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Abstract

We express implementations of functional languages as a succession of pro-
gram transformations in a common framework. At each step, different transfor-
mations model fundamental choices or optimizations. A benefit of this approach
is to structure and decompose the implementation process. The correctness
proofs can be tackled independently for each step and amount to proving pro-
gram transformations in the functional world. It also paves the way to formal
comparisons by estimating the complexity of individual transformations or
compositions of them. We focus on call-by-value implementations, describe
and compare the diverse alternatives and classify well-known abstract ma-
chines. This work also aims to open the design space of functional language im-
plementations and we suggest how distinct choices could be mixed to yield
efficient hybrid abstract machines.

1  Introduction

One of the most studied issues concerning functional languages is their implementation. Since
the seminal proposal of Landin, 30 years ago [18], a plethora of new abstract machines or compi-
lation techniques have been proposed. The list of existing abstract machines includes (but is sure-
ly not limited to) the SECD [18], the FAM [6], the CAM [7], the CMCM [20], the TIM [10], the
ZAM [19], the G-machine [15] and the Krivine-machine [8]. Other implementations are not de-
scribed via an abstract machine but as a collection of transformations or compilation techniques
such as CPS-based compilers [1][12][17]. Furthermore, numerous papers present optimizations
often adapted to a specific abstract machine or a specific approach [3][4][16]. Looking at this
myriad of distinct works, obvious questions spring to mind: what are the fundamental choices?
What are the respective benefits of these alternatives? What are precisely the common points and
differences between two compilers? Can a particular optimization, designed for machineA, be
adapted to machineB? One finds comparatively very few papers devoted to these questions.
There have been studies of the relationship between two individual machines [25][21] but, to the
best of our knowledge, no global approach to describe, classify and compare implementations.

This paper presents an advance towards a general taxonomy of functional language imple-
mentations. Our approach is to express in a common framework the whole compilation process
as a succession of program transformations. The framework considered is a hierarchy of interme-
diate languages all of which are subsets of the lambda-calculus. Our description of an implemen-
tation consists of a series of transformationsΛ T1→ Λ1 →T2 … →Tn Λn each one compiling a
particular task by mapping an expression from one intermediate language into another. The last
languageΛn consists of functional expressions which can be seen as machine code (essentially,
combinators with explicit sequencing and calls). For each step, different transformations are de-
signed to represent fundamental choices or optimizations. A benefit of this approach is to struc-
ture and decompose the implementation process. Two seemingly disparate implementations can
be found to share some compilation steps. This approach has also interesting payoffs as far as



correctness proofs and comparisons are concerned. The correctness of each step can be tackled
independently and amounts to proving a program transformation in the functional world. It also
paves the way to formal comparisons by estimating the complexity of individual transformations
or compositions of them.

The two steps which cause the greatest impact on the compiler structure are the implementa-
tion of the reduction strategy (searching for the next redex) and the environment management
(compilation ofβ-reduction). Other steps include implementation of control transfers (calls & re-
turns), representation of components like data stack or environments and various optimizations.

The task is clearly huge and our presentation is by no means complete (partly because of
space concerns, partly because some points are still under study). First, we concentrate on pureλ-
expressions and our source languageΛ is E ::= x | λx.E | E1 E2. Most fundamental choices can be
described for this simple language. Second, we focus on the call-by-value reduction strategy and
its standard implementations. In section 2 we describe the framework used to model the compila-
tion process. In section 3 (resp. section 4) we present the alternatives and optimizations to com-
pile call-by-value (resp. the environment management). Each section is concluded with a
comparison of the main options. Section 5 is devoted to two other simple steps leading to ma-
chine code. In section 6, we describe how this work can be easily extended to deal with constants,
primitive operators, fix-point and call-by-name strategies. We also mention what remains to be
done to model call-by-need and graph reduction. Finally, we indicate how it would be possible to
mix different choices within a single compiler (section 8) and conclude by a short review of relat-
ed works.

2  General Framework

The transformation sequence presented is this paper involves four intermediate languages (very
close to each other) and can be described asΛ → Λs→ Λe→ Λk. The first one,Λs, bans unrestrict-
ed applications and makes the reduction strategy explicit using a sequencing combinator. The
second oneΛe excludes unrestricted uses of variables and encodes environment management.
The last oneΛk handles control transfers by using calls and returns. This last language can be
seen as a machine code. We focus here on the first intermediate language; the others (and an over-
view of their use) are briefly described in 2.5.

2.1  The control languageΛs

Λs is defined using the combinatorso, pushs, andλsx. E (this last construct can be seen as a short-
hand for a combinator applied toλx. E). This language is a subset ofλ-expressions therefore sub-
stitution and the notion of free or bound variables are the same as inλ-calculus.

Λs  E ::= x | pushs E | λsx. E | E1 o E2 x ∈ Vars

The most notable syntactic feature ofΛs is that it rules out unrestricted applications. Its main
property is that the choice of the next redex is not relevant anymore (all redexes are needed). This
is the key point to compile evaluation strategies which are made explicit using the primitiveo. In-
tuitively, o is a sequencing operator andE1 o E2 can be read “evaluateE1 then evaluateE2”, pushs
E returnsE as a result andλsx. E binds the previous intermediate result tox before evaluatingE.

These combinators can be given different definitions (possible definitions are given at the end
of this section (DEF1) and in sub-section 5.2). We do not pick a specific one up at this point; we
simply impose that their definitions satisfy the equivalent ofβ-andη-conversions

(βs) (pushs F) o (λsx. E) = E[F/x]

(ηs) λsx.(pushs x o E) = E if x does not occur free in E



As the usual imperative sequencing operator “;”, it is natural to enforce the associativity of
combinatoro. This property will prove especially useful to transform programs.

(assoc) (E1 o E2) o E3 = E1 o (E2 o E3)

We often omit parentheses and write e.g.pushsE o λsx.F o G for (pushs E) o (λsx.(F o G)).

2.2  A typed subset

We are not interested in all the expressions ofΛs. Transformations of source programs will only
produce expressions denoting results (i.e. which can be reduced to expressions of the formpushs
F). In order to express laws more easily it is convenient to restrictΛs using a type system (Figure
1). This does not impose any restrictions on source programs. For example, we can allow reflex-
ive types (α=α→α) to type any sourceλ-expression. The restrictions enforced by the type sys-
tem are on how results and functions are combined. For example, compositionE1 o E2 is
restricted so thatE1 must denote a result (i.e. has typeRσ, R being a type constructor) andE2
must denote a function.

Γ |− E : σ Γ ∪ { x:σ}  |−  E : τ Γ |−  E1 : Rσ Γ |− E2 : σ →s τ
  
Γ |− pushs E : Rσ Γ |− λsx. E : σ →s τ Γ |−  E1 o E2 : τ

Figure 1 Λs typed subset

2.3  Reduction

We consider only one reduction rule corresponding to the classicalβ-reduction:

pushs F o λsx. E ➨ E[F/x]

As with all standard implementations, we are only interested in modelling weak reductions.
Subexpressions insidepushs’s andλs’s are not considered as redexes and from here on we write
“redex” (resp. reduction, normal form) for weak redex (resp. weak reduction, weak normal
form).

Any two redexes are clearly disjoint and theβs-reduction is left-linear so the term rewriting
system is orthogonal (hence confluent). Furthermore any redex is needed (a rewrite cannot sup-
press a redex) thus all reduction strategies are normalizing.

Property 1 If a closed expression E:Rσ has a normal form, there exist V such that E*
➨ pushs V

Due to the lack of space we do not display proofs here and refer the interested reader to a
companion paper [9].

The reduction should be done modulo associativity if we allow an unrestricted use of (assoc)
which may produce ill-typed programs. The rule (βs) along with (assoc) specifies a string reduc-
tion confluent modulo (assoc).

2.4  Laws

This framework enjoys a number of algebraic laws useful to transform the functional code or to
prove the correctness or equivalence of program transformations. We list here only two of them.

(L1) if x does not occur free in F (λsx.E) o F = λsx. (E o F)

(L2) ∀E1:Rσ, ∀E2:Rτ, if x does not occur free in E2 E1 o (λsx. E2 o E3) = E2 o E1 o (λsx.E3)



These rules permit code to be moved inside or outside function bodies or to invert the evalu-
ation of two results. Their correctness can be established very simply. For example (L1) is sound
sincex does not occur free in (λsx.E) nor, by hypothesis, inF and

(λsx.E) o F = λsx. pushs x o ((λsx.E) o F) (ηs)

= λsx. ((pushs x o (λsx.E)) o F) (assoc)

= λsx. (E[x/x] o F) (βs)

= λsx. (E o F) (subst)

In the rest of the paper, we introduce other laws to express optimizations of specific transfor-
mations.

2.5  Overview of the compilation phases

Before describing implementations formally, let us first give an idea of the different phases,
choices and the hierarchy of intermediateΛ-languages.

The first phase is the compilation of control which is described by transformations (V ) from
Λ to Λs. The pair (pushs, λs) specifies a component storing intermediate results (e.g. a data
stack). The main choice is using the eval-apply model (Va) or the push-enter model (Vm). For the
Va family we describe other minor options such as avoiding the need for a stack (Vas, Vaf ) or
right-to-left (Va) vs. left-to-right evaluation (VaL).

Transformations (A) from Λs to Λe are used to compileβ-reduction. The languageΛe avoids
unrestricted uses of variables and introduces the pair (pushe, λe). They behave exactly aspushs
andλs and corresponding properties (βe, ηe) hold. They just act on a (at least conceptually) dif-
ferent component (e.g. a stack of environments). The main choice is using list-like environments
(As) or vector-like environments (Ac). For the latter choice, there are several transformations de-
pending on the way environments are copied (Ac1, Ac2, Ac3).

A last transformation (S) from Λe to Λk is used to compile control transfers (this step can be
avoided by using a transformation (Sl ) onΛs-expressions). The languageΛk makes calls and re-
turns explicit. It introduces the pair (pushk, λk) which specifies a component storing return ad-
dresses.

Control Λs (pushs, λs) Va VaL Vas Vaf Vm# (+ Sl*)

Abstraction Λe (pushe, λe) As Ac1 Ac2 Ac3#

Transfers Λk (pushk, λk) S*

Figure 2 Summary of the Main Compilation Steps and Options

Figure 2 gathers the different options described in the three following sections. Any two
transformations of different phases can be combined except those with the same superscript (# or
*). Stack-like components are avoided by underlined transformations.

Combinators, expressed in terms ofpushx andλx, are described along with transformations.
To simplify the presentation, we also use syntactic sugar such as tuples (x1,…,xn) and pattern-
matchingλx(x1,…,xn).E.

This hierarchy ofΛ-languages is a convenient abstraction to express the compilation process. But
recall that they are made of combinators and therefore subsets of theλ-calculus. An important
point is that we do not have to give a precise definition to pairs (pushx, λx). We just enforce that
they respect properties (βx) and (ηx). Definitions do not have to be chosen until the very last step.
For example, definitions ofo andpushs would be of the form



o E1 E2 X1 … Xn→ … pushs V X1 … Xn → …

whereX1,…,Xn are components on which the code acts (e.g. control or data stack, registers,…).
In other words,X1,…,Xn along with theΛx-code can be seen as the state of an abstract machine.
We do not want to commit ourselves to a precise definition of combinators, however we want to
ensure that the reduction from left to right using the rules of combinators simulates the reduction
➨. In order to enforce this property, it is possible to state a few conditions that the standard re-
duction of combinators must verify. We do not expound on this issue, but a possible definition for
Λs is

(DEF1) pushs E = λc. c E λsx. E = λc.λx. E c E1 o E2 = λc. E1 (E2 c) (c fresh)

and we can easily check thatβ-reduction simulates reduction➨. Alternative definitions are pre-
sented in section 5.2.

3  Compilation of Control

We do not consider left-to-rightvs. right-to-left as a fundamental choice to implement call-by-
value. A more radical dichotomy isexplicit applies vs. marks. The first option is the standard
technique (e.g. used in the SECD or CAM) while the second was hinted at in [10] and used in
ZINC.

3.1  Compilation of control using apply

ApplicationsE1 E2 are compiled by evaluating the argumentE2, the functionE1 and finally ap-
plying the result ofE1 to the result ofE2. The compilation of right-to-left call-by-value is de-
scribed in Figure 3. Normal forms denote results soλ-abstractions and variables (which, in strict
languages, are always bound to a normal forms) are transformed into results (i.e.pushs E).

Va : Λ → Λs

Va [[x]]  = pushs x

Va [[λx.E]]  = pushs (λsx. Va [[E]] )

Va [[E1 E2]]  = Va [[E2]] o Va [[E1]] o app with app = λsx. x

Figure 3 Compilation of Right-to-Left CBV with Explicit Applies( Va)

The rules can be explained intuitively by reading “return the value” forpushs, “evaluate” for
Va, “then” for o and “apply” forapp. Va produces well-typed expressions. Its correctness is stated
by Property 2 which establishes that the reduction of transformed expressions (*

➨) simulates the
call-by-value reduction (CBV) of sourceλ-expressions.

Property 2 ∀E ∈Λ, CBV(E)≡ V ⇔ Va [[E]] *
➨ Va [[V]]

It is clearly useless to store a function to apply it immediately after. This optimization is ex-
pressed by the following law

(L3) pushs E o app = E (pushs E o λsx. x =βs x[E/x] = E)

Example. Let E ≡ (λx.x)((λy.y)(λz.z)) then after simplifications

Va [[E]] ≡ pushs(λsz. pushs z) o (λsy. pushs y) o (λsx. pushs x)

➨ pushs(λsz. pushs z) o (λsx. pushs x) ➨ pushs(λsz. pushs z) ≡ Va [[λz.z]]

The choice of redex inΛs does not matter anymore. The illicit (in call-by-value) reductionE →
(λy.y)(λz.z) cannot occur withinVa [[E]] . ❒



To illustrate possible optimizations, let us take the standard case of a function applied to all of
its arguments (λx1.…λxn.E0) E1 … En, then

Va [[(λx1.…λxn.E0) E1 … En]]

= Va [[En]] o … o Va [[E1]] o pushs (λsx1…(pushs (λsxn.Va [[E0]] )…) o app o … o app

= Va [[En]] o … o Va [[E1]] o (λsx1.λsx2.…λsxn.Va [[E0]] )

All the app combinators have been statically removed using associativity, (L1) and (L3). In
doing so, we have avoided the construction ofn intermediary closures corresponding to then
unary functions denoted byλx1.…λxn.E0. This optimization can be generalized to implement the
decurryfication phase present in many implementations. In our framework,λsx1.…λsxn.E de-
notes a function always applied to at leastn arguments (otherwise there would bepush’s between
theλs’s). More sophisticated optimizations could be designed. For example, if a closure analysis
ensures that a set of binary functions are bound to variables always applied to at least two argu-
ments, moreapp andpushs combinators can be eliminated. Such information requires a poten-
tially costly analysis and still, many functions or application contexts might not satisfy the
criteria. Usually, implementations assume that higher order variables are bound to unary func-
tions. That is, functions passed in arguments are considered unary and compiled accordingly.

The transformationVaL describing left-to-right call-by-value can be derived fromVa. It is ex-
pressed as before except the rule for composition which becomes

VaL [[E1 E2]]  = VaL [[E1]] o VaL [[E2]] o appL with appL = λsx.λsy. pushs x o y

Property 2 still holds forVaL. Decurryfication can also be expressed although it involves slightly
more complicated shifts. The equivalent of the rule (L3) is

(L4) E : Rσ pushs F o E o appL = E o F

TransformationsVa and VaL may produce expressions such aspushs E1 o pushs E2 o…o

pushs En o …. The reduction of such expressions requires a structure (such as a stack) able to
store an arbitrary number of intermediate results. Some implementations make the choice of not
using a data stack, hence they disallow several pushes in a row. In this case the rule for composi-
tions ofVa must be changed into

Vas [[E1 E2]]  = Vas [[E2]] o (λsm. Vas [[E1]] o λsn. pushs m o n)

This new rule is easily derived from the original. Similarly the rule for compositions ofVaL
can be changed into

Vaf [[E1 E2]]  = Vaf [[E1]] o (λsm. Vaf [[E2]] o m)

For these expressions, the component on whichpushs andλs act may be a single register. An-
other possible motivation for these transformations is that the produced expressions now possess
a unique redex throughout the reduction. The reduction sequence must be sequential and is
unique.

3.2  Compilation of control using marks

Instead of evaluating the function and its argument and then applying the results, another solution
is to evaluate the argument and to apply the unevaluated function right away. Actually, this im-
plementation is very natural in call-by-name when a function is evaluated only when applied to
an argument. With call-by-value, a function can also be evaluated as an argument and in this case
it cannot be immediately applied but must be returned as a result. In order to detect when its eval-
uation is over, there has to be a way to distinguish if its argument is present or absent: this is the
role of marks. After a function is evaluated, a test is performed: if there is a mark, the function is



returned as a result (and a closure is built), otherwise the argument is present and the function is
applied. This technique avoids building some closures but at the price of dynamic tests.

The markε is supposed to be a value which can be distinguished from others. Functions are
transformed intograb E with the intended reduction rules

pushs ε o grab E ➨ pushs E

and pushs V o grab E ➨ pushs V o E (V ≡/ ε)

Combinatorgrab and the markε can be defined inΛs. In practice, it should be implemented
using a conditional which tests the presence of a mark. The transformation of right-to-left call-
by-value is described in Figure 4.

Vm : Λ → Λs

Vm [[x]]  = grab x

Vm [[λx.E]]  = grab (λsx. Vm [[E]] )

Vm [[E1 E2]]  = pushs ε o Vm [[E2]] o Vm [[E1]]

Figure 4 Compilation of Right-to-Left Call-by-Value with Marks( Vm)

The correctness ofVm is stated by Property 3 which establishes that the reduction of trans-
formed expressions simulates the call-by-value reduction of sourceλ-expressions.

Property 3 ∀E ∈ Λ, CBV(E)≡ V ⇔ Vm [[E]] *
➨ Vm [[V]]

There are two new laws corresponding to the reduction rules ofgrab:

(L5) pushs ε o grab E = pushs E

(L6) E : Rσ E o grab F = E o F

Example. Let E ≡ (λx.x)((λy.y)(λz.z)) then after simplifications

Vm [[E]] ≡ pushsε o pushs(λsz.grab z) o (λsy.grab y) o (λsx.grab x)

➨ pushs ε o grab (λsz. grab z) o (λsx. grab x)

➨ pushs (λsz. grab z) o (λsx. grab x) ➨ grab (λsz. grab z) ≡ Vm [[λz.z]] ❒

As before, when a function is known to be applied ton arguments, the code can be optimized
to saven dynamic tests. Actually, it appears thatVm is subject to the same kind of optimizations
asVa. Decurryfication and related optimizations can be expressed based on rule (L6).

It would not make much sense to consider a left-to-right strategy here. The whole point of
this approach is to prevent building some closures by testing if the argument is present. Therefore
the argument must be evaluated before the function.

3.3  Comparison

We compare the efficiency of codes produced by both transformations. We saw before that both
transformations are subject to identical optimizations and we examined unoptimized codes only.
A code produced byVm builds less closures than the correspondingVa-code. A mark can be rep-
resented by one bit soVm is likely to be on average less greedy on space resources. Concerning
time efficiency, the size of compiled expressions gives a first approximation of the overhead en-
tailed by the encoding of the reduction strategy. It is easy to show that code expansion is linear
with respect to the size of the source expression. More precisely



If Size [[E]] = n thenSize (V [[E]]) < 3n (for V = Va orVm)

This upper bound can be reached by taking for exampleE ≡ λx.x… x (n occurrences ofx). A
more thorough investigation is possible by associating costs with the different combinators en-
coding the control:push for the cost of “pushing” a variable or a mark,clos for the cost of build-
ing a closure (i.e.pushs E), app andgrab for the cost of the corresponding combinators. If we
takenλ for the number ofλ-abstractions andnv for the number of occurrences of variables in the
source expression, we have

Cost (Va [[E]]) = nλ clos + nv push + (nv-1) app and Cost (Vm [[E]]) = (nλ + nv) grab+ (nv-1) push

The benefit ofVm overVa is to sometimes replace a closure construction and anapp by a test
and anapp. So ifclos is comparable to a test (for example, when returning a closure amounts to
build a pair as in section 4.1)Vm will produce more expensive code thanVa.

If closure building is not a constant time operation (as in section 4.2)Vm can be arbitrarily
better thanVa. Actually, it can change the program complexity in pathological cases. In practice,
however, the situation is not so clear. When no mark is present agrab is implemented by a test
followed by anapp. If a mark is present the test is followed by apushs (for variables) or a clo-
sure building (forλ-abstractions). So we have

Cost (Vm [[E]]) = (nλ+nv) test+ p (nλ+nv) app + p nλ clos+ p nv push + (nv-1) push

with p (resp.p) representing the likelihood (p+p=1) of the presence (resp. absence) of a mark
which depends on the program. The best situation forVm is when no closure has to be built, that
is p=0 & p=1. If we take some reasonable hypothesis such astest=app andnλ <nv<2nλ we find
that the cost of closure construction must be 3 to 4 times more costly thanappor test to makeVm
advantageous. With less favorable odds such asp=p=1/2,clos must be worth up to 6app.

We are lead to conclude thatVm should be considered only with a copy scheme for closures.
Even so, tests may be too costly in practice compared to the construction of small closures. The
best way would probably be to perform an analysis to detect cases whenVm is profitable. Such
information could be taken into account to get the best of each approach. We present in section
8.1 howVa andVm could be mixed.

4  Compilation of theβ-Reduction

This transformation step implements the substitution. Variables are replaced by combinators act-
ing on environments. The value of a variable is fetched from the environment when needed. Be-
cause of the lexical scope, paths to values in the environment are static. Compared toΛs, Λe adds
the pair (pushe, λe) which is used to define combinators.

4.1  Shared environments

The denotational-like transformationAs is widely used among the functional abstract machines
[7][18][19]. The structure of the environment is a tree of closures. A closure is added to the envi-
ronment in constant time. On the other hand, a chain of links has to be followed when accessing a
value. The access time complexity is O(n) wheren is the number ofλs’s from the occurrence to
its bindingλs (i.e. its de Bruijn number). The transformation (Figure 5) is done relatively to a
compile-time environmentρ made of pairs. The integeri in xi denotes the rank of the variable in
the environment.



As : Λs → env→ Λe

As [[E1 o E2]] ρ = duple o As [[E1]] ρ o swapseo As [[E2]] ρ

As [[pushs E]] ρ = pushs (As [[E]] ρ) o mkclos

As [[λsx.E]] ρ = bind o As [[E]] (ρ,x)

As [[xi]] (…((ρ,xi),xi-1)…,x0) = fsti o snd o appclos

Figure 5 Abstraction with Shared Environments (As)

As needs seven new combinators to express saving and restoring environments (duple,
swapse), closure building and opening (mkclos, appclos), access to values (fst, snd), adding a
binding (bind). They are defined inΛe by

duple = λee. pushe e o pushe e swapse = λsx. λee. pushs x o pushe e

mkclos = λsx. λee. pushs (x,e) appclos = λs(x,e). pushe e o x

fst = λe(e,x). pushe e snd = λe(e,x). pushs x

bind = λee. λsx. pushe (e,x)

As correctness is stated by Property 4.

Property 4 ∀E: Rσ closed, E*
➨ V ⇒ As [[E]] () =β As [[V]] ()

TransformationAs can be optimized by adding the rules

As [[app]] ρ = As [[λsx.x]] ρ = bind o snd o appclos = appclos’

with appclos’ = λez.λs(x,e). pushe e o x

As [[λsx.E]] ρ = popseo As [[E]] ρ with popse = λee. λsx. pushe e and x is not free in E

As [[pushs xi]]  (…((ρ,xi),xi-1)…,x0) = fsti o snd

Variables are bound to closures stored in the environment. With the original rules,
As [[pushsxi]] would build yet another closure. This useless “boxing” is avoided by the above rule.

Example. As [[λsx1.λsx0. pushs E o x1]] ρ = bind o bind o duple o pushs (As [[E]] ((ρ,x1),x0))

o mkclos o swapseo fst o snd o appclos

Two bindings are added (bind o bind) to the current environment and thex1 access is now coded
by fst o snd. ❒

In our framework,λsx1.…λsxn.E denotes a function always applied to at leastn arguments.
So the corresponding links in the environment can be collapsed without any loss of sharing [8].
The list-like environment can become a vector locally and variable accesses have to be modified
consequently.

Also, the combinatormkclos can be avoided by an abstraction which unfolds the pair
(code,env) in the environment itself, as in TIM [10].

4.2  Copied environments

Another choice is to provide a constant access time [1][12]. In this case, the structure of the envi-
ronment must be a vector of closures. Code which copies the environment (a O(lengthρ) opera-
tion) has to be inserted inAs in order to avoid links.



The macro-combinatorCopy ρ produces code that copies an environment according toρ’s
structure.

Copy (…((),xn),…,x0) = λee. pushe () o (pushe e o getn o bind) o … o (pushe e o get0 o bind)

Combinatorsgeti are a shorthand forfsti o snd. However, if environments are represented by
vectors,geti can be considered as a constant time operation andbind can be seen as adding a
binding in a vector.

There are several abstractions according to the time of the copies. We present only the rules
differing from As scheme. A first solution (Figure 6) is to copy the environment just before add-
ing a new binding (as in [10]). From the first step we know that n-ary functions (λsx1.…λsxn.E)
are never partially applied and cannot be shared: they need only one copy of the environment.
The overhead is placed on function entry and closure building remains a constant time operation.
This transformation produces environments which can be shared by several closures but only as a
whole. So, there must be an indirection when accessing the environment.

Ac1 [[λsxi…x0.E]] ρ = Copy ρ o bind i+ 1 o Ac1 [[E]] (…(ρ,xi)…,x0)

Ac1 [[xi]]  (…(ρ,xi),…,x0) = geti o app

Figure 6 Copy at Function Entry (Ac1 Abstraction)

The environmentρ representsρ restricted to variables occurring free in the subexpressionE.

Example.Ac1 [[λsx1.λsx0. pushs E1 o x1]] ρ

= Copy ρ o bind2 o duple o pushs (Ac1 [[E]] ((ρ,x1),x0))) o mkclos o swapseo get1 o appclos

The code builds a vector environment made of a specialized copy of the previous environment
and two new bindings (bind2) ; thex1 access is now coded byget1. ❒

A second solution (Figure 7) is to copy the environment when building and opening closures
(as in [12]). The copy at opening time is necessary in order to be able to add new bindings in con-
tiguous memory (the environment has to remain a vector). This transformation produces environ-
ments which cannot be shared but may be accessed directly (they can be packed with a code
pointer to form a closure).

Ac2 [[pushs E]] ρ = Copy ρ o pushs(Copy ρ o Ac2 [[E]] ρ) o mkclos

Ac2 [[xi]]  (…((ρ,xi),xi-1)…,x0) = geti o appclos

Figure 7 Copy at Closure Building and Opening (Ac2 Abstraction)

A third solution is to copy the environment only when building closures (as in [6]). In order
to be able to add new bindings after closure opening, a local environmentρL is needed. When a
closure is built, the concatenation of the two environments (ρG++ρL) is copied. The code for
variables now has to specify which environment is accessed. Although the transformation
scheme remains similar, every rule must be redefined to take into account the two environments.
We list here only two of them.

Ac3 [[pushs E]] (ρG,ρL) = Copy (ρG++ρL) o pushs (Ac3 [[E]] (ρG++ρL,())) o mkclos

Ac3 [[λsx.E]] (ρG,ρL) = bind3 o Ac3 [[E]]  (ρG,(ρL,x)) with bind3 =λe(eg,el).λsx.pushe (eg,(el,x))

Figure 8  Abstraction with Local Environments (Ac3 Abstraction)

Local environments are not compatible withVm : Ac3 [[grab E]]  would generate two different
versions ofAc3 [[E]]  sinceE may appear in a closure or may be applied. This code duplication is
obviously not realistic.



4.3  Refinements

The sequencing can be exploited by the abstraction process. Instead of saving and restoring the
environment (as inAs [[E1 o E2]] ), we can pass it toE1 which may add new bindings (bind) but
has to remove them (usingfst) before passing the environment toE2. For example the rules for
sequences and λs-abstractions might be

Aseq [[E1 o E2]] ρ = Aseq [[E1]] ρ o Aseq [[E2]] ρ

and Aseq [[λsx.E]] ρ = bind o Aseq [[E]]  (ρ,x) o fst

Many other refinements are possible. For example, environments can be unfolded so that the
environment stack becomes a closure stack [12]. This avoids an indirection and provides a direct
access to values.

4.4  Comparison

The size of the abstracted expressions gives a first approximation of the overhead entailed by the
encoding of theβ-reduction. It is easy to show that code expansion is quadratic with respect to
the size of the source expression. More precisely

if Size [[E]]  = n thenSize (As (Va [[E]] )) ≤ nλnv-nv+6n+6

with nλ the number ofλ-abstractions and nv the number of variable occurrences (n=nλ+nv) of the
source expression. This expression reaches a maximum with nv=(n-1)/2. This upper bound can
be approached with, for example,λx1....λxnλ. x1... xnλ. The product nλnv indicates that the effi-
ciency ofAs depends equally on the number of accesses (nv) and their length (nλ). For Ac1 we
have

 if Size [[E]]  = n thenSize (Ac1 (Va [[E]] )) ≤ 6nλ
2- 6nλ+7n+6

which makes clear that the efficiency ofAc1 is not dependent of accesses. The abstractions have
the same complexity order, nevertheless one may be more adapted than the other to individual
source expressions. These complexities highlight the main difference between shared environ-
ments that favors building, and copied environments that favors access. Let us point out that
these bounds are related to the quadratic growth implied by Turner’s abstraction algorithm [29].
Balancing expressions reduces this upper bound to O(nlogn) [16]. It is very likely that this tech-
nique could also be applied toλ-expressions to get a O(nlogn) complexity for environment man-
agement.

The abstractions can be compared according to their memory usage too.Ac2 copies the envi-
ronment for every closure, whereAc1 may share a bigger copy. So, the code generated byAc2
consumes more memory and implies frequent garbage collections whereas the code generated by
Ac1 may create space leaks and needs special tricks to plug them (see [25] section 4.2.6).

5  Compilation To Machine Code

In this section, we make explicit control transfers and propose combinator definitions. After these
steps the functional expressions can be seen as realistic machine code.

5.1  Control transfers

A conventional machine executes linear code where each instruction is basic. We have to make
explicit calls and returns. In our framework reducing expressions of the formappclos o E in-
volves evaluating a closure and returning toE. There are two solutions to save the return address.



We model the first one with a transformationS onΛe-expressions. It shifts the code following
the function call usingpushk, and returns to it withrtss (= λsx.λkf. pushs x o f ) when the function
ends (as in [12][18][19]). Intuitively these combinators can be seen as implementing a control
stack. Compared toΛe, Λk-expressions do not haveappcloso E code sequences.

S : Λe → Λk

S [[duple o E1 o swapseo E2]] = duple o pushk (swapseo S [[E2]]) o swapke o S [[E1]]

S [[pushs E o mkclos]] = pushs S [[E]] o mkclos o rtss

S [[bind o E]] = bind o S [[E]]

S [[E o appclos]]  = pushk (appclos) o swapke o S [[E]]

S [[ fsti o snd]]  = fsti o snd o rtss

Figure 9 Compilation of Control Transfers (S)

The combinatorswapke = λkx. λee. pushk x o pushe e is necessary in order to mix the new
componentk with the other ones. The resulting code can be simplified to avoid useless sequence
breaks. To get a real machine code a further step would be to introduce labels to name sequences
of code (such asE in pushx E).

A second solution uses a transformationSl between the control and the abstraction phases. It
transforms the expression into continuation passing style. The continuation encodes return ad-
dresses and will be then abstracted in the environment as any variable. This solution, known as
stackless, is chosen in Appel’s ML compiler [1]. It prevents the use of a control stack but relies
heavily on the garbage collector. Appel claims that it is simple, not inefficient and well suited to
implementcallcc.

Sl : Λs → Λs

Sl [[E1 o E2]]  = λsk. pushs (pushs k o Sl [[E2]] ) o Sl [[E1]]

Sl [[pushs E]]  = λsk. pushs (Sl [[E]] ) o k

Sl [[λsx.E]] = λsk.λsx. pushs k o Sl [[E]]

Sl [[x]]  = x

Sl [[app]]  = Sl [[λsx. x]]  = λsk.λsx. pushs k o x = appk

Figure 10 Compilation of the Control as a Standard Argument (Sl )

The following optimization removes unnecessary manipulations of the continuationk :

pushs E1 o (λsk. pushs E2 o k) = pushs E2 o E1

5.2  Separate vs. merged components

The pairs of combinators (λs, pushs), (λe, pushe), and (λk, pushk) do not have definitions yet.
Each pair can be seen as encoding a component of an underlying abstract machine and their defi-
nitions specify the state transitions. We can now choose to keep the components separate or
merge (some of) them. Both options share the same definitiono = λxyz. x (y z).

Keeping the components separate brings new properties, allowing code motion and simplifi-
cations. The sequencing of two combinators on different components is commutative and admin-
istrative combinators such asswapse are useless. Possible definitions (c, s, e being fresh
variables) follow



λsx.X = λc.λ(s,x). X c s pushsN = λc.λs.c(s,N)

λex.X = λc.λs.λ(e,x). X c s e pusheN = λc.λs.λe.c s(e,N)

and similarly for (λk, pushk). The reduction of our expressions can be seen as state transitions of
an abstract machine, e.g. :

pushs N C S E K→ C (S,N) E K pushe N C S E K→ C S(E,N) K

A second option is to merge all components. Here, administrative combinators remain necessary.

λax.X = λc.λ(z,x).X c z pusha N = λc.λz. c(z,N) with (a ≡s,eor k)

6  Extensions

We describe here several extensions needed in order to handle realistic languages and to describe
a wider class of implementations.

6.1  Constants, primitive operators & data structures

We have only considered pureλ-expressions because most fundamental choices can be described
for this simple language. Realistic implementations also deal with constants, primitive operators
and data structures. Concerning basic constants, a question is whether base-typed results are of
the formpushs n or another component is introduced (e.g.pushb, λb). Both options can be cho-
sen. The latter has the advantage of marking a difference between pointers and values which can
be exploited by the garbage collector. But in this case, type information must also be available to
transform variables andλ-abstractions correctly. The conditional, the fix-point operator, and
primitive operators acting on basic values are introduced in our language in a straightforward
way. As far as data structures are concerned we can again choose to treat them as closures or sep-
arately. A more interesting choice is whether we represent them using tags or higher-order func-
tions [10].

V [[ rec f (λx.E)]]  = pushs (recs f (λsx. V [[E]] ))

V [[if E1 thenE2 else E3]] = V [[E1]] o conds (V [[E2]] , V [[E3]] )

V [[E1 + E2]]  = V [[E2]] o V [[E1]] o pluss V [[n]]  = pushs n

V [[cons E1 E2]]  = V [[E2]] o V [[E1]] o conss V [[head]]  = heads

Figure 11 An extension with constants, primitive operators and lists

A possible extension using the component defined by (pushs, λs) to store constants and
tagged cells of lists is described in Figure 11 with

conss= λsh.λst. pushs(tag,h,t) heads= λs(tag,h,t). pushs h

pushs n2 o pushsn1 o pluss➨ pushs n1+n2

6.2  Call-by-name & mixed evaluation strategies

Many of the choices discussed before remain valid for call-by-name implementations. Only the
compilation of the computation rule has to be described. Figure 12 presents two possible trans-
formations. The first one considersλ-abstractions as values and evaluates the function before ap-
plying it to the unevaluated argument. The second one (used by the TIM and Krivine machine)
directly applies the function to the argument. In this scheme functions are not considered as re-
sults.



Na : Λ → Λs Nm : Λ → Λs

Na [[x]]  = x Nm [[x]]  = x

Na [[λx.E]]  = pushs (λsx. Na [[E]] ) Nm [[λx.E]]  = λsx. Nm [[E]]

Na [[E1 E2]]  = pushs (Na [[E2]]) o Na [[E1]] o app Nm [[E1 E2]]  = pushs(Nm [[E2]]) o Nm [[E1]]

Figure 12  Two Transformations for Call-by-Name (Na & Nm)

The transformationNm is simpler and avoids some overhead ofNa. On the other hand, mak-
ing Nm lazy is problematic: it needs marks to be able to update closures [10][8][27]. This is ex-
actly the same problem as withVm ; without marks we cannot know if a function represents a
result or has to be applied. In the first case, we have to return it (cbv,Vm) or update a closure
(cbn,Nm).

Strictness analysis can be taken into account in order to produce mixed evaluation strategies.
In fact, the most interesting optimization brought by strictness information is not the change of
the evaluation order but avoiding thunks using unboxing [5]. If we assume that a strictness analy-
sis has annotated the code byE1 E2 if E1 denotes a strict function andx if the variable is defined
by a strictλ-abstraction thenNa can be extended as follows

Na [[x]]  = pushs x Na [[E1 E2]]  = Na [[E2]] o Na [[E1]] o app

Underlined variables are known to be already evaluated; they are represented as unboxed val-
ues. For example, without any strictness information, the expression (λx. x+1) 2 is compiled into
pushs (pushs 2) o (λsx. x o pushs 1 o pluss). The codepushs 2 will be represented as a closure
and evaluated by the callx; it is the boxed representation of 2. With strictness annotations we
havepushs 2 o (λsx. pushs x o pushs 1 o pluss) and the evaluation is the same as with call-by-val-
ue (no closure is built). Actually, more general forms of unboxing and optimizations (as in [26])
could be expressed as well.

6.3  Call-by-need and graph reduction

Call by need brings yet other options. The update mechanism can be implemented by self-updat-
able closures (as in [24]), by modifying the continuation (as in [12]). Updating is also central in
implementations based on graph reduction. Expressing redex sharing and updating is notoriously
difficult. In our framework, a straightforward idea is to add a store component along with new
combinators. Each expression takes and returns the store; the sequencing ensures that the store is
single-threaded. We suspect that adding store and updates in our framework will complicate cor-
rectness proofs. On the other hand, this can be done at a very late stage (e.g. after the compilation
of call-by-name andβ-reduction). All the transformations, correctness proofs, optimizations pre-
viously described would remain valid. The complications involved by updating would be con-
fined in a single step. We are currently working on this issue.

7  Classical Functional Implementations

Descriptions of functional compilers often hide their fundamental structure behind implementa-
tion tricks and optimizations. Figure 13 states the main design choices which represent the skele-
ton of several classical implementations.

There are cosmetic differences between our description and the real implementation. Also,
some extensions and optimizations are not described here. Let us state precisely the differences
for the categorical abstract machine. LetCAM = As • VaL as stated in Figure 13, by simplifying
this composition of transformations we get



CAM [[xi]] ρ = fsti o snd

CAM [[λx.E]] ρ = pushs (bind o (CAM [[E]]  (ρ,x))) o mkclos

CAM [[E1 E2]] ρ = duple o (CAM [[E1]] ρ) o swapseo (CAM [[E2]] ρ) o appclos

The fst, snd, duple andswapse combinators match with CAM’sFst, Snd, Push andSwap.
The sequencepushs (E) o mkclos is equivalent to CAM’sCur (E). The only difference comes
from the place ofbind (at the beginning of each closure in our case). Shifting this combinator to
the place where the closures are evaluated (i.e. merging it withappclos), we getλs(x,e). pushe e
o bind o x, which is exactly CAM’s sequenceCons;App.

Compiler Transformations Components

SECD Va Id As S s (e≡ k)

CAM VaL Id As Id s≡ e

ZAM Vm Id As S s (e≡ k)

SML-NJ Vaf Sl (Ac3+As) Id s e (registers)

TABAC (cbv) Va Id Ac2 S (s≡ e) k

TABAC (cbn) Na Id Ac2 S (s≡ e) k

TIM (cbn) Nm Id Ac1 Id s e

Figure 13 Several Classical Compilation Schemes

Let us quickly review the other differences between Figure 13 and real implementations. The
SECD machine [18] saves environments a bit later than in our scheme. Furthermore, the control
stack and the environment stack are gathered in a component called dump. The data stack is also
(uselessly) saved in the dump. Actually, our replica is closer to the idealized version derived in
[13]. The ZAM [19] uses a slightly different compilation of control thanVm and has an accumu-
lator and registers. The SML-NJ compiler [1] uses only the heap which is represented in our
framework by a unique environmente. It also includes registers and many optimizations not de-
scribed here. The TABAC compiler is a by-product of our work in [12] and has greatly inspired
this study. It implements strict or non-strict languages by program transformations. Compared to
the description above the environments are unfolded in the environment/data stack. The call-by-
name TIM [10] unfolds closures in the environment as mentioned in 4.1. The transformationAc1
has the same effect as the preliminary lambda-lifting phase of TIM.

8  Towards Hybrid Implementations

The study of the different options proved that there is no universal best choice. It is natural to
strive to get the best of each world. Our framework makes intricate hybridizations and related
correctness proofs possible. We first describe howVa andVm could be mixed and then how to
mix shared and copied environments. In both cases, mixing is a compile time choice and we sup-
pose that a static analysis has produced an annotated code indicating the chosen mode for each
subexpression.

8.1  Mixing different control schemes

The annotations are of the form of typesT::=a | m | T1 →a/m
T2 with a (resp.m) for apply (resp.

marks) mode. Intuitively a function E:α →δ β takes an argument which is to be evaluated in the
α-mode whereas the body is evaluated in theδ-mode. This style of annotation imposes that each
variable is evaluated in a fixed mode.



MixV [[xα]]  = Xα x

MixV [[λx.Eα →δ β]]  = Xδ (λsx. MixV [[E]] )

MixV [[E1
α →δ β E2

α]]  = Yα o MixV [[E2]] o MixV [[E1]] o Zδ

with Xa = pushs Ya = Id Z a = app

Xm = grab Ym = pushs ε Zm= Id

Figure 14 Hybrid Compilation of Right to Left Call-by-Value

We suppose, as in 3.2, that it is possible to distinguish the special closureε from the others.
The values produced by each mode are of the same form and no coercion is necessary.MixV (Fig-
ure 14) just addspushs ε before the evaluation of an argument in modem andapp after the eval-
uation of a function in modea. Results are returned usingpushs or grab according to their
associated mode.

8.2  Mixing different abstraction schemes

One solution uses coercion functions which fit the environment into the chosen structure (vector
or linked list). The compilation can then switch from one world to another. In particular, switch-
ing fromAs to Ac1 creates a kind of strict display (by comparison to the lazy display of [22]).

As [[E]] ρ = List2Vect ρ o Ac1 [[E]] ρ

Another solution uses environments mixing lists and vectors (as in [28]).

MixA [[λsx.E θ,⊕]] ρ = Mix ρ θ o bind⊕ o MixA [[E]] (θ ⊕ x)

MixA [[xi]] (…(ρ,ρi),…,ρ0) = fsti o snd o MixA [[xi]] ρi with xi in ρi

MixA [[xi]]  [ ρ:ρi:…:ρ0] = geti o MixA [[xi]] ρi with xi in ρi

MixA [[xi]]  (…(ρ,xi),…,x0) = fsti o snd o app

MixA [[xi]]  [ ρ:xi:…:x0] = geti o app

Figure 15 Hybrid Abstraction

Eachλ-abstraction is annotated by a new mixed environment structureθ and⊕ which indi-
cates how to bind the current value (as a vector “:” or as a link “,”). Mixed structures are built by
bind: , bind, and the macro-combinatorMix  which copies and restructures the environmentρ ac-
cording to the annotationθ (Figure 15). Paths to values are now expressed by sequences offsti o

snd andgetj. The abstraction algorithm distinguishes vectors from lists in the compile time envi-
ronment using constructors “:” and “,”.

9  Conclusion

In this paper, we have presented a framework to describe, prove and compare functional imple-
mentation techniques and optimizations (see Figure 2 in 2.5 for a summary). Our first intermedi-
ate languageΛs bears strong similarities with CPS-expressions. Indeed, if we take combinator
definitions (DEF1) (section 2.5) we naturally get Fischer’s CPS transformation [11] fromVaf
(section 3.1). On the other hand, our combinators are not fully defined (they just have to respect a
few properties) and we avoid issues such as administrative reductions. We seeΛs as a powerful
and more abstract framework than CPS to express different reduction strategies. As pointed out
by Hatcliff & Danvy [14], Moggi’s computational metalanguage [23] is also a more abstract al-
ternative language to CPS. Arising from different roots,Λs is surprisingly close to Moggi’s. In



particular, we may interpret the monadic constructs[E] aspush E and (let x ⇐ E1 in E2) asE1 o

λsx.E2 and get back the monadic laws (let.β), (let.η) and (ass) [23]. On the other hand, we disal-
low unrestricted applications andΛs-expressions are more general than merely combinations of
[ ]  andlet’s.

Related work also includes the derivation of abstract machines from denotational [30] or op-
erational semantics [13] [27]. Their goal is to provide a methodology to formally derive imple-
mentations for a (potentially large) class of programming languages. A few works explore the
relationship between two abstract machines such as TIM and the G-Machine [4][25] and CMCM
and TIM [21]. The goal is to show the equivalence between seemingly very different implemen-
tations. Also, let us mention Asperti [2] who provides a categorical understanding of the Krivine
machine and an extended CAM.

Our approach focuses on the description and comparison of fundamental options. The use of
program transformations appeared to be suited to model precisely and completely the compila-
tion process. Many standard optimizations (decurryfication, unboxing, hoisting, peephole optimi-
zations) can be expressed as program transformations as well. This unified framework simplifies
correctness proofs and makes it possible to reason about the efficiency of the produced code as
well as about the complexity of transformations themselves. Our mid-term goal is to provide a
general taxonomy of known implementations of functional languages. The last tricky task stand-
ing in the way is the expression of destructive updates. This is crucial in order to completely de-
scribe call-by-need and graph reduction machines. We hinted in section 6.3 how it could be done
and we are currently investigating this issue. Still, as suggested in section 6, many options and
optimizations (more than we were able to describe in this paper) are naturally expressed in our
framework. Nothing should prevent us from completing our study of call-by-value and call-by-
name implementations.

Acknowledgments. Thanks to Charles Consel, Luke Hornof and Daniel Le Métayer for com-
menting an earlier version of this paper.
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