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École des Mines de Nantes
4, rue Alfred Kastler - BP 20722
44307 Nantes Cedex 3, France

douence@emn.fr

Pascal Fradet
INRIA

INRIA Grenoble - Rhône-Alpes
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Abstract
Aspect Oriented Programming can arbitrarily distort the semantics
of programs. In particular, weaving can invalidate crucial safety and
liveness properties of the base program. In this article, we identify
categories of aspects that preserve some classes of properties. It is
then sufficient to check that an aspect belongs to a specific category
to know which properties will remain satisfied by woven programs.

Our categories of aspects, inspired by Katz’s, comprise observers,
aborters and confiners. Observers introduce new instructions and a
new local state but they do not modify the base program’s state
and control-flow. Aborters are observers which may also abort
executions. Confiners only ensure that executions remain in the
reachable states of the base program.

These categories (along with three other) are defined precisely
based on a language independent abstract semantics framework.
The classes of properties are defined as subsets of LTL for deter-
ministic programs and CTL* for non-deterministic ones. We can
formally prove that, for any program, the weaving of any aspect in
a category preserves any property in the related class. We give ex-
amples to illustrate each category and prove the preservation of one
class of properties by one category of aspects in the appendix.

Categories and Subject Descriptors D.3.3 [Language Constructs
and Features]; F.3.2 [Semantics of Programming Languages];
F.3.1 [Specifying and Verifying and Reasoning about Programs]

General Terms Languages, Verification

Keywords Aspect weaving, semantics, temporal properties, proofs

1. Introduction
Aspect oriented programming (AOP) proposes to modularize con-
cerns that crosscut the base program [13]. However, aspects can in
general distort the semantics of the base program. The programmer
may have to inspect the woven program (or to debug its execution)
to understand its semantics. In this article, we consider several cat-
egories of aspects that alter the semantics of the base program in
a tightly controlled manner. For each category of aspects Ax, we
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identify a corresponding class of properties ϕx that is preserved by
weaving these aspects. In other words, let P be a program that sat-
isfies a property ϕ ∈ ϕx, then weaving any aspect A ∈ Ax on P
will produce a program satisfying ϕ. Our categories of aspects, in-
spired by Katz’s [11], comprise observers, aborters, confiners and
weak intruders.

◦ Observers do not modify the base program’s state and control-
flow. Advice may only modify the aspect’s local variables.

◦ Aborters are observers which may also abort executions. The
program’s state is not modified but its control flow may be ter-
minated.

◦ Confiners may modify the state and control-flow but ensure that
states remain in the reachable states of the base program.

◦ Weak intruders may modify states and control-flow with no re-
striction within the advice code. However, the execution of the
base program code must involve only states already reachable
by the unwoven program.

Typically, persistence, debugging, tracing, logging and profiling
aspects are observers whereas aspects ensuring safety properties
such as security aspects are aborters. Some optimization aspects
(which may use shortcuts to reach future states) or fault-tolerance
aspects (which roll-back to past states) may belong to the last two
categories.

An observer can only insert advice which will write its own local
variables. Intuitively, it should preserve many properties but cau-
tion must be exercised. For example, properties involving the ab-
sence of unwanted events (such as specific method calls) are often
not preserved since the advice inserts new events. Liveness prop-
erties may also be violated if the advice fails to terminate. Further,
we must ensure that base programs are not reflexive otherwise the
base program control-flow could be indirectly modified by the most
harmless looking advice. These examples should make it clear that
such a taxonomy asks for a formal treatment.

We define the categories precisely based on a language independent
abstract semantics framework. The classes of properties are defined
as subsets of LTL [16] for deterministic programs and CTL* [2]
for non deterministic ones. We can formally prove that, for any
program, the weaving of any aspect in a category preserves any
property in the related class.

The article starts by considering deterministic programs. Section 2
introduces the formal framework used in the rest of the paper. Sec-
tion 3 recalls the syntax and semantics of linear temporal logic
(LTL). We then define the categories of aspects and their cor-
responding classes of LTL properties: observers (Section 4.1),



aborters (Section 4.2), confiners (Section 4.3) and weak intrud-
ers (Section 4.4). Section 5 sketches the corresponding study in a
nondeterminism setting. It presents the semantics of nondetermin-
istic programs, the computation temporal logic (CTL*) and two
new categories of aspects (selectors and regulators) and their cor-
responding classes of CTL* properties. Section 6 reviews some
related work and Section 7 discusses possible future research di-
rections and concludes. The appendix presents the proof of preser-
vation for observers.

2. Semantic Framework
In order to prove that properties are preserved by weaving, we have
to define the semantics of base and woven programs. We do so
using a Common Aspect Semantics Base (CASB) for AOP [7].
That abstract framework applies to most base and aspect languages.
We define execution traces of base and woven programs and we
show they are related. We focus in this section on deterministic
programs. The study of non-determinism is postponed to section 5.

2.1 The Common Aspect Semantics Base

The CASB relies on the small step semantics of the base language
which is supposed to represent the semantics of advice as well. That
semantics is described through a binary relation→b on configura-
tions (C,Σ) made of a program and a state:

◦ A program C is a sequence of basic instructions i terminated
by •:

C ::= i : C | •

◦ States Σ are kept as abstract as possible. They may contain envi-
ronments (e.g., associating variables to values, procedure names
to code, etc.), stacks (e.g., evaluation stack), heaps (e.g., dynam-
ically allocated memory), etc

A single reduction step of the base language semantics is written

(i : C,Σ)→b (C′,Σ′)

Intuitively, i represents the current instruction and C the continu-
ation. The component i : C can be seen as a control stack. The
operator “:” sequences the execution of instructions. The interested
reader will find in [7] the semantic descriptions of a small arith-
metic language, imperative language, and a core Java language
(Featherweight Java with assignments) in that form.

In the following, woven configurations (C,Σ) are supposed to be
made of the following components:

◦ C is the sequence of instructions of woven program. We write
ib for a base program instruction and ia for an advice instruc-
tion. The instruction ε, which represents the final instruction of
a program, is considered as an ib instruction;

◦ Σb is the subset of the state Σ corresponding to the state of the
base program (i.e., the variables, environment, heap, modified
by ib instructions and possibly by ia instructions);

◦ Σa is the subset of Σ that corresponds to the local state of as-
pects (i.e., the variables, environment, heap, etc.which cannot
be modified by ib but only ia instructions);

◦ Σψ is the subset of Σ that represents aspects. It is a function
that decides wether the current instruction should be woven and
transforms the configuration accordingly. When a new instance
of an aspect is created, both Σa and Σψ are modified.

Let (C,Σ) be a woven configuration then Σ = Σb ∪ Σa ∪ Σψ .
Reduction of woven programs has the following properties:

∀(C,Σ).(ib : C,Σ)→b (C′,Σ′) with Σ′ = Σ′b ∪ Σa ∪ Σψ

that is, the reduction of a base program instruction can only modify
the state of the base program, and

∀(C,Σ).(ia : C,Σ)→b (C′,Σ′) with Σ′ = Σ′b ∪ Σ′a ∪ Σψ

that is, the reduction of an advice instruction can, in general, mod-
ify both the state of the base program and the local state of aspects.

The semantics of woven reduction is represented by the binary
relation→ defined by:

REDUCE
(C,Σ)→b (C′,Σ′) w(C′,Σ′) = (C′′,Σ′′)

(C,Σ)→ (C′′,Σ′′)

A reduction step→ of the woven program first reduces the first in-
struction of the current configuration using→b, then it weaves the
reduced configuration using the function w. The weaving function
w is defined by two rules:

◦ Either, the current instruction is not matched by the aspects (Σψ

returns nil) and w returns the configuration unchanged

WEAVE0
Σψ(C,Σ) = nil

w(C,Σ) = (C,Σ)

◦ or the current instruction is matched by the aspects and Σψ

returns a new configuration (C′,Σ′):

WEAVE1
Σψ(C,Σ) = (C′,Σ′) w(C′,Σ′) = (C′′,Σ′′)

w(C,Σ) = (C′′,Σ′′)

where

C′ is the new code in which an advice is inserted before,
after or around the current instruction ofC (see [7] for more
details);
Σ′ = Σb ∪ Σ′a ∪ Σ′ψ , with Σ′ψ which may contain a new
aspect instance and Σ′a its corresponding new state.

Note that weaving can be recursively applied on the code of a
newly introduced advice. We assume that weaving only depends
on the current instruction (not on the continuation). The interested
reader will find in [7] the semantics of common aspectual features
in that framework (e.g., before, after and around aspects, cflow
pointcuts, aspects on exceptions, aspect deployment, aspect instan-
tiation, etc.).

Since weaving is always performed after a→b reduction, it is not
possible to weave the first instruction. In some cases, it might be
useful to start the program by a before-advice. In order to allow
such weaving, we introduce a special instruction start and we
assume that initial configurations are of the form (start : C,Σ).
The semantics of start is the same as a nop (no operation):

(start : C,Σ)→b (C,Σ)

So, a base program always starts by the reduction step

(start : C0,Σ0)→b (C0,Σ0)

whereas a woven execution starts by the reduction step

(start : C0,Σ0)→ (C′0,Σ
′
0) with w(C0,Σ0) = (C′0,Σ

′
0)



2.2 Base and Woven Execution Traces

In the following, programs are represented by their execution
traces. Programs are supposed to end by a final instruction ε and
final configurations are of the form (ε : •,Σ). For simplicity and
regularity, we only consider infinite traces. In order to do so, the
final instruction ε is supposed to have the following reduction rule:

∀Σ.(ε : •,Σ)→b (ε : •,Σ)

This way, non-terminating and terminating programs will be both
represented as infinite execution traces.

The base program execution trace, with (C0,Σ0) as initial config-
uration, will be denoted by B(C0,Σ0) (definition 1).

DEFINITION 1.
B(C0,Σ0) = (i1,Σ1) : (i2,Σ2) : . . .

with ∀(j ≥ 0).(ij : Cj ,Σj)→b (ij+1 : Cj+1,Σj+1)

Since properties concern only states and current instructions, con-
tinuation (the control stack) does not appear in traces. We write
W(C0,Σ0) for the infinite woven execution trace (definition 2).

DEFINITION 2.
W(C0,Σ0) = (i1,Σ1) : (i2,Σ2) : . . .

with ∀(j ≥ 0).(ij : Cj ,Σj)→ (ij+1 : Cj+1,Σj+1)

Note that in both definitions, the initial instruction i0 (i.e., start)
does not appear.

In the rest of the paper, if α is a trace then its ith element is denoted
by αi and prefix, postfix and subtraces are written as follows:

α→j = α1 : . . . : αj
αj→ = αj : αj+1 . . .
αi→j = αi : . . . : αj

with i > 0 and j > 0. The empty trace can be written α→0.

The relations between the base and woven execution traces is
expressed using the functions projb and preserveb. We write
TracesB, TracesW and Sequenceib to denote the sets of base
program execution traces, woven execution traces and sequences
of base instructions respectively.

The function projb projects a base or woven trace on the sequence
of the base instructions which have been executed.

projb : TracesB ∪ TracesW → Sequenceib
projb((ib,Σ) : T ) = ib : (projb T )
projb((ia,Σ) : T ) = projb T

The predicate preserveb checks that the advice instructions in a
woven trace do not modify Σb. Each ia instruction must leave the
state of the base program (Σb) unchanged.

preserveb : TracesW → bool
preserveb(α̃) = ∀(j ≥ 1). α̃j = (ia,Σj)

⇒ α̃j+1 = (i,Σj+1) ∧ Σbj = Σbj+1

These functions are used in the definition of aspect categories.

3. Linear Temporal Logic
Linear Temporal Logic (LTL) permits to define a wide range of
properties of execution traces [16]. In this section, we define the
syntax and semantics of LTL formulae w.r.t. our (base and woven)
execution traces. We review standard classes of temporal properties
and briefly discuss why these classes are not, in general, preserved
by weaving.

3.1 Atomic propositions

In our context, an atomic proposition ap of LTL is either an atomic
proposition sp on states Σ (e.g., x ≥ 0), or an atomic proposition
ep on instructions or events (e.g., foo which is true when the
method foo is called).

An atomic proposition ap is true at a step of a (base or woven)
trace αj iff αj satisfies ap denoted by αj |= ap. This is defined
based on the two following auxiliary functions:

◦ The function m :: Instruction × Ep → bool, where
Instruction is the set of instructions and Ep the set of atomic
propositions on instructions, returns true if the proposition
matches the current instruction. The function m is overloaded
in order to take a trace element as parameter:

m :: Step × Ep → bool
m((i,Σ), ep) = m(i, ep)

◦ The function l :: StateB×Sp→ bool, where StateB is the set
of Σb and Sp the set of atomic propositions on Σb (Sp ⊂ Ap),
returns true if the proposition is satisfied by the state passed as
parameters. The function l is overloaded in order to take a trace
element as parameter:

l :: Step × Sp → bool
l((i,Σ), sp) = l(Σb, sp)

Then, αj |= ap is defined as follows:

αj |= ep ⇔ m(αj , ep) = true
αj |= ¬ep ⇔ m(αj , ep) = false
αj |= sp ⇔ l(αj , sp) = true
αj |= ¬sp ⇔ l(αj , sp) = false

3.2 Semantics of LTL

We consider LTL formulae in positive normal form i.e., where
negation occurs only on atomic propositions (Grammar 1). In ϕ,
the operator © is read ”next”, ∪ is read ”until”, and W is read
”weak until”.

GRAMMAR 1.
ϕ ::= ap | ¬ap | ϕ1 ∨ ϕ2 | ϕ1 ∧ ϕ2 |

©ϕ | ϕ1 ∪ ϕ2 | ϕ1Wϕ2

The semantics of an LTL formula is defined on a trace α as follows:
α |= ap ⇔ α1 |= ap
α |= ¬ap ⇔ α1 |= ¬ap
α |= ϕ1 ∨ ϕ2 ⇔ α |= ϕ1 ∨ α |= ϕ2

α |= ϕ1 ∧ ϕ2 ⇔ α |= ϕ1 ∧ α |= ϕ2

α |=©ϕ ⇔ α2→ |= ϕ
α |= ϕ1 ∪ ϕ2 ⇔ ∃(j ≥ 1).αj→ |= ϕ2 ∧

∀(1 ≤ i < j).αi→ |= ϕ1

α |= ϕ1Wϕ2 ⇔ ∀(j ≥ 1). αj→ |= ϕ1 ∨ α |= ϕ1 ∪ ϕ2

The atomic proposition ap (resp. ¬ap) is true on α if ap is true
(resp. false) on the first element of α; ϕ1 ∨ϕ2 is true if ϕ1 is true
or ϕ2 is true; ϕ1 ∧ ϕ2 is true if ϕ1 is true and ϕ2 is true;©ϕ
is true if ϕ is true on the trace immediately following; ϕ1 ∪ ϕ2 is
true if ϕ1 is true until ϕ2 becomes true; finally ϕ1Wϕ2 is true
if ϕ1 is always true or ϕ1 ∪ ϕ2 is true .

For the sake of readability, derived operators can be defined:

◦ 3ϕ = true ∪ϕ is read ”eventually ϕ” i.e., in the future, there
is a (postfix) trace that satisfies ϕ;

◦ 2ϕ = ϕ W false is read ”always ϕ” i.e., all (postfix) traces in
the trace satisfy ϕ.



3.3 Standard Classes of Temporal properties

Standard classes of temporal properties [18] comprise:

◦ liveness properties: ”something (good) eventually happens”.
Liveness properties are of the form 3ϕ. Liveness properties
can also be repeated to express fairness (i.e., ”something even-
tually happens infinitely often”). In this case, they are of the
form 23ϕ;

◦ safety properties: ”something (bad) never happens”. Safety
properties are of the form 2ϕ;

◦ Invariant properties: ”something always happens”. They are of
the form 2ϕ where ϕ is composed of atomic propositions,
negations, disjunctions and conjunctions but no temporal oper-
ators. They are a subset of safety properties which do not relate
to the history of the computation.

These classes are very expressive since any LTL property can be
expressed as a conjunction of a safety and a liveness property. In
general, they are not preserved by aspect weaving. For instance,
consider the liveness property 3backup meaning ”the state of the
system is eventually saved”. An around aspect replacing the calls
to the function backup by an empty advice will violate the liveness
property. Regarding safety properties, consider a base program that
never calls the function diskformat and therefore satisfies the
property 2¬diskformat. An aspect that calls this function in its
advice will violate the property.

The rest of this article is devoted to identifying categories of aspects
that preserve classes of temporal properties.

4. Categories of aspects
For deterministic programs, our four aspect categories are: ob-
servers (Ao), aborters (Aa), confiners (Ac) and weak intruders
(Aw). For each categoryAx, we present a class of properties ϕx (a
subset of LTL) which are preserved by the weaving of any aspect
of Ax. Aspect categories are related by inclusion:

Ao ⊂ Aa ⊂ Ac ⊂ Aw
The observer category is the most restricted category; it is included
in all the other. The weak intruder category is the most expressive
category; it includes all the other. The corresponding classes of
properties are also related by inclusion:

ϕo ⊃ ϕa ⊃ ϕc ⊃ ϕw

Not surprisingly, the most restricted category of aspects (Ao) pre-
serves the largest class of properties (ϕo) and the inclusion chain is
in the opposite direction.

An important point to keep in mind is that our preservation proofs
should stand for any program, any aspect of the category and any
property of the class. Our course, for a specific program and aspect
many more properties might be preserved. On the other hand, the
advantage of our approach is when an aspect is shown to belong
to a category, then we know a large class of properties that will be
preserved whatever the program is or will be.

For these reasons, the classes of properties cannot include the
temporal operator ©. Indeed, a trace satisfies ©ϕ only if the
sequence immediately following satisfies ϕ. The weaving of even
the most harmless aspect (for example, an aspect inserting a nop
instruction) fails to preserve this kind of property. It suffices to
weave it just beforeϕ becomes satisfied. Since all aspects introduce
extra steps in the execution trace, no category of aspects preserves
©-properties for all programs.

In the following, we explain our categories and classes using small
examples of execution traces where only the relevant satisfied prop-
erties are shown. For example:

x = 0 : x = 0 : (x = 1, print) : ε : ε : . . .

represents an execution trace where the first and the second step
satisfies x = 0 and the third step satisfies x = 1 and has print
as its current instruction (e.g., the second instruction has changed
the valued of x). This trace satisfies, for example, the property
(x = 0)Wprint .

4.1 Observers

An observer (Definition 3) does not modify the control-flow of the
base program but only inserts advice instructions ia. The woven
and the base execution traces can be projected (using projb) onto
the same sequence of base instructions. An observer does not mod-
ify the state of the base program: advice instructions ia do not
change the base state Σb. This is the property checked by the pred-
icate preserveb.

DEFINITION 3.
∀(C,Σ). Σψ ∈ Ao ⇔ projb(α) = projb(α̃)

∧ preserveb(α̃)
with α = B(C,Σb) and α̃ =W(C,Σ)

Definition 3 states that observers may only modify execution traces
by inserting new advice instructions (ia) and a new local state (Σa).
Note that this definition also implies that the advice terminates.

The class of properties ϕo preserved by observer aspects are de-
fined by the grammar 2.

GRAMMAR 2.
ϕo ::= sp | ¬sp | ϕo1 ∨ ϕo2 | ϕo1 ∧ ϕo2 | ϕo1 ∪ ϕo2 |

ϕo1Wϕo2 | true ∪ ϕ′o

ϕ′o ::= ep | ¬ep | sp | ¬sp | ϕ′o1 ∨ ϕ′o2 | ϕ′o1 ∧ ϕ′o2 |
ϕo1 ∪ ϕo2 | ϕo1Wϕo2 | true ∪ ϕ′o

As in the previous section, the variables sp and ep refer to atomic
propositions on the base state and instructions respectively. The
language ϕo is LTL without the © operator when atomic propo-
sitions are state propositions (sp). So, it can express all safety,
liveness and invariant properties (without ©) on base states Σb.
The class is more restricted when the property involves atomic
propositions on events (ep). These properties can only occur as
true ∪ ϕ′o. This makes it possible to define liveness properties
on events. Indeed, a liveness property 3ϕ′o can be rewritten as
true ∪ ϕ′o and a liveness fair property 23ϕ′o can be rewritten
as (true ∪ ϕ′o)W false . On the other hand, this language forbids
safety properties on events. A safety property 2¬ϕ is of the form
(¬ϕ)W false which does not belong to grammar 2. Intuitively,
safety properties on events forbid some sequences of instructions.
An observer introduces sequences of instructions, so it may intro-
duce a forbidden sequence of instructions in particular. For exam-
ple, the base program sequence

x = 0 : x = 0 : (x = 1, print) : ε : ε : . . .

satisfies (x = 0) ∪ print and (x = 0)Wprint , but after the
weaving of the advice instruction write just before print

x = 0 : x = 0 : (x = 1, write) : (x = 1, print) : ε : ε : . . .

both properties are not satisfied any more. Also, readW false
(i.e., always read ) is satisfied by the infinite trace of read instruc-
tions

read : read : read : . . .



But after the weaving of the advice write after the first read

read : write : read : read : . . .

the property is not satisfied any more.

The theorem 1 formally states that the weaving of an observer
preserves all properties in ϕo which were satisfied by the base
program. The appendix presents the proof of this theorem.

THEOREM 1.
∀(C,Σ). Σψ ∈ Ao ⇒ ∀(p ∈ ϕo). α |= p⇒ α̃ |= p
with α = B(C,Σb) and α̃ =W(C,Σ)

Persistence, debugging, tracing, logging and profiling aspects typ-
ically belong to the class of observers. Persistence aspects which
only store the states of the base program during its execution
on a data base are clearly observers. Debugging aspects print-
ing variables of the base program or inserting breakpoints are ob-
servers. However, a debugger aspect allowing the user to interac-
tively change the base program state would fail to be an observer.
Tracing, logging or profiling aspects usually only observe the exe-
cution of the base program and write information on this execution
(e.g., method calls, parameters values, etc.) in a file. An example
of profiling aspects is runtime analysis aspects such as intrusion
detection aspects which observe the execution, detect suspicious
behaviors and warn administrators.

In the documentation of AspectJ, there are many profiling aspects
such as telecom/TimerLog, tracing/lib/TraceMyClasses,
tjp/GetInfo, . . . In [1], Govidranj et al. present a tool named
InfraRED. The tool is based on observer AspectJ aspects to monitor
J2EE applications and to detect and analyze performance problems.

4.2 Aborters

An aborter (Definition 4) does not modify the state of the base
program. As in the previous definition of observers, the predicate
preserveb holds for the woven trace. However, an aborter can
modify the control-flow by terminating the execution of the woven
program. This is modeled by an ia instruction abort which reduces
any configuration into the final one:

∀(C,Σ). (abort : C,Σ)→ (ε : •,Σ)

If abort is never executed, the projections of the base and woven
traces are equal; the aborter behaves like an observer. The projec-
tion of an aborted woven trace on ib is a prefix of the projection of
the base program trace. After this point, all instructions are equal
to ε.

DEFINITION 4.
∀(C,Σ). Σψ ∈ Aa ⇔ preserveb(α̃) ∧

projb(α) = projb(α̃) ∨ (∃(i ≥ 0).
∃(j ≥ i). projb(α→i) = projb(α̃→j)
∧ ∀(k > j).α̃k = (ε, ))

with α = B(C,Σ) and α̃ =W(C,Σ)

Note that this definition rules out aspects whose advice does not
terminate (projb(α) = projb(α̃) ∨ ∀(k > j).α̃k = (ε, )).

Observers are included in the category of aborters. The set of
properties preserved by aborters (Grammar 3) is a subset of the
set of properties preserved by observers (Grammar 2).

GRAMMAR 3.
ϕa ::= sp | ¬sp | ϕa1 ∨ ϕa2 | ϕa1 ∧ ϕa2 | ϕa1Wϕa2 | true ∪ ϕ′a

ϕ′a ::= ¬ep | ϕ′a ∨ ϕa | ϕ′a1 ∧ ϕ′a2 | true ∪ ϕ′a

The language ϕa is LTL without ∪ and © operators for atomic
propositions on states (sp). This includes invariant and safety prop-
erties on states. Atomic propositions on events (ep) occur only
under a negation and only as an ”eventually” formula (i.e., in
true ∪ ϕ′a). This language makes it possible to define liveness
properties on ¬ep. For instance, the property true∪¬print which
is satisfied by the sequence

print : print : print : read : ε : . . .

is preserved by any aborter. An aborter will either leave the read in-
struction or abort the execution; in both cases, the current instruc-
tion will be eventually different from print (ε is not print). We
assume here that ep cannot match ε; true∪¬εwould not preserved
by an aborter stopping the program before the first instruction.

Many properties preserved by observer aspects are not preserved by
aborters. Of course, this comes from their ability to abort programs.
For example, x = 0∪ x = 1 is satisfied by the following sequence

x = 0 : x = 0 : x = 1 : ε : ε : . . .

but if an aborter aspect terminates the execution before x = 1 then
the woven trace becomes

(x = 0, abort) : (x = 0, ε) : (x = 0, ε) : . . .

and the property x = 0 ∪ x = 1 is not satisfied anymore. On the
other hand, properties of the form x = 0Wx = 1 are preserved.

The preservation of properties of Grammar 3 by aborter aspects is
formalized by Theorem 2.

THEOREM 2.
∀(C,Σ). Σψ ∈ Aa ⇒ ∀(p ∈ ϕa). α |= p⇒ α̃ |= p
with α = B(C,Σb) and α̃ =W(C,Σ)

Examples of aborters are security aspects that detect forbidden
states or sequences of instructions or aspects that guarantee that
a computation stops after a time-out. In general, an aspect which
checks if a condition is violated by the base program and throw an
exception without modifying the base state is an aborter. In [5], as-
pects are local security policies which can be woven on untrusted
applets. Aspects only update their own state but abort the applet
should it try to violate the policy. In [9], aspects are timed con-
straints which may terminate programs to guarantee availability of
shared resources. In [1], Wampler presents a tool named Contract4J
that takes invariants and generates aspects enforcing user-defined
contracts. An aspect observes the execution and aborts it as soon as
a contract is violated.

4.3 Confiners

An aspect is a confiner (Definition 5) if the state of any configura-
tion of the woven program is a reachable state. In general, confiners
can modify the control-flow and the state of the base program.

The set of reachable states from the configuration made of the
program C and the state Σb is denoted by Reachb(C,Σb) with:

Reachb(C,Σ
b) = {Σb′ | (C,Σb)

∗→b (C′,Σb
′
)}

Definition 5 formalizes the fact that the base state of any configu-
ration in the woven trace is reachable by the base program.

DEFINITION 5.
∀(C,Σ). Σψ ∈ Ac ⇔ ∀(j ≥ 1). α̃j = (i,Σj)

∧ Σbj ∈ Reachb(C,Σ
b)

with α = B(C,Σ) and α̃ =W(C,Σ)

Observers and aborters are included in the category Ac of confin-
ers. The set of properties preserved by confiners (Grammar 4) is a



subset of the set of properties preserved by aborter aspects (Gram-
mar 3).

GRAMMAR 4.

ϕc ::= sp | ¬sp | ϕc1 ∨ ϕc2 | ϕc1 ∧ ϕc2 | ϕc1W false

The language ϕc is restricted to invariant properties (i.e., 2ϕ or
ϕW false) on states. Since confiner aspects can modify the control
flow of events without restriction no properties involving atomic
propositions on events in ϕc are preserved. For the same reason,
safety properties such as ϕc1Wϕc2 are not preserved by confiners.
For example, the base program trace

x = 0 : x = 1 : x = 2 : ε : ε : . . .

satisfies the safety property x = 0Wx = 1. However, after the
weaving of a confiner that remains inReachb, the woven sequence
can be

x = 0 : x = 2 : x = 0 : x = 1 : ε : . . .

which does not satisfies the safety property x = 0Wx = 1.

The preservation of properties of Grammar 4 by confiners is for-
malized by Theorem 3.

THEOREM 3.
∀(C,Σ). Σψ ∈ Ac ⇒ ∀(p ∈ ϕc). α |= p⇒ α̃ |= p
with α = B(C,Σb) and α̃ =W(C,Σ)

Examples of confiners are reset aspects that restore the initial state
of the base program, fault-tolerance aspects that restore a safe ex-
ecution state from a previous checkpoint, or memo aspects that
shortcut a computation (or a already performed request) and re-
turns its cached result. In all cases, in order to always remain in the
reachable states, the reset (roll-back or caching) action must be con-
sidered as atomic. For example, a non-atomic roll-back is likely to
create unreachable states in the middle of the restoration. A memo
aspect is also likely to fail to change some temporary variables that
are used when the result is not in the cache and must be computed.
In such cases, aspects are confiners only if we restrict properties to
a subset of the base program state. Without these restrictions, such
aspects belong to the category presented next i.e., weak intruders.

4.4 Weak intruders

An aspect is a weak intruder (definition 6) if states of a configu-
ration with a current base program instruction (i.e., ib) are always
reachable states. In other words, a weak intruder aspect may pro-
duce unreachable states during advice execution but always returns
to reachable states when it returns to the base program. Confiners
are special cases of the weak intruder aspect category.

Definition 6 formalizes the fact that the base state of any configu-
ration with a current instruction ib in the woven trace is reachable
by the base program.

DEFINITION 6.
∀(C,Σ). Σψ ∈ Aw ⇔ ∀(j ≥ 1). α̃j = (ib,Σj)

⇒ Σbj ∈ Reachb(C,Σ
b)

with α = B(C,Σ) and α̃ =W(C,Σ)

Since a weak intruder can modify the control-flow and the state of
the base program, it can violate invariants during the execution of
advice. There is no LTL property preserved for all weak intruders
and programs. However, if the (weaving of) weak intruder aspect
terminates (definition 7) then it preserves properties of the form
3ϕc. That is, the woven program eventually preserves invariant
properties (i.e., after the last advice).

DEFINITION 7.
∀(C,Σ). Σψ terminates ⇔ ∃(j ≥ 1).∀(k > j).

α̃k = (ib,Σk)
with α = B(C,Σ) and α̃ =W(C,Σ)

For example, the base program trace

x = 0 : x = 1 : x = 0 : (ε, x = 1) : (ε, x = 1) : . . .

satisfies the ϕc property (x = 0 ∨ x = 1)W false . The woven
sequence

x = 0 : x = 1 : x = 0 : x = 2 : (ε, x = 0) : (ε, x = 0) : . . .

violates the property when x = 2 (a possible state produced
during the execution of an advice). However, the final configuration
(ε, x = 0) has a state (x = 0) reachable by the base program. So,
(x = 0 ∨ x = 1)W false is eventually satisfied (i.e., 3((x =
0 ∨ x = 1)W false)).

Theorem 4 formalizes the fact that if the base program satisfies an
invariant property p then the woven execution with a terminating
weak intruder aspect satisfies eventually p.

THEOREM 4.
∀(C,Σ). Σψ ∈ Aw ∧ Σψ terminates ⇒

∀(p ∈ ϕc). α |= p ⇒ α̃ |= 3p
with α = B(C,Σ) and α̃ =W(C,Σ)

Fault tolerant aspects performing non atomic rollbacks are typical
weak intruder aspects. They may produce unreachable states during
advice execution (i.e., the rollback) but eventually reach a previous
safe state. Similarly, aspects performing non atomic resets are weak
intruders.

5. Non-Deterministic Case
In the previous section, we have presented aspect categories pre-
serving classes of properties for deterministic programs. Non-
determinism brings two new aspect categories: selectors (A∗s)
which select some executions among the set of possible executions,
and regulators (A∗r) which can select but also abort executions.

We first define the semantics of non-deterministic programs as set
of (infinite) execution traces. The categories of aspects are defined
based on this semantics and the same auxiliary functions (projb
and preserveb). The categories of observers, aborters, selectors,
regulators, confiners and weak intruders form a hierarchy

A∗a
⊂

VVV
VVV

A∗o
⊂iii

iii

⊂
VVV

VVV
A∗r ⊂ A∗c ⊂ A∗w

A∗s
⊂iii

iii

where aborters A∗a and selectors A∗s cannot be compared. Proper-
ties are defined using CTL* which permits to quantify formulae
over the set of execution traces. This logic is strictly more expres-
sive than LTL. The classes of properties θo, θa, θs, θr, θc, θw pre-
served by the corresponding aspect categories are related by a dual
inclusion hierarchy.

The examples of aspects discussed in the section 4 remain valid
in the non-deterministic case. For instance, debugging aspects are
also observer aspects for non-deterministic programs. Each class
of preserved properties in the non-deterministic case generalizes
its deterministic version (e.g., θo is strictly more expressive than
ϕo). In this section, we show how to adapt our semantics and
properties for non-deterministic programs. We do not (re)present
all categories but focus on the two new categories (selectors and
regulators) and their corresponding classes of properties.



5.1 Base and woven execution traces

We abstract the base and woven program executions as sets of
infinite traces written B∗(C0,Σ0) (Definition 8) andW∗(C0,Σ0)
(Definition 9). As in the deterministic case (i.e., Definitions 1 and
2) we assume programs begin with a dummy start instruction that
enables to weave the second (i.e., first after start) instruction of
the base program. We ignore the start instruction in the traces.

DEFINITION 8.
B∗(C0,Σ0) = {(i1,Σ1) : (i2,Σ2) : . . . | ∀(j ≥ 0).

(ij : Cj ,Σj)→b (ij+1 : Cj+1,Σj+1)}

DEFINITION 9.
W∗(C0,Σ0) = {(i1,Σ1) : (i2,Σ2) : . . . | ∀(j ≥ 0).

(ij : Cj ,Σj)→ (ij+1 : Cj+1,Σj+1)}

5.2 Branching temporal logic CTL*

In the non-deterministic case, classes of properties are subsets of
the branching temporal logic CTL* [2]. Grammar 5 defines the
positive normal form of CTL* formulae.

GRAMMAR 5.
θ ::= ap | ¬ap | θ1 ∨ θ2 | θ1 ∧ θ2 | ∃ω | ∀ω

ω ::= θ | ω1 ∨ ω2 | ω1 ∧ ω2 | ©ω | ω1 ∪ ω2 | ω1Wω2

When LTL specifies properties on an execution trace, CTL* speci-
fies properties on a set of execution traces. CTL* extends LTL with
logical quantifiers ∃ω (“there exists traces satisfying ω”) and ∀ω
(“all traces satisfy ω”). It is strictly more expressive than LTL. Any
LTL property p for a trace α is equivalent to the CTL* formula
∀p for the set {α}. In Grammar 5, θ represents properties on trace
steps and ω properties on traces.

The semantics of CTL* is quite similar to the semantics of LTL
defined in section 3. The semantics of logical quantifiers is defined
as follows:

T, αj |= ∃ω ⇔ ∃(α ∈ T ).T, α |= ω
T, αj |= ∀ω ⇔ ∀(α ∈ T ).T, α |= ω

In these definitions, the environment T is the set of traces starting
from αj . In our context, T will be initially either B∗(C0,Σ0) for
α1 orW∗(C0,Σ0) for α̃1). A step αj satisfies ∃ω if there exists an
execution α ∈ T (i.e., traces from αj) that satisfies ω. A step αj
satisfies ∀ω if all execution traces α ∈ T satisfy ω.

The derived operators 3 and 2 can be defined in CTL* in the same
way as in LTL.

5.3 Selectors

A selector does not modify the state of the base program. However,
a selector can modify the control-flow of the base program by
selecting a subset of execution traces among the set of all possible
execution traces. Obviously, this new category of aspect only makes
sense for non-deterministic programs since its effect is to suppress
some non-deterministic choices.

A selector (Definition 10) cannot introduce new execution traces:
for any trace in the set of woven executions, there exists a trace
in the set of base executions with the same sequence of base
instructions (i.e., related by projb).

DEFINITION 10.
∀(C,Σ). Σψ ∈ A∗s ⇔ ∀(α̃ ∈ W∗(C,Σ)).∃(α ∈ B∗(C,Σb)).

projb(α̃) = projb(α) ∧ preserveb(α̃)

The properties defined by θs in Grammar 6 are preserved by selec-
tors.

GRAMMAR 6.
θs ::= sp | ¬sp | θs1 ∨ θs2 | θs1 ∧ θs2 | ∀ωs

ωs ::= θs | ωs1 ∨ ωs2 | ωs1 ∧ ωs2 |
ωs1 ∪ ωs2 | ωs1Wωs2 | true ∪ ω′s

ω′s ::= ep | ¬ep | θs | ω′s1 ∨ ω′s2 | ω′s1 ∧ ω′s2 |
ωs1 ∪ ωs2 | ωs1Wωs2 | true ∪ ω′s

Grammar 6 can be described as a generalization to CTL* of the
class preserved by observers (i.e., ϕo). It does not include the ∃
operator because an execution of the base program that satisfies a
property ∃ω can be removed by a selector. The preservation of θs

by selectors is expressed by the theorem 5.

THEOREM 5.
∀(C,Σ). Σψ ∈ A∗s ⇒
∀(p ∈ θs).∀(α ∈ Γ).Γ, α1 |= p⇒ ∀(α̃ ∈ Γ̃).Γ̃, α̃1 |= p

where Γ = B∗(C,Σb) and Γ̃ =W∗(C,Σ)

Examples of selectors are scheduling aspects or refinement aspects
that removes some non-determinism. The scheduling aspects of [8]
specify and enforce scheduling policies to networks of communi-
cating processes. A scheduling aspect selects a subset of desired
execution traces out of the set of all possible interleavings. These
aspects are typical selectors.

5.4 Regulator aspects

Regulators are both aborters and selectors. A regulator (Defini-
tion 11) does not modify the state of the base program (preserveb).
However, it can modify the control-flow of the base program, either
as an aborter by aborting the program or, as a selector by selecting
a subset of the execution traces. For any trace α̃ of the woven pro-
gram executions:

◦ either there exists a trace α among the base executions that has
the same base instructions as α̃ (i.e., the aspect does not modify
the control-flow of the base program);

◦ or there exists a prefix α→i in a base execution trace and a
prefix α̃→j in the woven execution trace that have the same
base instructions and the rest of the woven trace has only final
instructions ε.

DEFINITION 11.
∀(C,Σ).Σψ ∈ A∗r ⇔ ∀(α̃ ∈ W∗(C,Σ)).∃(α ∈ B∗(C,Σb)).

preserveb(α̃) ∧
projb(α̃) = projb(α) ∨
∃(i ≥ 0). (∃(j ≥ i).
projb(α→i) = projb(α̃→j) ∧
∀(k > j). α̃k = (ε, ))

Note that, this definition does not relate all base execution traces
with a woven one, since regulator aspect can select out base execu-
tion similarly to selector aspects.

The properties defined by θr in Grammar 7 are preserved by regu-
lator aspects.

GRAMMAR 7.
θr ::= sp | ¬sp | θr1 ∨ θr2 | θr1 ∧ θr2 | ∀ωr

ωr ::= θr | ωr1 ∨ ωr2 | ωr1 ∧ ωr2 | ωr1Wωr2 | true ∪ ω′r

ω′r ::= ¬ep | ω′r ∨ θr | ω′r1 ∧ ω′r2 | true ∪ ω′r | ∀ω′r



Grammar 7 can be seen as the intersection of the class of properties
preserved by selectors (i.e., θs) and the class preserved by aborters
(i.e., θa, the generalization of ϕa).

As before, the ∃ operator is excluded since a regulator aspect may
remove execution traces from the set of all possible traces. The state
properties of the form ωr1 ∪ ωr2 are not preserved since the aspect
may abort the program before ωr2 . As far as event properties are
concerned, only liveness properties involving ¬ep are preserved.
For example, true ∪ ¬ep is preserved since if the aspect aborts
the execution ¬ep will be satisfied after abortion (i.e., when the
configuration becomes (ε : •,Σ)).

The preservation of θr by regulative aspects is expressed by Theo-
rem 6.

THEOREM 6.
∀(C,Σ).Σψ ∈ A∗r ⇒
∀(p ∈ θr).∀(α ∈ Γ).Γ, α1 |= p⇒ ∀(α̃ ∈ Γ̃).Γ̃, α̃1 |= p

where Γ = B∗(C,Σb) and Γ̃ =W∗(C,Σ)

6. Related Work
Few people have studied aspect categories and how to reason or
ensure properties on aspect-oriented programs.

The starting point of our study is seminal work by Katz [11] that
introduces the categories spectative aspects (corresponding to ob-
servers), regulative aspects (close to our aborters and regulators)
and weakly invasive aspects (similar to our weak intruders). For
each category, Katz indicates which standard classes of proper-
ties (safety, liveness and invariants) are preserved. However, that
study is largely informal. Categories of aspects, classes of prop-
erties and proofs are not formalized and many definitions and re-
sults are not quite precise enough. For example, the atomic propo-
sitions on states (sp) and events (ep) are not clearly distinguished.
Katz states that spectative aspects preserve safety properties. Our
study shows that observers preserve only safety properties involv-
ing state properties (not event properties). Katz claims that regula-
tive aspects (aborters) preserve safety but do not preserve liveness
properties. Our study confirms this claim but only when proper-
ties involve exclusively state propositions. On the other hand, we
showed that they do not preserve safety properties on events and
that they preserve liveness properties involving only negation of
events (¬ep).

Other works focus on a specific aspect category. Dantas and Walker
[6] formally describe an aspect category named harmless advice.
This category corresponds to our aborters. The emphasis is on
analyzing when an aspect is harmless. They propose a type system
to ensure that advice does not change the final values of the base
program when the woven program is not aborted. Krishnamurthi
et al. [14] focus on aspects whose advice always returns to the
join point in the original base program. They propose a modular
verification technique that generates conditions to verify advice in
isolation for a given property to be preserved by weaving. So, each
aspect must be analyzed contrary to our approach that considers
categories of aspects. This work is extended by Goldman and Katz
[10] for weakly invasive aspects (weak intruders).

Rinard, Salcianu, and Bugara [17] propose categories of aspects
based on a informal classification of their interactions with the
base program. They distinguish two classes. The first one deals
with control-flow modifications: an augmentation aspect does not
modify the control-flow, a narrowing aspect can skip the func-
tion matched by the pointcut, a replacement aspect can replace the
matched function by another one, a combination aspect combines
the matched function and the advice to generate the actual advice.

The second class deals with state modifications: an independent
aspect or the function it matches cannot write a variable that is
read or written by the other, an observation aspect can read a vari-
able that the matched function writes, an actuation aspect can write
a variable that the matched function reads, an interference aspect
can write a variable that the matched method writes. These cate-
gories help to get a better idea of the potential impact of an aspect
but the preservation of properties is not considered. Augmentation-
independent aspects and augmentation-observation aspects resem-
ble observers. Other categories can arbitrarily modify the semantics
of the base program.

Clifton and Leavens [3] propose two categories: observers and
assistants. As ours, observers cannot modify the specification of
the base program whereas assistants can. From their examples,
assistants are similar to aborters. Although they rely on Hoare-
logic to explain the behavior of woven programs, the categories
themselves are not formalized.

7. Conclusion and Future Work
In this article, we have used a language independent semantics
framework to formally define several aspects categories: observers,
aborters, confiners and weak intruders. Observers do not modify
the control-flow and state of the base program, aborters may in
addition abort executions, confiners may modify the control-flow
but remain in the reachable states and weak intruders may further
leave the domain of reachable states during the execution of advice.

For each category, we gave a subset of LTL properties preserved
by weaving for any base program and for any aspect in the related
category. The above categories and classes have been completed
and generalized for non-deterministic programs using CTL*.

We provided examples to illustrate each category of aspects. Typ-
ically, persistence, debugging, tracing, logging and profiling as-
pects are observers; aspects enforcing security policies are aborters;
fault-tolerance or memo aspects are either confiners or weak intrud-
ers depending on their implementation. Of course, many common
aspects do not belong to our categories. For example:

◦ Exception aspects (see e.g., [15]) can be observers if they only
detect and log errors or aborters if they handle error by aborting
the program (e.g., contract enforcement is often implemented
as aborters). However, error handling can also involve returning
a default value (e.g., initialization error) or retrying an action
(without a proper roll-back) or terminating only a portion of the
trace. In these cases, completely new states can be reached and
no temporal property holds in general.

◦ Security aspects can be observers if they just log critical events
(e.g., intrusion detection aspects) or aborters when they enforce
a security policy. When aspects are used to implement security
mechanisms, such as access control rules, they generally mod-
ify the base program semantics.

◦ Context passing and change monitoring (see e.g., [4], [12])
are two classical examples of production aspects. They usually
change the base functionality.

Program transformations (optimizations) could be regarded as
semantic-preserving aspects. Since they change the algorithm (and
therefore the execution trace) they do not belong to our categories.
On one hand, they preserve properties on the relevant part of the
final state. On the other hand, they may violate important tempo-
ral (e.g., security) properties. A special result-preserving category
could be introduced. However, the class (grammar) of properties
preserved would be trivial (state properties on the final result) and



it would be difficult to ensure that an aspect belongs to that cate-
gory.

Besides the preservation of properties, our categories have other
interesting features. For example, if we assume that observers and
aborters only introduce private advice (i.e., that cannot be woven
by other aspects) then such aspects cannot interact. They can be
composed and woven in any order. The woven program will have
the same semantics regardless the order of weaving of such aspects.

Our work suggests several research directions. First, our classes of
properties should be shown to be maximal. We should prove that
each class can express exactly all properties that may be preserved
by the the corresponding category. The task is not trivial since
maximality is not a syntactic but a semantic criterion. For example,
the property (ep ∨ ¬ep) ∪ ϕ′o which is preserved by observers
is not a property of ϕo. However, it is semantically equivalent to
true ∪ ϕ′o which belongs to ϕo.

Our approach focuses on the preservation of classes of properties
for any aspect of a category and for any program. It could be
interesting to study less general approaches to preservation by
fixing either a property, an aspect or a program. For example, the
class of properties preserved by observers for a specific program
is likely to be much larger than ϕo. Similarly, a fixed observer is
likely to preserve larger class than ϕo even for any program. Of
course, we can also fix two parameters (e.g., the program and the
aspect). The case where the program, the aspect and the property
are fixed boils down to standard static analysis or model checking
of the woven program.

Finally, this work does need to be completed by means to deter-
mine whether an aspect belongs to a specific category. A possible
way is to use static analyses to place aspects within the hierarchy
of categories. Katz [11] indicates static checks needed to ensure
that an aspect is spectative or regulative. However, checking that an
advice does not modify the variables of the base program may in-
volve costly program analyses (e.g., alias analysis). Instead, we are
currently working on the design, for each category of aspects, of a
domain-specific aspect language ensuring that any aspect written is
that language belongs to the corresponding category. The require-
ments are relatively clear for observers and aborters. The language
should ensure the separation of base and aspect states and termina-
tion of advice. Aborters are further allowed to use a special abort
instruction. For confiners and weak intruders, it seems hard to de-
sign general domain-specific languages. However, languages to ex-
press specific confiners (or weak intruders) such as fault-tolerance
or memo aspects can be proposed. All these domain-specific aspect
languages, combined with the results of this paper, would guarantee
the preservation of key properties by construction.
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A. Proofs
This appendix presents in some details the proof of Theorem 1. The
proofs of the other preservation properties are similar.

The proof makes use of two auxiliary functions traceb and rib.

The function traceb projects woven traces on their corresponding
base trace. It removes steps with an advice instruction (ia) and
projects states on their corresponding base program state (Σb).

traceb :: TracesW → TracesB
traceb(ib,Σ) : S = (ib,Σ

b) : traceb S
traceb(ia,Σ) : S = traceb S

The function rib α i returns the rank of the ith base instruc-
tion in the woven trace α̃. If n advice instructions have been in-
troduced/executed before reaching the ith base instructions then
rib α̃ i = i+ n. We use the notation ĩ for rib α̃ i.

The proof of theorem 1 relies on the following property which
states that the execution trace woven with an observer can be
projected (using traceb) on the corresponding base execution trace.

PROPERTY 12.
∀(C,Σ). Σψ ∈ Ao ⇒ traceb(α̃) = α
with α = B(C,Σb) and α̃ =W(C,Σ)

Proof. By definition

∀(C,Σ). Σψ ∈ Ao ⇔ projb(α) = projb(α̃)
∧ preserveb(α̃)

The equality of traces using projb ensures that all advice terminates
whereas preserveb(α̃) ensures that the base store does not change
during advice. So traceb, which removes advice steps, the aspect
and its local store, projects the woven trace on the original trace.

When a woven execution trace can be projected on a base execution
trace, the ith step of the base trace corresponds to the ĩth step of the
woven trace.

LEMMA 13.
traceb(α̃) = α ⇒
∀(j ≥ 1). αj = (ib,Σ

b)⇔ α̃j̃ = (ib,Σ)

The proof is trivial using the definition of rib and traceb. The
following lemma is also useful.

LEMMA 14.
traceb(α̃) = α ⇒
∀(i ≥ 1). ∀(ĩ− 1 < j ≤ ĩ).traceb(α̃j→) = αi→

The lemma states that for any base and woven trace related by pro-
jection (traceb), any subtrace of the base (resp. woven) execution
corresponds to a subtrace of the woven (resp. base) execution.

Theorem 1 is shown by proving the more general property

Σψ ∈ Ao ∧ traceb(α̃) = α ⇒ ∀(p ∈ ϕo).α |= p ⇒ α̃ |= p
with α̃1 = (x,Σ) ∧ ∀(p′ ∈ ϕ′o). ∀(j ≥ 1).

αj→ |= p′ ⇒ α̃j̃→ |= p′

When a woven trace can be projected on a base trace and the
initial aspect is an observer then two properties follow. The first one
corresponds to Theorem 1 whereas the second concerns properties
of ϕ′o that occur in formulae of the form true ∪ ϕ′o. For such
a property p′, all subtraces satisfying p′ have their corresponding
woven subtraces satisfying p′. It is easy to check that this more
general property implies Theorem 1.

Proof. By structural induction on the formulae of ϕo and ϕ′o.

Base cases

◦ p = sp ∈ ϕo

α |= sp ⇒ α1 |= sp
⇔ l(Σb1, sp) = true with α1 = (i1,Σ

b
1)

traceb(α̃) = α ⇒ α̃1̃ = (i1,Σ1) by Lemma 13

Note α̃1̃ may not be the first state of the woven trace. It is only
the first state with a base instruction.

Since Σψ ∈ Ao, the very first state of the woven trace α̃1 =
(i′1,Σ

′
1) is such that Σ′b1 = Σb1 (the base state cannot be

modified by a before advice) and, since state properties are only
about Σb, then

l(Σb1, sp) ⇒ l(Σ′1, sp)
⇒ α̃1 |= sp
⇒ α̃ |= sp

◦ p = ep ∈ ϕ′o

∀(j ≥ 1). αj→ |= ep ⇒ αj |= ep ⇒ m(ij , ep)
By Lemma 13
αj = (ij ,Σ

b) ⇒ α̃j̃ = (ij ,Σ)
so m(ij , ep) = m(α̃j̃ , ep)
and α̃j̃ |= ep
and therefore α̃j̃→ |= ep

◦ p = ¬sp ∈ ϕo and p = ¬ep, sp,¬sp ∈ ϕ′o are similar to
the previous cases.

Induction

For any subformula δ of ϕo the induction hypothesis is:

α |= δ ⇒ α̃ |= δ

and for any subformula δ of ϕ′o:

∀(j ≥ 1). αj→ |= δ ⇒ α̃j̃→ |= δ

To apply the hypothesis we just check that the corresponding traces
are in relation (i.e., traceb(α̃) = α). We do not check the second
condition (the current aspect is an observer). It is easy to verify
that a trace with an initial observer aspect has only observers
throughout.



◦ p = ϕo1 ∧ ϕo2 ∈ ϕo

α |= ϕo1 ∧ ϕo2
⇒ α |= ϕo1 ∧ α |= ϕo2
⇒ α̃ |= ϕo1 ∧ α̃ |= ϕo2 by induction hypothesis
⇒ α̃ |= ϕo1 ∧ ϕo2

◦ Similarly for p = ϕo1 ∨ ϕo2 ∈ ϕo

◦ p = ϕo1 ∪ ϕo2 ∈ ϕo

α |= ϕo1 ∪ ϕo2 ⇒ ∃(j ≥ 1). αj→ |= ϕo2 ∧
∀(1 ≤ i < j). αi→ |= ϕo1

By lemma 14
traceb(α̃) = α ⇒ traceb(α̃j̃−1+1→) = αj→
⇒ α̃

j̃−1+1→ |= ϕo2 by induction hypothesis
⇒ ∃(k ≥ 1).α̃k→ |= ϕo2 with k = j̃ − 1 + 1

∀(1 ≤ l < k). ∃(1 ≤ i < j).

k = j̃ − 1 + 1 ∧ ĩ− 1 < l ≤ ĩ
so traceb(α̃l→) = αi→ by Lemma 14
and since αi→ |= ϕo1 for all such i
α̃l→ |= ϕo1 by induction hypothesis

Thus α̃ |= ϕo1 ∪ ϕo2

◦ p = true ∪ ϕ′o ∈ ϕo

α |= true ∪ ϕ′o ⇒ ∃(j ≥ 1). αj→ |= ϕ′o∧
∀(1 ≤ i < j). αi→ |= true

by induction hypothesis, we get

α̃j̃→ |= ϕ′o

so, taking k = j̃, we have (∃k ≥ 1). α̃k→ |= ϕ′o

and since trivially ∀(1 ≤ l < j̃). α̃l→ |= true
we have

α̃ |= true ∪ ϕ′o

◦ Similarly for p = ϕo1Wϕo2 ∈ ϕo

◦ p = ϕ′o1 ∧ ϕ′o2 ∈ ϕ′o

∀(j ≥ 1). αj→ |= ϕ′o1 ∧ ϕ′o2
⇒ αj→ |= ϕ′o1 ∧ αj→ |= ϕ′o2
⇒ α̃j̃→ |= ϕ′o1 ∧ α̃j̃→ |= ϕ′o2 by induction hypothesis
⇒ α̃j̃→ |= ϕ′o1 ∧ ϕ′o2

◦ Similarly for p = ϕ′o1 ∨ ϕ′o2 ∈ ϕ′o

◦ p = ϕo1 ∪ ϕo2 ∈ ϕ′o

∀(j ≥ 1). αj→ |= ϕo1 ∪ ϕo2 ⇒ ∃(k ≥ j). αk→ |= ϕo2 ∧
∀(j ≤ l < k). αl→ |= ϕo1

By lemma 14
traceb(α̃) = α⇒ traceb(α̃k̃−1+1→) = αk→
⇒ α̃

k̃−1+1→ |= ϕo2 by induction hypothesis
⇒ ∃(m ≥ j̃ ≥ j).α̃m→ |= ϕo2 taking m = k̃ − 1 + 1

∀(j ≤ n < m). ∃(j ≤ l < k).

m = k̃ − 1 + 1 ∧ l̃ − 1 < n ≤ l̃
so traceb(α̃n→) = αl→ by Lemma 14
and since αl→ |= ϕo1 for all such l
⇒ α̃n→ |= ϕo1 by induction hypothesis

Thus ∃(m ≥ j̃ ≥ j).α̃m→ |= ϕo2
∧ ∀(j ≤ j̃ ≤ n < m).α̃n→ |= ϕo1

and therefore α̃j̃→ |= ϕo1 ∪ ϕo2

◦ p = true ∪ ϕ′o ∈ ϕ′o

∀(j ≥ 1). αj→ |= true ∪ ϕ′o
⇒ ∃(k ≥ j). αk→ |= ϕ′o∧

∀(j ≤ i < k). αi→ |= true

by induction hypothesis, we get

α̃k̃→ |= ϕ′o

so k ≥ j ⇒ k̃ ≥ j̃ and since trivially

∀(j̃ ≤ l < k̃). α̃l→ |= true

then
α̃j̃→ |= true ∪ ϕ′o

◦ Similarly for p = ϕo1Wϕo2 ∈ ϕ′o


