
I
 R

 I
 S

 A
IN

S
T
IT

U
T
 D

E
 R

E
C

H
E
R

C
H

E
 E

N
 IN

FO
R
M

ATIQ
UE E

T S
YSTÈMES ALÉATOIRES

P U B L I C A T I O N
I N T E R N E
No

I R I S A
CAMPUS UNIVERSITAIRE DE BEAULIEU - 35042 RENNES CEDEX - FRANCEIS

S
N

 1
16

6-
86

87

989

STRUCTURED GAMMA

PASCAL FRADET AND DANIEL LE MÉTAYER

INSTITUT DE RECHERCHE EN INFORMATIQUE ET SYSTÈMES ALÉATOIRES

Campus de Beaulieu – 35042 Rennes Cedex – France
Tél. : (33) 99 84 71 00 – Fax : (33) 99 84 71 71

Structured Gamma

Pascal Fradet and Daniel Le M�etayer

Th�eme 2 | G�enie logiciel
et calcul symbolique

Projet Lande

Publication interne n�989 | mars 1996 | 17 pages

Abstract: The Gamma language is based on the chemical reaction metaphor which has a number of bene�ts
with respect to parallelism and program derivation. But the original de�nition of Gamma does not provide any
facility for data structuring or for specifying particular control strategies. We address this issue by introducing a
notion of structured multiset which is a set of addresses satisfying speci�c relations and associated with a value.
The relations can be seen as a form of neighbourhood between the molecules of the solution; they can be used
in the reaction condition of a program or transformed by the action. A type is de�ned by a context-free graph
grammar and a structured multiset belongs to a type T if its underlying set of addresses satis�es the invariant
expressed by grammar de�ning T . We de�ne a type checking algorithm which allows us to prove mechanically
that a program maintains its data structure invariant. We illustrate the signi�cance of the approach for program
reasoning and program re�nement.

Key-words: multiset rewriting, type checking, invariant, veri�cation, re�nement

(R�esum�e : tsvp)

�[fradet,lemetayer]@irisa.fr
CENTRE NATIONAL
DE LA RECHERCHE
SCIENTIFIQUE

Centre National de la Recherche Scientifique Institut National de Recherche en Informatique
(URA 227) Université de Rennes 1 – Insa de Rennes et en Automatique – unité de recherche de Rennes

Gamma Structur�e

R�esum�e : Le langage Gamma repose sur la m�etaphore de la r�eaction chimique, ce qui lui donne un certain
nombre d'avantages en terme de parall�elisme et de d�erivation de programmes. Cependant, la d�e�nition originelle
de Gamma n'o�re pas de moyen de d�ecrire des structures de donn�ees ou de sp�eci�er des strat�egies de contrôle
particuli�eres. Nous proposons une solution �a ce probl�eme en introduisant une notion de muti-ensemble struc-
tur�e. Il s'agit d'un ensemble d'adresses satisfaisant des relations donn�ees. Les relations d�ecrivent une forme de
voisinage entre les mol�ecules; elles peuvent être utilis�ees dans une condition de r�eaction ou transform�ees par une
action. Un type est d�e�ni par une grammaire de graphes non-contextuelle. Un multi-ensemble structur�e appar-
tient �a un type T si l'ensemble d'adresses sous-jacent satisfait l'invariant exprim�e par la grammaire d�e�nissant
le type T . Nous d�e�nissons un algorithme de v�eri�cation de types qui permet de montrer automatiquement
qu'un programme maintient l'invariant de sa structure de donn�ees. Nous montrons l'int�erêt de cette d�emarche
pour la v�eri�cation et le ra�nement de programmes.

Mots-cl�e : r�ecriture de multi-ensemble, v�eri�cation de types, invariant, v�eri�cation, ra�nement

Structured Gamma 3

1 Gamma: motivations and limitations

The fast evolution of hardware and the growing needs of end-users has placed new requirements on the design
of programming languages: sequentiality should no longer be seen as the prime programming paradigm but just
as one of the possible forms of cooperation between individual entities. The Gamma formalism was proposed
ten years ago precisely to capture the intuition of computation as the global evolution of a collection of atomic
values interacting freely. Gamma is a kernel language which can be introduced intuitively through the chemical
reaction metaphor. The unique data structure in Gamma is the multiset which can be seen as a chemical
solution. A simple program is a pair (Condition, Action) called a reaction. Execution proceeds by replacing
in the multiset elements satisfying the condition by the products of the action. The result is obtained when a
stable state is reached, that is to say when no more reactions can take place. The following is an example of a
Gamma program computing the maximum element of a non-empty set.

max : x ; y ; x � y) y

x � y speci�es a property to be satis�ed by the selected elements x and y. These elements are replaced in the
set by the value y. Nothing is said in this de�nition about the order of evaluation of the comparisons. If several
disjoint pairs of elements satisfy the condition, the reactions can be performed in parallel. Let us consider as
another introductory example, a sorting program. We represent a sequence as a set of pairs (index; value) and
the program exchanges ill-ordered values until a stable state is reached and all values are well-ordered.

sort : (i; x) ; (j; y) ; (i < j) ; (x > y)) (i; y) ; (j; x)

The interested reader may �nd in [2] a longer series of examples (string processing problems, graph problems,
geometry problems, . . .) illustrating the Gamma style of programming and in [3] a review of contributions
related to the chemical reaction model. The possibility of getting rid of arti�cial sequentiality in Gamma has
two important consequences:

� It confers a very high level nature to the language and allows the programmer to describe programs in a
very abstract way.

� Because Gammaprograms do not have any sequential bias, the language naturally leads to the construction
of parallel programs (in fact, it is much harder to write a sequential program than a parallel program in
Gamma).

However, our experience with Gamma also highlighted some weaknesses of the language. Let us now review
the most important ones.

� The original de�nition of Gamma lacks of any operation for combining programs.

� The language does not make it easy for the programmer to structure data or to specify particular control
strategies.

� Because of the combinatorial explosion imposed by its semantics, it is di�cult to reach a decent level of
e�ciency in any general purpose implementation of the language.

For the sake of modularity it is desirable that a language o�ers a rich set of operators for combining programs.
It is also fundamental that these operators enjoy a useful collection of algebraic laws in order to make it possible
to reason about programs. This issue was addressed in [7, 8] which introduce operators for the parallel and the
sequential composition of programs and study their properties and in [11, 5] which de�ne higher-order extensions
of Gamma. Another approach was taken in [4] where a notion of schedules is proposed to control the execution
of Gamma programs.

The lack of support for structuring data and the di�culty of imposing a particular control strategy should
not be surprising since the original motivation for the language was to be able to describe programs exhibiting
as few ordering constraints as possible. An unfortunate consequence however is that the programmer sometimes
has to resort to tricky encodings to express his algorithm. For instance, the exchange sort algorithm shown
above is expressed in terms of multisets of pairs (index,value). This limitation also introduces an unnecessary
factor of ine�ciency in the implementation because the underlying structure of the data (and control) is not
exposed to the compiler. Such information could be exploited to improve the implementation [6] but it can
usually not be recovered by an automatic analysis of the program.

PI n�989

4 Pascal Fradet and Daniel Le M�etayer

So, the lack of structuring facility is detrimental both for reasoning about programs and for implementing
them. In this paper, we propose a solution to this problem without jeopardising the basic qualities of the
language. Let us point out in particular that it would not be acceptable to take the usual view of recursive
type de�nitions because this would lead to a recursive style of programming and ruin the fundamental locality
principle (because the data structure would then be manipulated as a whole). Our proposal is based on a
notion of structured multiset which is a set of addresses satisfying speci�c relations and associated with a value.
The relations express a form of neighbourhood between the molecules of the solution; they can be used in the
reaction condition of a program or transformed by the action. In our framework, a type is de�ned in terms of
rewrite rules on the relations of a multiset; a structured multiset belongs to a type T if its underlying set of
addresses satis�es the invariant expressed by the rewrite system de�ning T . The paper de�nes a type checking
algorithm which allows us to prove mechanically that a program maintains its data structure invariant. We
illustrate the signi�cance of the approach for program reasoning and program re�nement.

We de�ne the notion of structured multiset and structured program in section 2. We describe the syntax and a
formal semantics of this extension of Gamma and suggest how Structured Gamma programs can be translated
in a straightforward way into original Gamma programs. The notion of structuring types is introduced in
section 3 with a collection of examples illustrating the programming style of Structured Gamma. In section
4, we describe a checking algorithm and show its correctness. The correctness property is akin to the subject
reduction property of type systems for functional languages. We illustrate the type system and type checking
algorithm with several examples. Section 5 introduces notions of type and program re�nement which can be
used to derive e�cient implementations from Gamma speci�cations. Section 6 reviews related proposals in
di�erent contexts and suggests several extensions.

2 Syntax and semantics of Structured Gamma

A structured multiset is a set of addresses satisfying speci�c relations. As an example, the list [5; 2; 7]
can be represented by a structured multiset whose set of addresses is fa1; a2; a3g and associated values are
V al(a1) = 5; V al(a2) = 2; V al(a3) = 7. Let succ be a binary relation and end a unary relation; the addresses
satisfy

succ a1 a2 ; succ a2 a3 ; end a3

A Structured Gamma program is de�ned in terms of pairs of a condition and an action which can:

� test/modify the relations on addresses,

� test/modify the values associated with addresses.

As an illustration, an exchange sort for lists can be written in Structured Gamma as :

Sort = succ x y ; x > y) succ x y ; x := y ; y := x

The two selected addresses x and y must satisfy the relation succ x y and their values x and y are such that
x > y. The action exchanges their values and leaves the relation unchanged.

In order to de�ne the syntax and semantics of Structured Gamma, we consider three basic domains:

� R: set of relation symbols,

� A: set of addresses,

� V: set of values.

We note A(M) the set of addresses occurring in the multiset M .

Syntax

The syntax of Structured Gamma programs is described by the following grammar :

< Program > ::= ProgName = [< Reaction >]�

< Reaction > ::= < Condition >)< Action >
< Condition > ::= r x1 : : : xn j fBool(x1; : : : ; xn) j < Condition >;< Condition >
< Action > ::= r x1 : : : xn j x := fV(x1; : : : ; xn) j < Action >;< Action >

Irisa

Structured Gamma 5

where r (2 R) denotes a n-ary relation, xi is an address variable, xi is the value at address xi and fX is a
function from Vn to X.

As can be seen in the Sort example, x refers to the value of address x when it is selected in the multiset. The
evaluation order of the basic operations of an action (in particular, assignments) is not semantically relevant.
In order to �t with this design choice, a valid Structured Gamma program must satisfy two additional syntactic
conditions :

� If x occurs in the reaction then x occurs in the condition.

� An action may not include two assignments to the same variable.

Semantics

A structured multiset M can be seen as M = Rel + V al where

� Rel is a multiset of relations represented as tuples (r; a1; : : : ; an) (r 2 R; ai 2 A)

� V al is a set of values represented by triplets of the form (val; a; v) (a 2 A; v 2 V)

For example, the structured multiset shown at the beginning of this section can be noted:

f(succ; a1; a2); (succ; a2; a3); (end; a3); (val; a1; 5); (val; a2; 2); (val; a3; 7)g

A valid structured multiset is such that an address x does not have more than one value (i.e. x occurs at most
once in V al). On the other hand, there may be several occurrences of the same tuple in Rel. Also, we do not
enforce that

A(Rel) � A(V al) nor that A(V al) � A(Rel)

So, allocated addresses may not to possess a value or may have a value but not occur in any relation (although,
in this case, they cannot be accessed by a Structured Gamma program and may be garbage collected).

In order to de�ne the semantics of programs, we associate three functions with each reaction C) A:

� a boolean function T (C) representing the condition of application of a reaction:

T (C)(a1; : : : ; ai; b1; : : : ; bj) = (val; a1; a1) 2 V al ^ : : :^ (val; ai; ai) 2 V al

^ (val; b1; b1) 2 V al ^ : : :^ (val; bj; bj) 2 V al ^ bCc

� A function C(C) representing the tuples selected by the condition (i.e. the relations and values occurring
in C):

C(C)(a1; : : : ; ai; b1; : : : ; bj) = f(val; a1; a1); : : : ; (val; ai; ai); (val; b1; b1); : : : ; (val; bj; bj)g+ dCe

� A function A(A) representing the tuples added by the action (i.e. the relations occurring in A, the values
selected but unchanged by the reaction and assigned values):

A(A)(a1; : : : ; ai; b1; : : : ; bj; c1; : : : ; ck) = f(val; a1; a1); : : : ; (val; ai; ai)g+ dAe

where

� (a1; : : : ; ai) denotes the set of non-assigned variables whose value occurs in the reaction,

� (b1; : : : ; bj) denotes the set of assigned variables occurring in the condition C,

� (c1; : : : ; ck) denotes the set of variables occurring only in the action A.

and b c and d e are de�ned by :

bX1; X2c = bX1c ^ bX2c dX1; X2e = dX1e + dX2e
br x1 : : : xnc = (r; x1; : : : ; xn) 2 Rel dr x1 : : : xne = f(r; x1; : : : ; xn)g
bf(x1; : : : ; xn)c = f(x1; : : : ; xn) df(x1; : : : ; xn)e = ;

dx := f(x1; : : : ; xn)e = f(val; x; f(x1; : : : ; xn))g
PI n�989

6 Pascal Fradet and Daniel Le M�etayer

The semantics of a Structured Gamma program P = C1) A1; : : : ; Cm) Am applied to a multiset M is
de�ned as the set of normal forms of the following rewrite system:

M �!P GC(M) if 8fx1; : : : ; xng � A(M) 8i 2 [1 : : :m] :T (Ci)(x1; : : : ; xn)

M �!P M � C(Ci)(x1; : : : ; xn) + A(Ai)(x1; : : : ; xn; y1; : : : ; yk) (with y1; : : : ; yk 62 A(M))

if 9fx1; : : : ; xng � A(M) and 9i 2 [1 : : :m] such that T (Ci)(x1; : : : ; xn)

If no tuple of addresses satis�es any condition then a normal form is found. The result is the accessible
structure described by the relations. Addresses which do not occur inRel are removed from V al. More precisely:

GC(Rel + V al) = Rel + f(val; a; v) j (val; a; v) 2 V al ^ a 2 A(Rel)g

We use the notation M
�
7�!P M 0 for M

�
�!P M 0 and M 0 is a normal form for P .

Otherwise, a tuple of addresses (x1; : : : ; xn) and a pair (Ci; Ai) such that T (Ci)(x1; : : : ; xn) are non-
deterministically chosen. The multiset is transformed by removing C(Ci)(x1; : : : ; xn), allocating fresh addresses
y1; : : : ; yk and adding A(Ai)(x1; : : : ; xn; y1; : : : ; yk).

Note that the semantics enforces that di�erent variable names denote di�erent addresses. Sometimes, this
requirement may lead to unnecessary verbose programs. For example, if we want to express the rewriting of
any instance of a relation tuple (r; x1; : : : ; xn), we would like to write r x1 : : : xn) : : : assuming xi and xj
may possibly denote the same address rather than enumerating all the possible sharing patterns. Let us note,
however, that it is always possible to translate the rule above into an equivalent set of rules where variables
cannot be identi�ed. So, a sensible option would be address the matter at the syntax level and add a special
notation to denote that some variables may be identi�ed. For example, r x 1 y 2 z 1 t 2 would mean that
x and z may be equal, y and t may be equal but x and z are di�erent from y and t. This syntax could be
automatically translated into standard rules.

Correspondence between Structured Gamma and original Gamma

Compared to the original Gamma formalism, the basic model of computation remains unchanged. It still
consists in repeated applications of local actions in a global data structure. Actually, our way to de�ne the
semantics of Structured Gamma programs is very close to a translation into equivalent pure Gamma programs.

Rather than providing a formal de�nition of the translation, we illustrate it with the exchange sort program
which is de�ned as follows in Structured Gamma:

Sort = succ x y ; x > y) succ x y ; x := y ; y := x

and can be rewritten in pure Gamma as:

Sort = (val; x; x) ; (val; y; y) ; (succ; x; y) ; x > y) (succ; x; y) ; (val; x; y) ; (val; y; x)

3 Structuring types

Structured multisets can be seen as a syntactic facility allowing the programmer to make the organization of
the data explicit. We are now in a position to introduce a new notion of type which characterizes the structure
of a multiset. We de�ne a type in terms of rewrite rules on the relations of the multiset. A structured multiset
is said to belong to a type if its underlying set of addresses can be produced by the rewrite system de�ning the
type. We provide a formal de�nition of types and we illustrate them with a collection of examples.

3.1 Syntax and semantics of structuring types

Syntax

The syntax of types is de�ned by the following grammar:

Irisa

Structured Gamma 7

<Type Declaration> ::= TypeName = <Prod> , [<NonTerminal> = <Prod>]�

<NonTerminal> ::= NTName x1 : : : xn
<Prod> ::= r x1 : : :xn j <NonTerminal> j <Prod> , <Prod>

where r (2 R) is an n-ary relation (n > 0), and xi is a variable denoting an address.

A type de�nition resembles a context-free graph grammar. For example, lists can be de�ned as

List = L x
L x = succ x y ; L y
L x = end x

The de�nition of a type T can be associated with a Structured Gamma program (noted BigBangT) which
can return any multiset of type T . It amounts to considering '=' symbols as ')' and nonterminal names N
as relations. We keep the same notation NTx1 : : :xp to denote a nonterminal in a type de�nition or a relation
in the rewrite system associated with a type. The correct interpretation is usually clear from the context. For
example, the Structured Gamma program associated with the type List is noted :

BigBangList =
List) L x
L x) succ x y ; L y
L x) end x

This program applied to a multiset containing only the atom List can produce all the �nite lists .
We note jM j the multiset restricted to relations (j Rel + V al j= Rel).

De�nition 1 A multiset M has type T (noted M:T) i� fTg
�
�!BigBangT jM j.

Let us now introduce the inverse of BigBang, called BigCrunch, which provides a useful alternative de�nition
of types.

De�nition 2 M �!BigBangT M 0 , M 0 �!BigCrunchT M

Property 1 A multiset M has type T i� jM j
�
�!BigCrunchT fTg.

Let us point out that BigCrunch reductions must enforce that if a variable of the lhs does not occur in the
rhs it does not occurs in the rest of the multiset. This is a global operation and BigCrunch rewriting systems
are clearly not Structured Gamma programs. This global condition is induced by the semantics of Structured
Gamma programs (hence BigBang programs) which enforces variables of the rhs not occurring in the lhs to be
fresh.

3.2 Examples of types

Abstract types found in functional languages such as ML can be de�ned in a natural way in Structured Gamma.
For example, the type corresponding to binary trees is

Bintree = B x
B x = node x y z ; B y ; B z
B x = leaf x

However, structuring types make it possible to de�ne not only tree shaped but also graph structures. Ac-
tually, the main blessing of the framework is to allow concise de�nitions of complicated pointer-like structures.
To give a few examples, it quite easy to de�ne common imperative structures such as

� doubly-linked lists :

Doubly = L x
L x = succ x y ; pred y x ; L y
L x = end x

� lists with connections to the last element :

PI n�989

8 Pascal Fradet and Daniel Le M�etayer

Listlast = L x z
L x z = succ x y ; last x z ; L y z
L x z = succ x z ; last x z ; end z

� binary trees with linked leaves :

Binlinked = B x x0 x0

B x x0 x00 = node x y z ; B y x0 y0 ; B z y0 x00

B x x x0 = leaf x ; succ x x0

Let us point out that we have assumed that di�erent variables denote di�erent addresses in type de�nitions
(as we did for program de�nitions). This choice entails the same drawbacks and calls for the same solution as
in the case of programs. For example, using the notation hinted at in section 2, circular lists can be de�ned by:

Circular = L x x
L x 1 y 1 = L x z ; L z y
L x 1 y 1 = succ x y

which is expended into the following type in the pure Structured Gamma syntax:

Circular = L x x
L x x = L x z ; L z x
L x x = succ x x
L x y = L x z ; L z y
L x y = succ x y

3.3 Programming using structuring types

Many programs are expressed more naturally in Structured Gamma than in pure Gamma. The underlying
structure of the multiset can be described by a type whereas in pure Gamma we had to encode it using tuples
and tags. Let us give a few examples of Structured Gamma programs whose description in pure Gamma
is cumbersome. Note that the syntax of programs is extended to account for typed programs (ProgName :
TypeName = : : :).

Iota takes a singleton [a] and yields the list [a; a� 1; : : : ; 1].

Iota : List = end a ; a > 1) succ a b ; end b ; b := a� 1

MultB takes a binary tree and yields a leaf whose value is the product of all the nodes and leaves values of the
original tree.

MultB : Bintree = node a b c ; leaf b ; leaf c) leaf a ; a := a � b � c

In order to get more potential parallelism, we may also add the rules

node a b c ; node b d e; leaf c) node a d e; a := a � b � c
node a b c ; leaf b ; node c d e) node a d e; a := a � b � c

Types can also be used to express precise control constraints. For example, lists can be de�ned with two
identi�ed elements used as pointers to enforce a speci�c reduction strategy.

Listm = L0 x
L0 x = m1 x ; succ x y ; L1 y
L0 x = succ x y ; L0 y
L1 x = m2 x ; L2 x
L1 x = succ x y ; L1 y
L2 x = succ x y ; L2 y
L2 x = end x

Irisa

Structured Gamma 9

The type de�nition enforces that m1 identi�es a list element located before the list element marked bym2.
Assuming an initial list where m1 marks the �rst element andm2 the second one, we can describe a sequential
sort.

SeqSort : Listm =

m1 a ; m2 b ; a > b) m1 a ; m2 b ; a := b ; b := a

m1 a ; m2 b ; succ b c ; a � b) m1 a ; m2 c ; succ b c

m1 a ; m2 b ; end b ; succ a c ; succ c d ; a � b) m1 c ; m2 d ; end b ; succ a c ; succ c d

In fact, Listm can be shown more precisely to be a re�nement of List. We come back to this issue in section
5.

To summarize, Structured Gamma retains the spirit of Gamma while providing means to declare data
structures and to enforce speci�c reduction strategies (e.g. for e�ciency purposes).

4 Static type checking

The natural question following the introduction of a new type system concerns the design of an associated type
checking algorithm. In the context of Structured Gamma, type checking must ensure that a program maintains
the underlying structure de�ned by a type. It amounts to the proof of an invariant property. We propose a
checking algorithm based on the construction of an abstract reduction graph which summarizes all possible
reduction chains from a condition C to a unique nonterminal. We prove the correctness of the algorithm and
we describe its application to some examples.

4.1 A checking algorithm

First, let us note that values and assignments are not relevant for type checking. So, in this section, we consider
multisets and rewriting rules restricted to relations. Also, we assume a given type T and we use the notation
; for �!BigCrunchT .

A reduction step of a multiset by a Structured Gamma program is of the form M + C �!P M + A where
C and A represent multisets of relations matching a reaction of the program. The algorithm has to check that
the application of every reaction of the program leaves the type of the multiset unchanged. In other terms, for
any reaction C) A and multiset M +C of type T it checks that M +A is of type T (i.e. M + A

�
; fTg).

The checking algorithm is based on the observation that if M + C has type T , there must be a context X
(X � M) such that C + X reduces by BigCrunchT to a unique nonterminal NT x1 : : : xp (possibly T). The
reduction of a term C(= C0) to a nonterminal NT x1 : : : xp can be described as

C0 +X0 ; C1 C1 +X1 ; C2 : : : Cn +Xn ; fNT x1 : : : xpg

Each step is an application of a BigCrunchT rule which reduces at least a component of Ci and Xi is a basic
context. Basic contexts are the smallest (possibly empty) multisets of relations needed to match the lhs of a
reduction rule. They are therefore completely reduced by the reduction rule.

The context X = X0 + : : :+Xn must be produced by the reduction of M , that is

M
�
;M 0 +X

and the BigCrunch reduction of the multiset M +C can then be described as

M + C
�
;M 0 +X +C

�
;M 0 + fNTx1 : : : xpg

�
; fTg

Now, if A+X reduces to the same unique nonterminal NTx1 : : :xp, then

M +A
�
;M 0 +X + A

�
;M 0 + fNTx1 : : :xpg

�
; fTg1

and the type of the multiset is maintained.

1The global conditions on this BigCrunch reduction are ensured by the validity of the reduction of M + C and the fact that

variables of A are either variables of C or fresh variables.

PI n�989

10 Pascal Fradet and Daniel Le M�etayer

It is su�cient to check the property A + X
�
; fNTx1 : : : xpg for every possible reduction chain from C to

a nonterminal NTx1 : : :xp with context X. To get round the problem posed by the unbounded length of such
chains, we consider residuals Ci up to renaming of variables.

A renaming is a one-to-one mapping and its domain is the set of variables which di�er from their image.
We will use the following lemma

Lemma 1 Let � a renaming then C1; C2 , �C1 ; �C2

The type checking algorithm consists in examining in turn each reaction of the program.

TypeCheck (P; T) = 8(C;A) of P: Check (A; T; Build (C; fCg; T))

For each reaction C) A, a reduction graph summarizing all possible reduction chains from C to a nonter-
minal is built by Build. Then, Check veri�es that for any reduction chain and context X of the graph from C
to a nonterminal, A +X reduces to the same nonterminal.

Build takes an initial graph made of the root C. The reduction graph is such that nodes are residuals Ci

which are all di�erent (even up to renaming of variables) and edges are of the form Ci
X;�
�! Cj . This notation

indicates that Ci +X ; �Cj where X is a basic context and � is a variable renaming. Recall that BigCrunch
reductions have a global condition: variables suppressed by a reduction rule should not occur in the rest of the
multiset. To generate valid BigCrunch reduction chains we enforce that variables occurring in a basic context are
either variables occurring in the current residual or fresh variables. This way, we never reintroduce suppressed
variables.

Build (C;G; T)
if C is a nonterminal then return G else
let CX = f(Ci; Xi) j C +Xi ; Cig in CX is a �nite set (up to fresh variable renaming)
for each (Ci; Xi) in CX do

if 9Cj 2 G and �j such that Ci = �jCj then G := G+ C
Xi;�j
�! Cj

else G := G+Ci +C
Xi;id�! Ci ; G := Build(Ci; G; T)

od
return G

The structure of the algorithm is a depth �rst traversal of all possible reduction chains. The recursion stops
when C is a nonterminal or is already present in the graph. CX is the set of basic contexts and residuals
denoting all the di�erent BigCrunchT reductions of C. Note that basic contexts Xi and residuals Ci may occur
several times in CX (there may be several possible reduction rules for the same term and di�erent terms can be
reduced in the same residual). However, the set CX is �nite since pairs (Ci; Xi) are considered up to renaming
of fresh variables introduced by Xi.

If a residual Ci in already present in the graph, that is, there is already a node Cj such that Ci = �jCj,

then the edge C
Xi;�j
�! Cj is added to the graph. Otherwise, a new node Ci is created and the edge C

Xi;id�! Ci is
added.

The function Check takes the graph as argument and performs the following veri�cations:

� For every simple path from the root to a nonterminal N with context X, it checks that A+X
�
; N .

Let us focus on the meaning of a path C0
X0;�1
�! C1 : : :

Xn;�n+1
�! fNT x1 : : : xpg.

By de�nition, we have C0 +X0 ; �1C1; : : : ; Cn +Xn ; �n+1 fNT x1 : : : xpg and by lemma 1 we have

C0 +X0 + �1X1 + : : :+ �1 � : : : � �n Xn
�
; �1 � : : : � �n+1fNT x1 : : :xpg

So, the context and nonterminal (X;N) associated with the above path are X = X0 + �1X1 + : : :+ �1 �
: : : � �n Xn and N = �1 � : : : � �n � �n+1 fNT x1 : : :xpg.

� For every simple path with context X from the root to a residual Ci belonging to a cycle, it checks that
A + X

�
; Ci. In fact, it is su�cient to check this property for the �rst residual belonging to a cycle

occurring on the path from the root and only for cycles which may lead to a nonterminal.

Irisa

Structured Gamma 11

Check (A; T;G)
let S = f(X0 + �1X1 + : : :+ �1 � : : : � �n Xn; �1 � : : : � �n+1 fNT x1 : : :xpg)

j C0
X0;�1
�! C1

X1;�2
�! : : :Cn

Xn ;�n+1
�! fNT x1 : : :xpg 2 Gg

and C = f(X0 + �1X1 + : : :+ �1 � : : : � �i�1 Xi�1; �1 � : : : � �i Ci)

j C0
X0;�1�! : : :

Xi�1;�i
�! Ci 2 G and 9Ci

X;�x�! : : :Ci 2 G

and 9Ci

Y;�y
�! : : :N 2 G (N a nonterminal) and 6 9 j < i j Cj

Z;�z
�! : : :Cj 2 Gg

in 8(X;Y) 2 S [C: Reduces to (A+X;Y; T)

The veri�cations that the action A with context X can be reduced to Y are implemented by function
Reduces to(A+X;Y; T). It simply tries all the BigCrunchT reductions on the term A+X using a depth �rst
strategy. If a path leading to Y is found then True is returned. If Reduces to �nds out that all the normal forms of
A+X by ";" are di�erent from Y , it returns False which entails the failure of the veri�cation (TypeCheck(P; T)
= False).

Reduces to (X, Y, T)
if X=Y then True
else if X is irreducible then False
else let fX1, ..., Xng the set of all possible residuals of X by a BigCrunchT reduction

in
Wn

i=1
Reduces to (Xi, Y, T)

The termination of TypeCheck is ensured by the following observations :

� The reduction graph is �nite.

{ The number of nodes is bounded. Since rhs of BigCrunchT rules are always a single element (non-
terminal) the number of relations in Ci's never grows. The number of relation names in a type and
in a condition C as well as the arity of relations are bounded so the number of di�erent Ci (up to
renaming of variables di�erent from V ar(C)) is bounded.

{ The number of edges is bounded. For any term Ci there is only a �nite number of basic contexts
matching a BigCrunch rule (up to renaming of fresh variables), and for each basic context there is a
�nite number of di�erent BigCrunch reductions.

� Reduces to terminates. It is always possible to �nd a well-founded decreasing ordering for BigCrunch
reductions. As usual with context-free grammars, it is always possible to put the type de�nition in
Chomsky normal form and all BigCrunch rules would be of the form

NT1 x1 : : :xi ; NT2 y1 : : : yj ; NT3 z1 : : : zk or r x1 : : :xi ; NT y1 : : : yj

Let nt(T) and nnt(T) denote the number of terminals and nonterminals of T respectively, then T1 <<
T2 i� nt(T1) < nt(T2) or (nt(T1) = nt(T2) and nnt(T1) < nnt(T2)) is a well-founded ordering.

The type checking is correct if it ensures that the type of a program is invariant throughout the reduction.
The proof amounts to showing a subject reduction property.

Property 2 8P; M1 : T M1 �!P M2 and TypeCheck(P; T))M2 : T

Proof. A rewritingM1 �!P M2 involves a rule C) A and can be described asM1 = M+C �!M+A = M2.
Since M + C is a multiset of type T then, by de�nition, there is a reduction

M + C
�
;M 0 +X0 + : : :+Xn + C

�
;M 0 +NTx1 : : : xp

�
; fTg

with C(= C0) +X0 ; C1 C1 +X1 ; C2 : : : Cn +Xn ; NT x1 : : : xp

We consider two cases :

1. All Ci are di�erent (even up to renaming of variables).

Let us show that the reduction chain considered is represented (up to renaming) in the reduction graph
computed by Build(C; fCg; T). Note that the type checking algorithm uses two renamings. The �rst one

PI n�989

12 Pascal Fradet and Daniel Le M�etayer

bounds the number of edges (i.e. makes the set CX �nite); let us note it �i (�i is used implicitly in the
de�nition of CX). The second one bounds the number of nodes; it is noted �i.

Starting from C0, Build considers all the pairs (C0; X 0) such that C0 +X 0
; C0 up to renaming of fresh

variables introduced by X0. So, it must be the case that a pair (�1X0; �1C1) has been considered in the
reduction C0 + �1X0 ; �1C1. But �1C1 might have been already present in the graph up to renaming.

So in general, there is an edge C0
X0

0;�1�! C0
1 in the graph such that X0

0 = �1X0 and �1C
0
1 = �1C1.

Using the same reasoning, we are ensured that the graph includes the edges

C0
1

X0

1;�2�! C0
2 with X0

1 = �2 � �
�1
1 � �1 X1

: : :

C0
n

X0

n ;�n+1�! fNT x1 : : :xpg with X0
n = �n+1 � �

�1
n � : : : � ��11 � �1 X1

Note that the domain of �i comprises only fresh variables of Xi�1 and that the domain of �j is included
in the set of variables of Cj. Thus, if j < i the domains of �i and �j are disjoint and the X0

i can be
rewritten as

X0
i = ��1i � : : : � ��11 � �i+1 � : : : � �1 Xi

Now, Check has veri�ed that

A +X0
0 + �1X

0
1 + : : :+ �1 � : : : � �n X0

n

�
; �1 � : : : � �n+1 fNTx1 : : :xpg

by replacing the X0
i 's by their de�nition, we get

A+ �1X0 + �2 � �1X1 + : : :+ �n+1 � : : : � �1 Xn
�
; �n+1 � : : : � �1 fNT x1 : : : xpg

The domains of �i's are disjoint (they are renamings of fresh variables) so any composition of �i's can be
replaced by a unique variable renaming � whose domain is the set of fresh variables introduced by all the
basic contexts. Furthermore, the domain of � is also disjoint from V ar(A) hence we have :

�A+ �X0 + �X1 + : : :+ �Xn
�
; �fNT x1 : : :xpg

which implies by lemma 1
A+X0 +X1 + : : :+Xn

�
; fNT x1 : : :xpg

so M +A
�
;M 0 +X0 + : : :+Xn + A

�
;M 0 + fNT x1 : : : xpg

�
; fTg

2. Otherwise, let Cj; Ck (j < k) be the �rst residuals such that �Cj = Ck.

Using the same reasoning as before we can show that there is a path in the graph

C0
X0

0;�1�! C0
1 : : :

X0

j�1;�j
�! C0

j : : :
X0

k�1 ;�k
�! C0

k

such that X0
i = ��1i � : : : � ��11 � � Xi and C0

i = ��1i � : : : � ��11 � � Ci

Since �Cj = Ck and C0
j and C0

k are renamings of respectively Cj and Ck, there is a renaming � such that
�C0

j = C0
k. This corresponds to a cycle in a graph such that C0

j leads to a nonterminal and is the �rst
node belonging to a cycle on the path. So Check has veri�ed that

A+X 0
0 + : : :+ �1 � : : : � �j�1X

0
j�1

�
; �1 � : : :�jC

0
j

According to the de�nition of X0
i and C0

i this can be rewritten as

�A+ �X0 + : : :+ �Xj�1
�
; �Cj

thus, by lemma 1
A+X0 + : : :+Xj�1

�
; Cj

and

M +A
�
;M 0 +X0 + : : :+Xn + A

�
;M 0 + Cj +Xj + : : :Xn

�
;M 0 + fNTx1 : : : xpg

�
; fTg

Irisa

Structured Gamma 13

4.2 Examples

Even if the theoretical complexity of the algorithm is prohibitive, the cost seems reasonable in practice. We
take here a few examples to illustrate the type checking process at work.

Example 1. Let us take the Iota program working on type List. The program is

Iota : List = end a ; a > 1) succ a b ; end b ; b := a� 1

Operations on values are not relevant for type checking and we consider the single reduction rule

end a) succ a b ; end b

The type de�nition and associated BigCrunch rewriting system are :

List = L x L x ; List
L x = succ x y ; L y succ x y ; L y ; L x
L x = end x end x ; L x

The type checking amounts to the call

Check((succ a b; end b); List; Build(end a; fend ag; List))

There is a single BigCrunchList reduction of end a+X (with X a basic context), namely

end a; L a

So, CX = f(L a; ;)g and, since L a is a nonterminal, the reduction graph is

end a
;;id
�! L a

There is a single simple path and we are left with checking
Reduces to ((succ a b ; end b); L a; List)

The set of possible residuals of (succ a b ; end b) is f(succ a b ; L b)g, so Reduces to ((succ a b ; L b); L a ; List)
is recursively called. The set of possible residuals of (succ a b ; L b) by a BigCrunchList reduction is fL ag and
Reduces to (L a; L a; List) = True. So, TypeCheck(Iota; List) = True and we conclude that the \List" invariant
is maintained.

Example 2. Let us consider a program performing an insertion at the end of a list of type Listlast.

Wrong : ListLast = succ x z ; last x z ; end z) succ x z ; succ z t ; last x t ; last z t ; end t

Obviously this program is ill-typed. If the list has more than two elements, the �rst elements would still point
to z whereas t is the new last element.

The de�nition of Listlast and its BigCrunch rewriting system are :

Listlast = L x z L x z ; Listlast
L x z = succ x y ; last x z ; L y z succ x y ; last x z ; L y z ; L x z
L x z = succ x z ; last x z ; end z succ x z ; last x z ; end z ; L x z

There is a single reduction sequence from the condition to a nonterminal:

succ x z ; last x z ; end z ; L x z

but,
succ x z ; succ z t ; last x t ; last z t ; end t 6; L x z

and the \Listlast" invariant is not maintained.
However, if we consider the insertion program:

Add : ListLast = succ x y ; last x z) succ x t ; succ t y ; last x z ; last t z

PI n�989

14 Pascal Fradet and Daniel Le M�etayer

There is one reduction sequence from the condition to a nonterminal:

succ x y ; last x z ; L y z ; L x z

and it is easy to check that

succ x t ; succ t y ; last x z ; last t z ; L y z ; succ x t ; last x z ; L t z ; L x z

and the \Listlast" invariant is maintained.

5 Re�nement of Structured Gamma programs

The introduction put forward two main motivations for the design of Structured Gamma:

� Providing a notation leading to higher-level descriptions of programs manipulating data structures and
making it possible to reason about this structure.

� Exposing relevant information to derive more e�cient implementations.

The �rst issue was tackled in the previous sections. Here, we show how Structured Gamma can serve as a
basis for program re�nements leading to e�cient implementations.

The basic source of ine�ciency of any \na��ve" implementation of Gamma is the combinatorial explosion
entailed by the semantics of the language for the selection of reacting elements. Let us consider, as an illustration,
the following \maximum segment sum" pure Gamma program.

maxss(M) = maxg(maxl(M))
maxl = (i; v; s) ; (i0; v0; s0) ; (i0 = i+ 1) ; (s+ v0 > s0)) (i; v; s) ; (i0; v0; s+ v0)
maxg = (i; v; s) ; (i0; v0; s0) ; (s0 � s)) (i0; v0; s0)

The input parameter is a sequence of integers. A segment is a subsequence of consecutive elements and the sum
of a segment is the sum of its values. The program returns the maximum segment sum of the initial sequence.
The elements of the multiset are 3-tuples (i; v; s) where i is the position of value v in the sequence and s is the
maximum sum (computed so far) of segments ending at position i. The s �eld of each 3-tuples is originally
set to the v �eld. The program maxl computes local maxima and maxg returns the global maximum. The
complexity of maxg is linear, even on a na��ve implementation because any pair of elements (or its mirror) leads
to a reaction and the action strictly decreases the size of the multiset. However the worst-case complexity of an
unoptimised implementation of maxl is N

3, with N the size of the multiset. This cost is reached by a strategy
choosing the �rst element (i; v; s) in decreasing order of i. As pointed out in [6], the order in which elements
are selected is crucial indeed and most of the re�nements leading to e�cient optimisations of Gamma programs
can be expressed as speci�c selection orderings. [6] introduces several re�nements and shows that they often
lead to e�cient well-known implementations of the corresponding algorithms. This result is quite satisfactory
from a formal point of view because it shows that there is a continuum from speci�cations written in Gamma
to lower-level and e�cient program descriptions. These re�nements, however, had to be checked manually.
Using Structured Gamma as a basis, we can provide general conditions ensuring the correctness of program
re�nements. The basis idea, which was already alluded to in section 3.3, consists in considering multiset (and
type) re�nements as the addition of extra relations between addresses. These relations are used as further
constraints on the control in order to impose a speci�c ordering for the selection of elements. We �rst de�ne
the (semantic) notions of re�nement on multisets, types and programs.

De�nition 3 Let R be a set of relation names, M , and M 0 multisets, T and T 0 types and P and P 0 Structured
Gamma programs.

� The restriction of a multiset M' with respect to R is de�ned as

M 0=R = M 0 � fr a1 : : : an j r 2 Rg:

� M 0 is a R-re�nement of M (noted M 0 >R M) i� M 0=R = M .

� T 0 is a R-re�nement of T (noted T 0 >R T) i� M 0 : T 0) (M 0=R) : T:

Irisa

Structured Gamma 15

� P 0 is a partial R-re�nement of P (noted P 0 >R P) i�

M 0 �
�!P 0 N 0)M 0=R

�
�!P N 0=R:

� P 0 is a complete R-re�nement of P (noted P 0 �R P) i�

M 0 �
7�!P 0 N 0) M 0=R

�
7�!P N 0=R:

The types Doubly, Listlast and Listm de�ned in section 3 are re�nements of the type List (with respect
to fpredg, flastg and fm1;m2g respectively), but Circular is not a re�nement of List. As an illustration
of the relevance of this de�nition for deriving e�cient implementations of Structured Gamma programs, let us
consider yet another re�nement of List:

List1 = L1 x
L1 x = succ x y ; i x ; L1 y
L1 x = L2 x
L2 x = succ x y ; a x ; L2 y
L2 x = end x ; a x

It should be clear that List1 is a R-re�nement of List with R = fa; ig. We present now the translation
of maxl in Structured Gamma and a new version maxl1 which takes advantage of the extra relations to add
restrictions on the control:

maxl : List = succ x y ; (x:s + y:v > y:s)) succ x y ; y := (y:v; x:s+ y:v)
maxl1 : List1 =

succ x y ; i x ; a y; (x:s+ y:v > y:s)) succ x y ; i x ; i y ; y := (y:v; x:s+ y:v)
succ x y ; i x ; a y; (x:s+ y:v � y:s)) succ x y ; i x ; i y

It can be shown that maxl1 is a partial R-re�nement of maxl with R = fa; ig. The intuition is that a program
P 0 is a partial re�nement of P if P can simulate all the \signi�cant" reactions of P 02. It may be the case
however that P 0 is not a proper implementation of P . The reason is that the termination condition for P 0

may be \stronger" than the termination condition of P (because of the extra relations). This situation occurs
in the maxl1 program if the initial multiset contains, say only i relations. In this example, i is the relation
characterising inert elements (elements which cannot be modi�ed by a reaction) and a corresponds to active
elements. An extra condition has to be imposed to ensure that maxl1 is a complete re�nement of maxl. This
condition is also expressed in terms of type re�nements (roughly speaking, the initial multiset must be of type
List2 = succ x y ; i x ; L2 y). The following theorem shows that partial re�nement can still serve as the basis
of a correct program transformation:

Property 3 If P 0 >R P then M 0 �
7�!P 0 N 0 and N 0=R

�
7�!P N) M 0=R

�
7�!P N

The proof of this theorem follows directly from the de�nition of partial re�nement. The interesting consequence
is that the property P 0 >R P allows us to \replace" P by the sequential composition P � P 0 (with an
intermediate conversion of the result N 0 of P 0 into N 0=R).

In the above example, the complexity of the implementation of maxl in Structured Gamma is quadratic
provided that the type List is implemented in memory as a standard linked list with pointers. So, the translation
into Structured Gamma itself leads to a �rst improvement of the behaviour of the program. The complexity
of maxl1 is linear, but it is only a partial re�nement of maxl and has to be composed with maxl for the
transformation to be correct. If the initial multiset has the correct type List2, then the result of maxl1 is also a
normal form for maxl and the execution of maxl is linear too: it amounts to check that a stable state has been
reached. So partial re�nement is strong enough to reduce the complexity to N3 to 2N in this case. Proving
complete re�nement allows us to get rid of maxl and the resulting program is the expected one-pass linear walk
through the list.

As a �nal comment, let us emphasize the fact that simple syntactic criteria can be used to check type and
program (partial) re�nement. Basically, a type T 0 is a R-re�nement of type T if the de�nition of T can obtained
(modulo renaming of nonterminals and cancelling useless rules) by removing from the de�nition of T 0 all the
occurrences of (r; x1; : : :xn) with r 2 R. The same idea applies to programs. These purely syntactic criteria
can be used to check all the type and program re�nements used in this section.

2The reactions which a�ect only relations in R are not signi�cant for P

PI n�989

16 Pascal Fradet and Daniel Le M�etayer

6 Conclusion

We have presented a way to structure multisets and Gamma programs. The main motivation was to express
algorithms more elegantly as well as to provide means of re�ning programs for a more e�cient implementation.
The types introduced in this paper are context-free grammars. This makes the de�nition of square grids, for
example, impossible. It is natural to investigate the extension to types as context-sensitive grammars. With
such an extension, a square grid could be described as

Grid = E x y ; S x z ; L y z
L x y = E x z ; S y t ; L z t
L x y = end x ; end y
E x y ; S x z = east x y ; south x z ; E z t ; S y t
end x ; E x y 1 ; end z ; S z t 1 = end x ; east x y ; end z ; south z t ; end y ; end t

The semantics of context-sensitive types is de�ned in the same way as the semantics of context-free types
(section 2). The only di�culty lies in the checking process since context-sensitive BigCrunch reductions are
not necessarily decreasing with respect to the size of the term. It may be possible to restrict type de�nitions
such that a well-founded order can be found and our checking algorithm adapted. We are currently working on
this issue

We think that the framework developed is of interest for a wider class of applications than Structured
Gamma programs. The ability to de�ne complicated graph structures concisely suggests domains such as the
description of networks, software architecture or coordination languages.

In order to use Structured Gamma as a coordination language, we can interpret the addresses as individual
entities to be coordinated. Their associated value de�nes their behaviour (in a given programming language
which is independent of the coordination language) and the relations correspond to communication links. A
structuring type provides a description of the shape of the overall architecture. As an illustration, a client-server
architecture can be speci�ed as follows in Structured Gamma:

CS = N n
N n = cr c n ; ca n c ; N n
N n = sr n s ; sa s n ; N n
N n = m n

cr c n and ca n c denote respectively a communication link from a client c to the manager n (the client request
channel), and the dual link from n to c (the client answer channel). The case for servers is similar. A correct
program of type CS de�nes a valid dynamic transformation of the architecture. For instance:

m n) m n ; cr c n ; ca n c

is the addition of a new client.
The signi�cant advantage of the use of Structured Gamma with respect to previous proposals for the formal

de�nition of software architectures ([1, 9]) is that we consider the overall shape (or geometry) of the architecture
as a �rst-class object. This allows us to check relevant properties of the architecture very easily (for instance,
there is no direct communication link between a server and a client in the above architecture). In contrast [1],
uses CSP programs to de�ne the architecture, which leads to a description mixing the communication protocol
with the geometry of the communication. We are currently studying the integration of the protocol speci�cation
(as separate values associated to the links) in Structured Gamma.

Another promising direction appears to be the extension of the usual data types of sequential programming
languages. Our framework makes it easy to de�ne common imperative structures (such as circular lists, doubly-
linked lists,: : :). Type checking in this context would greatly contribute to the correctness of pointer-based
programs. The graph types approach [10] shares the same concern. In their framework, a graph is de�ned using
a canonical spanning tree (called the backbone) and auxiliary pointers. Only the backbone can be manipulated
by programs and some simple operations may implicitly involve non-constant updates of the auxiliary pointers.
In contrast, our types do not privilege any part of the graph and all operations on the structure appear explicitly
in the rewrite rules. However, the application of our approach to imperative languages is not straightforward
and needs further research.

Another related work is Raoult & Voisin's study of (hyper-)graph rewriting in a set-theoretic setting [12].
Their approach to graph rewriting is very close to ours: a hyper-graph is a set (a multiset in our case) of

Irisa

Structured Gamma 17

hyper-edges, noted fx1 : : :xn, where f is a function symbol (a relation in our case) and x1 : : :xn are variables
denoting vertices (addresses in our cases). They describe rewriting of sets of hyperedges and provide a criterion
for con
uence. The main departure of our work with respect to most of the previous studies of graph rewriting
is the fact that we use graphs to represent data structures rather than programs. The underlying theory is not
a�ected, but this speci�c point of view entails di�erent kinds of problems (such as the type checking of section
4).

Acknowledgments:

This work was supported by Esprit Basic Research project 9102 Coordination.

References

[1] R. Allen and D. Garlan. Formalizing architectural connection, in Proc. 16th Int. Conf. Soft. Eng., IEEE
Computer Society, pp. 71-80, 1994.

[2] J.-P. Banâtre and D. Le M�etayer. Programming by multiset transformation, Communications of the ACM,
Vol. 36-1, pp. 98-111, January 1993.

[3] J.-P. Banâtre and D. Le M�etayer. Gamma and the chemical reaction model: ten years after, Coordination
programming: mechanisms, models and semantics, Imperial College Press, 1996.

[4] M. Chaudron and E. de Jong, Towards a compositional method for coordinating Gamma programs, in
Proc. Coordination'96 Conference, Cesena, 1996, Springer Verlag, LNCS 1061, pp. 107-123.

[5] D. Cohen and J. Muylaert-Filho, Introducing a calculus for higher-order multiset programming, in Proc.
Coordination'96 Conference, Cesena, 1996, Springer Verlag, LNCS 1061, pp. 124-141.

[6] C. Creveuil. Techniques d'analyse et de mise en �uvre des programmes Gamma, Thesis, University of
Rennes, 1991.

[7] C. Hankin, D. Le M�etayer and D. Sands. A calculus of Gamma programs, in Proc. of the 5th workshop
on Languages and Compilers for Parallel Computing, Yale, 1992, Springer Verlag, LNCS 757.

[8] C. Hankin, D. Le M�etayer and D. Sands. A parallel programming style and its algebra of programs, in
Proc. of the PARLE conference, Munich, 1993, Springer Verlag, LNCS 694, pp. 367-378.

[9] P. Inverardi and A. Wolf. Formal speci�cation and analysis of software architectures using the chemical
abstract machine model, IEEE Transactions on Software Engineering, Vol. 21, No. 4, pp. 373-386, April
1995.

[10] N. Klarlund and M. Schwartzbach. Graph types. In Proc. 20th Symp. on Princ. of Prog. Lang., pp.
196-205. ACM, 1993.

[11] D. Le M�etayer, Higher-order multiset programming, in Proc. of the DIMACS workshop on speci�cations
of parallel algorithms, American Mathematical Society, Dimacs series in Discrete Mathematics, Vol. 18,
1994.

[12] J.-C. Raoult and F. Voisin. Set-theoretic graph rewriting. INRIA Research Report No 1665, 1992.

PI n�989

