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Abstract

We propose an automatic method to enforce trace proper-
ties on programs. The programmer specifies the property
separately from the program; a program transformer takes
the program and the property and automatically produces
another “equivalent” program satisfying the property. This
separation of concerns makes the program easier to develop
and maintain. Our approach is both static and dynamic. It
integrates static analyses in order to avoid useless transfor-
mations. On the other hand, it never rejects programs but
adds dynamic checks when necessary. An important chal-
lenge is to make this dynamic enforcement as inexpensive
as possible. The most obvious application domain is the
enforcement of security policies. In particular, a potential
use of the method is the securization of mobile code upon
receipt.

1 Motivation and approach

Programming can be seen as the task of implementing a
collection of properties (the specification). Let us focus on
two problems the programmer may face in this task.

• The expressivity problem. Available programming lan-
guages make some properties very difficult to imple-
ment. There are no suitable abstractions to represent
them and their implementation is scattered through-
out the program. Security or robustness properties are
two striking examples. Enforcing such properties may
involve inserting checks all over the program.

• The correctness problem. Two kinds of approaches have
been considered to prove/ensure that a program satis-
fies a property. Static approaches such as formal pro-
gram derivation, disciplines of programming (e.g. en-
forced by a type system or a domain-specific language),
and static program analyses can ensure properties with-
out any runtime penalty. However, they are either very
costly, dedicated to a specific property, or reject per-
fectly correct programs without returning any useful
feedback. Dynamic (or system) approaches, such as
monitors or security kernels, enforce the property based
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on some kind of state machine that evolves and checks
the property in parallel with program execution. The
main drawback of this approach is its runtime cost.

In this paper, we advocate another approach, reminiscent of
aspect-oriented programming [11], that overcomes the ex-
pressivity and correctness problems for a particular class of
properties.

The property is expressed separately from the program
at a specification level. A program transformer takes the
program and the property, and automatically produces an-
other “equivalent” program respecting the property. The
transformed program is equivalent to the original program
except for inputs for which the source program violates the
property. In this case, the transformed program produces an
exception and stops. An important challenge is to make this
dynamic enforcement as inexpensive as possible. In partic-
ular, if we are able to detect statically that the source pro-
gram satisfies the property, then no transformation should
be done.

A particularity of our proposal is that it combines a static
and a dynamic approach. It integrates static analyses in or-
der to avoid unnecessary runtime cost. On the other hand,
it does not reject programs but adds dynamic checks when
necessary. Another significant feature is its flexibility: pro-
grammers can specify their own properties in a declarative
way.

We consider here safety properties expressed on the ex-
ecution traces of programs. The most obvious application
domain is the enforcement of security policies. Many secu-
rity policies can be specified as properties on traces. Let us
cite, for example, access-control models such as the high-
water-mark model, or the Chinese wall policy [1]. Clearly,
other kinds of properties, such as some safety or robustness
properties, can be expressed as trace properties.

A potential use of the method is the securization of mo-
bile code upon receipt. Standard byte code contains enough
structure and information to make the application of our
method realistic. The benefit of such a just-in-time trans-
formation is that it could be done according to customized
security properties. This could be seen as a flexible and
simple alternative to proof-carrying code [16] for the class
of properties considered here.

2 Overview

Roughly speaking, we start with a program P , and a trace
property T and produce a transformed program Trans [P, T ]
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P ≡

8>>>><
>>>>:

manager();
if(...) accountant();
if(...) {critical();

manager() ;}
accountant();
critical();

E ≡
(
manager(*) -> m
accountant(*) -> a
critical(*) -> c

T = ((a+m | m+a)(a | m)∗c)∗

Trans [P, T ] ≡

8>>>>>>>>>><
>>>>>>>>>>:

state = 0;
manager();
if(...) {state=1;

accountant();}
if(...) {if (state == 0) {abort;}

critical();
manager();}

accountant();
critical();

Figure 1: A small example of property enforcement

respecting T . If the execution trace of (P, σ0) (the source
program with some initial store) respects the property
then (Trans [P, T ], σ0) yields the same results. Otherwise,
(Trans [P, T ], σ0) produces an exception and stops just be-
fore violating the property. In fact, we also take as input a
function E mapping instructions of P to events of interest.
This function is the formal link between the program and the
property that is expressed on these events. Figure 1 presents
a simple example where the events of interest m, a, c are
calls to the procedures manager, accountant, and critical.
The property T , expressed as a regular expression, requires
that events m and a take place before each event c. That is to
say, a critical action cannot take place before the clearance
of the manager and the accountant (segregation of duties).
The source program may violate this property whenever the
first conditional is false. The transformed program, where
two assignments and a conditional have been inserted, re-
spects the property (i.e. aborts whenever the property is
about to be violated).
Our approach comprises seven phases.

1. Property encoding. We consider only safety properties;
(i.e. properties stating that no “bad thing” happens).
Liveness properties (“good things” do happen) cannot
be dynamically enforced ([18],[19]). A safety (or en-
forceable) property can be characterized by a set of
disallowed finite executions. We restrict ourselves to
regular safety properties (i.e. the set of disallowed exe-
cutions is regular). The language to express such prop-
erties can be based on logic (e.g. LTL [4] or WS1S [13])
or regular expressions. The important point for us is
that the property can be encoded by a finite state au-
tomaton. The language recognized by the automaton
will be the set of all authorized partial traces of events.

2. Program annotation. The first phase is to locate and
annotate the events of interest in the program. These
events can be assignments to specific variables, calls to
specific methods, opening of files, etc. All irrelevant
instructions are associated with the dummy event ?. A
key constraint is that a program instruction is associ-
ated with only one event. This is easy to ensure when
events are specified based solely on the program syntax
(e.g. the function E in Figure 1). But, one would also

like to express properties on “semantic” events such as
“x is assigned the value 0 ”. In general, one cannot de-
cide statically whether an assignment x := e; will gen-
erate this event or not. In order to take semantic events
into account, the program must be transformed before-
hand. For that example, each assignment x:=e could
be transformed into if e=0 then x:=e else x:=e1 so
that instructions are associated with a single event. It
is always possible to insert such tests automatically; the
real challenge for this phase is to avoid inserting spu-
rious tests. For that reason, such pre-transformations
must rely on static program analyses.

3. Program abstraction. The program is abstracted into
a graph whose nodes denote program points and edges
represent instructions. This phase makes the core of
the approach independent of the programming lan-
guage. In this paper, we concentrate on control-flow
graphs and trace properties. Other abstractions can
be accommodated without changing the core of the ap-
proach. In order to produce a precise abstraction, this
phase may rely on a static analysis (e.g. a control-flow
analysis). The important point is that the set of actual
traces (restricted to events) is a subset of the traces
generated by the graph (i.e. the abstraction is safe).
For the sake of clarity, the technical part of the paper
is presented with simple (intraprocedural) graphs. The
extension to interprocedural (or context-free) graphs
is outlined in Section 4. We mention in Section 5.2
another abstraction (call graphs) where new proper-
ties (stack properties), which would not be regular over
standard traces, can be expressed.

4. Direct instrumentation. The next phase is to transform
the graph in order to remove from its set of partial
traces those forbidden by the automaton. A natural
idea would be to consider the program graph as an au-
tomaton and express the transformation as a product
of automata followed by optimizations. This idea is not
satisfactory for two reasons. Firstly, since the objective
is to map the transformed graph back to a program, the

1Note that this code will be transformed by subsequent phases
before the compiler gets a chance to transform it back to x:=e.
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Figure 2: Automaton (a), control-flow graph (b) and direct instrumentation (c)

representation must remain as close as possible to the
source graph. Secondly, while intraprocedural graphs
are similar to automata, this is not the case when in-
terprocedural control-flow is taken into account.

We choose to represent the integration of an automaton
into a program graph by an instrumented graph or I-
graph. A I-graph is a graph equipped with additional
structures (states and transition functions) to mimic
the automaton execution. We begin by a direct in-
strumentation that is optimized by the two subsequent
phases.

5. Minimization. The direct instrumentation is first spe-
cialized to the program. This phase involves computing
the set of reachable states for each node (this may avoid
inserting useless checks in the program later on) and a
transformation similar to the standard automaton min-
imization.

6. Erasing. The erasing phase transforms the minimized
I-graph in order to turn as many transitions as possi-
ble into the identity function. This phase involves sev-
eral static analyses: choosing the transitions to erase,
finding a new numbering of states, and computing the
new I-graph. Erasing reduces the number of state evo-
lutions during the execution (i.e. the number of as-
signments that would be inserted in an imperative pro-
gram).

7. Concretization. The optimized I-graph must be
turned into a program. It is still very close to the
source program: its nodes and edges represents pro-
gram points and instructions. Like the abstraction, the
concretization is language dependent. In any case, one

needs a way to store, fetch, and test a value (the au-
tomaton state) without affecting the source program.
One also need a way to abort the program. In lan-
guages with side-effects, this can be done by local trans-
formations (e.g. inserting assignments, conditionals).
In a pure functional language, it would involve a global
transformation in order to thread the automaton state
throughout the execution.

In this extended abstract, we focus on the core of the
method, that is to say, Phases 4, 5, and 6 (Section 3). Sec-
tion 4 is devoted to the extension of the abstract framework
to the interprocedural case. In Section 5, we present, in-
dependently of a particular programming language, the im-
portant properties that the abstraction (Phase 3) and the
concretization (Phase 7) must satisfy in order to ensure the
correctness of the global transformation. Phases 1 and 2 are
not described any further.

Many of our definitions, functions, or transformations
are relative to structures (automaton, graph, I-graph) left
implicit in notations. The transformations deal with a single
structure and no confusion should arise.

3 Abstract framework

The abstract framework allows us to define our approach in
a generic way. We start by presenting the abstract represen-
tations of programs, properties, and transformed programs.
We proceed by the description of the three steps leading to
the optimized instrumented graph.
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3.1 Abstract representations

Trace properties as automata. We represent a trace
property by a finite state automaton A = (Q, q0, A, Σ, δ)
where Q is a finite set of states, q0 the initial state, A the
set of final (accepting) states, Σ the alphabet made of events,
and δ the transition function. Any string which does not vio-
late the property is accepted by the automaton. In practice,
this implies that all states will be final except a single, trap
state. As soon as this trap state is reached, the property is
violated and the automaton will remain in this state.

The set of event strings verifying the property is defined
by

L(A) = {w ∈ Σ∗ | δ(q0, w) ∈ A}
where, as it is common, the transition function δ has been
extended from letters to strings.

Figure 2a presents the automaton derived from property
T of Figure 1. A transition with the dummy event ? has
been added for each state. Whenever the property is vio-
lated, the automaton goes and remains, in the trap state
q4.

Programs as graphs. We represent a program as a rooted
graph G = (V, v0, E). Intuitively, vertices (V ) represent pro-
gram points, the root (v0 ∈ V ) denotes the first program
point, whereas edges (E ⊆ V × Σ × N × V ) represent in-
structions generating events of interest (∈ Σ). We say that

an edge (v, a, k, v′) or v
ak−→ v′ generates the annotated event

ak; the integer k serves to identify the instruction produc-
ing the event. We extend the notation to paths and write

v
w−→ v′ for a path from v to v′ generating the string of an-

notated events w (∈ (Σ×N)∗). The set of all partial traces
generated by a graph G is defined as

T (G) = {w ∈ (Σ ×N)∗ | ∃v ∈ V, v0
w−→ v}

We write w for the string of events obtained by getting rid
of the integers in w.

Figure 2b presents the rooted graph derived from the
program P of Figure 1. Control-flow edges corresponding to
irrelevant instructions bear the dummy event ?.

Transformed programs as I-graphs. Given a graph G
(i.e. an abstract program) and an automaton A (i.e. a
trace property) sharing the same event set Σ, we seek to
derive a new graph which generates the same set of partial
traces as G except those invalidated by the automaton. The
integration of an automaton in a graph is represented by an
instrumented graph (or I-graph).

A I-graph I = (G, R, r0, γ, S) is made of a graph G, a
set of states R, an initial state r0 ∈ R, a collection of final
states sets S = {Av ⊆ R | v ∈ V }, and a transition function
γ : (Σ ×N) → R → R. We write γe (instead of γ(e)) for
the transition function associated with the annotated event
e.

The instrumentation encodes the states and the transi-
tions of the automaton. Each graph node is equipped with
a set of final states (accepting states) and each annotated
event comes with a transition function which will make the
automaton state evolve according to the event.

The set of partial traces of the I-graph I is defined as

T (I) = {w ∈ (Σ×N)∗ | ∃v ∈ V, v0
w−→ v ∧ γw(r0) ∈ Av}

where the transition function γ has been extended to strings
(γwv = γv ◦ γw).

Definition 1 An instrumented graph I = (G, R, r0, γ, S) is
said to enforce the automaton A iff

T (I) = {w ∈ T (G) | w ∈ L(A)}

3.2 The direct instrumentation

The direct instrumentation of a graph G and an automaton
A takes the set of states of A as its set of states, the initial
state of A as its initial state, the set of final states of A
as the set of accepting states for each node, and associates
each edge with the transition function of A specialized to
the edge event. Formally, Id = (G, Q, q0, γ, S) with:

• S = {Av = A | v ∈ V }

• γ = λe.λs.δ(s, e)

It is easy to check that the direct instrumentation en-
forces A (Definition 1).

Figure 2c presents the direct instrumentation of the pre-
vious graph and automaton. Edges are decorated by a tran-
sition table and nodes by a set of states where accepting
(final) states are underlined.

This solution can be seen as a transformation-based im-
plementation of system kernel approach. Each event of inter-
est involves a state transition of the underlying automaton.
For an imperative program, this would mean an assignment
and a test before each program instruction generating an
event. It is obviously much more costly than necessary. We
focus now on optimizations of the direct instrumentation.

3.3 Minimization

The automaton specifies a general property independently
of programs. A program may obey the property and no
transformation is needed in this case. So, the first step is to
specialize the automaton to the program. We compute, us-
ing a standard fix-point iteration, the set of reachable states
at each program point:

∀v ∈ V reach(v) = {γw(r0) | v0
w−→ v}

Detecting that the trap state cannot be reached at a pro-
gram point permits to save a test.

We can now minimize the underlying automaton. This
idea is similar to the standard automaton minimization: if
the language recognized starting from two states is the same
then the states can be merged. In our case, such a language
is the set of authorized partial traces starting from a node
v in a state r. This language is written T (I[v, r 7→ v0, r0])
where I[v, r 7→ v0, r0] is the instrumented graph I where the
root has been changed to v and the initial state to r. Two
states reachable at node v are considered equivalent (and
can be merged) if the language generated starting from v is
the same for both states. Formally,

r1
I≡v r2 ⇔ T (I[v, r1 7→ v0, r0]) = T (I[v, r2 7→ v0, r0])

The relation
I≡v is an equivalence relation and we write

classv
I(r) for the equivalence class of r. Given an in-

strumented graph I, its minimization is written Im with
Im = (G, Rm , rm

0 , γm , Sm) and:

• Rm =
S

v∈V {classv
I(r) | r ∈ reach(v)}
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• rm
0 = classv0

I (r0)

• Sm = {Am
v | v ∈ V }

with Am
v = {classv

I(r) | r ∈ Av ∩ reach(v)}

• ∀v
e−→ v′ ∈ E, ∀r ∈ reach(v),

γm
e (classv

I(r)) = classv′
I (γe(r))

The states are now the equivalence classes of reachable
states, the new initial state is the equivalence class of the
initial state, the new final states are the equivalence classes

of the reachable final states, and, for each edge v
e−→ v′, the

transition function maps the equivalent class of each reach-
able state r in v to the equivalent class of γe(r) in v′.
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Figure 3: Minimization

The minimization of the I-graph of Figure 2c is pre-
sented in Figure 3. The states q2 and q3 have been merged
at node v4 (all traces starting from v4 in the state q2 or q3

are authorized). They are represented by the single state
written {q2, q3}.

The minimization process does not change the semantics
of a I-graph.

Property 2 For all instrumented graph I, T (I) = T (Im)

As for automata minimization, the minimal I-graph is
unique up to isomorphism. After minimization, each node
of the instrumentation of a graph obeying the property will
have a single reachable state. But the main benefit of mini-
mization is to make the next transformation more effective
and to lead to optimal instrumentations (see Property 5).

3.4 Transition erasing

Transitions associated with edges represent the evolution of
states and will entail new code to be introduced in the pro-
gram (e.g. assignments in an imperative program). We now
strive to associate as many edges as possible with the iden-
tity function. We call this transformation transition erasing.
Let us take a few basic examples to illustrate the idea of
erasing.

{1, 2}

{0, 1}

{0, 1}

{1}

0 1

v1

2

v3

11

0
0
1

1

1
10

v4

v0

→

{0, 1}

{0, 1}

{0, 1}

{0, 1}

v1

v3 v4

v0

All the transitions on the original (left) I-graph can be
replaced by identity transitions. In order to keep the same
language of traces, accepting states must be changed (see,
for example, the node v4). Also, some states may have to
be added at a node (e.g. both states 0 and 1 at node v3 in
the right I-graph represents 1 in the left one). This erasing
of transitions can be done for any tree shaped graph.

The same idea can also be applied to other types of
graphs, as the following example shows.

{0, 1}

{0, 1}

v0

v1

0
0

0
1

1
0 1
1 →

{0, 1}

{0, 1}v0

v1

The two transitions are equal and it is not necessary to
distinguish the two paths. Both transitions can be erased
simultaneously.

Of course, not every transition can be erased.

{0, 1}

{0, 1}

v0

v1

1
0

0
1

1
0 1
1 →

{0, 1}

{0, 1}

v0

v1

0
0
1

0
or

{0, 1, 2}

{0, 1}

v1

v0

0
1

0
2

In this case, we may choose to erase the left or the right
transition, but not both.

In general, we cannot erase transitions when two paths
from the same node v to the same node v′ map the same
state r to two different states r1 and r2

2. If one associates
every edge of these paths with the identity transition, there
is no way to differentiate r1 and r2 at v′ anymore. This
would be incorrect since the languages T (I[v′, r1 7→ v0, r0])
and T (I[v′, r2 7→ v0, r0]) might be different. Actually, after
minimization, these languages must be different. This is

2Typically, this case occurs for the control flow of conditionals and
loops.
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the reason why minimization improves the suppression of
transitions. Without it, we would not suppress transition
functions in the above case even when it is perfectly correct
to do so (i.e. when T (I[v′, r1 7→ v0, r0]) = T (I[v′, r2 7→
v0, r0])).

The notion of free set of edges formalizes the previous
remarks.

Definition 3 A set F ⊆ E is said to be free for I =
(G, R, r0, γ , S) if:

∀ v
w1−→ v′, v

w2−→ v′ ∈ F ∗, ∀r ∈ reach(v), γw1(r) = γw2(r)

Every edge belonging to a free set can be associated with
the identity transition function. We postpone the discussion
about the computation of a free set to the end of this sec-
tion. For now, we assume that we have a free set F and we
describe how to transform I into an equivalent instrumenta-
tion If when each edge in F is associated with the identity
transition.

The transformation relies on a function Γ mapping the
states of I to set of states of If . A state r at a node v of
I will be represented by the set of nodes Γ(v, r) in If . For
example, if two paths of F ∗ reach the node v with state r
in I then both paths will reach the node v with states (not
necessarily the same) belonging to Γ(v, r).

The function Γ is defined using constraints. First, since
we want to turn transitions into identity, the set representing
a state r in a node v must be included in the sets representing
the image of r by these transitions.

∀ v
e−→ v′ ∈ F, ∀r ∈ reach(v), Γ(v, r) ⊆ Γ(v′, γe(r)) (1)

Second, the function Γ should not introduce state confusion.
If r1 and r2 are different states at a node v in I then their
representations in If must be disjoint.

∀v ∈ V, ∀r1, r2 ∈ reach(v),

r1 6= r2 ⇒ Γ(v, r1) ∩ Γ(v, r2) = ∅ (2)

This is not yet sufficient since the function Γ(v, r) = ∅ for
all v and r would be a solution. Each state of a node v in I
must have at least one image in the sates of v in If . This is
achieved by choosing a default value cv,r for each Γ(v, r).

∀v ∈ V, ∀r ∈ reach(v),∃ cv,r ∈ Γ(v, r) (3)

The smallest function Γ respecting the constraint (1) can be
computed by a fix-point iteration. If we take a set of initial
values cv,r such that (v, r) 6= (v′, r′) ⇒ cv,r 6= cv′,r′ then no
state confusion can occur and constraint (2) will be verified.

Given a function Γ, a I-graph I is transformed into If =
(G, Rf , rf

0, γ
f , Sf ) with:

• Rf = {cv,r | v ∈ V, r ∈ reach(v)}

• rf
0 = cv0,r0

•

8<
:

∀ v
e−→ v′ ∈ F, γf

e = IdRf

∀ v
e−→ v′ 6∈ F, ∀ r ∈ reach(v), ∀rf ∈ Γ(v, r),

γf
e(rf ) = cv′,γe(r)

• Sf =
S

v∈V {Af
v} with Af

v =
S

r∈reach(v)∩Av
Γ(v, r)

2
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2 0
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Figure 4: Erasing

The states are now the values cv,r, the initial state of If

is the default representation of the initial state of I. The
transition functions are the identity for edges of the free
set. Otherwise, they map a state r in node v to the default
value cv′,γe(r). The final states of If are the union of the
representations of the reachable final states of nodes of I.

Erasing the minimal instrumented graph of Figure 3
is presented in Figure 4. The chosen free set of edges is
{m1, ?3, m5, ?6, a7, c8}. Only two transitions remain on the
resulting instrumentation (compared to six before).

Erasing does not change the semantics of an instru-
mented graph.

Property 4 For all instrumented graph I, T (I) = T (If )

This transformation can be applied to optimize any in-
strumented graph. In our approach, we apply it after min-
imization of the direct instrumentation; the result of our

transformation chain is then Idmf

.
We pointed out before that minimization improves eras-

ing. In fact, it entails a stronger result.

Property 5 For all instrumented graphs I and Io ,

T (I) = T (Io) ⇒ {e | γo
e = Id} is a free set of Im

This property is an optimality result. If Io is an optimal
instrumentation (i.e. it maximizes the number of identity
transitions) equivalent to I, Property 5 tells us that it can
be obtained by choosing a maximal free set of the minimiza-
tion of I. Unfortunately, computing maximal free sets is an
NP-complete problem (3-SAT can be encoded into it). An
effective heuristics is to pick any spanning tree of the graph.
Such a set of edges is guaranteed to be a free set (there
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is no sharing and the condition of definition 3 holds triv-
ially). This set can then be enlarged by adding, one by one,
edges and checking if the set remains free. The process stops
when no edge can be added without loosing freeness. For
a structured imperative language, the spanning tree alone
ensures that inserting one assignment at each if and while
statement suffices.

3.5 Space optimization

A key step in the erasing transformation is the choice of
default values cv,r for the function Γ. The choice made in
the previous section is safe but may make If have more
states than necessary. This step is formalized by equation
(3). A bad choice of these default values may entail that no
function Γ respecting the constraints (1) and (2) exists. In
order to ensure that a solution exists, the propagation of the
default values during the computation of Γ should not lead
to the violation of constraint (2). A necessary and sufficient
condition is:

∀r1∈reach(v1),∀r2∈reach(v2),∀v1
w1−→v, v2

w2−→v ∈ F ∗,
γw1(r1) 6= γw2(r2) ⇒ cv1,r1 6= cv2,r2

Finding default values respecting this condition amounts to
coloring an undirected graph whose set of nodes is

{(v, r) | v ∈ V, r ∈ reach(v)}

and where two nodes (v1, r1) and (v2, r2) are connected if:

∃v ∈ V, v1
w1−→ v , v2

w2−→ v ∈ F ∗ ∧ γw1(r1) 6= γw2(r2)

This graph can be computed by a fix-point iteration. Fig-
ure 5 presents such a graph whose coloration is used by
the I-graph of Figure 4. Compared to the simple choice
presented in Section 3.4, finding a good coloring3 reduces
the number of states of the instrumented graph dramati-
cally. For transformed programs, it means that less space is
needed to store transition tables.

4 Context-free graphs

Modeling procedure calls and returns by standard edges is
a crude approximation of the actual traces. In order to
represent faithfully the control flow of realistic languages,
we introduce the notion of context-free graphs or cf-graphs.

We describe how the steps of the preceding section are
adapted to take into account this more general form of
graph.

Program abstract representation. A cf-graph Gcf =
(V, v0, E,Ret , C) is a graph along with a new set of nodes
(Ret ⊂ V ) representing returns and a new set of arrows
(C ⊂ V × V × V ) representing calls. A call edge (v, f, v′)

is written v
f

↪→ v′, and generates no event. Intuitively, it
signifies that a program point v calls f and proceeds at v′

after f has returned. Return nodes (written ret below) do
not have outgoing edges. They must be matched with their
corresponding call.

In order to define the set of partial traces of cf-graphs, we
introduce return stacks that are lists of nodes v1 : . . . :vn : ε.

3The problem if determining the optimal coloring for an arbitrary
graph is an NP-complete problem. For control-flow graphs of struc-
tured programs the problem becomes polynomial.

(v2,{q3})(v2,{q2})

(v4,{q4})(v4,{q2,q3})

(v5,{q4})(v5,{q3})

(v1,{q2})

(v0,{q0})

(v3,{q4})

(v6,{q4})(v6,{q0})

(v3,{q0})

0

0

0

0

0

1

1

2

0

0

1

1

Figure 5: Graph coloring

The path relation is now written ; and is relative to stacks.

For example, (v, s)
w
; (v′, s′) means that the path w is a

valid execution path starting from node v with stack s and
reaching node v′ with stack s′. The path relation is formally
defined by the rules:

(v, s)
ε

; (v, s)

(v, s)
w
; (v′, s′) v′ e→ v′′

(v, s)
we
; (v′′, s′)

(v, s)
w
; (v′, s′) v′ f

↪→ v′′

(v, s)
w
; (f, v′′ :s′)

(v, s)
w
; (ret , v′ :s′)

(v, s)
w
; (v′, s′)

The set of all partial traces generated by a cf-graph Gcf

is defined as

T (Gcf ) = {w | ∃(v, s) ∈ V × Stack, (v0, ε)
w
; (v, s)}

Direct instrumentation. The direct instrumentation is de-
fined exactly as before. An instrumented cf-graph involves
a cf-graph instead of a simple graph and call-edges do not
bear transitions.

Minimization. A state r is reachable at node v with stack s
if there exists an execution starting from node v0, state r0

and the empty stack which reaches node v with stack s and
state r. This notion of reachability is formalized by the
following definition.

s-reach(v, s) = {γw(r0) | (v0, ε)
w
; (v, s)}
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In order to remove useless checks, we need to compute
the function reach which yields the set of reachable states
for each node. This function is defined as the union of the
s-reachable states for all possible stacks.

reach(v) =
[

s∈V ∗
s-reach(v, s)

This definition does not hint at any constructive way
of computing the reachable states. A possible algorithm is
to compute first, for each node v and state r, the set of
returnable states R(v, r) defined by:

R(v, r) = {(ret , γw(r)) | (v, ε)
w
; (ret , ε)}

A pair of a return node ret and a state r′ is returnable from
node v and state r if there exists an execution, starting
from node v and the empty stack, and reaching the return
node ret with an empty stack, which maps r to r′. Those sets
are computed by a fix-point iteration finding the smallest
solution of:

(ret , r) ∈ R(ret , r)
v

e→ v′ (ret , r′) ∈ R(v′, γe(r))

(ret , r′) ∈ R(v, r)

v
f
↪→ v′ (ret ′, r′) ∈ R(f, r) (ret , r′′) ∈ R(v′, r′)

(ret , r′′) ∈ R(v, r)

Then, reach(v) can be computed by solving the following
constraints (again, this can be done by a fix-point iteration):

• r0 ∈ reach(v0)

• ∀v
e→ v′, γe(reach(v)) ⊆ reach(v′)

• ∀v
f

↪→ v′, reach(v) ⊆ reach(f)

• ∀v
f

↪→ v′, ∀r∈reach(v),
(ret , r′)∈R(f, r) ⇒ r′∈reach(v′)

Concerning the minimization itself, the problem becomes
more involved. There is no notion of equivalence relation
between states anymore. Even if fusion of states can be
defined for instrumented cf-graphs, it may entail changes
elsewhere and increase the overall number of states. The
approach loses its optimality property as one cannot ensure
that the minimized instrumented cf-graph is the best one
for erasing.

A pragmatic and effective solution is to “partially” min-
imize the instrumentation. The previous minimization al-
gorithm is applied to the underlying regular I-graph (i.e.
where call edges are interpreted as standard edges, and re-
turns nodes have outgoing edges to all the nodes they may
return to). This can be seen as a context insensitive min-
imization. Then, we proceed with the minimized instru-
mented cf-graph.

Erasing. The definition of a free set must be extended to
take into account the context-free features of instrumenta-
tions.

Definition 6 A set F ⊆ E is said to be free for the instru-
mented cf-graph I = (Gcf , R, r0, γ , S) if:

∀ (v, s1)
w1
; (v′, s′1), (v, s2)

w2
; (v′, s′2) ∈ F ∗,

r ∈ s-reach(v, s1) ∩ s-reach(v, s2) ⇒ γw1(r) = γw2(r)

The definition is similar to definition 3 except that both
paths (from v to v′) may start and end with different stacks.

As before, every edge belonging to a free set may have
its transition erased. The erasing phase is almost identical
to the previous case. It suffices to add two new constraints
to the definition of Γ:

• ∀v
f

↪→ v′, ∀r ∈ reach(v), Γ(v, r) ⊆ Γ(f, r)

• ∀v
f

↪→ v′, ∀r ∈ reach(v), ∀(ret , r′) ∈ R(v, r),
Γ(ret , r′) ⊆ Γ(v′, r′)

Those constraints correspond to the constraint (1) for re-
spectively calls and returns.

Finding an optimal free set is still an NP-complete prob-
lem. In practice, we use a heuristic similar to the one pre-
viously mentioned. We first take a spanning tree of the
underlying regular I-graph (as for minimization) as a free
set. We then add edges as long as the set remains free. This
step supposes to be able to decide whether a set is free or
not (definition 6 does not help much here). In Appendix

B, we present how to compute the relation (v, r)
F
; (v′, r′)

defined by:

(v, r)
F
; (v′, r′)
m

∃s, s′, w∈F ∗,
r∈s-reach(v, s) ∧ (v, s)

w
; (v′, s′) ∧ γw(r) = r′

Two pairs (node,state) are related by
F
; if it is possible,

starting from the first node with the first state, and following
only edges of the set F , to reach the second node with the
second state. A set F is free iff:

∀v, r, v′, r′, r′′,
(v, r)

F
; (v′, r′)
∧

(v, r)
F
; (v′, r′′)

⇒ r′ = r′′

As the formula is quantified over a finite domain, it can be
tabulated. This provides an algorithm to decide whether a
set is free.

5 Abstraction and Concretization

We now sketch the properties that the abstraction and the
concretization have to verify in order to ensure the cor-
rectness of the approach. In section 5.1 we concentrate on
control-flow abstraction and concretization. The techniques
described in Section 3 apply to other abstractions as well.
We mention in Section 5.2 how we might work on call graphs
instead of control-flow graphs.

5.1 Control-flow graphs and trace properties

We suppose that the programming language comes with a
deterministic small step operational semantics and that ba-
sic instructions are numbered (we will refer to instructions
by their integer label). The SOS rules are of the form:

(P, σ)
k⇒ (P ′, σ′) or (P, σ)

k⇒ σ′

where the integer k denotes the instruction reduced by the
one-step rewriting. The functional operational semantics is
defined by:

SOS [[P ]]σ =

�
σ′ if (P, σ)

w⇒∗
σ′

undef otherwise
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where
w⇒∗

denotes the transitive closure of ⇒ and w the
execution trace as a string of integers.

The annotation phase (see Section 2) has produced a
function E : N→ Σ which maps basic instructions to events.
Using this function, a program is abstracted into its control-
flow graph G = Abs(P, E) with annotated events on edges.
The safety of the abstraction is expressed by

(P, σ)
w⇒∗

x =⇒ w ∈ T (G) (4)

where T (G) is the set of the partial traces of G reduced to
strings of integers.

In the following, we write (P, σ)
ε⇒∗ ⊥ to denote aborted

computations, and suppose that instructions inserted by the
concretization do not produce events (or produce the empty
event ε).

We define the concretization as a function Con which
takes a program and an instrumentation and generates a
new program. The function Con must verify:

(P, σ)
k⇒ (P ′, σ′) ∧ v

e−→ v′ ∈ E ∧ e = E(k)k

⇓ (5)

∀q ∈ reach(v),
if γe(q) ∈ Av′ then

(Con(I, P ), st(σ, q))
k⇒

∗
(Con(I, P ′), st(σ′, γe(q)))

else (Con(I, P ), st(σ, q))
ε⇒∗⊥

The function st serves to store the state q of I in σ, γ is
the transition function of I, and E the set of edges of I.
Intuitively, this condition states that Con encodes the in-
strumentation, but also that the state q can evolve safely
(i.e. the source program does not change the state and the
introduction of the state does not affect the normal execu-
tion). Con should satisfy the same constraint for rules of

the form (P, σ)
k⇒ σ′.

In order to relate source and transformed programs, we
define the SOS enforcing the automaton A as:

(P, σ)
w⇒∗

x

(P, σ)
w⇒A

x′
where4 x′ =

�
x if E(w) ∈ L(A)
⊥ otherwise

We can now express the global correctness property.

Property 7 If G is a safe abstraction of P , I an instru-
mentation of G enforcing the automaton A, and Con a con-
cretization that satisfies (5), then:

∀ σ, SOS [[Con(I, P )]]st(σ, r0) =st SOSA[[P ]]σ

An execution of the transformed program is equivalent to
the execution of the original program in parallel with the
automaton. Here, the notation =st stands for the equality
of stores, regardless of the variable encoding the automaton
state.

As an illustration, the concretization function for the toy
imperative language used in Figure 1 can be defined as:

Con(I, P ) = P [C1 (k)/k]k∈instructions(P )

with C1 (k) =

8<
:

state := [γe][state ];
if [Av′ ][state ] = 0 then abort;
k

4To simplify the formulation, we suppose that the function E is
extended to words and that the non final states of A are trap states.

where e = E(k)k, v
e−→ v′ ∈ E, state is a fresh variable, and

[γ], [A] are constant arrays encoding transitions and sets of
states.

In fact, C1 (k) does not insert the assignment if γe =
Id . Similarly, if γe(reach(v) ∩ Av) ⊆ Av′ the conditional
is not inserted. The concretization Con can be shown to
satisfy condition (5) (with st(σ, q) being implemented by
assignments to state) and correctness follows.

5.2 Call graphs and stack properties

The core of the approach (Section 3) can be applied to other
abstractions and classes of properties. In particular, our
technique can be used to enforce security properties defined
as regular expressions over stacks. For example, this per-
mits to express the Java (JDK 1.2) security model that is
based on stack inspection. In this security mechanism, each
time a critical operation is about to be performed, the pro-
grammer may request (using a special instruction) a runtime
stack inspection. It checks that the permissions of the meth-
ods currently present in the return stack suffice to execute
the critical operation. The constraint enforced by this in-
spection can be modeled as a regular expression on return
stacks.

Control-flow graphs and traces cannot be used to en-
force such security policies. In general, regular expressions
on stacks are not regular expressions on traces. In order
to use our technique for enforcing this kind of properties, it
suffices to change the abstraction and concretization phases.
We replace control flow graphs by call graphs. The previ-
ous safety property was: “to any partial trace corresponds
a path in the graph”. It becomes now: “to any stack corre-
sponds a path in the graph”.

Concretization differs: it involves passing the state of
the instrumentation as a new argument to every function.
This technique has already been studied and proposed under
the name security passing style [23]. The extra argument
can be seen as a way of storing the current state of the
instrumentation in the current frame. A method (function,
procedure) call, corresponds to an edge in the call graph.
Just before calling the method or when entering the method
(a choice referred as caller-says vs. callee-says [22]), the new
automaton state is computed as the image of the previous
one by the transition corresponding to this edge. When the
execution returns from a method, the frame is popped, and
the previous frame (and thus state) is fetched. The store
contains one automaton state per frame.

As before, our approach still optimizes the generated
code by removing transitions and tests. There are also opti-
mizations specific to call graphs: the code can be optimized
further by removing useless extra parameters (technically,
if reach(v) is a singleton in the minimized instrumentation).

6 Related Work

We focus in this section on the different approaches for en-
forcing properties. They can be classified in three groups:
the static, dynamic, and mixed approaches. We review them
in turn. We also indicate how each approach solves the
problem of enforcing a specific and standard property: type
safety. This is illuminating since these approaches to type-
safety are well-known and they have the same respective
advantages and drawbacks as the general approaches.

9



• Dynamic approaches. These approaches often rely on
a process running concurrently with the program. The
process observes the execution and halts the program
whenever it is about to violate the property. Monitors
(such as VeriSoft [7] and Amos [3]) or “security kernels”
(such as Schneider’s security automata [19]) belong to
this class.

The programming language counterpart of these sys-
tem approaches amounts to integrating, without any
optimizations, the monitor within the program. The
enforcement is formally expressed in a single frame-
work (the programming language) by program trans-
formation. This approach makes code more portable
and avoids extending the language semantics to secu-
rity mechanisms. This is also likely to simplify cor-
rectness proofs. Our direct instrumentation (step 4 in
Section 2) can be seen as a dynamic, programming lan-
guage, approach. Several other systems use such tech-
niques; for example, Naccio [6] modifies programs to
call wrapper functions in order to enforce safety poli-
cies.

These approaches are flexible in that they never re-
ject valid programs and permit to express customized
properties. Actually, the enforcement mechanisms be-
ing purely dynamic, they may consider a large class of
properties (e.g. a monitor may inspect and check the
runtime store and stack). The main drawback is the
runtime cost. The enforcement process is not special-
ized to the program and each program instruction may
involve a runtime check.

For type safety, an example of a dynamic approach is
the implementation of languages such as Scheme. The
runtime type checks involved make the approach flexi-
ble but costly.

• Static approaches. Within this approach, the pro-
grammer is responsible for the enforcement. A static
analyzer is then used to check and certify that the
property has been properly enforced. To stay with
security properties, let us cite the static techniques
based on abstract interpretations [15], model-checking
[10], or type systems ([9],[20]). The main advantage
of these approaches is that they entail no runtime
cost. However, they may reject perfectly valid pro-
grams and do not address the expressivity problem. In
languages such as Java, where code is loaded dynami-
cally, runtime checks are essential. Programmers have
to make their code secure beforehand (e.g. by inserting
AccessController.checkPermission calls [8] through-
out the code) so that the program can be statically
checked.

Statically typed languages can be seen as a static ap-
proach for enforcing type safety. For this property, the
programmer expresses naturally the enforcement by fol-
lowing a programming discipline.

• Mixed approaches. Static approaches may reject valid
programs and dynamic ones may entail a prohibitive
runtime overhead. A mixed strategy does not reject
programs (it adds dynamic checks) and aims at mini-
mizing the runtime penalty (using static analyses). Our
approach belongs to that class. The recent work by
Erlingsson and Schneider [5] considers also the prob-
lem of specializing a security automaton to a program.

Walker uses their technique and generates secure, cer-
tified code in a type-theoretic framework [21]. Com-
pared to our approach, they consider possibly infinite
state automata but simpler, local, optimizations. By
using global analyses and transformations, we are able
to suppress more unnecessary checks and transitions.
Also, by working on program abstractions, our frame-
work is more general than the restriction to finite state
automata may lead one to think (as hinted at in Section
5.2).

Soft typing (see e.g. [2]) is a mixed approach for en-
forcing type safety. A soft type checker does not reject
statically ill-typed programs but inserts dynamic type
checks where necessary. Its goal is similar to ours: re-
taining flexibility for the minimum runtime cost.

There are many other works about the enforcement of
more specific security properties. Let us cite, for example,
approaches which consider runtime checks to ensure type-
based security properties ([17], [14]). Even if they focus on
a specific property, the work of Wallach and Felten [23] has
several common points with ours. They express the secu-
rity model of Java by a pushdown automaton that is imple-
mented by program transformation. The resulting code is
then optimized using a kind of dead code elimination [22].
This is another evidence that, beyond correctness and porta-
bility benefits, a programming language approach also per-
mits to specialize/optimize the enforcement with respect to
programs.

7 Conclusion

The initial inspiration of our work came from the study of
aspect-oriented programming (AOP) [11]. The goal of AOP
is to isolate aspects which cross-cut the program basic func-
tionality and whose implementation would otherwise yield
tangled code. The transformation process that integrates
the aspect into the program is called weaving. Even if AOP
is a quite recent concept and still lacks a theory, several
convincing case studies suggest that it has great potential
[12]. In these case studies, aspects are annotations guiding
optimizations, describing the representation of data, or the
coordination of threads. Our approach can be seen as an
instance of AOP where an aspect is a formal trace property.
Like AOP, this separation of concerns leads to programs that
are easier to develop and maintain. This feature is especially
important in a security context where it is impossible to fore-
see all possible attacks and where programs may have to be
changed quickly to respond to new threats. Furthermore,
considering aspects as properties permits to describe and
control precisely the semantic impact of weaving (another
essential feature for security critical systems).

The material presented in Section 3 (i.e. the intrapro-
cedural case) has been implemented in O’Caml. Simple
heuristics have been implemented for the costly steps (i.e.
the choice of a free set (Section 3.4) and the graph coloring
(Section 3.5)) which make the complexity of the whole pro-
cess linear in the size of the program. We performed a few
experiments on dummy Pascal-like programs and the pre-
liminary results are encouraging. But real examples would
make benchmarking much more valuable. As suggested in
the introduction, an interesting application of our technique
would the securization of mobile code upon receipt. Our
prototype could be applied directly if the language of ap-
plets were e.g. the simple imperative language of Figure 1.
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Dealing with Java byte code supposes several extensions.
For example, the abstraction phase must include a control
flow analyzer to produce precise graphs. The approach must
also take into account the fact that an applet may dynami-
cally load new code. It remains to be seen to which extent
this feature prevents optimizations.

There are other avenues for further research. For the
time being, we have only considered transformations that
stop the program when a violation is detected. More sophis-
ticated forms of error handling could be considered. How-
ever, this must be tackled with care in order to keep the
semantic impact of transformations under control. A longer
term research is the design of a general framework for “prop-
erty oriented programming” integrating static analyses with
program transformations.

Acknowledgments

Thanks are due to Thomas Jensen for his proofreading, to
Daniel Le Métayer for commenting on an earlier version of
this paper, and to Yoann Padioleau for building a prototype
implementation.

References

[1] D. F. Brewer and M. J. Nash. The Chinese wall security
policy. In Proc. of the IEEE Symposium on Research
in Security and Privacy, pages 206–214, May 1989.

[2] R. Cartwright and M. Fagan. Soft typing. In Proceed-
ings of PLDI ’91, Conference on Programming Lan-
guage Design and Implementation (Toronto, Canada),
pages 278–292, June 1991.

[3] D. Cohen, M. S. Feather, K. Narayanaswamy, and
S. S. Fickas. Automatic monitoring of software re-
quirements. In Proceedings of the 19th International
Conference on Software Engineering (ICSE ’97), pages
602–603, Berlin - Heidelberg - New York, May 1997.
Springer.

[4] E. A. Emerson. Temporal and modal logic. In J. van
Leeuwen, editor, Handbook of Theoretical Computer
Science: Volume B, pages 995–1072. Elsevier, 1990.

[5] U. Erlingsson and F. B. Schneider. SASI enforcement of
security policies: A retrospective. In Proceedings of the
1999 New Security Paradigms Workshop, Sept. 1999.

[6] D. Evans and A. Twyman. Flexible policy-directed
code safety. In Proceedings of the IEEE Symposium
on Research in Security and Privacy, Research in Se-
curity and Privacy, pages 32–45, Oakland, CA, May
1999. IEEE Computer Society Press.

[7] P. Godefroid. Model checking for programming lan-
guages using VeriSoft. In Conference record of the 24th
ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 174–186, Paris, 1997.
ACM Press.

[8] L. Gong, M. Mueller, H. Prafullchandra, and
R. Schemers. Going beyond the sandbox: An overview
of the new security architecture in the Java Devel-
opment Kit 1.2. In USENIX Symposium on Internet

Technologies and Systems Proceedings, Monterey, Cal-
ifornia, December 8–11, 1997, pages 103–112, Berkeley,
CA, USA, 1997.

[9] N. Heintze and J. G. Riecke. The SLam calculus: Pro-
gramming with security and integrity. In Conference
record of the 25th ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages, pages
365–377, 19–21 Jan. 1998.

[10] T. Jensen, D. Le Métayer, and T. Thorn. Verifica-
tion of control flow based security policies. In Proc.
of Symp. on Research in Security and Privacy, pages
89–103, May 1999.

[11] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,
C. Lopes, J.-M. Loingtier, and J. Irwin. Aspect-
oriented programming. In Proc. of the European Con-
ference on Object-Oriented Programming, June 1997.

[12] G. Kiczales et al. Aspect-oriented programming. Col-
lection of Tech. Reports SPL-97-007 – 010, Xerox Palo
Alto Research Center, 1997.

[13] N. Klarlund and M. I. Schwartzbach. A domain-specific
language for regular sets of strings and trees. In Pro-
ceedings of Domain Specific Languages, pages 145–156,
1997.

[14] X. Leroy and F. Rouaix. Security properties of
typed applets. In Conference record of the 25th ACM
SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, pages 391–403, 19–21 Jan. 1998.

[15] M. Mizuno and D. Schmidt. A security flow control
algorithm and its denotational semantics correctness
proof. Formal Aspects of Comp., 4(6A):727–754, 1992.

[16] G. C. Necula. Proof-carrying code. In Conference
record of the 24th ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages, pages
106–119, Jan. 1997.

[17] J. Palsberg and P. Ørbæk. Trust in the lambda calcu-
lus. In Proc. of the 1995 Static Analysis Symposium,
volume 983 of LNCS, pages 314–330, 1995.

[18] J. Rushby. Kernels for safety? In T. Anderson, editor,
Safe and Secure Computing Systems, pages 310–320.
Blackwell Scientific, 1987.

[19] F. B. Schneider. Enforceable security policies. Techni-
cal Report TR98-1664, Cornell University, 1998. (Re-
vised version July 1999).

[20] D. Volpano and G. Smith. A type-based approach to
program security. In Proc. 7th TAPSOFT, volume 1214
of LNCS, pages 607–621, 1997.

[21] D. Walker. A type system for expressive security poli-
cies. In Conference record of the 27th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming
Languages, Boston, 2000. ACM Press.

[22] D. S. Wallach. A New Approach to Mobile Code Se-
curity. PhD thesis, Faculty of Princeton University,
January 1999.

[23] D. S. Wallach and E. W. Felten. Understanding Java
stack inspection. In IEEE Symposium on Security and
Privacy, May 1998.

11



Appendix A

We sketch in this appendix the proofs of the properties
stated in the paper.

Let us first introduce the notion of I-graph morphisms.

Definition 8 Let I1 = (G, R1, r1
0, γ

1, S1) and I2 =
(G, R2, r2

0, γ
2, S2) be two I-graphs. A I-graph morphism F

is a function from V × R1 to R2 verifying:

Fv0(r
1
0) = r2

0 (6)

∀v
e−→v′∈E, ∀r∈reach1(v), Fv′(γ1

e(r))) = γ2
e(Fv(r)) (7)

∀v∈V, ∀r∈reach1(v), r∈A1
v ⇔ Fv(r)∈A2

v (8)

We will write F(I1) = I2.

The key property of a morphism is to keep the set of
partial traces unchanged.

Lemma 1 T (F(I)) = T (I)

Proof:
Let I = (G, R, r0, γ , S) and F(I) = (G, R0, r0

0, γ
0, S0). One

proves by induction on w using properties (6) and (7), that:

∀ v0
w−→ v ∈ E∗, γ0

w(r0
0)=Fv(γw(r0))

The lemma is then a consequence of (8). 2

Proof of Property 2:
Let us first note that

∀v
e−→v′ ∈ E, ∀r ∈ reach(v), γm

e (classv
I(r)) = classv′

I (γe(r))

defines γ as a function. It is easy to show that the function
v, r 7→ classv

I(r) is a morphism from I to Im . Then,
lemma 1 entails the correctness of minimization. 2

Proof of Property 4:
Let F be defined as:

F : v, r 7→ r′ such that r ∈ Γ(v, r′)

This defines a function because of the constraints (2) and

(3). Furthermore, the definition of γf satisfies:

∀ v
e−→v′, r ∈ reach(v), ∀rf ∈ Γ(v, r), γf

e(rf ) ∈ Γ(v, γe(r))

It is then easy to show that F is a morphism from If to I
and correctness of erasing follows. 2

Lemma 2 Let I and I1 be two equivalent instrumentations
(having the same set of traces) then, there exists a morphism
from I1 to Im .

Proof:
Let I = (G, R, r0, γ , S) and I1 = (G, R1, r1

0, γ
1, S1) verify-

ing:

∀ v0
w−→ v ∈ T (G), γw(r0) ∈ Av ⇔ γ1

w(r1
0) ∈ A1

v

Let F be defined for r ∈ reach1(v) by:

F : v, r 7→ γm
w (rm

0 ) where v0
w−→ v ∧ r = γ1

w(r1
0)

Let us first show that this definition makes sense. We have
to prove that once v and r are fixed, γm

w (rm
0 ) is a constant

(with respect to w). In other words,

v0
w−→v ∧ v0

w′
−→v ∧ γ1

w(r1
0)=γ1

w′(r1
0) ⇒ γm

w (rm
0 )=γm

w′(rm
0 )

Let v0
w−→ v and v0

w′
−→ v be two paths such that γ1

w(r1
0) =

γ1
w′(r1

0), then:

T (I[v, γw(r0) 7→ v0, r0]) = T (I1[v, γ1
w(r1

0) 7→ v0, r0])

= T (I[v, γw′(r0) 7→ v0, r0])

It proves that γw(r0)
I≡v γw′(r0) which is equivalent

to γm
w (rm

0 ) = γm
w′(rm

0 ). It is then easy to show that the
function F is a morphism from I1 to Im . 2

A consequence of this lemma is that the minimization is
unique up to isomorphism.

Lemma 3 Let E be a a free set for I, if there is a morphism
from I to I′ then E is a free set for I′.

Proof:
This can be shown using (7) and the definition of a free set
for I. 2

Proof of Property 5:
The set {e | γo

e = Id} is a free set of Io . Lemma 2 says that
there exists a morphism from Io to Im . Then Lemma 3
suffices to deduce the property. 2

Proof of Property 7:
In this proof, we will abuse the notation by using k or w to
denote (string of) integers representing instructions as well
as their associated (string of) events or annotated events.
We first prove by induction on the length of w that:

(P, σ)
w⇒A

(P ′, σ′)
⇓

(Con(I, P ), st(σ, r0))
w⇒∗

(Con(I, P ′), st(σ′, γw(r0)))

Let us consider P ,σ,P ′ and σ′ such that (P, σ)
w⇒A

(P ′, σ′).

• If w = ε then P = P ′ and σ = σ′ (because all instruc-
tions are supposed to generate integers in the original
program), and the property holds trivially.

• If w = w′k, there exists P ′′ and σ′′ such that (P, σ)
w′
⇒

∗

(P ′′, σ′′) and (P ′′, σ′′) k⇒ (P ′, σ′). We have w ∈ T (G)
because the abstraction is safe (4). Consequently,

there exists two nodes v′′ and v′ such that v0
w′
−→ v′′

and v′′ k→ v′. By definition of the reachability γw′(r0) ∈
reach(v′′). Furthermore, we know that w ∈ L(A) (be-

cause P, σ
w⇒A

P ′, σ′) and w ∈ T (G), thus (by Defi-
nition 1) γw(r0) = γk(γw′(r0)) ∈ Av′ . We may then
apply the equation 5 and obtain:

(Con(I, P ′′), st(σ′′, γw′(r0)))
k⇒

∗

(Con(I, P ′), st(σ′, γw(r0))))
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(v, r)
F→ (v, r)

(v, r)
F→ (v′, r′) v′ e→ v′′ e ∈ F

(v, r)
F→ (v′′, γe(r′′))

(v, r)
F→ (v′, r′) v′ f

↪→ v′′ (f, r′) F→ (ret , r′′)

(v, r)
F→ (v′′, r′′)

Transitions over balanced paths of F .

(v, r)
E
;(v′,r′) F

;−−−−−−→ (v′′, r′′) (v′′, r′′) F→ (v′′′, r′′′)

(v, r)
E
;(v′,r′) F

;−−−−−−→ (v′′′, r′′′)

(v, r)
E→ (v′, r′) (v′, r′)

E
;(v′′,r′′) F

;−−−−−−−→ (v′′′, r′′′)

(v, r)
E
;(v′′,r′′) F

;−−−−−−−→(v′′′, r′′′)

v
f

↪→ v′′ (f, r)
E
;(v′,r′) F

;−−−−−−→(ret , r′′)

(v, r)
E
;(v′,r′)F

;−−−−−−→(v′′, r′′)

Transitions over half-F balanced paths.

(v, r)
E
;(v′,r′) F

;−−−−−−→(v′′, r′′)

(v′, r′) F
; (v′′, r′′)

(v, r)
F
; (v′, r′) (v′, r′) F→ (v′′, r′′)

(v, r)
F
; (v′′, r′′)

(v, r)
F
; (v′, r′) v′ f

↪→ v′′

(v, r)
F
; (f, r′)

Transitions over ordinary paths of F .

Figure 6: Deciding the freeness in the context-free case.

The induction hypothesis on w′ gives:

Con(I, P ), st(σ, r0)
w′
⇒

∗
Con(I, P ′′), st(σ′′, γw′(r0))

and therefore

Con(I, P ), st(σ, r0)
w⇒∗

Con(I, P ′), st(σ′, γw(r0)))

which proves the property.

We return to the proof of Property 7. Let σr = SOSA[[P ]]σ,
two cases may occur:

• If σr = ⊥, then there exists w and k such

that (P, σ)
wk⇒

∗
(P ′, σ′) with w ∈ L(A) but wk 6∈ L(A).

Let v and v′ be such that v0
w−→ v and v

k−→ v′.

Applying the property we just proved, we obtain:

(Con(I, P ), st(σ, r0))
w⇒∗

(Con(I, P ′), st(σ′, γw(r0))))

We also know that γwk(r0) 6∈ Av because wk 6∈ L(A)
(Definition 1). Thus, equation 5 yields:

(Con(I, P ′), st(σ′, γw(r0))))
ε⇒∗ ⊥

It means SOS [[Con(I, P )]]st(σ, r0) = ⊥.

• Similarly, if σr 6= ⊥, we have:

SOS [[Con(I, P )]]st(σ, r0) = st(σr, γw(r0))

where w is such that (P, σ)
w⇒∗

σr.

2

Appendix B

This appendix describes the system of constraints used for
deciding whether a set is free in context-free abstractions.

The goal is to compute the relation (v, r)
F
; (v′, r′). It

can be done by finding the smallest solution of the system
of constraints presented in figure 6.

The first set of rules computes the relation (v, r)
F→

(v′, r′) which is defined by:

(v, r)
F→ (v′, r′) ⇐⇒ ∃w ∈ F ∗, (v, ε)

w
; (v′, ε) ∧ γw(r) = r′

It corresponds to the existence of a path of edges belonging
to F , where all calls are matched with returns (and vice
versa), that maps r to r′.

The second set of rules describes transitions over the half-
F balanced paths. The formal definition is:

(v, r)
E
;(v′,r′) F

;−−−−−−→ (v′′, r′′)
m

∃s′,
∃(v, ε)

w
; (v′, s′) ∈ E∗, γw(r) = r′

∧ ∃(v′, s′) w′
; (v′′, ε) ∈ F ∗, γw′(r′) = r′′

Finally, the third set of rules describes how to compute

the relation (v, r)
F
; (v′, r′).

What makes this system work is that if (v0, ε)
w
; (v, s)

then any postfix path w′ of w can be written as w′
1w

′
2, with:

• Any call occurring in w′
1 has a corresponding return

in w′
1.

• Any return occurring in w′
2 has a corresponding call

in w′
2.

In our system of constraints, the definition of half F bal-
anced paths only serves to compute w′

1. Then, the third set
of rules is used to concatenate w′

1 with w′
2.
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