multiplicities

for the latter. For example, 20
9 is represented by the molecule 〈22, 5, 3−2〉. The product of

rational numbers is computed simply by putting them in the same solution. For example,

the product 20
9 ∗ 15

8 is performed by merging their representations:

〈22, 5, 3−2〉, 〈3, 5, 2−3〉, γ(〈f〉, 〈g〉).〈f, g〉 → 〈52, 3−1, 2−1〉

Infinite negative multiplets can be used to filter out all occurrences of an element

(present or to come) within a solution. Let pi be the reaction computing the product of

Generalized Multisetsfor Chemical Programming 17

a multiset of integers. Then, the integer 1, being the neutral element of the product, can

be deleted prior to performing pi. The pi operator may be encoded by:

pi = γ〈x〉.〈1−∞, x, (replace x, y by x ∗ y)〉

Before considering any product, all 1’s are annihilated, for example:

〈22, 9, 13, 5, 6〉, pi → 〈1−∞, 22, 9, 5, 6, (replacex, y by x ∗ y)〉 → . . .

Note that (by type inference) the pattern x, y exactly matches two integers (and not

anti-1’s). Furthermore, since 1−∞ is in the solution, x and y will never match a 1. After

stabilization, 1−∞ must be replaced by 1 (in case that the solution contained only 1’s)

and then the reaction rule can be removed.

Other examples that come to mind include the specifications of a garbage collector

that destroys useless molecules by generating their negative counterpart, or an anti-virus

that generates v−∞ each time it identifies a virus v. The negative multiplet will remove

all occurrences (present or future) of the corresponding virus from the solution.

6. Operational semantics and implementation

In previous work on chemical programming (Banâtre & Le Métayer 1993, Banâtre et al.

2001, Banâtre et al. 2005b), solutions were always represented straightforwardly as mul-

tisets of elements and reactions as AC rewritings. In the previous section, we followed

the same idea and presented the semantics of multiplets by enumerating them in order to

keep using plain multisets and rewritings. However, we had to use infinite multisets and

auxiliary reduction rules. Part of that semantics description (in particular, the treatment

of infinite multisets) is not directly implementable whereas other facets (e.g. normaliza-

tion by ↪→) seem very costly.

Here, we propose an alternative and more concrete (operational) semantics which can

be used as a basis for a reasonable implementation of multiplets. Since our extensions can

be seen as programming constructs manipulating the multiplicities of values, we propose

a representation that makes multiplicities explicit.

6.1. Representation of solutions

The central idea is to use the standard mathematical representation of a multiset, that

is, a function associating to each element of the multiset its multiplicity. Such a function

can be represented by a table whose entries are the atoms of the solution; basic values

are associated with a non-zero integer whereas other atoms (reactions, sub-solutions) are

always associated with 1. In this paper, we represent such functions/tables by sets of

indexed elements. A closed molecule M is represented by a set denoted by [M].

[M] ::= [A] | [M1], [M2]

[A] ::= vk | γ(P)bCc.M | 〈[M]〉 | ([A1]:[A2])

Each basic value is associated with its multiplicities, other atoms are implicitly associated

with 1 and sub-solutions are represented by a set as well. As before, atoms of the form

J.-P. Banâtre, P. Fradet and Y. Radenac 18

a1 are written a. The key property of that representation is for any basic values v1 and

v2:

vk1

1 , vk2

2 ∈ [M] ⇒ v1 6= v2

that is to say, [M] is a set w.r.t. to basic values.

Note that in set representation, a molecule X belongs to another one M (i.e. X ∈ M)

if X appears with exactly the same multiplicities in M (modulo AC). For example:

23 ∈ (4, 23, 5) (23, 4) ∈ (4, 23, 5) but 22 6∈ (4, 23, 5)

The translation of a closed molecule in its set-representation is described in Figure 2.

The first rule (associativity) serves to transform the molecule into the normalized form

[(M1,M2), M3] = [M1, (M2,M3)]

[vk1 , M] =

�� � [vk1+k2 , M − vk2] if vk2 ∈ M ∧ k1 + k2 6= 0
[M − vk2] if vk2 ∈ M ∧ k1 + k2 = 0
vk1 , [M] if � vk2 ∈ M

[〈M1〉, M2] = [〈M1〉], [M2]

[a,M] = a, [M] for other atoms a i.e. reactions or pairs

[〈〉] = 〈〉 empty solution

[〈M〉] = 〈[M]〉

[vk] = vk

Figure 2. Transforming molecules into set representation.

a1, (a2, . . . , (an−1, an) . . .). Identical basic values are merged into a single value associated

with its global multiplicity. Sub-solutions are translated into set-representation as well

whereas other atoms are left unchanged. Multiplicities can be negative and infinite, that

is:

ki ∈
� ∗
∞ = −∞, . . . ,−2,−1, 1, 2, . . . ,∞

Addition is extended to deal with infinity as follows:

∀k ∈
�

∞ + k = ∞ −∞ + k = −∞ −∞ + ∞ = ⊥

The last rule says that two multiplets of the form v∞ and v−∞ in the same solution leads

to a dynamic error (similar to a division by 0).

For example, the solution 〈2, (γ(x).x + 1), 〈23, 9, 2−∞〉, 2, (γ(y).y + 1)〉 is represented

as the set 〈22, (γ(x).x + 1), (γ(y).y + 1), 〈2−∞, 9〉〉.

6.2. Reduction of molecules in set representation

Pattern-matching a molecule in set-representation is more complex than before. It takes

the complete solution and yields a substitution and a remainder. The remainder of a

match is the molecule taken in entry minus the extracted molecule matching the pattern.

Generalized Multisetsfor Chemical Programming 19

For example, the only possible result for

match []((x
y, z2, z2), (23, 45, 〈7〉))

is ({x 7→ 2, y 7→ 3, z 7→ 4}, (4, 〈7〉)). The only molecule included in (23, 45, 〈7〉) matching

the pattern is (23, 44).

We say that a molecule X is included into another molecule M , and we write X v M ,

if it can be extracted from M . All atoms of X must occur in M with greater or equal

multiplicities. For example, 22 v (4, 23, 5) and, of course, X ∈ M ⇒ X v M . By

convention the empty molecule cannot be extracted from a molecule.

Pattern-matching is defined using this notion in Figure 3. A composed pattern P1, P2 is

match []((P1, P2),M) = (φ1 ⊕ φ2, M2)

if match [](P1, M) = (φ1,M1) ∧ match [](P2, M1) = (φ2, M2)

match [](x::T,M) = ({x 7→ X}, M − X)

if X v M ∧ Type(X) � T

match [](ω, M) =

�����
���
� ({x 7→ ∅}, ∅)

if M ≡ ∅

({x 7→ X}, M − X)

if X v M

match [](name = x,M) = ({x 7→ R}, M − (name = R))

if (name = R) ∈ M

match []((P1:P2), M) = (φ1 ⊕ φ2, M − (X1:X2))

if (X1:X2) ∈ M ∧ match [](P1,X1) = (φ1, ∅) ∧

match [](P2,X2) = (φ2, ∅)

match [](〈P 〉,M) = (φ, M − 〈X〉)

if 〈X〉 ∈ M ∧ match [](P,X) = (φ, ∅)

match [](P
k,M) = (match(P, v), M − vj + vj−k)

if vj ∈ M ∧ 0 < k ≤ j ∨ j ≤ k < 0

match [](P
x,M) = (match(P, v) ⊕ {x 7→ k}, M − vj + vj−k)

if vj ∈ M ∧ 0 < k ≤ j ∨ j ≤ k < 0

match [](P
x,M) = (match(P, v) ⊕ {x 7→ j}, M − vj)

if vj ∈ M

match [](P,M) = fail

otherwise

Figure 3. Pattern-matching molecules in set representation.

matched by considering P1 and P2 in sequence. Pattern-matching P1 yields a substitution

φ1 and a remainder M1. Next P2 is matched against M1 and yields a substitution φ2 and

a remainder M2 (M1 minus the extracted match). The result is the composition of the

two substitutions and M2.

The pattern name = x matches any reaction of M tagged with that name.

The pattern 〈P 〉 involves extracting a solution 〈X〉 from M and enforcing that P

matches completely X (i.e. match [](P, X) returns an empty remainder).

J.-P. Banâtre, P. Fradet and Y. Radenac 20

The pattern x::T matches any molecule X whose type is smaller than T and which

can be extracted from M . Similarly, the pattern ω matches any molecule which can be

extracted from M but matches also the empty molecule.

The pattern (P1:P2) involves extracting a pair from M and using standard pattern

matching.

Patterns for multiplets involve selecting a basic value vj from M . To match P k (i.e. to

extract vk), j must be greater or equal to k if positive (lower or equal if negative).

Matching P x amounts to extracting non deterministically a value vk (k lying between 1

and j if j > 0 or j and −1 if j < 0). Matching P x extracts vj and associates x with j.

Chemical reactions are rephrased in this setting as follows:

〈(γ(P)bCc.M), N〉 → 〈[φM, Y]〉 if match [](P, N) = (φ, Y) ∧ φC

A reaction can be decomposed in three steps:

1 A molecule X matching P and satisfying the reaction condition is extracted from the

solution N . Pattern-matching yields a substitution φ and the remainder Y such that

N = [X, Y].

2 The body of the reaction is produced (i.e. φ is applied and the expressions in φM are

reduced).

3 The result of the reaction (φM) is put back in the solution Y . Since the reaction

may produce atoms which are already present in the solution, (φM, Y) must be

normalized in set-representation using []. In an implementation, this would boil down

to updating multiplicities in the table representing the current solution. Note that the

normalization may produce a dynamic error e.g. if v−∞ occurs in Y and φM contains

v∞ (or vice versa).

For example,

let prod = replacex, y by x ∗ y in

let rmunit = γ〈xy, ω〉bx = 1c.ω in

〈prod, rmunit, 〈14, 2, 3, 6〉〉

→ 〈prod, 2, 3, 6〉

→ 〈prod, 62〉

→ 〈prod, 36〉

The reaction rmunit extracts the sub-solution after having removed all the occurrences

of 1’s in one step. The n-shot reaction prod computes 2∗3; then the solution is normalized

to 〈prod, 62〉 (i.e. 6’s are grouped). The last reaction (where x and y each matches an

occurrence of 6) yields 36.

For simplicity reasons, we have formalized reactions on set-representations as a global

operation. In practice, the first and last steps need an atomic access only on the entries

(atoms) they modify. The second step can be done in parallel with other reactions. A

real implementation would extract only a (smartly chosen) selection of atoms for pattern-

matching and would update only the entries (value, multiplicity) corresponding to the

atoms produced by the reaction. Therefore, reactions involving different atoms could take

place in parallel. Of course, reactions in distinct sub-solutions may still occur in parallel.

The framework presented in this section does not describe a complete implementation

Generalized Multisetsfor Chemical Programming 21

which would require other refinements. However, it does show a representation of solu-

tions which allows to explicitly manipulate constant, infinite and negative multiplicities.

A drawback is that we lose some locality in the reactions, but this is unavoidable with

patterns matching all the occurrences of a specific value in a solution.

7. Related work and perspectives

To the best of our knowledge, Gamma (Banâtre & Le Métayer 1986, Banâtre & Le

Métayer 1993) was the first chemical model to be proposed. It consists in a single multiset

containing basic inactive molecules and external reactions. Reactions are n-shot: they are

applied until no reaction can take place. They are first-order: they are not part of the

multiset and cannot be taken as argument or returned as result. Moreover, there is no

nested solutions. Even if sub-solutions can be encoded, there is no notion of inertia in

Gamma (only global termination). A standard Gamma program is easily expressed in

the γ-calculus as a solution with a collection of recursive γ-abstractions representing the

reactions and a sub-solution of values representing the multiset. Gamma has inspired

many extensions (e.g. composition operators (Hankin, et al. 1992)) and other chemical

models.

The chemical abstract machine (Berry & Boudol 1992) (Cham) is a chemical approach

introduced to describe concurrent computations without explicit control. It started from

Gamma and added many features such as membranes, (sub)solutions, inertia and airlocks.

Like Gamma, reactions are n-shot rewrite rules which are not part of the multisets. The

selection pattern in the left-hand side of rewrite rules can include constants which is a

form of reaction condition. For example, in (Berry & Boudol 1992), the description of

the operational semantics of the TCCS and CCS calculi contain a cleanup rule (0 ⇀)

which removes molecules equal to 0.

Our minimal chemical calculus is quite close to Berry and Boudol’s concurrent λ-calculus

(referred to here as the γbb-calculus) introduced after the chemical abstract machine

(Cham) in (Berry & Boudol 1992). The γbb-calculus relies also on variables, abstractions,

an associative and commutative application operator and solutions. However, to distin-

guish between the γ-abstraction and its argument, it adds the notion of positive ions

(denoted M+). The γ-abstractions are negative ions (denoted x−M) which can react

only with positive ions:

β-reaction: (x−M), N+ → M [x := N]

In fact, no reaction can occur within a positive ion and so arguments are passed un-

changed to abstractions. Furthermore, an additional reduction law, the hatching rule,

extracts an inert molecule M from a solution 〈M〉:

hatching: 〈W 〉 → W if W is inert

In the γ-calculus, these two notions are replaced by the strict γ-reduction. In particular,

hatching can be written explicitly as

(γ〈x〉.x), 〈M〉

J.-P. Banâtre, P. Fradet and Y. Radenac 22

which extracts M from its solution when it becomes inert. Even if the γ-calculus looks

simpler than the γbb-calculus, it seems that they cannot be translated easily into each

other (e.g. by a translation defined on the syntax rules).

A first higher-order extension of Gamma has been proposed in (Le Métayer 1994). The

definition of Gamma involves two different kinds of terms: the program (set of rewrite

rules) and multisets. The main extension of higher-order Gamma consists in unifying

these two categories of expression into a single notion of configuration. A configuration

contains a program and a list of named multisets. It is denoted by [Prog, V ar1 =

Multiset1, . . . , V arn = Multisetn]. The program Prog is a rewrite rule of the multisets

(named V ari) of the configuration. This model is an higher-order model because any

configuration can handle other configurations through their program. It includes reaction

conditions and n-ary rewrite rules. However, reactions are not first-class citizens since

they are kept separate from multisets of data.

The hmm-calculus (Cohen & Muylaert-Filho 1996) (for higher-order multiset ma-

chines) is described as an extension of Gamma where reactions are one-shot and first-class

citizens. An abstraction denoted by λx̃.M1 ⇐ M0 describes a reaction rule: it takes sev-

eral terms denoted by a tuple x̃, the term M1 is the action and the term M0 is the reaction

condition. Like γbb, the hmm-calculus uses a call-by-name strategy. It needs an hatching

rule to extract an inert molecule from its solution. Any reaction can occur within solu-

tions and within abstractions. The hmm-calculus can be seen as a call-by-name version of

the γ-calculus, or as an extension of the γbb-calculus with conditional and n-ary reactions.

P-systems (Păun 2000) are computing devices inspired from biology. They consist

in nested membranes in which molecules react. Molecules can cross and move between

membranes. A set of partially ordered rewrite rules is associated to each membrane. These

rules describe possible reactions and communications between membranes of molecules.

These features can be expressed in HOCL: a membrane is a solution, i.e. a multiset.

Our list of comparisons is not exhaustive and other models could have been consid-

ered. For example, we can mention work out about concurrent λ-calculus according to

a chemical metaphor such as (Fontana & Buss 1994), or, for example, various models

based on real chemistry as described in (Dittrich, et al. 2001).

To summarize the main contributions of this paper, we can emphasize (1) the use of

a very general version of multisets with elements possessing various kinds of (finite or

infinite) multiplicities and (2) the introduction of a higher order model of computation

(HOCL) dealing with such multisets. Several programming examples illustrate the salient

features of the language. In order to simplify the presentation, we limited multiplets

to basic values. This restriction can be relaxed in several ways. Multiplets of pairs or

solutions of values would not cause any other problems than efficiency if these structures

include too many elements. Note also that the equality relation which prevented the

use of multiplets of reactions is only needed for matching multiplets. The definition of

finite multiplets (MV), which can be seen as syntactic sugar for V occurrences of M ,

could apply to reactions and to any molecule. With these modest extensions the Jackpot!

Generalized Multisetsfor Chemical Programming 23

program (see Program 3) would be more elegantly expressed as

〈wheel3, choose3, win〉

A current research direction concerns the use of HOCL as a coordination language for

the description of GRID systems and applications. The basic challenge consists in showing

that the chemical paradigm, represented by HOCL, allows a clean and elegant expression

of features such as program mobility, load balancing, crash recovery, etc. Basically, the

overall system is expressed as a “soup” (represented by a multiset) of resources such

as processors, storage, communication links, etc. whose combinations are described by

appropriate reaction rules.

References

J.-P. Banâtre, et al. (2001). ‘Gamma and the Chemical Reaction Model: Fifteen Years After’.

In Multiset Processing, vol. 2235 of LNCS, pp. 17–44. Springer-Verlag.

J.-P. Banâtre, et al. (2004). ‘Chemical Specification of Autonomic Systems’. In Proc. of the 13th

Int. Conf. on Intelligent and Adaptive Systems and Software Engineering (IASSE’04).

J.-P. Banâtre, et al. (2005a). ‘Higher-order Programming Style’. In Proc. of the workshop on

Unconventional Programming Paradigms (UPP’04), vol. 3566 of LNCS. Springer-Verlag.

J.-P. Banâtre, et al. (2005b). ‘Principles of Chemical Programming’. In S. Abdennadher &

C. Ringeissen (eds.), Proceedings of the 5th International Workshop on Rule-Based Program-

ming (RULE 2004), vol. 124 of ENTCS, pp. 133–147. Elsevier.

J.-P. Banâtre & D. Le Métayer (1986). ‘A new computational model and its discipline of pro-

gramming’. Tech. Rep. RR0566, INRIA.

J.-P. Banâtre & D. Le Métayer (1993). ‘Programming by Multiset Transformation’. Communi-

cations of the ACM (CACM) 36(1):98–111.

G. Berry & G. Boudol (1992). ‘The Chemical Abstract Machine’. Theoretical Computer Science

96:217–248.

W. Blizard (1990). ‘Negative Membership’. Notre Dame Journal of Formal Logic 31(3):346–368.

W. Blizard (1991). ‘The development of multiset theory’. Modern Logic 1:319 – 352.

C. Calude, et al. (eds.) (2001). Multiset Processing, Mathematical, Computer Science and Molec-

ular Computing Points of View, Lecture Notes on Computer Science. Springer-Verlag.

M. Chaudron (1994). ‘Schedules for Multiset Transformer Programs’. Tech. Rep. tr94-36, Rijk-

suniversiteit Leiden.

D. Cohen & J. Muylaert-Filho (1996). ‘Introducing a Calculus for Higher-Order Multiset Pro-

gramming’. In Coordination Languages and Models, vol. 1061 of LNCS, pp. 124–141.

N. Dershowitz & Z. Manna (1979). ‘Proving Termination with Multiset Orderings’. Communi-

cations of the ACM 22(8):465–476.

P. Dittrich, et al. (2001). ‘Artificial Chemistries – A Review’. Artificial Life 7(3):225–275.

W. Fontana & L. Buss (1994). ‘The Arrival of the Fittest: Toward a Theory of Biological

Organization’. Bulletin of Mathematical Biology 56.

C. Hankin, et al. (1992). ‘A Calculus of Gamma Programs’. In Languages and Compilers for

Parallel Computing, 5th International Workshop, vol. 757 of LNCS, pp. 342–355. Springer-

Verlag.

D. E. Knuth (1981). The Art of Computer Programming, vol. 2 Seminumerical Algorithms of

Addison-Wesley Series in Computer Science and Information Processing. Addison-Wesley,

2nd edn.

J.-P. Banâtre, P. Fradet and Y. Radenac 24

D. Le Métayer (1994). ‘Higher-order multiset programming’. In A. M. S. (AMS) (ed.), Proc.

of the DIMACS workshop on specifications of parallel algorithms, vol. 18 of Dimacs Series in

Discrete Mathematics.

D. Loeb (1992). ‘Sets with a negative number of elements’. Advances in Mathematics 91:64–74.

G. Păun (2000). ‘Computing with Membranes’. Journal of Computer and System Sciences

61(1):108–143.

