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Abstract

Type systems currently available for imperative languages
are too weak to detect a significant class of programming
errors. For example, they cannot express the property that
a list is doubly-linked or circular. We propose a solution
to this problem based on a notion of shape types defined
as context-free graph grammars. We define graphs in set-
theoretic terms, and graph modifications as multiset rewrite
rules. These rules can be checked statically to ensure that
they preserve the structure of the graph specified by the
grammar. We provide a syntax for a smooth integration of
shape types in C. The programmer can still express pointer
manipulations with the expected constant time execution
and benefits from the additional guarantee that the property
specified by the shape type is an invariant of the program.

1 Motivation and approach

Facilities for explicit pointer manipulation are useful for cer-
tain classes of applications, but they may lead to a very
error-prone style of programming. It is well-known that
static type checking is one of the most effective ways to
improve program robustness. Unfortunately, the expressive-
ness of type systems currently available for imperative lan-
guages is too weak and a significant class of programming
errors falls outside their scope. The main reason is that
they fail to capture properties about the sharing which is
inherent in many data structures used in efficient impera-
tive programs. As an illustration, it is impossible to express
the property that a list is doubly-linked or circular in exist-
ing type systems.

The work described here is an effort to provide a solu-
tion to this problem which is both sound and realistic. The
contribution of the paper is twofold:

• We introduce a notion of shape defined in terms of
graph grammar and an algorithm for the static shape
checking of graph transformers. Most useful data struc-
tures can be expressed as shapes in a precise and nat-
ural manner.

Permission to make digital/hard copies of all or part of this material for personal

or classroom use is granted without fee provided that the copies are not made

or distributed for profit or commercial advantage, the copyright notice, the title

of the pubilcation and its date appear, and notice is given that copyright is by

permission of the ACM, Inc. To copy otherwise, to republish, to post on servers

or to redistribute to lists, requires specific permission and/or fee.

POPL 97, Paris, France
c© 1997 ACM 0-89791-853-3/96/01 ..$3.50

• We propose a notation for the introduction of shape
types 1 and transformers in C. This notation can be
translated into pure C without loss of efficiency, and
the previously defined shape checking algorithm can
be used to check extended C programs.

Let us stress that the use of shape types does not impose
a drastic change in programming practices: the more that
traditional pointer types are integrated within shape types,
the more static verifications will be performed. So, the pro-
grammer can adapt his use of shape types to the level of
confidence required for his program. Shape types can also
be used to improve the accuracy of program analyses (and
enable optimizing transformations), but this application is
not described in this paper.

We believe that the following qualities of shape types
should favor their adoption in realistic programming envi-
ronments:

• They can express data structures with complex sharing
patterns in a natural way.

• They can be implemented into a language with explicit
pointer manipulation without loss of efficiency.

• They are not limited to one style of programming lan-
guage. We have chosen to present their integration
into C here, but the general framework is independent
of the host programming language.

We review related work in the next section. For the sake
of clarity, we present shape types in two stages. First, we
introduce the notion of shape in a programming language
independent way (Section 3); we propose a model of graph
transformer and an algorithm for static “shape checking”
of transformers (Section 4). Then, we show how shapes
and transformers can be used as a basis for linguistic exten-
sions of C (Section 5). In Section 6, we assess the proposal
described in the paper and we suggest avenues for further
research.

2 Related work

A large amount of work has been devoted to the design of
methods for reasoning about the “shape” (in a broader sense
than the one adopted in this paper) of heap-allocated struc-
tures. The contributions can be classified in two categories,

1We use the expression “shape types” for the notion of types in-
troduced here, keeping the denomination “graph types” to refer to
[15]



depending on the level of cooperation required from the pro-
grammer:

• In the “fully automatic approach”, no help is expected
from the programmer. An analyzer automatically in-
fers properties about shapes at all program points.
Most storage analyses and alias analyses belong to this
class [3, 7, 9, 10, 14, 17, 21]. These analyses are based
on various models of “shapes” (k-limited graphs, regu-
lar tree grammars, access path matrices, points-to re-
lationships, . . . ). A short survey of this trend of work
can be found in [7].

• In the “programming language” approach, the pro-
grammer can specify the properties of shapes; these
properties can then be checked, either statically or dy-
namically, and used by an optimizing compiler. This
approach has been less popular until recently. It in-
volves programming language extensions to describe
properties of shapes. These extensions are usually
based on traditional (tree-like) recursive data struc-
tures enhanced with properties on pointers. ADDS
[12, 13] associates directions (forward, backward) with
pointers, making it possible to distinguish, for instance,
trees and doubly-linked lists. Graph types [15] are
spanning trees augmented with extra links defined us-
ing regular routing expressions. The class of graphs
considered in [16] is also based on spanning trees, but
auxiliary edges are specified by constraints in monadic
second-order logic. A quite different formalism is pro-
posed in [20] to specify checkable interfaces as con-
straints on scalars, sets and multisets. Graph-like data
structures are also supported by [11], but the formal-
ism used is akin to more traditional tree grammars.

It should be clear that both approaches are in fact com-
plementary since the shape information provided by lan-
guage extensions can be used to increase the accurateness
of automatic alias analyses [13] (or to make them more effi-
cient). The work described in this paper falls into the sec-
ond category. We believe that the programming language
approach is worthwhile because it makes it possible to get
accurate information about the shape of the store at a rea-
sonable cost. Furthermore, it should not necessarily be seen
as a compromise, but rather as a step in the right direction,
favoring the integration of a better style of programming
within existing languages.

The main difference between this work and ADDS is that
we specify the links in a shape very precisely (a data struc-
ture conforming to a shape must include exactly the links
specified by the shape, and no more) whereas the forward
and backward attributes of [13] characterize the authorized
links in a less constrained way. This difference reflects the
intended application of the description, which is mainly pro-
gram optimization in [13], whereas our work on shape types
is first directed towards a more robust style of programming
through type checking.

The graph types introduced in [15] are defined as tra-
ditional recursive data types enhanced with a notation for
expressing the sharing between subterms through auxiliary
pointers. Although this work is close in spirit to the ap-
proach followed here, we believe that the notion of graph
types suffers from two weaknesses which may limit their use:

• The first, and most important, shortcoming is the fact
that basic operations on values of a graph type may

involve an implicit walk through the whole structure.
Although the worst-case complexity of this walk is lin-
ear, this hidden cost can be a serious obstacle to the
integration of graph types in languages which are typ-
ically used by programmers requiring a very fine grain
control over the efficiency of their code.

• The second, and more subjective, weakness is the lack
of naturalness of the definition of the types. The des-
tination of extra-pointers has to be expressed by regu-
lar expressions which characterize paths in the struc-
ture. These paths can include a mixture of upward
and downward moves leading to quite complex speci-
fications.

We believe that the origin of these difficulties lies in the
separation of pointer links into two classes, the spanning
tree pointers and the auxiliary pointers, which are defined
using two heterogeneous techniques. For example, it does
not seem natural to distinguish one particular pointer in a
circular list, neither from the perspective of program rea-
soning nor from the implementation point of view. Shapes
are also more expressive because the extra edges of [15] de-
pend functionally on the backbone, which makes it impos-
sible, for instance, to specify a list with an extra link from
the head to a random element. This limitation is lifted in
[16] which proposes a more general way of specifying classes
of graphs as spanning forests enhanced with auxiliary edge
constraints expressed in monadic second-order logic. The
expressive power of this new formalism and the context-free
graph grammars are incomparable.

3 Shapes

Our notion of shape is inspired by previous work on the
chemical reaction model [2, 8] and set-theoretic graph rewrit-
ing [19]. Formally, a graph is defined as a multiset of relation
tuples noted R a1 . . . an where R is a n-ary relation name
and ai ∈ V with V a countable set of variables. In the sequel,
we use the words “graph” and “multiset” interchangeably.

As an illustration, the following graph represents an ex-
ample of doubly-linked list with a pointer to the first ele-
ment:

p
// a176540123@AGFpred ED��

next // a276540123 next //
pred

oo a3

BCED nextGF��

pred
oo 76540123

As it is common in C-like languages, terminal values point
to themselves. The list involves three variables a1, a2 and
a3. It is formally defined as the multiset ∆:

{p a1 , pred a1 a1 , next a1 a2 , pred a2 a1 ,

next a2 a3 , pred a3 a2 , next a3 a3 }
It should be clear that this graph is just one representa-

tive of a class of graphs following the same pattern. We spec-
ify such a class as a context-free graph grammar and we call
it a shape. Different notions of context-free graph grammars
have been studied in the literature. They are defined either
in terms of node replacement [6] or in terms of hyper-edge
replacement [5]. Our definition of graphs as multisets al-
lows us to express hyper-edge replacement in a very natural

2



way. A grammar is a four-tuple < NT, T, PR, O > where
NT and T are sets of, respectively, ranked non-terminal and
ranked terminal symbols, PR is a set of production rules and
O is the origin of the derivation. The multisets considered in
this paper contain terms built from the symbols of NT ∪ T
and variables of V . A multiset is said to be terminal if it
contains only terms built from T and V . The production
rules of PR are pairs l = r where l is a term A x1 . . . xn

(with A a non-terminal of arity n) and r is a collection of
terms.

Continuing our example, the shape representing doubly-
linked lists with a pointer to the first element is defined as:

HDL =< {Doubly, L}, {next,pred,p}, RDoubly, Doubly >

with RDoubly the following set of rules:

Doubly = p x , pred x x , L x
L x = next x y , pred y x , L y
L x = next x x

In the following, we use the symbols + and − to denote
the sum and difference on multisets. We use Greek letters
σ, τ to represent injective substitutions (mapping variables
to variables).

Definition 1 Let H be the grammar < NT, T, PR, O >.
The shape defined by H is the set:

Shape(H) = {M | M
∗→PR {O} and M terminal} with

X + (σ r) →PR X + (σ l) ⇔
l = r ∈ PR and (Var(σ r) − Var(σ l)) ∩ Var(X) = Ø

A multiset belongs to the shape if it rewrites by →PR

to the origin O of the shape. We could alternatively have
defined Shape(H) as the set of the terminal multisets gen-
erated from the origin O, but the definition in terms of re-
ductions makes the subsequent developments easier.

The multiset rewrite system →PR is derived as a “right
to left” reading of the rules l = r of PR. M0 →PR M1 if M0

contains an instantiation (σ r) of a right-hand side of PR
and M1 is obtained by replacing (σ r) by the corresponding
left-hand side (σ l). It is important to note that in the
rewriting

X + (σ r) →PR X + (σ l)

X + (σ r) represents the entire multiset. In other words,
the rewrite rules of →PR are global.

The last condition in Definition 1 ensures that new vari-
ables occurring on the right-hand side of a rule of the gram-
mar are instantiated with variables which are distinct from
all other existing variables. This constraint, which is usual
in graph rewriting [19], is necessary to avoid unexpected
variable sharing.

The rewrite system associated with Doubly is:

p x, pred x x, L x →RDoubly Doubly
next x y, pred y x, L y, X →RDoubly L x, X y 6∈ X
next x x, X →RDoubly L x, X

The variable X stands for the rest of multiset (the context
of the reduction) and y 6∈ X expresses the last condition in
Definition 1.

It is easy to check that the multiset ∆ defined above
belongs to Shape(HDL). But the multiset ∆′:

{p a1 , pred a1 a1 , next a1 a2 , pred a2 a1 ,

next a2 a1 , pred a1 a2 , next a1 a1 }
which is obtained by confusing a3 and a1, does not belong to
Shape(HDL). Applying the last rule of RDoubly, it reduces
to

{p a1 , pred a1 a1 , next a1 a2 , pred a2 a1 ,

next a2 a1 , pred a1 a2 , L a1 }
But the second rule of RDoubly cannot be applied to this
term because the variable instantiating y (a1 here) must
not occur in the rest of the multiset.

In order to enhance the intuition about shapes, Figure
1 gathers a few examples illustrating their use to describe
pointer structures. Skip lists are used as an alternative to
balanced trees for more efficient data insertions and dele-
tions [18]. Red-black trees are binary search trees whose
links are either “black” or “red” [22]. A property of red-
black trees is that there are never two successive red links
along a path from the root to a leaf (red links are represented
as dotted lines in the figure). This property is expressed in
the shape. The left-child, right-sibling trees (Lcrs-trees) are
binary trees used to represent trees with unbounded branch-
ing [4]. Note, that each node has a parent pointer and a
pointer (leftc) to its leftmost child and a pointer (rights)
to its sibling immediately to the right. The grammars can
be intuitively explained by attaching a meaning to each non-
terminal. For example, in the last grammar, N x y denotes
a Lcrs-tree whose root is x and parent y. L x y denotes a
list of Lcrs-trees whose parent is y ; the first tree of a list
L x y has root x.

4 Shape invariance

Transformers

We consider a simple model of program P = (C ⇒ A),
called a transformer, whose semantics is defined as a “single
step” rewriting:

X + (σ C) → X + (σ A) ⇔

(Var(σ A) − Var(σ C)) ∩ Var(X) = ∅
A transformer replaces an instantiation of its left-hand side
(the condition C) by an instantiation of its right-hand side
(the action A). Again, the condition ensures that new vari-
ables occurring on the right-hand side are really fresh.

As an illustration, the following transformers respectively
add an element at the front of a doubly-linked list and re-
move an intermediate element from a doubly-linked list:

P1 = p a , next a b , pred b a ⇒
p a , next a a′ , pred a′ a , next a′ b , pred b a′

P2 = next a b , pred b a , next b c , pred c b ⇒
next a c , pred c a

Because of the condition on new variables, the variable a′

in the first program must be fresh (it must not occur in the
context X of the reduction).
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Simple lists:

List = L x
L x = next x y , L y
L x = next x x

������������	
� // ������������	
� // ������������	
� // ������������	
� // ������������	
� // ������������	
� // ������������	
� ������

Lists with connections to the last element:

Listlast = L x z
L x z = next x y , last x z , L y z
L x z = next x z , last x z , next z z

������������	
� //
@AGF ED ��������������	
� //

@AGF ED��������������	
� //
@AGF ED��������������	
�������

Skip lists of level 2:

Skip = S x x
S x y = next x z , S z y
S x y = next x z , skip y z , S z z
S x y = next x x , skip y x

������������	
� //
GF ED��������������	
� // ������������	
� //

GF ED ��������������	
� // ������������	
�������

Binary trees:

Bintree = B x
B x = left x y , right x z , B y , B z
B x = leaf x x

������������	
�
{{vvv
vv
v

##HH
HH

HH

������������	
�
{{vvv
vv
v

##H
HH

HH
H

������������	
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������������	
������� ������������	
�

{{vvv
vv
v

##HH
HH

HH

������������	
� ������ ������������	
�������

Binary trees with linked leaves:

Binlink = L x y z
L x y z = left x u , L u y v , R x v z
L x y z = left x y , R x y z
R x y z = right x u , next y v , L u v z
R x y z = right x z , next y z

������������	
�
{{vvv
vv
v

##HH
HH

HH

������������	
�
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v

##HH
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HH
������������	
�
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�
##HH
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������������	
�
{{vvv
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v

##HH
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HH

������������	
� // ������������	
�

OO

Red-black trees:

Redblack = L x
L x = leaf x x
L x = leftb x y , R x , L y
L x = leftr x y , R x , B y
R x = rightb x y , L y
R x = rightr x y , B y
B x = leftb x y , rightb x z , L y , L z

������������	
�
uukkkk

kk
kk
kk
k

))SSS
SS

SS
SS

SS

������������	
�
w� �'

������������	
�
w� ##HH

HH
HH

������������	
�
{{vvv
vv
v

##HH
HH

HH
������������	
� ������ ������������	
�

{{vvv
vv
v

##HH
HH

HH
������������	
�������

������������	
����� �� ������������	
������� ������������	
����� �� ������������	
�������

Left-child, right-sibling trees:

Lcrs = N x x
N x y = leftc x z, parent x y , N z x , L x y
N x y = leftc x x, parent x y , L x y
L x y = rights x z , N z y , L z y
L x y = rights x x

������������	
� ������
{{vvv
vv
v

������������	
� //������
;;vvvvvv ������������	
� //

OO

{{vvv
vv
v

������������	
����� ��
ccHHHHHH

������������	
�������
;;vvvvvv // ������������	
� ������

ccHHHHHH

Figure 1: Examples of shapes

4



CheckC,A(PR,O) = VerifyA (BuildC(PR,O)) where:

• BuildC(PR,O) returns the tree with root C and all the edges Ci
Xi→ Ci+1 such that

∃ l = r ∈ PR, ∃ σ ∈ MGU(Ci, (l, r)) and

Xi = (σ r) − Ci

Ci+1 = (Ci − (σ r)) + (σ l)

and Ci+1 is not isomorphic to one of its ancestors Cj in the tree.

• VerifyA (Tree) returns true if and only if

∀ C1
X1→ C2 . . .

Xk−1→ Ck complete path in Tree (C1 = C and Ck is a leaf),

A + X1 + . . . + Xk−1
∗→PR Ck

• MGU(C, (l, r)) is the set of all substitutions (modulo renaming) σ of variables of l and r such that:

C ∩ (σ r) 6= Ø and (Var(σ r) − Var(σ l)) ∩ Var(C − (σ r)) = Ø

Figure 2: A simple shape checking algorithm

A simple shape checking algorithm

Let us consider a shape H = < NT, T, PR, O > and
a given transformer P = (C ⇒ A). The natural question
at this stage concerns the possibility of verifying that P
is correct with respect to H . A static “shape checking”
amounts to a proof of invariance: if a multiset M belongs
to the shape H and M can be rewritten into M ′ by P , then
M ′ must also belong to the shape H . So, what is needed is
an algorithm CheckC,A satisfying the following property:

Proposition 2

If CheckC,A(PR, O) then ∀X, ∀σ,

X + (σ C)
∗→PR {O} ⇒ X + (σ A)

∗→PR {O}

We describe such an algorithm in Figure 2. Its termina-
tion and correctness proofs can be found in the appendix.
In order to convey the intuition, we devote the rest of this
section to an informal presentation of the algorithm. Let
us consider the verification of the transformers P1 and P2

above with respect to the shape Doubly defined in Section
3. BuildC returns the following tree for P1 (with the root
at the top):

p a , next a b , pred b a

↓ L b

p a , L a

↓ pred a a

Doubly

The root of the tree is the left-hand side

C = p a , next a b , pred b a

of the transformer to be checked. MGU computes the sub-
stitutions matching C with a subset of the left-hand side of
a →RDoubly rule. There is only one possibility here, namely
the second rule of →RDoubly and σ = {(x, a), (y, b), (X, p a)}.

The label of the corresponding edge is X1 = {L b} which is
the context required for the reduction. The reduced term is
C2 = p a , L a. The only possible matching of C2 is with the
left-hand side of the first rule of →RDoubly . The label of the
second edge is the context X2 = pred a a and the result
of the derivation is the origin Doubly. Note that C2 does
not match the left-hand side of the second rule of →RDoubly

due to the side condition y 6∈ X (because of the presence of
p a). Indeed, a context built from this rule would not be
valid since it would add an element at the front of p a.

In a second stage, VerifyA is applied to this tree, with
A = p a , next a a′ , pred a′ a , next a′ b , pred b a′.
VerifyA checks that A+{L b , pred a a} ∗→RDoubly Doubly,
which is straightforward. It should be clear that this step
would have failed if we had inadvertently misnamed a vari-
able, swapped two variables, or forgotten any link in the
definition of A.

The tree constructed by BuildC for P2 is the following:

next a b , pred b a , next b c , pred c b

↓ L c

next a b , pred b a , L b

↓ Ø

L a

L a is a leaf of the tree because the derivation

L a , next a′ a , pred a a′→RDoubly L a′

would lead to an isomorphic term. This stopping condition
is necessary to avoid infinite unrolling of the tree. As usual
in static program analysis, this condition could be weakened
to get more precise results at the price of the construction
of a larger tree.

Again, VerifyA checks that the action of the transformer
(next a c , pred c a) in the same context L c derives to the
same term L a.
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Improvements of the checking algorithm

For the sake of clarity, we have presented here a simplified
version of the algorithm. Several optimizations can be con-
sidered. The most important ones concern the intermediate
structure: it can be represented as a graph rather than a tree
and it can be pruned to remove all the nodes which cannot
lead to the origin O (they represent contexts which cannot
occur in a multiset of the given shape). Also, the condition
checked by VerifyA for non-terminal leaves can be weakened
for a better precision. The basic idea is to consider nodes up
to isomorphisms and to build the complete reduction graph
(with all paths leading to the origin of the shape). This re-
duction graph can be represented by a graph grammar whose
language is the set of possible contexts, that is to say, the

quotient language L(O)/C = {X | X+C
∗→PR {O}}. Shape

checking amounts to proving L(O)/C ⊆ L(O)/A, which can
be done using classical techniques for (word) grammar in-
clusion. This technique improves the precision of the simple
algorithm considerably.

Completeness issues

Context-free graph grammars are a very flexible and power-
ful formalism. The price to pay for this generality is, not sur-
prisingly, that the grammar equivalence and inclusion prob-
lems are undecidable in this framework. Since shape check-
ing reduces to proving the inclusion of graph grammars, it is
also undecidable. So, no complete shape checking algorithm
can be expected for unrestricted grammars and transform-
ers. Even if we believe that a sophisticated algorithm can
deal with most common situations, this theoretical result is
annoying. As it is, the programmer would remain helpless
when a plausible transformer is rejected by the checker. In
the following, we define a subclass of shape grammars and
transformers for which a complete (and practical) checking
algorithm exists.

If the shape grammar H = < NT, T, PR, O > and
the transformer C ⇒ A are such that:

• the rewriting system
∗→PR is confluent and

• the set of contexts of C (i.e. {X | C + X
∗→PR {O}})

can be represented as a finite collection of multisets of
the form {X1, . . . , Xn} with Xi ∈ T ∪ NT ,

then a simple extension of the previous näıve algorithm is
enough to decide whether the transformer C ⇒ A is correct
with respect to H .

The idea is to compute only irreducible contexts and
to find a minimal representation of the quotient language
L(O)/C. Confluence ensures that considering only irre-
ducible contexts is sufficient. The algorithm checks that

any irreducible context X satisfies A + X
∗→PR {O}. The

second condition ensures that the number of such contexts is
finite, thus the checking process terminates and is complete.

It seems that most practical transformers can be checked
without these restrictions and therefore we do not intend to
impose them. However, when a (supposedly) valid trans-
former cannot be checked, these two conditions can provide
guidance to re-express the problem in a tractable way.

The confluence can be statically checked using the stan-
dard method based on overlapping terms. Unjoinable crit-
ical pairs constitute useful feedback for the programmer to
change his grammar. The second condition can be rephrased
intuitively as follows: the shape after removal of C can be
described finitely in terms of terminals and nonterminals of

the grammar. This provides guidance to the programmer
to modify the reaction (e.g. by making the context more
precise) or the grammar (e.g. by introducing new nontermi-
nals).

5 Shapes within C

We describe now Shape-C, an extension of C which inte-
grates the notions of shapes and transformers. The design
of Shape-C is guided by the following criteria:

• The extensions should be blended with other C fea-
tures and be natural enough for C programmers.

• The result of the translation of Shape-C into simple C
should be efficient.

• The checking algorithm of Section 4 should be appli-
cable to ensure shape invariance.

Space limitations prevent us from describing all the de-
tails of Shape-C. Instead, we present the extensions and
their translation into C through an example: the Josephus
program. This program, borrowed from ([22], pp. 22), first
builds a circular list of n integers; then it proceeds through
the list, counting through m−1 items and deleting the next
one, until only one is left (which points to itself). Figure 3
displays the program in Shape-C and its translation into C.
The complete syntax and translation rules of Shape-C are
described in Figure 4 and Figure 5 in the appendix.

Declaration and representation of shapes

The Josephus program first declares a shape cir denoting a
circular list of integers with a pointer pt.

shape int cir { pt x, L x x;
L x y = L x z, L z y;
L x y = next x y; };

Besides cosmetic differences, the definition of shapes is simi-
lar to the context free grammars presented in Section 3. The
variables of V in the previous section are now interpreted
as addresses. They possess a value whose type must be de-
clared (here int). This addition is essential for programming
purposes but it can be ignored during shape checking. Val-
ues can be tested or updated but cannot refer to addresses.
They do not have any impact on shape types.

Intuitively, unary relations (here pt) correspond to roots
whereas binary relations (here next) represent pointer fields.
The shape cir is translated into

struct ad {int val ; struct ad *next;};
struct cir {struct ad *pt;};

An address is represented by a structure (struct ad) with
a value field (val) and as many fields (of type pointer to
struct ad) as the shape has binary relations (here just one).
The shape itself is represented by a structure (called root
structure) with as many fields (of type struct ad *) as the
shape has unary relations. In the following, if f x y belongs
to the shape, we say that x (resp. y) is a source (resp.
destination) of the binary relation f.

Shape-C uses only a subset of shapes which corresponds
to the rooted pointer structures manipulated in imperative
languages. This subset is defined by the following properties:
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/* Integer circular list */
shape int cir { pt x, L x x;

L x y = L x z, L z y;
L x y = next x y; };

main()
{
int i, n, m;

/*initialization to a one element circular list*/
cir s = [| => pt x; next x x; $x=1; |];

scanf("%d%d", &n, &m);
/* Building the circular list 1->2->...->n->1 */
for (i = n; i > 1; i--)

s:[| pt x; next x y; =>
pt x; next x z; next z y; $z=i; |];

/* Printing and deleting the m th element
until only one is left */

while (s:[| pt x; next x y; x != y; => |])
{
for (i = 1; i < m-1; ++i)

s:[| pt x; next x y; =>
pt y; next x y; |];

s:[| pt x; next x y; next y z; =>
pt z; next x z; printf("%d ",$y); |];

}
/* Printing the last element */
s:[| pt x => pt x; printf("%d\n",$x); |];

}

struct ad {int val ; struct ad *next;};
struct cir {struct ad *pt ;};

main()
{struct cir s; struct ad * x, *y, *z;
int i, n, m;

x = (struct ad *) malloc(sizeof (struct ad)),
s.pt = x, x->next = x, x->val = 1;

scanf("%d%d", &n, &m);

for (i = n; i > 1; i--)
if (x = s.pt, y = x->next, 1)
{z = (struct ad *) malloc(sizeof (struct ad)),
s.pt = x, x->next = z, z->next = y, z->val = i;}

while (x = s.pt, y = x->next, x != y)
{
for (i = 1; i < m-1; ++i)
if (x = s.pt, y = x->next, 1)

{s.pt = y, x->next = y; }

if (x = s.pt, y = x->next, z = y->next, 1)
{s.pt = z, x->next = z, printf("%d ",y->val),
free(y);}

}
if (x = s.pt, 1)
{s.pt = x, printf("%d\n", x->val);}
deallocate(s,Cir);
}

(a) in Shape-C (b) after translation into C (without optimizations)

Figure 3: Josephus Program

(S1) Relations are either unary or binary.

(S2) Each unary relation is satisfied by exactly one address
in the shape.

(S3) Binary relations are functions.

(S4) The whole shape can be traversed starting from its roots.

(S5) An address is a source for all binary relations.

The first four conditions correspond directly to properties
of rooted pointer structures. The last one is used to keep
the issue of uninitialized pointers separate. The conditions
(S2) and (S5) ensure that roots and pointers in the shape are
always valid. Null pointers will be represented by elements
pointing to themselves, as it is common in C-like languages.

These conditions can be enforced by analyzing the defi-
nition of grammars. Except (S1) which is purely syntactic,
checking the other conditions amounts to a simple data-
flow-like analysis. Let us point out that these constraints
do not weaken the expressive power of graph grammars. It
is always possible to transform any shape grammar to meet
the conditions above (e.g. by adding new binary relations
to represent n-ary relations or to make the shape fully con-
nected).

Manipulation of shapes

The reaction, noted [| C => A |], is the main operation
on shapes and corresponds to the transformers presented
in Section 4. Two specialized versions of reactions are also
provided: initializers, with only an action, noted [| => A |]
and tests, with only a condition, noted [| C => |].

The Josephus program declares a local variable s of shape
cir and initializes it to a one element circular list.

cir s = [| => pt x; next x x; $x = 1; |];

The value of address x is noted $x and is initialized to 1.
In general, actions may include arbitrary C-expressions in-
volving values. The for-loop builds a n element circular list
using the reaction

s:[| pt x; next x y; =>
pt x; next x z; next z y; $z=i; |];

The condition selects the address x pointed to by pt and its
successor. The action inserts a new address z and initializes
it to i. The interpretation of actions as transformers is
almost straightforward. The only subtlety concerns variable
name confusion. For programming purposes, we have found
it more convenient to allow two different variable names in
the condition to denote the same address. For example, the
reaction above corresponds to the two transformers:
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pt x , next x y ⇒ . . . and pt x , next x x ⇒ . . .

The user can make equality or difference explicit using ex-
pressions of the form x == y or x != y. So, conditions may
include boolean expressions on values or simple comparisons
of addresses. For example, the while-loop specifies a dele-
tion of the mth element until only one is left. This condition
is implemented by the test

s:[| pt x; next x y; x != y; => |]

which yields false if x points to itself.

Translation

The translation process is local and applied to each shape
operation of the program. Firstly, in order to manipulate
the addresses, fresh local variables are declared as

struct ad *x, *y, *z;

in our example. Conditions are translated into a comma
expression, such as

x = s.pt, y = x->next, x != y

for the while-loop test. The local C variables denoting the
addresses are initialized before performing the test denoted
by comparison operations and expressions of the condition.
If no test occurs in the condition, initializations are followed
by 1 (i.e. “true” in C).

The translation of an action is made of assignments of
addresses and C expressions where values $z are replaced
by the selection of the val field of the node pointed to by z.
For example, the translation of the initializer of s is

z = (struct ad *) malloc(sizeof (struct ad));
s.pt = x, x->next = z, z->next = y, z->val = i;

This efficient (after local optimizations) implementation
of reactions would not be possible with the general definition
of transformers. Shape-C uses a variation of transformers
such as:

(R1) Two variables can denote the same address.

(R2) In a condition, an address variable occurs at most once
as a destination of a relation.

(R3) Any relation fi x y in the condition is preceded by a
relation fj z x or pj x.

The first two requirements suppress implicit tests that con-
ditions would have to make otherwise. Without (R1) and
(R2), a condition next x y ,next y y would entail the tests
x!=y and y==y->next. The programmer must instead state
explicitly

next x y; next y z; x!=y; y==z;

The last condition makes it possible to translate a relation
f x y into y = x->f. Because of (R3), we know that x has
been initialized. Furthermore, the properties (S2) and (S5)
ensure that the dereferences in the translation are valid.

Memory management

We have expressed the declaration of shapes as local variable
declarations. On block exit, local shapes are deallocated
using the function deallocate(l,T). This function relies on
the type to traverse and to free the shape starting from its
roots. Constraint (S4) ensures that the traversal is feasible.
Actually, Shape-C also includes dynamic allocation of shape
objects with the instructions (shape tid *) newshape([|
=> A |] ) and freeshape(id).

One benefit of Shape-C is to relieve the programmer
of memory management within shapes. Allocation is per-
formed implicitly when new addresses occur in actions (as
in the first for-loop in our example). As far as deallocation
is concerned, recall that relations are always removed explic-
itly by reactions. So, an address which occurs as the source
of binary relations in the condition and does not occur in
the action is freed. This sole syntactic criterion is sufficient
to compile garbage collection. In our example, this case is
illustrated by y in the second reaction of the while-loop. The
translation makes its deallocation explicit.

Interaction with C

We have striven to provide a reasonably intimate integration
of shapes within C. For example, values can be of any C type,
C expressions may appear in reactions, the type “pointer on
shape” is allowed, etc ... However, Shape-C requires a few
restrictions and we present them here.

An important property that shapes should possess is in-
dependence. That it to say, shape addresses should not be
pointed from another shape or using a regular C pointer but
only from the shape itself. By construction, addresses can
appear only in the relations and comparisons of a reaction.
The only direct way to modify the structure of a shape ob-
ject is to use the reaction construct. Still, undisciplined
pointer arithmetic or wild casts (such as (int *)intexp)
might ruin this property. Such practices are highly risky
and commonly discouraged; we cannot provide any guaran-
tee in these cases.

We have chosen to represent a shape by a structure of
roots. This structure contains pointers which can be modi-
fied and we must therefore disallow the copy of root struc-
tures. The needed restriction can be stated as follows:

(C1) The shape type is submitted to the same restrictions as
the type “function returning ...” in C.

In particular, shapes cannot be assigned (except using
initializers) and cannot be passed as parameters or yielded
as function result. However, the programmer may use shape
pointers e.g. to pass shapes to functions or to return them
as results.

It is also crucial to ensure that reactions can be seen as
atomic operations. So, a second restriction is:

(C2) Nested reactions on the same shape are banned.

A simple solution is to disallow function calls in reactions
but there also exists more flexible options.

Shape checking

Shape checking amounts to verify that initializations and re-
actions preserve the shape of objects. First, let us point out
that values and expressions on values are not relevant for
shape checking purposes. The conditions and actions con-
sidered here are restricted to their relations and addresses
comparisons.
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For an initialization T i = [| => A |], we just have to
check that the action A can be rewritten into the origin T,

that is, A
∗→PRT {T}.

Checking reactions is achieved through a translation into
transformers and application of the algorithm of Section 4.
Due to our convention for name confusion, a reaction is
translated into a set of transformers which correspond to
every possibility of variable equality and difference (in ac-
cordance with explicit constraints x==y, x!=y in the condi-
tion).

The proof that shape invariance is guaranteed in Shape-
C (up to independence) is sketched in the annex.

6 Conclusion

In order to assess the proposal described in this paper, let
us consider in turn the efficiency of the translation, the com-
plexity of the checking algorithm and the expressive power
of shape types.

• The translation into C described here is näıve and the
code may seem inefficient. Fortunately, most of the
requisite optimizations are local and within the reach
of a standard C compiler. A source of inefficiency is
condition (S5) which may lead to a waste of memory
space. For example, the translation of shapes would
produce four field nodes to represent red-black trees
(cf. Figure 1) whereas the standard representation
uses two fields along with two booleans. A solution to
this nuisance is to add syntactic features (or analysis)
to declare (or detect) disjoint relations (such as leftr
and leftb in red-black trees). Such relations can be
implemented by a single tagged node. Their selection
in a condition would involve checking the tag.

• The theoretical complexity of the algorithm is expo-
nential but only in terms of the size of the grammar
and transformers. In practice, it seems very unlikely
that programmers would write huge grammars. As
Figure 1 shows, complex data strutures can be de-
scribed by small grammars.

• Useful structures, such as square grids or balanced
trees, cannot be described as context-free graph gram-
mars. The extension to context-sensitive grammars
would lift these limitations but is far from obvious.
The main problem would be the termination of our
checking algorithm.

We have undertaken an implementation which should help
to assess the practicality and efficiency of Shape-C.

We are considering two other application areas for shape
types:

• The first one is the integration of shapes as checkable
interfaces in a programming environment for C.

• The second one is the use of shape types as a basis
for more accurate (and practically feasible) alias and
parallelization analyses.

We should stress that, due to their precise characteriza-
tion of data structures, shape types should be a very useful
facility for the construction of safe programs. Most efficient
versions of algorithms are based on complex data structures
which must be maintained throughout the execution of the

program [4] [22]. Ensuring the invariance of their represen-
tation is an error-prone activity. Shape types can be used
to describe these invariants in a natural way (see Figure 1
for instance) and have them automatically verified. Their
use as checkable interfaces should enhance their role in a
distributed programming environment, possibly serving as
a basis for program indexing.

The operations on a given shape type can naturally be
gathered into a specialized module (or class in object-oriented
languages), but it should be clear that the approach de-
scribed here goes beyond the design of a fixed set of library
functions, since new types can be defined by the user, with
their operations automatically checked.
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Appendix

Termination and correctness of the shape checking
algorithm

The following observations allow us to prove the termination
of the algorithm:

• The tree returned by BuildC(PR,O) is finite; this is
because:

– PR and MGU(Ci, (l, r)) are finite (MGU is a re-
stricted form as associative-commutative unifica-
tion [23]); thus each node has a finite number of
sons.

– ∀ l = r ∈ PR, size(l) = 1 ≤ size(r); thus the
sizes of all the descendants of a node are less than
its own size and the number of nodes is finite since
no term isomorphic to an ancestor is introduced
(the set of relation symbols occurring in terms is
obviously finite).

The tree can be built following a depth-first strategy.
We do not go into these details here.

• The termination of the reductions

A + X1 + . . . + Xk−1
∗→PR Ck

performed by VerifyA can be shown using a well-founded
ordering based on a Chomsky normal form of the gram-
mar defined by PR (see [8] for a complete proof).

In order to establish the correctness of the algorithm, we
introduce the notion of normal reduction.

Proposition 3 Let M, C, M ′ be multisets such that

M + C
∗→PR M ′.

Then, ∃ M0, . . . , Mn, E1, . . . En, C1, . . . Cn+1,
with M0 = M , C1 = C and Cn+1 = M ′, such that

∀i ∈ [1, n]

Mi−1
∗→PR Mi + Ei

Ci + Ei →PR Ci+1 and
∃ l = r ∈ PR, ∃ σ such that

Ci ∩ (σ r) 6= Ø and
Ei = (σ r) − Ci and
Ci+1 = (Ci − (σ r)) + (σ l) and
(Var(σ r) − Var(σ l)) ∩
(Var(Ci − (σ r)) + (Ei+1 + . . . + En)) = Ø

((C1, E1), . . . , (Cn, En), M ′) is called a normal derivation of
C in context M .

Normal derivations are useful because they isolate the re-
duction steps which are independent of C and they make
explicit the local contexts Ei which are consumed by a re-
duction step involving C or its by-products Ci.

The following lemma can be proven par recurrence on n.

Lemma 4 Let ((C1, E1), . . . , (Cn, En), {O}) be a normal deriva-
tion of C in context M . Then there is a complete path

N1
X1→ N2 . . .

Xk−1→ Nk of length k ≤ n in BuildC(PR,O)
and a substitution σ such that:

∀i ∈ [1, k], Ci = σ Ni, Ei = σ Xi.
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The existence of a normal reduction is guaranteed by
Proposition 3. The following two observations allow us to
conclude the proof of Proposition 2:

• The reduction steps Mi−1
∗→PR Mi + Ei in Propo-

sition 3 are not affected by the replacement of C by
A.

• The reductions A + X1 + . . . + Xk−1
∗→PR Ck

in the definition of V erifyA are stable by substitution
through σ.

Shape invariance in Shape-C

The correctness proof relies on the dynamic semantics of C
as stated in [1] (pp. 30-37). This SOS involves rules of the
form

E `stmt <smt,S> ; S ′

E `stmt <smt′,S> ; S ′

with E and S standing for the environment and the store re-
spectively. In order to treat Shape-C, we add a rule for each
new construct. For example, let T [[ ]] denote the translation
into C (cf. Figure 5), then the rule for reactions is

E `stmt <T [[[|C=>A|]]],S> ; S ′

E `stmt <[|C=>A|],S> ; S ′

The first property to be proven is the independence of
shapes. The property is stated using a function which ex-
tracts from the store the set of locations which can be reached
starting from an identifier in the environment and the set
of locations of shapes. The property is simply that a shape
and any other identifier have disjoint sets of reachable loca-
tions. Even if Shape-C is intented to be an extension of full
C, proof of independence can only be done for a subset of C
excluding union types, casts, arrays, and pointer arithmetic.

The proof of shape invariance assumes independence.
Let us first define a function Ψ which extracts from the
store the set of relations denoted by a shape. The result of
Ψ is a graph (multiset) as defined in Section 3, except that
the domain of variables V is a set of locations. Ψ takes the
location l of a shape (e.g. E(s) if s is a shape identifier), its
shape type T , and a store S . Let p1, . . . ,pn be the unary
relations of shape T ; Ψ is defined as

Ψ(l, T,S) = X∗

with X∗ = X0 ∪ X1 ∪ . . .
and X0 = {pi S(l + Offset(pi))}i=1,...,n

Xi+1 = {f x S(x + Offset(f))
| f binary relation of T
and ∃(p x) ∈ Xi ∨ ∃(f ′ z x) ∈ Xi}

where Offset(f) represents the offset of field f in a structure.
A store S is said to be valid w.r.t. an environment if all

its shape identifiers denote a structure in accordance with
their shape definition. More formally,

Valid(E ,S) = ∀s : shape T ∈ E Ψ(E(s), T,S)
∗→RT {T}

The proof is done by induction on the SOS. The key part is
the case of reactions that we briefly describe. Assuming that
the reaction has been shape checked, we must show that

Valid(E ,S) ∧ E `stmt <[|C=>A|],S> ; S ′ ⇒ Valid(E ,S ′)

In general, a reaction [| C => A |] denotes a set of
transformers (noted ST (C, A)) and shape checking has been
applied to all the transformers of this set. The proof boils
down to showing that the translation of a reaction modifies
the store in the same way as a transformer in ST (C, A).
That is to say,

If E `stmt <T [[[|C=>A|]]],S> ; S ′

then ∃(C′, A′) ∈ ST (C, A)
such that Ψ(E(s), T,S) − σ(C′) + σ(A′) = Ψ(E(s), T,S ′)

with σ a substitution from variables to locations.
Shape checking ensures that for any multiset M of shape T
(so in particular for Ψ(E(s), T,S)) and for any transformer
(C′, A′) of ST (C, A), M −σ(C′)+σ(A′) has shape T (so in
particular Ψ(E(s), T,S ′)).

Syntax and translation of Shape-C

The abstract syntax of Shape-C is built upon the syntax of
C presented in [1] (pp. 21-24) and Figure 4 displays only
the extensions to C.

The translation of Shape-C into C is described in Figure
5 and consists in expanding the syntactic sugar added to C.
In Figure 5, we assume that “name” denotes a renaming of
“name” avoiding name clashes.
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id ∈ Id C identifiers
tid ∈ Tid Shape identifiers
ad ∈ Ad Address identifiers
nt ∈ NonTerm Nonterminal symbols
rel ∈ Rel Terminal symbols (relations)

translation-unit ::= type-def∗ decl∗ fun-def∗

type-def ::= shape type-spec tid { prod ; [nonterminal=prod ; ]∗ } Type definition
| . . .

nonterminal ::= nt ad∗

prod ::= rel ad | rel ad ad | nonterminal | prod , prod

init ::= tid id = [| => shapexp |] Declaration/Initialization

type-spec ::= shape tid
| . . .

fun-def ::= type-spec id ([type-spec id]∗) {decl∗ init∗ stmt∗ }

stmt ::= [*] id: [| shapexp => shapexp |] [else stmt] Reaction
| . . .

shapexp ::= rel ad | rel ad ad | ad eq ad | exp | shapexp ; shapexp eq ∈ {==,!=}

exp ::= [*] id: [| shapexp => |] Test
| newshape( [| => A |], tid) dynamic allocation
| freeshape( e, tid) and deallocation
| $ad Value
| . . .

Figure 4: Syntax of Shape-C
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D[[ { block } ]] = { [struct T s;]∗ for all local variable s of shape T
struct T *temp; temporary variable for dynamic allocation
[struct adT *x;]∗ address variables
block
[deallocate(s,T);]∗ for all local variable s of shape T

}

T [[ shape t T { . . .} ]] = struct adT { t valT ; struct adT *f1, . . ., *fn;};
struct T {adT *p1, . . ., *pm;};
where p1, . . . , pm and f1, . . . , fn are respectively the unary
and binary relations occurring in the definition

T [[ shape T ]] = struct T

T [[ T s = [| => A |] ]] = ([xi = (struct adT *) malloc(sizeof(struct adT)),] i=1,...,n

A[[ A ]] s)
where x1, . . . , xn are the addresses occurring in A

T [[ s:[| C => |] ]] = C1[[ C ]] s , C2[[ C ]]

T [[ s:[| C => A |] [else S] ]] = if (C1[[ C ]] s , C2[[ C ]] ) {
[yi = (struct adT *) malloc(sizeof(struct adT));] i=1,...,m

A[[ A ]] s ;
[free(zi);]i=1,...,p }

[else S]
where y1, . . . , ym are the addresses occurring in A but not in C

z1, . . . , zp are the addresses not occurring in A but appearing
as the first argument of a binary relation in C.

T [[ newshape( [| => A |], T ) ]] = (temp = (struct T *)malloc(sizeof(struct T)),
T [[ T *temp [| => A |] ]] , temp)

T [[ freeshape( *i, T ) ]] = (deallocate(*i,T), free(*i))

C1[[ E ; F ]] s = C1[[ E ]] s , C1[[ F ]] s
C1[[ p x ]] s = x = s.p

C1[[ f x y ]] s = y = x->f
= skip otherwise

C2[[ E ; F ]] = C2[[ E ]] && C2[[ F ]]
C2[[ x eq y ]] = x eq y eq ∈ {==,!=}

C2[[ e ]] = e [xi->valT/$xi] i=1,...,n

where $x1 , . . . , $xn are the values occurring in e (e ∈ exp)
= 1 otherwise

A[[ E ; F ]] s = A[[ E ]] s , A[[ F ]] s
A[[ p x ]] s = s.p = x

A[[ f x y ]] s = x->f = y
A[[ e ]] s = e [xi->valT / $xi] i=1,...,n

where $x1 , . . . , $xn are the values occurring in e (e ∈ exp)

Figure 5: Translation of Shape-C into C
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