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Un algorithme d'inf�erence pour la v�eri�cation statique de

manipulation de pointeurs

R�esum�e : L'utilisation incorrecte de pointeurs est une des sources d'erreurs les plus r�epandues. Par cons�e-
quent, tout v�eri�cateur statique de code capable de d�etecter des erreurs potentielles �a la compilation est bien-
venu. Cet article pr�esente une analyse statique pour la d�etection d'acc�es incorrects �a la m�emoire (d�er�ef�erences
de pointeurs invalides). Un pointeur peut être invalide parce qu'il n'a pas �et�e initialis�e ou parce qu'il r�ef�ere �a une
cellule de la m�emoire qui a �et�e d�esallou�ee. L'analyseur est d�eriv�e �a partir d'une axiomatisation des propri�et�es
d'alias et de connectivit�e qui est prouv�ee correcte par rapport �a la s�emantique naturelle du langage. Il prend en
compte les structures de donn�ees dynamiques et il est su�samment pr�ecis pour traiter les structures circulaires.

Mots-cl�e : analyse d'alias, outil de d�etection d'erreurs, logique de Hoare, preuve de correction.
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1 Introduction

The motivation for the work described in this paper comes from two observations:

� Most widely used programming languages allow explicit pointer manipulations. The expressiveness pro-
vided by such features is appreciated by many programmers because it makes it possible to master low
level details about memory allocation and reuse. However the explicit use of pointers can be quite subtle
and error prone. It is well known that one of the most common source of bugs in C is the incorrect use
of pointers.

� It is more economical to detect bugs at compile time than by running test cases. Testing is a very expensive
activity: bugs have �rst to be discovered, then they must be localised within the source program. As a
consequence, any kind of static code checking capable of detecting bugs at compile time is welcome. Type
checking is an example of a static analysis technique which has proved greatly bene�cial in terms of
program development.

The technique described in this paper is applied to the detection of incorrect accesses to memory (dereferences
of invalid pointers). A pointer may be invalid because it has not been initialised or because it refers to a memory
location which has been deallocated. Other applications are suggested in the conclusion. A large amount of
literature is devoted to the analysis of pointers for compiler optimisations but there has been comparatively
fewer contributions aiming at static bug detection. The main features of the analysis described in this paper
are the following:

� It is able to detect incorrect use of pointers within recursive data structures.

� It is formally based on a (natural) operational semantics of the language.

� The analyser is derived from an axiomatisation of alias and connectivity properties.

This contrasts for instance with lint which returns warnings concerning the use of uninitialised variables but
does not check dereferences of pointers in recursive data structures. To our knowledge, no formal de�nition of
the lint checker has been published either.

Of course no static pointer analysis can be complete and we decide to err on the conservative side: we show
that the execution of a program that has passed our checking process successfully cannot lead to an incorrect
pointer dereference. The required approximation means that our checker can return warnings concerning safe
programs. The checker can be seen as a static debugging tool, helping the programmer to focus on the pieces
of code that cannot be trusted.

Even if it cannot be complete, such a tool must be as accurate as possible. Otherwise the user would be
swamped with spurious warnings and the tool would be of little help. In particular, the tool must be able to
return useful information about recursive data structures in the heap. Two signi�cant features of our checker
with respect to data structures are the following:

� It is able to treat recursive data structures in a non uniform way (indicating for example that a pointer
variable x refers to the tail of the list pointed to by another variable y).

� It is able to handle circular lists without introducing spurious aliases between di�erent addresses in the
list.

We focus in this paper on the formal de�nition of the inference algorithm and its relationship to the axiomatics
and the natural semantics. The algorithm presented here is only a �rst step towards the design of an e�ective
tool. Current work to get a more e�cient algorithm is sketched in the conclusion.

In section 2 we present an inference system for proving properties about pointers such as (may and must)
aliasing and reachability. We establish its correctness with respect to a natural semantics of the language. The
inference system can be seen as a Hoare logic specialised for explicit pointer manipulation. This logic is not
decidable in general and we de�ne in section 3 appropriate restrictions to make the set of properties �nite,
which allows us to design a checking algorithm. Section 4 illustrates the algorithm with an example involving
the construction and the destruction of a circular list. Section 5 outlines the generalisation of the technique to
procedures and jumps. Section 6 reviews related work and suggests optimisations and other applications of the
analysis. Appendix 1 contains the abstract syntax and the dynamic semantics of the subset of C considered in
this paper. The correctness proofs of the main results are gathered into appendix 2 and appendix 3.

PI n�980



4 Pascal Fradet, Ronan Gaugne and Daniel Le M�etayer

2 A Hoare Logic for Pointers

The syntax and semantics of the subset of C considered in this paper are provided in Fig. 11 and 12 in appendix
1. They are variations of de�nitions appearing in [3]. We use the exception value illegal to denote the result
of a computation involving the dereference of an invalid pointer. The set of valid pointers of the store SD is D.
The e�ect of alloc (resp. free) is to add an address in (resp. to remove an address from) D.

The �rst part of this paper is concerned with the analysis of blocks of instructions excluding procedure
calls and gotos. This allows us to focus on the essential issues of pointer analysis and to keep the presentation
simpler. We also ignore arithmetic operations on pointers and we assume that only one �eld of a record can
be of type pointer. Due to this simpli�cation, we can omit the �eld names in access chains without ambiguity
(writing, for instance, �v for �v:cdr if v is a variable of type �list with list = struct car:int cdr:*list).

The class of properties Prop considered in this paper is de�ned as follows:

P ::= P1 ^P2 j P1 _ P2 j :P1 j v1 = v2 j v1 7! v2 j True j False
v ::= id j &id j �id j undef
P 2 Prop, v 2 Var

In the sequel, we use the word \variable" to denote undef or an access chain (that is to say an identi�er id of
the program possibly pre�xed by � or &). P ranges over Prop, v ranges over the domain of variables Var and
undef stands for the unde�ned location. As usual, �v denotes the value contained at the address a where a is
the value of v; &v is the address of v. The su�xes of a variable �id are the variables id and &id.

The meaning of properties is speci�ed through a correspondence relation CV de�ned in Fig. 1. This semantics
is parameterised with a set of variables V �Var called the reference set in the sequel. This parameter can be
used to tune the logic to get more or less accurate analyses. We impose only one constraint: V must contain
the su�xes of all the variables assigned in the program (and the arguments of free). The correspondence
relation CV(P; E ; SD) relates states (that is to say, pairs (E ;SD) with E an environment, and SD a store) to the
properties they satisfy. The intuition behind this correspondence is the following:

� v1 = v2 holds if the value of v1 is equal to the value of v2. In particular �v1 = undef means that the value
of v1 is an invalid pointer (which is the case if v1 has not been initialised or if v1 points to a cell which
has been deallocated by free.

� v1 7! v2 holds if the (address) value of v2 is accessed from the (address) value of v1 through at least one
level of indirection and no (address) value of a variable of the reference set V appears in the path from v1
to v2.

Due to the presence of the negation and disjunction connectors, and the meaning of the = operator, our logic
is able to deal with \must-alias" properties as well as \may-alias" properties. This allows us to retain a better
level of accuracy, which is required to analyse the kind of correctness-related properties we are interested in in
this paper. We introduce a partial order on properties in Fig. 2. Note that v1 7! w ^w 7! v2 ) v1 7! v2 holds
only if w does not belong to the reference set (this follows the semantics of 7!, which is not transitive).
We de�ne the transformation \{" which transforms a boolean C expression E into a property E in Prop. It is
used to extract properties from tests in C programs. For example, the C operators && and || are transformed
into the logical \and" and \or" connectives. Of course, E is an approximation and it returns \True" if no
pointer information can be extracted.

Definition 2.1

E1&&E2 = E1 ^E2 E1||E2 = E1 _E2 !(v1!=v2) = v1 = v2
!(E1&&E2) = !E1 _ !E2 !(E1||E2) = !E1 ^ !E2 !(v1==v2) = :(v1 = v2)

v1==v2 = v1 = v2 v1!=v2 = :(v1 = v2)
E = True otherwise

The inference system for statements and expressions is presented in Fig. 3. Let us focus on the rules of Fig.
3 which depart from traditional Hoare logic.

� The rule for the conditional makes use of the transformation E in order to take the conditions on pointers
into account when analysing the two branches. This degree of accuracy is necessary in order to prevent
the analyser from generating too many spurious warnings.

Irisa
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CV(P; E ; illegal) = false

CV (v1 = v2; E ; SD) = Val(v1; E ; SD) = Val(v2; E ; SD)

CV(v1 7! v2; E ; SD) = 9�1 : : : �k; �1 = Val(v1; E ; SD); �k = Val(v2; E ; SD);
8i (1 � i < k) SD(�i) = �i+1

8i (1 < i < k); 8v 2 V; �i 6= Val(v; E ; SD)

CV (P1 ^ P2; E ; SD) = CV (P1; E ; SD) and CV (P2; E ; SD)

CV (P1 _ P2; E ; SD) = CV (P1; E ; SD) or CV(P2; E ; SD)

CV(:P; E ; SD) = not (CV(P; E ; SD))

CV(True; E ; SD) = true

CV (False; E ; SD) = false

Val(undef; E ; SD) = ?

Val(&id; E ; SD) = E(id)

Val(id; E ; SD) = SD(E(id))

Val(�id; E ; SD) = SD(Val(id; E ; SD))

Figure 1: Correspondence relation

(v1 = v2) ^P ) P [v2=v1] &�v = v �&v = v v1 = v2 ) �v1 = �v2

v = v v1 = v2 ^ v2 = v3 ) v1 = v3 v1 = v2 ) v2 = v1

v 7! �v v1 7! v2 ) (v2 = �v1) _ (�v1 7! v2) x = undef ) �x = undef

(v1 7! v2) ^ :(v2 = v3)) :(v1 7! v3)

v1 7! w ^w 7! v2 ) v1 7! v2 with w 62 V

P1 ) P P2 ) P

P1 _ P2 ) P
P ) P

P1 ) P2 P2 ) P3

P1 ) P3

P1 ^ P2 ) P1 P1 ^ P2 ) P2 P1 ) P1 _ P2 P2 ) P1 _ P2

Figure 2: Partial order and equivalences on properties (w.r.t V)

� As expected, the rule for dereference (*id) includes a check that the pointer is valid.

� We assume that a preliminary transformation of the source program has replaced the assignments v=alloc(T)
by the sequence fz=alloc(T);v=z;free(z)g where z is a new variable. This can always be done without
altering the meaning of the program. The rule for alloc shows that the allocated address z is di�erent
from the values of all other variables and the pointer contained at address z is invalid. The e�ect of free
is to set the deallocated cell to undef. So free is treated very much like the assignment.

� The rule for assignment is more involved than the usual Hoare logic rule. This is because aliasing (in both
sides of the assignment) has to be taken into account. The de�nition of Q[[v2=v1]]

V
P can be found in Fig.

4. Roughly speaking, Q[[v2=v1]]
V
P holds if Q holds when all occurrences of v1 (and its initial aliases which

are recorded in P ) are replaced by v2. In all cases except v 7! v0, the substitution [[v2=v1]]VP is propagated
through the property and applied to the variables which are aliases of v1. The fact that x and y are
aliases is expressed by P ) (&x = &y) in our setting (see the rule for id[[v2=v1]]

V
P for instance). The case

for 7! is more involved because three properties are checked in order to show that v 7! v0 holds after an
assignment v1 = v2:

(1) There is a path from ~v to ~v0.

PI n�980



6 Pascal Fradet, Ronan Gaugne and Daniel Le M�etayer

fPg E fPg fP ^Eg S1 fQg fP ^ !Eg S2 fQg

fPg if (E) S1 elseS2 fQg

fPg E fPg fP ^Eg S fPg

fPg while (E) S fP ^ !Eg

fPg S1 fP
0g fP 0g S2 fQg

fPg S1;S2 fQg

fPg v1 fPg fPg v2 fPg P ) Q[[v2=v1]]
V
P

fPg v1=v2 fQg

fPg free(v) fQg if P ) Q[[undef= �v]]VP

fPg E fPg with E=id, &id

fPg � id fPg if P ) :(�id = undef)

fPg z = alloc(T ) fP ^
^

v2Var(P )�fz;�zg

:(z = v) ^:(�z = v) ^ :(z = �z) ^ (�z 7! undef)g

fP1g S fP
0
1g fP2g S fP

0
2g

fP1 _ P2g S fP
0
1 _ P 0

2g
disjunction

P ) P 0 fP 0g S fQ0g Q0 ) Q

fPg S fQg
weakening

Figure 3: Axiomatics of statements and expressions

(2) The path is not a�ected by the assignment.

(3) The assignment does not introduce any element of V on the path.

Properties (~v 7! ~v0) and (~v 7! w 7! ~v0) ensure (1) and the disjunction [8x 2 V; :::] establishes (3). Property
(2) follows from :(~v = &v1) and :(w = &v1). Due to our restriction on V, all assigned variables v1 belong
to V; thus v1 cannot be on paths ~v 7! ~v0 or w 7! ~v0 except if ~v = &v1 or w = &v1. Since these two cases
are excluded, the assignment cannot have any e�ect on these paths.

The following theorems establish the soundness of the inference system:

Theorem 2.2

if fPg S fQg can be proven using the rules of Fig. 3 then

8E ; 8SD: CV (P; E ; SD) and E `stat <S;SD>; S0D0 ) CV(Q; E ; S
0
D0 )

Corollary 2.3

if fPg S fQg can be proven using the rules of Fig. 3 then

8E ; 8SD: CV(P; E ; SD) ) E `stat <S;SD> 6; illegal:

Irisa



An inference algorithm for the static veri�cation of pointer manipulation 7

(Q1 ^Q2)[[v2=v1]]
V
P = (Q1[[v2=v1]]

V
P ) ^ (Q2[[v2=v1]]

V
P )

(Q1 _Q2)[[v2=v1]]
V
P = (Q1[[v2=v1]]

V
P ) _ (Q2[[v2=v1]]

V
P )

(:Q)[[v2=v1]]
V
P = :(Q[[v2=v1]]

V
P )

(v = v0)[[v2=v1]]VP = v[[v2=v1]]VP = v0[[v2=v1]]VP
(v 7! v0)[[v2=v1]]VP = [[((~v 7! ~v0) ^ :(~v = &v1)) _ ((~v 7! w 7! ~v0) ^ :(~v = &v1) ^ :(w = &v1))]

^[8x 2 V; (:(~v 7! ~x) _ (~x = ~v0) _ :(~x 7! ~v0))]]_ [(~v = &v1) ^ (~v0 = v2)]
with ~x = x[[v2=v1]]VP ; ~v = v[[v2=v1]]VP and ~v0 = v0[[v2=v1]]VP

True[[v2=v1]]VP = True

False[[v2=v1]]
V
P = False

&id[[v2=v1]]
V
P = &id

id[[v2=v1]]
V
P = v2 if P ) (&id = &v1)

= id if P ) :(&id = &v1)

�id[[v2=v1]]
V
P = v2 if P ) (id[[v2=v1]]

V
P = &v1)

= �(id[[v2=v1]]
V
P ) if P ) :(id[[v2=v1]]

V
P = &v1)

undef[[v2=v1]]
V
P = undef

Figure 4: De�nition of substitution with aliasing

Corollary 2.3 is a direct consequence of Theorem 2.2. It shows that the logic can be used to detect illegal pointer
dereferences. The proof of Theorem 2.2 is made by induction on the structure of proof tree. The most di�cult
part of the proof is the assignment case which relies on the following lemma:

Lemma 2.4

CV(Q; E ; SD)
=) Val(v[[v2=v1]]

V
Q; E ; SD) = Val(v; E ; SD[Val(v2; E ; SD)=Adr(v1; E ; SD)])

Lemma 2.4 can be proven by inspection of the di�erent cases in the de�nition of v[[v2=v1]]
V
P . The correctness of

the dereference case (�id) follows from the lemma:

Lemma 2.5

CV(:(�v = undef); E ; SD)) Val(v; E ; SD) 2 D

The proof of Theorem 2.2 is sketched in Appendix 2.

3 A Checking Algorithm

As a �rst stage to get an e�ective algorithm from the previous logic, we restrict the set of properties which may
appear as pre/post-conditions. For a given program \Prog", let us call VarProg the set of variables

1 occurring in
Prog and their su�xes (plus undef). For the analysis of Prog, we take VarProg as the reference set and consider
only the properties involving variables in VarProg. Proceeding this way, we get a �nite set of properties tailored
to the program to be analysed.

In order to avoid the need for the last two rules of Fig. 3 (disjunction and weakening), we consider properties
in atomic disjunctive normal form:

Definition 3.1 A property P is said to be in atomic disjunctive normal form (adnf) if it is of the formW
Pi where Pi = A1 ^ : : :^ An, Ak being basic properties (x = y); (x 7! y) or negations of those, and each Pi

is such that:

8x; y 2 VarProg either Pi j) x = y or Pi j) :(x = y)
either Pi j) x 7! y or Pi j) :(x 7! y)

1We remind the reader that we use the word \variable" to denote an identi�er of the program possibly pre�xed by � or &.

PI n�980



8 Pascal Fradet, Ronan Gaugne and Daniel Le M�etayer

with j) de�ned as follows:
P j) P P1 ^ P2 j) P1 P1 ^ P2 j) P2

The intuition is that a property in atomic disjunctive normal form records explicitly all basic properties for
all possible memory states. As a consequence, implication boils down to the extraction of subproperties.
To handle adnf properties, this implication is extended in a natural way to disjunctions:

P1 j) P P2 j) P

P1 _ P2 j) P
P1 j) P1 _ P2 P2 j) P1 _ P2

As usual when designing an algorithm from an inference system, we are facing a choice concerning the
direction of the analysis. It can be top-down and return the post-condition from the pre-condition or bottom-
up, and do the opposite. Here, we present the �rst option. The algorithm takes the form of an inference system
whose rules are to be applied in order of appearance (see Fig. 5). It can be seen as a set of rules showing how to
compute a post-condition from a pre-condition and a program. The main di�erences with respect to the logic
presented in the previous section concern the rules for if, while and assignment.

The rule for if avoids the need for the weakening rule. The post-condition is the disjunction of the post-

fPg E fPg fP ^Eg S1 fQ1g fP ^ !Eg S2 fQ2g

fPg if (E) S1 elseS2 fQ1 _Q2g

P0 = P
fP0g E fP0g

fP0 ^Eg S fQ1g

Pi = Pi�1 _Qi

i 2 1; n fPig E fPig
fPi ^Eg S fQi+1g

Pi 6j) Pi�1

fPng E fPng
Pn j) Pn�1

fPg while (E) S fPn ^ !Eg

fPg S1 fP
0g fP 0g S2 fQg

fPg S1;S2 fQg

fPg v1 fPg fPg v2 fPg

fPg v1=v2 f
n_

i=1

Assignv1v2(Pi)g

with P =
n_

i=1

Pi

fPg free(v) f
n_

i=1

Assign�v
undef

(Pi)g with P =
n_

i=1

Pi

fPg E fPg with E=id, &id

fPg � id fPg if 8i = 1; : : : ; n Pi j) :(�id = undef) with P =
n_

i=1

Pi

fPg z = alloc(T ) fAlloc(P; z)g

fPg E fQg

fPg opE fQg
op: unary operator

fPg E1 fP
0g fP 0g E2 fQg

fPg E1 opE2 fQg
op: binary operator

Figure 5: Rules of the analyzer

conditions of the alternatives.

Irisa



An inference algorithm for the static veri�cation of pointer manipulation 9

Assignv1v2(P ) = if �v2 62 VarProg
then Closure(Producev1v2(Complete�v2(P )))
else Closure(Producev1v2(P ))

Producev1v2(
W
Pi) =

W
ProdPi

(Pi)
where

ProdP (P1 ^ P2) = ProdP (P1) ^ ProdP (P2)

ProdP (x op y) = if op = 7! and P j) x = &v1 then (&v1 7! v1) ^
^

v 62 Subst0
and P j) :(v = v2)

:(&v1 7! v)

else if op = : 7! and P j) x = &v1 then True

else

^

v;v02(Substi;Substj )i;j2f0;1g
f (v op v0) if x = �iv2 ^ y = �jv2 otherwise True
(x op v) if y = �jv2 ^ x 2 VarProg � A�ectedv1 otherwise True
(v op y) if x = �iv2 ^ y 2 VarProg �A�ectedv1 otherwise True
(x op y) if x 2 VarProg �A�ectedv1 ^ y 2 VarProg �A�ectedv1

otherwise True g
A�ectedv1 = fx 2 VarProg j 9y su�x of x; P j) y = &v1g
Substi = fx 2 A�ectedv1 j x[[v2=v1]]

V
P = �iv2g i = 0 or i = 1

op 2 f=;: =; 7!;: 7!g

Complete�x(P ) = if P j) (x = undef) then Closure(P ^ (�x = undef))
elseif P j) (x 7! y) ^ (&y = x) then Closure(P ^ (�x = y))
elseif P j) (x 7! y) then Closure(P ^ (�x = y)) _ Insert(P; �x; y)

else Add(P; �x)

Figure 6: Functions for the assignment rule

The rule for while implements an iterative algorithm akin to traditional data-ow algorithms [1]. The
iteration must converge because the sequence Pi is strictly increasing:

Pi�1 j) Pi Pi 6j) Pi�1

and the set of properties under consideration is �nite.
The rule for assignment statements is by far the most complex. The analyser deals with properties of the

form
W
Pi(adnf's). The rule for each Pi in the axiomatics is

fPig v1 fPig fPig v2 fPig Pi ) Qi[[v2=v1]]
V
Pi

fPig v1=v2 fQig

So, given Pi, the analyser has to compute a post-condition Qi such that Pi ) Qi[[v2=v1]]VPi
; this is the rôle

of the function Assignv1v2 (cf. Fig. 6). Furthermore, Pi is of the form A1 ^ : : :^ An (Ak being basic properties
(x = y); (x 7! y) or negations of those). The function Producev1v2 (Fig. 6) determines properties Bk such
that Ak ) Bk[[v2=v1]]VPi

. By de�nition of substitution, we have Pi ) (B1 ^ : : :^ Bn)[[v2=v1]]VPi
and the needed

post-condition Qi is therefore B1 ^ : : :^Bn.
The central task of Producev1v2 is to �nd, for each variable x of VarProg, variables x0 such that x0[[v2=v1]]VPi

= x.
Two (non exclusive) cases arise:

� x is a VarProg variable which is una�ected by the assignment (not in A�ectedv1) and x[[v2=v1]]
V
Pi

= x.

� x = �iv2 (i = 0 or i = 1): x may be the result of the substitution of several variables. Prior to Producev1v2 ,
the analyser computes the set Subst0 (resp. Subst1) of VarProg variables x0 such that x0[[v2=v1]]

V
Pi

= v2
(resp. �v2). So, when x = �iv2 we have x

0[[v2=v1]]
V
Pi

= x for all x0 in Substi.

From there, basic properties can be rewritten in the form (x0 op y0)[[v2=v1]]VPi
. For example, let A = x op y

with x not in A�ectedv1 and y = �iv2 then

PI n�980



10 Pascal Fradet, Ronan Gaugne and Daniel Le M�etayer

Closure(P ) is de�ned as the normal form of the � relation de�ned as follows:

P 0 ^ (a op b) ^ (a = a0) ^ (b = b0) � P ^ (a0 op b0)

Insert(P; �x; y) = NF�x1 (Closure(Replace(Mk-node(P; �x),x 7! y; �x 7! y)))

with:

Mk-node(P; �x)=P ^ (x 7! �x) ^ (�x = �x) ^
^

z2P

(:(�x = z))

Replace(P^(v 7! v0); (v 7! v0); (w 7! w0))
= if P = P 0 ^ (v1 7! v01) and P

0 j) (v = v1) ^ (v0 = v01)
then Replace(P 0 ^ (v1 7! v01); (v1 7! v01); (w 7! w0)) ^ :(v 7! v0)
else P ^ (w 7! w0) ^ :(v 7! v0)

NF�x1 normal form of the ��x1 relation de�ned as follows:

P = P 0 ^ (a 7! b) ^ :(b = c) ��x1 P ^ :(a 7! c)

P = P 0 ^ (�x 7! a) ^ (b 7! a) ^ :(b = �x) ^ :(b = x) ��x1 P _Replace(P; b 7! a; b 7! �x)

P = P 0 ^ (�x 7! a) ^ :(b 7! a) ^ :(b = x) ��x1 P ^:(b 7! �x)
and NF�x1 (P1 _P2) = NF�x1 (P1) _NF�x1 (P2)

Add(P; �x) = NF�x2 (End(Closure(Mk-node(P; �x)),�x))

with:

End(P; �x)=P ^
^

z2P

(:(�x 7! z))

NF�x2 normal form of the ��x2 relation de�ned as follows:

P ��x2 (P ^ :(b 7! �x)) _ (P ^ (b 7! �x)) if b 2 fv 2 Var(P ) j6 9wP j) (v 7! w)g

P = P 0 ^ (a 7! b) ^ :(b = �x) ��x2 P ^ :(a 7! �x)
and NF�x2 (P1 _P2) = NF�x2 (P1) _NF�x2 (P2)

Figure 7: Normalisation functions for the assignment rule

Alloc(P; z) = Closure(Clear( P; z) ^ (&z 7! z 7! �z 7! undef)

^
^

v2P

(:(v 7! &z))

^
^

v2P�f&zg

(:(&z = v) ^ :(v 7! z))

^
^

v2P�fzg

(:(&z 7! v) ^:(z = v) ^ :(v 7! �z))

^
^

v2P�f�zg

(:(�z = v) ^ :(z 7! v))

^
^

v 2 P

P j) :(v = undef)

(:(�z 7! v)) )

Clear(
W
Pi; z) =

W
(Pi=z)

Pi=z =
V
fx op y j x; y 62 f&z; z; �zgg ^

V
fv = v j v 2 f&z; z; �zgg

Figure 8: Functions for the \alloc" rule

x[[v2=v1]]VPi
= x and 8v 2 Substi v[[v2=v1]]VPi

= y

so, by de�nition of substitution, A )
V
v2Substi(x op v)[[v2=v1]]

V
Pi
. When op = " 7! " or ": 7! " we also have

to check that Pi j) :(x = &v1) to be able to apply the de�nition of substitution (see Fig. 4). The three other
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An inference algorithm for the static veri�cation of pointer manipulation 11

cases in the de�nition of Producev1v2(x op y) are similar. Note that basic properties involving a variable a�ected
by the assignment and di�erent from �iv2 are removed (i.e. True is produced).

It can be shown that Producev1v2 yields a post-condition in adnf provided the pre-condition is in adnf and
�v2 is in VarProg. Otherwise, �v2 must �rst be added to the pre-condition using the function Complete. The
consequences of our restriction to the �xed set of variables VarProg are to be found in this function. Complete�v2
relies on connectivity relations (such as v2 7! x) but nevertheless has to introduce disjunctions to deal with the
lack of information on �v2. The functions in Fig. 7 are used to normalise properties in adnf's with respect to
the extended set of variables.

Let us consider the following pre-condition:
P = (y 7! �y) ^ (x 7! z) ^ :(x = y) ^ :(x = �y) ^:(z = y) ^ :(z = �y) ^ : : :
and the assignment y = x. The post-condition is computed by Assignyx(P ). From the de�nitions in Fig. 6, we
get:

A�ectedy = fy; �yg (set of variables with a su�x alias of y)
Subst0 = fyg (set of variables equated to x by substitution)
Subst1 = f�yg (set of variables equated to �x by substitution)

Let us assume that the variable �x is not in VarProg; Produce
y
x cannot build any property on �y from P (since

�y[[x=y]]VP = �x). The variable �x must be added to P using Complete�x(P ). Since P j) (x 7! z), we have
Complete�x(P )= Closure(P ^ (�x = z)) _ Insert(P; �x; z). The disjunction is necessary because the length of
the path between x and z is unknown, so �x may either be equal to z or stand on the path between x and
z. Closure(P ^ (�x = z)) adds all missing properties of �x (identical to properties of z) and yields an adnf.
Insert(P; �x; z) adds the property (�x 7! z). It is more involved because other variables pointing to z may
interfere. If P implies (v 7! z), sharing may occur between paths from v to z and x to z. In particular, if v and
x point to cells having the same value (i.e. �x = �v) then (v 7! z) must be split into (v 7! �x)^ (�x 7! z). This
is done by the second rule of NF�x1 in Fig. 7.
After this step, Produceyx evaluates the post-condition in a natural way, and we get:
Assignyx(P ) = [(x = y) ^ (�y = z) ^ (x 7! z) ^ (y 7! �y) ^ (y 7! z) ^ : : :]

_[(x = y) ^ (x 7! �y) ^ (�y 7! z) ^ (y 7! �y) ^ :(y 7! z) : : :]

The following theorems establish the correctness of the analyser.

Theorem 3.2

If P is in adnf and fPg S fQg can be proven using
the inference system of Fig. 5 then Q is in adnf.

Theorem 3.3

If fPg S fQg can be proven using the inference system of Fig. 5 then
fPg S fQg can be proven using the inference system of Fig. 3.

Theorem 3.2 shows that the atomic disjunctive normal form representation is invariant which ensure that
the analyser will be able to produce a result for all input programs. The proof of theorem 3.3 is made by
induction on the structure of proof of the premise. The di�cult part is the rule for assignment which follows
from the lemma:

Lemma 3.4 P ) Assignv1v2(P )[[v2=v1]]
V
P

Proofs can be found in Appendix 3.

4 Checking a program manipulating circular data structures

In this section, we illustrate our analysis with the Josephus program (Figure 9) borrowed from [24], page 22.
The program �rst builds a circular list, then proceeds through the list, counting through m � 1 items and
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12 Pascal Fradet, Ronan Gaugne and Daniel Le M�etayer

deleting the next, until only one is left (which points to itself). Figure 10 shows some steps of the analysis. The
post-conditions computed by the algorithm are displayed as graphs to the right of the corresponding statement.
Two variables v1 and v2 are in the same node in the graph Gi if Pi j) v1 = v2. They are in di�erent nodes
if Pi j) :(v1 = v2) (remember that one of the two implications must hold). As expected, arcs represent the
7! relations. Iteration steps are described up to convergence. The numbers of steps necessary for the �rst for
loop, the second for loop and the while loop are respectively 2, 3 and 2. The post-conditions of *t.next = x

after the �rst for loop shows that t points to a circular list (which can be of length 1, 2 or more, each case
corresponding to one of the three properties of the disjunction) and there is no other aliasing in the state.
The post-conditions of t = *t.next in the second for loop show that this circular structure is an invariant of
the loop. We stress the fact that the use of the condition t!=*t.next (through t!=*t.next = :(t = �t)) in
the treatment of the while loop is crucial to prove that the free statement cannot create a pending pointer.
Its e�ect is to �lter out the �rst property of the disjunction in the pre-condition of the while loop. Also
the post-condition of the whole program implies that t must point to itself. This program does not follow
faithfully the syntax de�ned in Figure 11 because a double dereference appears in the while loop, just before
the free instruction (*t.next = *(*t.next).next;). A straightforward transformation can be applied to
remove multiple dereferences and get programs which are fully compliant to the syntax used in this paper.

typedef struct node *link;

struct node {

int key;

link next;

};

main()

{

int i, n, m;

link t, x;

scanf("%d %d", &n, &m);

t = (link) alloc(sizeof(struct node));

*t.key = 1; x = t;

for (i = 2; i <= n; ++i) {

*t.next = (link) alloc(sizeof(struct node));

t = *t.next;

*t.key = i;

}

*t.next = x;

while (t != *t.next) {

for (i = 1; i <= m-1; ++i)

t = *t.next;

printf("%d ", *t.next.key);

x = *t.next;

*t.next = *(*t.next).next;

free(x);

}

printf("%d\n", *t.key);

}

Figure 9: Josephus program
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Figure 10: Analysis of Josephus program
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14 Pascal Fradet, Ronan Gaugne and Daniel Le M�etayer

5 Extensions

The analysis is readily extended to deal with a large subset of C. We sketch in this section how declarations,
procedures and goto's can be accommodated. We suppose that declarations are made only at the beginning of a
function block and that static and dynamic scoping are equivalent. This simpli�es the axiomatisation (e.g. inter-
action between goto's and declarations). Both restrictions can be enforced by simple program transformations
(e.g. renaming of variables).

Declarations of pointer variables

Let us consider a block with a pointer variable declaration of the form f (type)* x;Eg. The Hoare-like rule for
this declaration is

fP [y=x]^ (x = undef)
^

8z2V ar(P [y=x])

:(&x = z)g E fQ[y=x]g

fPg (type)* x;E fQg
y being a fresh variable

The implementation of this rule in the analyser is straightforward. The declared variables are renamed in
the pre-condition using fresh variables and properties of the newly allocated local variables are added. On exit,
all the properties on declared variables (x) are removed and previously renamed variables (y) take back their
original name (x).

We can get the general rule for declarations by extending the above rule to several declarations and by
considering for each declared identi�er all its pre�xes occurring in the body. Also, since pointers can appear in
compound types (e.g. structures), the rule must extract all the variables (access chains) denoting pointers from
declarations.

Procedures

We focus here on the speci�c problems introduced by procedures and we restrict our attention to the case of one
recursive parameterless procedure. The rules presented below can be straightforwardly generalised to mutually
recursive procedures. It is also relatively simple to transform any C function into a parameterless procedure
using local variables declarations and global variables to pass the parameters. The general rule for procedures
can then be deduced from the rule for declarations and the rule for parameterless procedures.

The Hoare logic rule for a recursive procedure f with body S is

fPg f() fQg ` fPg S fQg

fPg f() fQg

which means that the body is analysed with fPgf()fQg as an induction hypothesis on recursive calls f(). This
rule is re�ned to compute iteratively the pre-condition as follows.

A procedure call with pre-condition P0 and no induction hypothesis is treated by analysing the body with
the induction hypothesis fP0gf()fFalseg.

fP0g f() fFalseg ` fP0g S fQng

fP0g f() fQng

Two cases arise with recursive calls. If the pre-condition of the induction hypothesis implies the pre-condition
of the call then the iteration ends.

Pn j) P fPng f() fQng ` fPg S fQng

Otherwise, the body is analysed again with a new (greater) pre-condition.

Pi 6j) P
fPi _ Pg f() fQig ` fPi _ Pg S fQng

fPig f() fQig ` fPg f() fQng
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An inference algorithm for the static veri�cation of pointer manipulation 15

The strictly increasing chain of pre-conditions and the bounded number of possible properties ensure termi-
nation.

As described the algorithm reanalyses the body of the procedure for each call. An alternative could be to
analyse the body only once to provide summary of the e�ects of the procedure for all possible pre-condition. In
our approach, this could be done using a generic (variable) pre-condition. This summary would then be applied
to each di�erent call context. However, the e�ects of a procedure depend too much on the actual pre-condition
(notably the alias relation) to expect concise and useful summaries. Actually, it is likely that this approach
would be as costly as reanalyses. This problem has already been pointed out in the context of alias analysis
([26])

Intuitively, only a subset of the properties are relevant for the analysis. Our approach is to determine for
each procedure the relevant part of the pre-condition. The analysis remains context sensitive but is done only
for context calls with di�erent relevant parts. An example of invariant property is x = y where no su�x of x
or y is an alias of any variable assigned in the body of the procedure. Let Pi be the set of such properties in
P and P = Pr ^ Pi. If we prove fPrg f() fQrg we can deduce fPg f() fQr ^Pig . Actually, much more
factorisation is possible. As noted in [20], a procedure f has the same e�ect on all alias pairs which contain
variable x (in the scope of f) and any non-visible variable. This property can be formally justi�ed and exploited
in our framework. We expect that relevant pre-conditions concern only few variables and will be shared by
many context calls.

In order to extend the approach to procedure calls through pointers, we must determine for each call a
(super)set of possible callees. A special analysis can be used for this purpose but another solution in our
framework is to allow functions addresses in VarProg. Our analyser could naturally infer the needed information
as connectivity relations between function pointers and function addresses.

Control Transfers.

Apart from goto, three instructions alter the ow of control in C: break, continue and return. Each of them
can be replaced by a forward goto. The break statement (resp. continue) is a goto to a label just after
(resp. before) the smallest enclosing loop or switch. The return statement can be suppressed by adding a new
parameter to each function and replacing each call f(x1,...,xn) by f(&r,x1,...,xn), r (r being a fresh local
variable) and each return statement return (e) by r=e; goto end f;. We therefore describe the extension of
our approach to forward gotos, the most common form of control transfer in C programs.

Several proposals have been made to extend Hoare's logic to goto statements. We choose here a notation
close to Arbib and Alagi�c's [4]. The rules add to the normal post-condition an environment where every label
occurring in the statement is associated with a condition. For example

fPg E fQ j l1 : R1; :::; ln : Rng

expresses the fact that, when P holds on entry, then Q holds on normal exit while Ri holds on any exit from E
via goto li. Goto and labeled statements are treated by the two following rules

fPg goto li fFalse j li : Pg

fPg S1 fPi j lenv1g fPig S2 fQ j lenv2g

fPg S1; li:S2 fQ j (lenv1 � li : Pi) [ lenv2g
where lenv1 = l1 : R1; :::; li : Pi; :::; lp : Rp

Note that the union of the two label environments enforces that the same label occurring in both environ-
ments is associated with the same property. The other rules must be changed to take into account the label
environment. For example, the rule for \;" becomes

fPg S1 fP1 j l1 : R1; :::; ln : Rng fP1g S2 fQ j l1 : R1; :::; ln : Rng

fPg S1;S2 fQ j l1 : R1; :::; ln : Rng
where S1;S2 do not contain labels l1; :::; ln.

The re�nement of these rules is along the same lines as the rules for if or switch rules. The disjunction of
all the pre-conditions of statements goto li is used as the pre-condition of the statement li:E.

The framework is powerful enough to axiomatise the general goto's of C. As can be expected, in the presence
of backward gotos, pre-conditions will be found by iteration. However, a reasonably e�cient analysis of general
goto's is more complicated and will not be described here.
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6 Conclusion

The work described in this paper stands at the crossroad of three main trends of activities:

� the design of semantic based debugging tools,

� alias analysis,

� the axiomatisation of languages with explicit pointer manipulation.

We sketch related work in each of these areas in turn.

� There are relatively few papers about the design of program analysers to help in the program development
process. Most related contributions [6, 13, 15, 25] and tools [19] can provide informationabout uninitialised
variables but are unable to track illegal accesses in recursive data structures. Other techniques like [14, 18]
perform di�erent kinds of analyses (like aspects, program slicing) which are complementary to the work
described here.

� There is an extensive body of literature on alias analysis but most of the contributions are concerned
with may-alias analysis and are targeted towards compiler optimisations [11, 12]. The alias pairs (x; y)
of [11] correspond to &x = &y here and the x points-to y relationship of [12] is equivalent to x = &y.
One of the most precise published alias analysis is the framework described in [11]. Our analysis is not
directly comparable to this one in terms of precision: on one hand, the symbolic access paths used in [11]
provide a much more accurate may-alias information (because numerical coe�cients are used to record
precise positions in a structure); on the other hand, our properties include both may-alias and must-alias
information which allows us to gain accuracy in certain situations (the signi�cance of must-alias properties
to get more accurate may-alias properties is stressed in [2]). This extra level of precision is required to
the analysis of correctness-related properties (for instance, the example treated in Section 4 could not be
analysed successfully without a form of must-alias information).

� Axiomatisation of pointer and alias relations has been studied for Pascal (see e.g. [7, 8, 22]). Most
contributions in this area focus on generality and completeness issues and do not consider automatisation.
An exception is the work by Luckham and Suzuki [21] which presents an axiom-based veri�er for Pascal
programs. The language of properties encompasses ours but is too rich to make the analysis fully auto-
matic. The veri�er (actually a theorem prover) depends heavily on user-supplied properties such as loop
invariants.

The work whose spirit is the closest to our approach is the analysis framework presented in [23]. Environments
are described as sets of assertions speci�ed as Horn clauses. They de�ne optimal analyses which exploit all the
information available. Our = relation is close to their universal static predicate eq8 but they do not have a
counterpart for our 7! relation (because they do not attempt to track pointer equality in recursively de�ned
structures, which is the main issue of this paper) and they do not consider disjunctive properties. Also they do
not study the link of the analysis with an operational semantics of the language (or, to be more precise, the
semantics of their language is expressed logically in terms of predicate transformers).

The approach followed in this paper does not stand at the same level as usual presentations of static analyses.
Our starting point, the axiomatics of Fig. 3, is a speci�cation of the property under consideration which is not
biased towards a speci�c analysis technique. Programs are associated with pre/post-conditions relations but no
transformation function is provided to compute one from the other; in fact, even the direction in which proofs
are to be carried out is left unspeci�ed. The main goal of the transformation leading to the system of Fig. 5 is
precisely to introduce a direction for the analysis and to derive transfer functions from the pre/post-conditions
relations2. We have presented a forward analysis here but we could as well have chosen the derivation of
a backward analyser. The analyser of Fig. 5 itself can be rephrased as an abstract interpretation of the
operational semantics. The abstract domain is the disjunctive completion of a lattice of matrices (associating
each pair (v1; v2) with truth values of the basic relations = and 7!). This domain has some similarities with
the path matrices used in [17] for the analysis of a restricted form of regular acyclic structures. The abstraction
and concretisation functions follow directly from the correspondence relation of Fig. 1. Instead of a correctness
proof of the analyser with respect to the axiomatics as suggested here, the soundness of the analysis would then
be shown as a consequence of the soundness of the abstract interpretation of the basic rules with respect to

2In fact, the transformation also performs an approximation, mapping the set of variables into a �nite subset, but this issue
could have been dealt with separately.
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the operational semantics (see [10] for an illustration of this approach). Again, the most di�cult rule is the
assignment. It is not clear whether the overall e�ort would be less important but the formulation in terms of
abstract interpretation would make it easier to show the optimality of the analyser (in terms of precision) [9].
Also, the approximation techniques studied in this framework can be applied to get more e�cient analysers. So,
the two approaches are complementary: we have focussed in this paper on the derivation of an analysis from the
axiomatisation of a property, emphasizing a clear separation between logical and algorithmic concerns. Hoare
logic is an ideal formalism at this level because it makes it possible to leave unspeci�ed all the details which
are not logically relevant. On the other hand, abstract interpretation is a convenient framework for describing
analyses themselves as well as studying approximation and algorithmic issues.

The algorithm presented in section 3 is only a �rst step towards the design of an e�ective analyser. Its
worst case complexity is clearly exponential in terms of the number of variables in the program. The main
source of ine�ciency is the use of disjunctions to represent the lack of information incurred when dereferencing
a variable v when �v 62 VarProg. We are currently investigating several complementary optimisations to improve
the situation:

� Approximating properties to reduce the size of the abstract domain and the complexity of the primitive
operations on properties. One solution leads to a representation of properties as matrices of a three- value
domain (instead of sets of matrices of a boolean domain as suggested in this paper).

� Computing only the necessary part of each property using a form of lazy type inference [16].

� Using (standard) types to �lter properties which cannot be true. Exploiting this extra information usually
reduces dramatically the size of the properties manipulated by the algorithm.

We are also studying the use of the pointer analysis described here to enhance the information ow analysis
proposed in [5]. Other applications of this analysis include the detection of unsafe programming styles (which
rely on speci�c implementation choices like the order of evaluation of subexpressions) or memory leaks. A
di�erent perspective of this work could be its use as a specialised interactive theorem prover for a restricted
form of Hoare logic.
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Appendix 1 Abstract syntax and dynamic semantics

of a subset of C

pgm ::= stmt
stmt ::= if (exp) stmt else stmt If-else

j while (exp) stmt While loop
j stmt ; stmt Sequence
j lexp = exp Assignment
j free (lexp) Runtime deallocation

exp ::= id Variable (id 2 Id)
j �id Pointer dereference
j &id Address operator
j alloc (type) Runtime allocation
j op exp Unary operator
j exp op exp Binary operator

lexp ::= id
j �id

Figure 11: Abstract syntax of a subset of C
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[if-true]
E `exp <E;SD>; <b;S0

D0> E `stat <S1;S
0

D0>; S 00
D00 b 6= 0

E `stat <if (E) S1 elseS2;SD>; S00
D00

[if-false]
E `exp <E;SD>; <b;S0

D0> E `stat <S2;S
0

D0>; S 00
D00 b = 0

E `stat <if (E) S1 elseS2;SD>; S00
D00

[while-true]
E `exp <E;SD>; <b;S0

D0> E `stat <S; while (E) S;S0
D0>; S00

D00 b 6= 0

E `stat <while (E) S;SD>; S00
D00

[while-false]
E `exp <E;SD>; <b;S0

D0> b = 0

E `stat <while (E) S;SD>; S0
D0

[seq]
E `stat <S1;SD>; S0

D0 E `stat <S2;S
0

D0>; S00
D00

E `stat <S1;S2;SD>; S00
D00

[assign]
E `lexp <v1;SD>; <a1;S

0

D0> E `exp <v2;S
0

D0>; <val2;S00D00>

E `stat <v1 = v2;SD>; S00
D00 [val2=a1]

[free]
E `exp <v;SD>; <a;SD>

E `stat <free(v);SD>; SD0

a 2 D; D0 = D � fag

[illegal] E `stat <S;SD>; illegal otherwise (access to a 62 D)

De�nition of `exp

[var] E `exp <id;SD>; <SD(E(id));SD> E(id) 2 D

[indr]
E `exp <id;SD>; <a;S 0

D0>

E `exp < � id;SD>; <S0
D0 (a);S0D0>

a 2 D0

[address]
E `lexp <id;SD>; <a;S0

D0>

E `exp <&id;SD>; <a;S0
D0>

[alloc] E `exp <alloc(T );SD>; <a;S0
D0> a 62 D; D0 = D + fag; S0

D0 = SD + fa!?g

[unary]
E `exp <E;SD>; <val;S0

D0>

E `exp <opE;SD>; <O(op)(val);S 0
D0>

[binary]
E `exp <E1;SD>; <val1;S 0D0> E `exp <E2;S

0

D0>; <val2;S00D00>

E `exp <E1opE2;SD>; <O(op)(val1; val2);S00D00>

[illegal] E `exp <E;SD>; <?; illegal> otherwise (access to a 62 D)

De�nition of `lexp

[var] E `lexp <id;SD>; <E(id);SD>

[indr]
E `exp <id;SD>; <a;S0

D0>

E `lexp < � id;SD>; <a;S0
D0>

SD : (D ! Val) + fillegalg, E : Id! Adr,
D �Adr, Val = Base+Adr, Base = Bool+Int+. . .
id 2 Id, a 2 Adr, val 2 Val

Figure 12: Dynamic semantics for statements and expressions
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Appendix 2 Proof of Theorem 2.2

Before embarking in the proof of Theorem 2.2, we �rst show some usefull lemmas.

Lemma 6.1

CV (P; E ; SD) ^ (P ) Q)) CV(Q; E ; SD):

The proof is done by considering each rule in Fig.2. Let us consider the rule

v1 7! v2 ) (v2 = �v1) _ (�v1 7! v2):

We have to prove
CV(v1 7! v2; E ; SD)) CV ((v2 = �v1) _ (�v1 7! v2); E ; SD)

From de�nition of CV in Fig.1, we get

9�1 : : :�k; �1 = Val(v1; E ; S
0
D0 ) (1)

�k = Val(v2; E ; S
0
D0 ) (2)

81 � i < k S0D0 (�i) = �i+1 (3)

81 < i < k 8x 2 V; �i 6= Val(x; E ; S0D0) (4)

Two cases arise: k = 2 or k � 2. If k = 2,

(1) ^ (2) ^ (3)) SD(Val(v1; E ; SD)) = Val(v2; E ; SD)

From de�nition of Val in Fig.1,
SD(Val(v1; E ; SD)) = Val(�v1; E ; SD)

which implies
Val(v2; E ; SD) = Val(�v1; E ; SD)

and from de�nition of CV ,
CV(v2 = �v1; E ; SD):

If k � 2, we want to prove

9�01 : : : �
0
k0; �

0
1 = Val(�v1; E ; S

0
D0)

�0k0 = Val(v2; E ; S
0
D0)

81 � i < k0 S0D0 (�0i) = �0i+1

81 < i < k0 8x 2 V; �0i 6= Val(x; E ; S0D0 )

we just have to take �0i = �i+1 and k0 = k � 1.
Other cases are proved in the same way.

Lemma 6.2

E `exp <E;SD>; <b;S0D0>; b 6= 0) CV(E; E ; S0D0 )
E `exp <E;SD>; <b;S0D0>; b = 0) CV(!E; E ; S0D0)

The proof is done by induction on the structure of E and the de�nition of \{". Only boolean expression
involving pointer variables are to be considered (for others expressions E, we have E =True).
Let us consider one case:
Let E be id1==id2 and let us assume E `exp <id1==id2;SD>; <b;S0D0>; b 6= 0.
We want to show

CV(id1==id2; E ; S
0
D0 ):

From the de�nition 2.1,
id1==id2 = (id1 = id2)
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so it is equivalent to show
CV(id1 = id2; E ; S

0
D0 ):

The semantic function O is not speci�ed in our system. It gives sense to unary and binary operators like ==.
Here, the value of b is determined in a natural way by this semantic function: O(op)(id1; id2) returns a value
di�erent from 0 if and only if the values of id1 and id2 are equal in the state (E ;S0D0).
So, we get, with b 6= 0

S0D0(E(id1)) = S0D0(E(id2)):

But, from the de�nition of Val in Fig.1

S0D0(E(id1)) = Val(id1; E ; S
0
D0 )

and
S0D0(E(id2)) = Val(id2; E ; S

0
D0 )

which imply
Val(id1; E ; S

0
D0 ) = Val(id2; E ; S

0
D0 ):

So, from the de�nition of CV in Fig.1,
CV(id1 = id2; E ; S

0
D0 ):

Other cases are proved in the same way.

Definition 6.3

Adr(v; E ; SD) = Val(&v; E ; SD)

Lemma 6.4

E `exp <v;SD>; <val;S0D0>) Val(v; E ; S0D0) = val
E `lexp <v;SD>; <a;S0D0>) Adr(v; E ; S0D0) = a

The proof is done by induction on the structure of v. Let us consider the case v = id.
We have

E `exp <id;SD>; <val;S0D0>

and we want to prove
Val(id; E ; S0D0 ) = val:

From [var] rule in Fig.12, we have

E `exp <id;SD>; <SD(E(id));SD> if E(id) 2 D :

So, here we have
val = SD(E(id))

and
SD = S 0D0 :

From de�nition of Val in Fig.1, we get

Val(id; E ; SD) = SD(E(id)):

There is another case to consider, if E(id) 62 D.
Then, from the [illegal] rule of `exp de�nition in Fig.12, we have

E `exp <E;SD>; <?; illegal> otherwise (access to a 62 D) :

So, here we have
val = ?

and
SD = illegal

From de�nition of Val in Fig.1, we get

Val(id; E ; illegal) = ?:
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Lemma 6.5

CV(:(�v = undef); E ; SD)) Val(v; E ; SD) 2 D

To prove this lemma, let us suppose
Val(v; E ; SD) 62 D:

Then from
Val(�v; E ; SD) = SD(Val(v; E ; SD))

we get
Val(�v; E ; SD) = ?:

From
Val(undef; E ; SD) = ?

we get
Val(undef; E ; SD) = Val(�v; E ; SD):

So, from de�nition of concretisation function, we get

CV(undef = �v; E ; SD)

which is equivalent to
not(CV (:(undef = �v); E ; SD)):

We have proved the contrapositive of the lemma.

Lemma 6.6

CV (P; E ; SD) ) Val(v[[v2=v1]]
V
P ; E ; SD) = Val(v; E ; SD[Val(v2; E ; SD)=Adr(v1; E ; SD)])

We prove this lemma by induction on the structure of v:
Let us consider the case v =id

� if P ) &id = &v1
CV (P; E ; SD) ) Adr(id; E ; SD) = Adr(v1; E ; SD) from the de�nition of correspondence relation (Fig.1)
and the de�nition of Adr.
v[[v2=v1]]

V
P = v2 from the de�nition of [[]]VP (Fig.4).

Then we get Val(v2; E ; SD) = Val(v1; E ; SD[Val(v2; E ; SD)=Adr(v1; E ; SD)]).

� if P ) :(&id = &v1)
CV (P; E ; SD)) Adr(id; E ; SD) 6= Adr(v1; E ; SD) by de�nition of correspondence relation. (Fig.1)
v[[v2=v1]]VP = v by de�nition of [[]]VP . (Fig.4)
Then we get Val(v; E ; SD) = Val(v; E ; SD[Val(v2; E ; SD)=Adr(v1; E ; SD)]).

Lemma 6.7

CV (Q[[v2=v1]]VP ; E ; SD) and CV(P; E ; SD)) CV(Q; E ; SD[Val(v; E ; SD)=Adr(v1; E ; SD)])

The proof is straightforward (by induction on Q).

Theorem 2.2

if fPg S fQg can be proven using the rules of Fig. 3 then

8E ; 8SD: CV(P; E ; SD) and E `stat <S;SD>; S0D0 ) CV (Q; E ; S0D0)

The proof of Theorem 2.2 is made by induction on the structure of proof tree of fPg S fQg. We consider in
detail two interesting cases for S here: the assignment statement and the while loop. We sketch the proof for
the remaining cases.
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Correctness of assignment statement.

We have
fPg v1=v2 fQg:

We consider (E ;SD) such that
CV(P; E ; SD):

From rule [assign] in Fig.12, we get

E `stat <v1 = v2;SD>; S00D00 [val2=a1]:

We want to prove
CV(Q; E ; S

00
D00 [val2=a1]):

From the rule of Fig.12

E `lexp <v1;SD>; <a1;S
0
D0> E `exp <v2;S

0
D0>; <val2;S00D00>

E `stat <v1 = v2;SD>; S00D00 [val2=a1]

we can deduce with lemma 6.4:

Adr(v1; E ; S"D0 ) = a1

and

Val(v2; E ; S"D") = val2

Let us consider property P in disjunctive normal form, i.e. in the form
_

i

Pi. Let us �rst suppose i = 1. (the

generalisation to
_

i

is straightforward)

From the rule of Fig.3

fPg v1 fPg fPg v2 fPg P ) Q[[v2=v1]]VP
fPg v1=v2 fQg

and the rule of Fig.12 just above, we get the following hypothesis:

1. P ) Q[[v2=v1]]VP

2. CV (P; E ; S"D")

Let us show the wanted property:
CV(Q; E ; S"D"[val2=a1]):

From (1) ^ (2) and lemma 6.1 we get
CV(Q[[v2=v1]]

V
P ; E ; S

00
D00)

Let us show:

(CV (Q[[v2=v1]]
V
P ; E ; SD) ^ CV(P; E ; SD))) CV(Q; E ; SD [Val(v2; E ; SD)=Adr(v1; E ; SD)])

by induction on Q:
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� Q = (v = v0):
We need to prove

CV (v[[v2=v1]]
V
P = v0[[v2=v1]]

V
P ; E ; SD)) CV (v = v0; E ; SD [Val(v2; E ; SD)=Adr(v1; E ; SD)])

From de�nition of concretisation in Fig.1 and CV(Q[[v2=v1]]VP ; E ; SD), we get

Val(v[[v2=v1]]
V
P ; E ; SD) = Val(v0[[v2=v1]]

V
P ; E ; SD)

Let us show

Val(v; E ; SD[Val(v2; E ; SD)=Adr(v1; E ; SD)]) = Val(v0; E ; SD[Val(v2; E ; SD)=Adr(v1; E ; SD)])

Lemma 6.6 implies

Val(v[[v2=v1]]
V
P ; E ; SD) = Val(v; E ; SD [Val(v2; E ; SD)=Adr(v1; E ; SD)])

and
Val(v0[[v2=v1]]

V
P ; E ; SD) = Val(v0; E ; SD[Val(v2; E ; SD)=Adr(v1; E ; SD)])

� Q = (v 7! v0)
We need to prove

CV((v 7! v0)[[v2=v1]]
V
P ; E ; SD)) CV (v 7! v0; E ; SD[Val(v2; E ; SD)=Adr(v1; E ; SD)])

which is equivalent to:
CV(([[((~v 7! ~v0) ^ :(~v = &v1)) _ ((~v 7! w 7! ~v0) ^ :(~v = &v1) ^:(w = &v1))]

^[8x 2 V; (:(~v 7! ~x) _ (~x = ~v0) _ :(~x 7! ~v0))]] _ [(~v = &v1) ^ (~v0 = v2)]); E ;SD)

)

9�1 : : :�k; �1 = Val(v; E ; S0D0) (1)

�k = Val(v0; E ; S0D0) (2)

81 � i < k S0D0 (�i) = �i+1 (3)

81 < i < k 8x 2 V; �i 6= Val(x; E ; S0D0) (4)

The abstract property appearing in this concretisation can be written in the form of a disjunction of three
terms:
[(~v 7! ~v0) ^ :(~v = &v1) ^ 8x 2 V; (:(~v 7! ~x) _ (~x = ~v0) _ :(~x 7! ~v0))] (A)
_[((~v 7! w 7! ~v0) ^ :(~v = &v1) ^ :(w = &v1)) ^ 8x 2 V; (:(~v 7! ~x) _ (~x = ~v0) _ :(~x 7! ~v0))] (B)
_[(~v = &v1) ^ (~v0 = v2)] (C)
To prove (A) _ (B) _ (C)) ((1) ^ (2) ^ (3) ^ (4)), we �rst prove (A)) ((1) ^ (2) ^ (3) ^ (4)):
CV (~v 7! ~v0; E ; SD)) 9�1 : : : �k; �1 = Val(~v; E ; SD); �k = Val(~v0; E ; SD);

81 � i < k; SD(�i) = �i+1;
81 < i < k; 8x 2 V; �i 6= Val(x; E ; SD)

From the de�nition of V we have: &v1 2 V, so

8i; 1 < i < k; �i 6= Val(&v1; E ; SD)

and
8i; 1 < i < k; S0D0(�i) = �i+1

but
CV (:(~v = &v1); E ; SD) ) Val(~v; E ; SD) 6= Adr(v1; E ; SD)

) �1 6= Adr(v1; E ; SD)

so
S0D0(�1) = �2 ) (3)

Lemma 6.6 implies
�1 = Val(v[[v1=v2]]

V
P ; E ; SD) = Val(v; E ; S0D0 )
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Applying the same reasoning to �k, we get (1) ^ (2)

Let us suppose x 2 V and �j = Val(x; E ; S0D0 ) 6= �k (i)
From lemma 6.6, we get

Val(x[[v1=v2]]
V
P ; E ; SD) = Val(x; E ; S0D0 )

So,
�1 = Val(~v; E ; SD) 7! : : : 7! �j = Val(~x; E ; SD)

and
8k0 2 [2; j � 1]; 8z 2 V; �k0 6= Val(z; E ; SD) (ii)

In the same way:
�j = Val(~x; E ; SD) 7! : : : 7! �k = Val(v0; E ; S0D0)

and
8k0 2 [j + 1; k� 1]; 8z 2 V; �k0 6= Val(z; E ; SD) (iii)

(i) ^ (ii) ^ (iii) contradicts

CV ((8x 2 V; :(~v 7! ~x) _ (~x = ~v0) _:(~x 7! ~v0)); E ; SD)

So, we get (4).

Let us now consider the second term (B) of the disjunction:

CV ((~v 7! w 7! ~v0) ^ :(~v = &v1) ^ :(w = &v1); E ; SD)

) (1) ^ (2) ^ (3) ^ (4)

The proof for (1) ^ (2) ^ (3) is obvious.
In order to show (4), we consider two cases:

{ ~v 7! : : : 7! ~x 7! : : : 7! w

{ w 7! : : : 7! ~x 7! : : : ~v0

We get the same contradiction as in the previous case.

The third term (C) of the disjunction is:

CV((~v = &v1) ^ (~v0 = v2); E ; SD)

) (1) ^ (2) ^ (3) ^ (4)

We have
CV((~v = &v1); E ; SD)) Val(~v; E ; SD) = Adr(v1; E ; SD)

Lemma 6.6 implies:
Val(~v; E ; SD) = Val(v; E ; S0D0 )

and
Adr(v1; E ; SD) = Adr(v1; E ; S

0
D0 )

We have
CV((~v

0 = v2); E ; SD)) Val(~v0; E ; SD) = Val(v2; E ; SD)

Lemma 6.6 implies:
Val(~v0; E ; SD) = Val(v0; E ; S0D0)

and
Val(v2; E ; SD) = Val(v1; E ; S

0
D0 )

Let �1 be Adr(v1; E ; S
0
D0 ) and �2 be Val(v1; E ; S

0
D0 )

We have
S0D0(�1) = �2

which entails (1) ^ (2) ^ (3).
Since k = 2, we get (4).
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Correctness of while loop:

We assume:

1. fPg while(E)S fP ^ !Eg

2. CV (P; E ; SD)

3. E `stat <while(E)S;SD>; S0D0

and we want to prove:

CV (P ^ !E; E ; S0D0 )

The while-false case is obvious.
Let us consider the while-true case.

E `exp <E;SD>; <b;S00D00>

E `stat <S;S
00
D00>; S000D000 E `stat <while (E) S;S000D000>; S0D0

E `stat <S; while (E) S;S00D00>; S 0D0

E `stat <while(E)S;SD>; S0D0

By Lemma 6.2
E `exp <E;SD>; <b;S00D00>; b 6= 0 ) CV (E; E ; S

00
D00 ) (1)

We have
fPg E fPg ^ CV (P; E ; SD) ^ E `exp <E;SD>; <b;S00D00> ) CV (P; E ; S

00
D00 ) (2)

(1) ^ (2)) CV (Q ^E; E ; S00D00 ). (3)

By induction hypothesis, we get:

(3) ^ fQ ^Eg S fPg ^ E `stat <S;S
00
D00>; S000D000 ) CV(P; E ; S

000
D000 ) (4)

Applying the induction hypothesis again, we have:

(4) ^ fPg while(E)S fP ^ !Eg ^ E `stat <while (E) S;S
000
D000>; S0D0

) CV(P ^ !E; E ; S0D0)

Sketch for the correctness of other cases

� if-true and if-false cases are treated in the same way. They are straightforward consequences of lemma
6.2.

� the free case is similar to the assignment case, with Val(undef; E ; SD) = ? and SD(a) = ? if a 62 D.

� the weakening case is a straightforward consequence of lemma 6.1.

Appendix 3 Proofs of Theorems 3.2 and 3.3

Proof of Theorem 3.2

Let us �rst show three useful lemmas.

Definition 6.8 A property is said to be in anf if it is in adnf with no disjunction.

Lemma 6.9 If P is in anf w.r.t. VarProgand �v2 62 VarProg
then Complete�v2(P ) is in adnf w.r.t. VarProg[f�v2g

Proof:

Since no property between two variables of VarProg is taken o� by the Complete function, we have just to check
properties involving �v2. We consider di�erent cases over v2 corresponding to the di�erent cases in the de�nition
of the Complete�v2 function.
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1. If P j) v2 = undef then �v2 veri�es the same properties than v2 which are added by Closure:

� (v2 = undef) ^ (v2 = v2) ^ (�v2 = undef) � (v2 = �v2).

� (v2 op v) ^ (v2 = �v2) ^ (v = v) � (�v2 op v).

� (v op v2) ^ (v = v) ^ (v2 = �v2) � (v op v2).

2. If P j) (v2 7! y) ^ (&y = v2), �v2 veri�es the same properties than y which are added by Closure.

3. Otherwise, if P j) (v2 7! y), Closure(P ^ (�v2 = y)) is an anf and we have to show that Insert(P; �v2; y)
is an adnf.
We just check that all properties on �v2 are added since other properties remain unchanged or are trans-
lated into their negation (by Replace).

� Properties of the form (:)(�v2 = v): Mk-node returns (�v2 = �v2) and :(�v2 = v); 8v 6= �v2.

� Properties of the form (:)(�v2 7! v): for all v such that v 6= y, the property :(�v2 7! v) is added by
�rst rule of NF�v21 . Closure and Replace add the property �v2 7! v for others v.

� Properties of the form (:)(v 7! �v2): Replace adds v 7! �v2 for all v such that v = v2.
For all v pointing to a variable di�erent from �v2, Mk-node and �rst rule of NF�v21 add the property
:(v 7! �v2).
The third rule of NF�v21 adds the property :(v 7! �v2) for other variables v (those pointing to no
variable).

4. Otherwise, v2 is such that 8v 2 P; P j) :(v2 7! v). We have to prove that Add(P; �v2) is in adnf w.r.t.
VarProg[f�v2g.

� Properties of the form (:)(�v2 = v) are added by Mk-node.

� Properties of the form (:)(�v2 7! v): :(�v2 7! v) is added by End(P; �v2)

� Properties of the form (:)(v 7! �v2): for all v equal to v2, the property v 7! �v2 is added by Closure.
If v is such that 8w 2 P; P j) :(v 7! w)^:(v = v2), then the �rst rule of NF

�v2
2 creates a disjunction

containing the desired property (or its negation).
If v points to a variable di�erent from �v2 then the second rule of NF

�v2
2 adds the property :(v 7! �v2).

Lemma 6.10 If P is in anf then Assignv1v2(P ) is in adnf w.r.t. VarProg.

Proof:

We prove for each property (v op v0), op = `=' or 7̀!', that this property or its negation appears in Assignv1v2(P ).

1. Let us �rst suppose �v2 2VarProg.
We have to prove P is in anf ) Closure(Producev1v2P ) is in adnf w.r.t. VarProg.

� P j) :(v = &v1)

{ if v and v0 are not in A�ectedv1 ; (v op v0) remains unchanged.

{ if v (resp. v0) is in A�ectedv1 , then v (resp. v0) is in Substi, and we get (v op v0) or :(v op v0) from
(:)(�iv2 op v0) (resp. (:)(v op �iv2))(which is certainly in P , since P is in anf).

� P j) v = &v1
If op = 7! then Prod(x op y) = (&v1 7! v1) ^

^

v 62 Subst0
and P j) :(v = v2)

:(&v1 7! v). If v0 62 Subst0 and P j) :(v0 = v2) then

Closure adds the property :(v 7! v0). If v0 2 Subst0 then Prodv2=v2 returns the property v0 = v1 and
Closure adds (v 7! v0). If P j) (v0 = v2) then Prodv0=v2 returns the property v0 = v1 and Closure adds
(v 7! v0).
If op = : 7! then Prod(x op y) = True. So we have to verify that (x op y) or is negation is added in
Assignv1v2(P ). If v0 2 Subst0 or P j) (v0 = v2) then the same reasoning as above applies. Otherwise, as

P j) v = &v1, we have the property (v 7! v1) occuring in P . Prodv 7!v1 = (&v1 7! v1) ^
^

v 62 Subst0
and P j) :(v = v2)

:(&v1 7! v),

so we get the property :(&v1 7! v0) and Closure adds the property :(v 7! v0).
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2/ For the case �v2 62VarProg, lemma 6.9 implies that Complete�v2(P ) is in adnf w.r.t. VarProg[f�v2g. We want
to prove that Closure(Producev1v2Complete�v2(P )) is in adnf w.r.t. VarProg. The reasoning is similar than in the
case �v2 2VarProgexcept that we have to verify �v2 has disappeared in the resulting property. This is a direct
consequence of the de�nition of the Prod function where all occurrences of the variable �v2 are replaced by the
variables of the set Subst1.

Lemma 6.11 P is in adnf ) Alloc(P; v) is in adnf.

We have to prove as for the previous lemma that each property (v op v0), op = `=' or `7!', or its negation
appears in the resulting property. There is no di�culty here.

Proof of Theorem 3.2

Lemma 6.10 shows the property for assignment and free statements. Lemma 6.11 shows the property for
the alloc case. The proof of the other rules are straightforward, assuming a function that distributes all
conjunctions over disjunctions in order to keep a disjunctive normal form at each step of the inference process.
This function is simple and we have omitted it for the sake of clarity.

Proof of Theorem 3.3

Lemma 6.12

P ) Closure(P )

Proof:

Closure is de�ned as the normal form of the relation

P = P 0 ^ (a op b) ^ (a = a0) ^ (b = b0) � P ^ (a0 op b0):

To prove the wanted property, it is su�cient to prove

(a op b) ^ (a = a0) ^ (b = b0)) (a0 op b0):

which is a direct consequence of
(v1 = v2) ^ P ) P [v2=v1]:

(Fig.2)

Lemma 6.13

P ) Complete�x(P )

Proof:

� If P j) (x = undef), we get the wanted property from x = undef ) �x = undef and lemma 6.12:
P = P 0 ^ (x = undef)) P ^ (�x = undef)) Closure(P ^ (�x = undef))
which is equal to Complete�v2(P )

� If P j) (x 7! y) ^ (x = &y), we get the wanted property from
(x = &y)) (�x = �&y) and (�&y = y) and lemma 6.12.

� If P j) (x 7! y), we get the wanted property from (x 7! y) ) (�x = y) _ (�x 7! y), lemma 6.12 and
the property P )Insert(P; �x; y) which is not proved here (the proof is similar to the proof of lemma 6.12).

� otherwise, we get the wanted property from P j) (x 7! �x) and the property P )Add(P; �x) (whose
proof is similar to the proof of lemma 6.12).
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Proof of Lemma 3.4

P ) Assignv1v2(P )[[v2=v1]]
V
P

First case:
Let us suppose �v2 2 VarProg. We have to prove

P ) Producev1v2(P )[[v2=v1]]
V
P

In order to prove this property, we prove

If P ) P 0 then P ) ProdPP
0[[v2=v1]]

V
P :

Then we get for all i

Pi )
_

ProdPi
Pi[[v2=v1]]

V
P :

Since the property is true for all i, we get

_
(Pi))

_
ProdPi

Pi[[v2=v1]]
V
P

which is equivalent to

P )
_

ProdPi
Pi[[v2=v1]]

V
P :

By induction on P 0:

� Trivial for P 0 =True and by induction hypothesis for P 0 = P1 ^ P2.

� P 0 = x op y

{ If op = `=' or `:=', then

ProdP (x op y) =
^

v;v02(Substi;Substj)i;j2f0;1g
f (v op v0) if x = �iv2 ^ y = �jv2 otherwise True
(x op v) if y = �jv2 ^ x 2 VarProg � A�ectedv1 otherwise True
(v op y) if x = �iv2 ^ y 2 VarProg �A�ectedv1 otherwise True
(x op y) if x 2 VarProg �A�ectedv1 ^ y 2 VarProg �A�ectedv1

otherwise True g

Since (v; v0) 2 (Substi; Substj), they are such that v[[v2=v1]]
V
P = �iv2 and v0[[v2=v1]]VP = �jv2.

So, we get
ProdP (x op y)[[v2=v1]]

V
P = (x op y) or True.

We get the wanted property:

P 0 = x op y ) x op y or P 0 ) True.

{ If op = ` 7!' or `: 7!', two cases arise:

� P j) x = &v1

ProdP (x op y) = if op =7! then (&v1 7! v1) ^
^

v 62 Subst0
and P j) :(v = v2)

:(&v1 7! v)

else if op = : 7! then True
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The case op = `: 7!' is immediate since the result is True.
If op = `7!', then from �g.4,

(&v1 7! v1)[[v2=v1]]
V
P = (&v1[[v2=v1]]

V
P = &v1) ^ (v1[[v2=v1]]

V
P = v2)

which is equal to True since
&v1[[v2=v1]]VP = &v1
v1[[v2=v1]]VP = v2

For the second term of the conjunction, we get

^

v 62 Subst0
and P j) :(v = v2)

:(&v1 7! v)[[v2=v1]]
V
P =

^

v 62 Subst0
and P j) :(v = v2)

:(v[[v2=v1]]
V
P = v2)

If
v 62 Subst0 and P j) :(v = v2)

then
P ) :(v[[v2=v1]]

V
P = v2):

� P j) :(x = &v1)
For the case op = ` 7!', we want to show

P ) ProdP (x 7! y)[[v2=v1]]
V
P

with
P j) (x 7! y):

From �g.6, we get

ProdP (x 7! y) =
^

v;v02(Substi;Substj )i;j2f0;1g
f (v 7! v0) if x = �iv2 ^ y = �jv2 otherwise True
(x 7! v) if y = �jv2 ^ x 2 VarProg �A�ectedv1 otherwise True
(v 7! y) if x = �iv2 ^ y 2 VarProg � A�ectedv1 otherwise True
(x 7! y) if x 2 VarProg �A�ectedv1 ^ y 2 VarProg � A�ectedv1

otherwise True g

Let us prove
P ) (v 7! v0)[[v2=v1]]

V
P

We have:

1. v 2 substi
2. v0 2 substj

3. x = �iv2

4. y = �jv2

From �g.4, we get

(v 7! v0)[[v2=v1]]
V
P = [(~v 7! ~v0) ^ :(~v = &v1) ^ 8x 2 V; (:(~v 7! ~x) _ (~x = ~v0) _ :(~x 7! ~v0))]

_[((~v 7! w 7! ~v0) ^ :(~v = &v1) ^ :(w = &v1))
^8x 2 V; (:(~v 7! ~x) _ (~x = ~v0) _:(~x 7! ~v0))]
_[(~v = &v1) ^ (~v0 = v2)]

Let us prove

P ) (~v 7! ~v0) ^ :(~v = &v1) ^ 8x 2 V; (:(~v 7! ~x) _ (~x = ~v0) _ :(~x 7! ~v0))

There is no problem for
P ) (~v 7! ~v0) ^ :(~v = &v1):
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To prove
P ) 8x 2 V; (:(~v 7! ~x) _ (~x = ~v0) _ :(~x 7! ~v0))

it is enough to prove that if it exists x 2 V such that

P ) (~v 7! ~x) ^:(~x = ~v0) ^ (~x 7! ~v0)

then P is not consistent, which is the case since we have also

P ) (�iv2 7! �jv2)

and
~v = �iv2

and
~v0 = �jv2

The proofs of
P ) (x 7! v0)[[v2=v1]]

V
P

P ) (v 7! y)[[v2=v1]]
V
P

P ) (x 7! y)[[v2=v1]]
V
P

are done is the same way.
For the case op = `: 7!', the process is similar.

Second case: �v2 62VarProg.

Complete�v2(P ) =
_

Pi

As in the previous case, we show the property

Pi ) ProdPi
Pi[[v2=v1]]

V
P

for all Pi.
The proof of this property is similar to the one presented in the previous case.
We then get _

Pi )
_

ProdPi
Pi[[v2=v1]]

V
P

By de�nition of ProdP , _
ProdPi

Pi[[v2=v1]]
V
P = Producev1v2(

_
Pi)[[v2=v1]]

V
P

Since
Complete�v2(P ) =

_
Pi

we get by Lemma 6.13,
P ) Producev1v2(Complete�v2(P ))

Then Lemma 6.12 concludes the proof of Lemma 3.4.

Proof of Theorem 3.3

The proof is by induction on the derivation tree obtained from the inference system of �g.5

� The assignment case is a direct consequence of Lemma 3.4.

� Let us inspect the while case. Let us note `3 \proven by inference system of Fig.3" and `5 \proven by
inference system of Fig.5". We suppose

`5 fPg while (E) S fPn ^ !Eg:
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which is given by the rule

P0 = P
fP0g E fP0g

fP0 ^Eg S fQ1g

Pi = Pi�1 _Qi

i 2 1; n fPig E fPig
fPi ^Eg S fQi+1g

Pi 6j) Pi�1

fPng E fPng
Pn j) Pn�1

fPg while (E) S fPn ^ !Eg

and we want to prove
`3 fPg while (E) S fPn ^ !Eg

It is enough to show
`3 fPng while (E) S fPn ^ !Eg

since the sequence Pi is increasing.
Since the rule for the while case in �g.3 is

fPg E fPg fP ^Eg S fPg

fPg while (E) S fP ^ !Eg
;

we have to prove:

1. `3 fPng E fPng

2. `3 fPn ^ !Eg S fPng

1. we have
`5 fPng E fPng

So the induction hypothesis allows us to conclude.

2. we have:
`5 fPn�1 ^ !Eg S fQng (A)
Pn = Pn�1 _Qn (B)
Pn j) Pn�1 (C)

The induction hypothesis on (A) implies

`3 fPn�1 ^ !Eg S fQng (D)

Applying the weakening rule on (D) and (C) we get:

`3 fPn ^ !Eg S fQng (E)

and applying the weakening rule again on (E) and

Qn j) Pn�1 _Qn

we get the desired property.

� The if-then-else case is proved with the weakening rule Q1 j) Q1 _Q2 and Q2 j) Q1 _Q2.

� The free case is similar to the assignment case.

� The alloc case is done by proving

P ^
^

v2Var

:(z = v) ^ :(�z = v) ^ (�z 7! undef)) Alloc(P )

which is a straightforward consequence of the de�nition of the Alloc function.
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