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Compilation de la réduction forte et de téte

Résumé :Les compilateurs de langages fonctionnels ne mettent en ceuvre que la
réduction faible. En certaines occasions il est nécessaire d'évaluer des formes nor-
males ou des formes normales de téte. Nous étudions ici comment la transformation
cps (“continuation passing style”) peut étre utilisée pour compiler la réduction forte
ou de téte. Une expression cps est appliquée a une continuation particuliere et sa
forme normale (forte ou de téte) est évaluée par I'habituelle réduction faible. En res-
tant dans le cadre d\rcalcul, nous n’avons pas a concevoir de machine abstraite
spécialisée et cette technique permet a un compilateur standard de réduire sous les
lambdas.

Mots-clé : A-calcul, continuations, réduction forte, réduction de téte, compilation.
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1 Introduction

Functional language compilers consider only weak-head reduction and the evaluation stops when a
weak head normal form (whnf), that is a constant ®radstraction, is reached. In practice, whnf’s

are considered sufficient because the printable results of programs belong to basic domains. Howev-
er, there are cases where one would like to reduce Aisdier get head normal forms (hnf) or even
(strong) normal forms (nf). Specifically, head/strong reduction can be of interest in:

» program transformations (like partial evaluation) which need to reduce Aisder

» higher order logic programming likeprolog [14] where unification involves reducikgerms to
normal forms,

 evaluating data structures coded\taxpressions,
» compiling more efficient evaluation strategies.

A well known tool used to compile (weak) evaluation strategies of functional programs is con-
tinuation-passing style (cps) conversion [5][15]. This program transformation makes the evaluation
ordering explicit. We see it as a compiling tool since cps expressions can be reduced without any dy-
namic search for the next redex. Its main advantage is that it stays within the functional framework
and thus does not preclude further transformations. Several compilers for strict and non-strict func-
tional languages integrate a cps conversion as a preliminary step [6][10].

Here, we study how to use cps conversion for the implementation of head and strong reductions.
To the best of our knowledge, the application of this transformation to such reduction strategies has
not been investigated for far. A key property of cps expressions is that their (weak) evaluation is or-
der independent: there is a unique (weak) redex at each reduction step. This property does not hold
with strong or head reduction ; a cps expression may have several (strong) redexes. Our approach is
to simulate head/strong reductions by weak reductions. Cps expressions are applied to special con-
tinuations so that their head/strong normal form can be obtained by the usual weak-head reduction.
This way, we still use the only strategy known by compilers (weak reduction), and we retain the key
property of cps. The advantage of this approach is that we do not have to introduce a special abstract
machine and/or particular structures. It can be used to extend an existing compiler with head/strong
reduction capabilities and it enables us to use classical implementation and optimization techniques.

In the following, we assume a basic familiarity with Mzealculus and cps. In section 2, we in-
troduce some notations, the definitions of the different reduction strategies and cps conversion. We
consider in section 3 how to use standard cps conversion to simulate head-reduktexprefs-
sions. Section 4 is devoted to strong reduction which involves a minor modification of the technique
used for head reduction. In section 5, we envisage a restricthenadtulus with a flexible notion of
typing which allows a better treatment of head reduction. Section 6 describes how this method could
be used to compile more efficient reduction strategies, addresses implementation issues and discuss-
es possible extensions.



2 Compilation of Head and Strong Reduction

2 Preliminaries

One of the application of head reduction being to avoid duplicated or useless computations (see sec-
tion 6), we will focus on call-by-name. We consider pitealculus and the globaklexpression to

be reduced is always assumed to be closed. Given a reduction strategyf(esp. E - F) reads

“E reduces to F after one (resp. i) reduction step by x”. The transitive closgrasofioted Xi and

its transitive, reflexive closure is note@ . The three computation rules we are dealing with (i.e.

weak head, head and strong reduction) are described in the form of deductive systems.
+ Weak head reduction is notgd and is defined by

E_. F
(AX.E) F = E[F/X] oBvooo
EF-. E'F
w
Closed whnf’s are of the forixx.E.

* Head reduction is noteg and is defined by

E_ FE
OooooYoooOoOd  n=o0
AX1. . AXpE g AXq. . AX.E

Closed hnf’s are of the forax;. ...Axp.X; E;...E, (1si<n, p20). X is called the head variable.

« Strong reduction is noted and, with N's standing for nf's, is defined by

E o E E o B
0%o 000000000000 0000oooonooo
E g E’ )\Xl. ...)\Xn.Xi El EI Ni+1...Np g )\Xl. ...)\Xn.Xi El E’i Ni+l"'Np

Strong reduction is described as a sequence of head reductions. When a hnf is reached, the argument
of the head variable are reduced in a right to left fashion. Closed normal forms are of thg,form
.- AXp.Xj N1...Np with 1<isn and with N = X[Axq. ...AXq.X¢ N1...Np

Alstands for the standard cps conversion associated with call-by-name [15] and is defined in Fig-
ure 1.

AX) =X
ANAX.E) =Ac.c Ax.A(E))
NME F) =Ac.A(E) (. A(F) c)

Figure 1 Standard Call-by-Name Cps

Variables ¢ and f are supposed not to occur in the source term. The reduction of a cps term con-
sists of a sequence of administrative reductions (i.e. reduction of redexes introduced by the transfor-
mation, here redexes of the fordc.E) F or (\f.E) F), followed by a proper reduction
(corresponding to a reduction of the source term), followed by administrative reductions, and so on.
The relation induced by administrative reductions is notgd, for example:
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AOX.E) F)I = (\c.(Ac.c AX.A(E))) ALF AF) ©)l & (Ax.A(E)) A(F) |

The following property states that evaluation of cps expressions simulates the reduction of
source expressions ; it is proved in [15].

Property 1 IfE J Wthen((E)I & X & a(W)l and if W is a whnf then X is a whnf. Further-
more E does not have a whnfAffiE) | does not have a whnf.

Cps conversion introduces many ngvabstractions and affects the readability of expressions.
In the remainder of the paper we use the following abbreviations

AX.E=Ac.c A\X.E)
AX, - E=EAc.c QXy. ...(Ac.c Ax,.E))...)

Xy E=SAMIX{(..(\MFX,E)...)

3 Head Reduction

Since we are interested in compiling, we consider only programs, i.e. closed expressions. A compiler
does not know how to deal with free variables ; the expression to be reduced must remain closed
throughout the evaluation. Furthermore, in order to use weak head reduction to evaluate hnf’s, the
leadingA’s must be suppressed as soon as the whnf is reached. Our solution is to apply the whnf to
combinators so that the associated variables are replaced with closed expressions. The head lambda
disappear, the expression remains closed and the evaluation can continue as before. After the body is
reduced to hnf the expression must be reconstructed (i.e. the laadimgst be reintroduced as well

as their variables). We reach a hnf when the head variable is applied (a closed hnf is of Axg.form
...AXp.X; Ej...E) so the combinators previously substituted for the leading variables should take
care of the reconstruction process.

In general, it is not possible to know statically the number of leadsmsometimes called the
binder length) of the hnf of an expression. We have to keep track of their number in order to eventu-
ally reintroduce them.This complicates the evaluation and reconstruction process. In section 5 we
present a means of avoiding this need for counting.

We use the standard call-by-name cps conversipnThe global cps expression is applied to a
recursive continuatio@ and an index such thafd En = EH, Q n+1 (Q, H, andn being combina-
tors). Combinators represent the number of head abstractions already encountered. The weak head
reduction of such expressions looks like

ANE) Q n # (Ac.c Ax.F)Q n when a cps expression E is evaluated by wh-reduction, its whnf
(if any) will be of the formhc.c Ax.F)

w Q AX.F) n the continuatio is applied
w AXF)H,Qn+l Q applies the whnf to combinatbt,, Q and the new index

7 FIH/X] Qn+l Hp, is substituted for x
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The expression remains closed and the evaluation continues, performing the same steps if other
whnf’s are encountered. Eventually a hnf is reached, that is, a combihasan head position and
this combinator is responsible for reconstructing the expression.

In fact, we do not apply the global expression direct§ fout to combinatoA (defined byA E
F = F E) whose task is to apply the expressio.tbhis wayQ remains outside the expression and
it makes its suppression during the reconstruction process easier. This technical trick is not absolute-
ly necessary but it simplifies things when working within the puoalculus. The reduction steps
that occur when a whnf is reached actually are

(\c.cQxF)AQN » AMF)QN » QAxF)n o (AxF)H,AQn+l
If E is a closed expression, its transformed form willpE) A Q 0 with
AMN 5 NM (A)
QMn O MH,AQn+1 Q)
The family of combinatorsl; is defined by
HiMNRN=AX,. Xy (M (RN (Ac. %, c)) (K c)) H)
with REFGHI 5 Mf(Ac.GAQE(FCc)(HREF)I) ®R)

When the hnf is reached the expression is of the fér@f.f E;...(Af.f E, A)...) Q n,n repre-
senting the number of head abstractions of the hnf. The reduction Hjedefetex), reintroduces
the n leading\’s and yields

AKp - ACXiyq (MAEq...\MFELA)..) (RN (A\c.k, ©)) (K c)).

SomeH;’'s may remain in the continuation gf.x and the role oR is to remove them by apply-
ing suitable arguments to each Ehe final continuatioA callsK which removes the reconstructing
expressiorR n (Ac.X, C).

Example: Let E= AX.(AW.AY. Wy X) Az. z) X
Its head reduction is
E 7 MX.(AY.(Az. 2) y X) X
7 MX.(AZ. Z2) X X
R AXXX

After cps conversion and simplification the expression becomes

A(E) =AX. AC.AW. Ay Ac. w(ALFy (M x ¢))) (\z.2) Qf.fx c)
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The weak head reduction of the cps expression simulates the head reduction. Reductions correspond-
ing to head reductions of the source expression are marked bye other being administrative re-
ductions.

ANE)A QDO - A AXAC.AW. Ay Ac. w(Af.fy (Af.fx C))) (Az.2) Af.fxC)) Q 0
Q (AXAC.(Aw. Ay Ac. w(Af.fy (Af.fx c))) (Az.2) Af.fx C)) 0

W

7 (AXAc.(Aw. Ay Ac. w(Af.fy (Affx €))) (Acz.z) Af.fx c)) HoA Q 1
2 (AW AgyAc. wARTy (M. Hg ©))) (A\z.2) Af.fF HoA) Q 1

= (AyAc. Az.2) Af.fy (M Hg ©)) Aff HgA) Q1 O
2 (AyAc.(Az.z)(M.fy (ALfHpc)HoA QT

= (. AZ.2)(M.FHo (Mf Ho ) A Q1 O
3 (\zz)Ho(MfHA) Q1

- Ho(MfHoA) Q1 O

The hnf is reached. Using the definitionHqf we get
Ho (Af.f HgA) Q 1- AXACX (Mf.fHpA) (R 1 (\cAMffxc)) (Kc) =A (H)

Now, we show that this hiff is equivalent to (or that the reconstruction yields) the principal
hnf (AX.x X) in cps form A x.Ac.x Af.f X €)).

A S AxAcx RI(cALfxc)HgA (K c)
S AXACX AEF(AcHA QT (AcAffxc)c) A (RI(McALfxC) (Kc)) R)
Since ACHyA Q 1 (AcAf.fxc)c) - AcAwAc.wc) (AcAf.fxc)c) H),(A)K)
- AC.X C 5, X
and AR 1 (AcAffxc) (Ke) o ¢ (A),(K)
thenA =Ax.Ac.x Af.f x ) 0

All reductions taking place in the head reduction of the source expression are performed on the
transformed expression by weak head reduction. Here the resulting expression is interconvertible
with the principal hnf in cps form. Note that the reconstruction process is not completed by weak
head reduction. In a sense, the reconstruction process is lazy ; it can take place (by wh-reduction)
only when the resulting expression is applied. Only the required subexpressions will be reconstitut-
ed.
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The following property states that for any closed expression E the weak head redug{igh of
A Q 0 simulates the head reduction of E. If E has a hnf H then the wh-reductigB)k Q 0 yields
an expression equal fifH) A Q 0 (after administrative reductions).

Property 2 Let E be a closed expression, if % H then there exists an expression X such
that A(E)A QO % X & AH)AQOandif His ahnf then X is a whnf. Furthermore E does not
have a hnf iff\{E) A Q 0 does not have a whnf.

Proof. The proofs are described in the annex.

In general\{H) A Q 0 - A({H) does not hold, namely the result is not always interconvertible with
the hnf in cps. This is usual with this kind of transformation ; the result is in compiled form and is
convertible to its source version only under certain conditions. We still have a strong relationship be-
tweenA(H) A Q 0 andA(H). Let H=AXy. ...AX,.x; E1 ...Ey then

A(H) =AKy Ac. % (ME,) ©)
and A(H) A QO=AX, Ac. X (X, E)with X;=AcAAX, .E)A QO (X, ©).

So, the head variable is the same and if the sub-expresgig)sand X have a hnf they will
also have the same head variable. Likewise, if a sub-expregfindoes not have a hnf then the
corresponding expressiagAx,, .E) A Q0 (X, c) does not have a whnf and they can then be con-
sidered equivalent. However we do not have a plain equivalence since there are expressions whose
subexpressions all have a hnf but have no nf themselves ; for exampie(x x)) (Axy.y (X X)) -
v o> (AVY (AYLY L. (AXYY (X X)) (AXY.Y (X X))). For such expressiongH) A Q 0 andA({H) are not
interconvertible; theH;’s substituted for the leading variables may never be completely removed.
However, for expressions with a normal form the following result holds.

Property 3 Let E be a closed expression with a normal form thigf) - A(E) A Q 0

Here, we propose one possible definition of combinatofs H;, R in terms of puré.-expres-
sions. We do not claim it is the best one ; we just want to show that such combinators can indeed be
implemented in the same language. Simpler definitions could be conceived in a less rudimentary lan-
guage (e.g\-calculus extended with constants).

We represen_n by Church integers, i.€.= AMfx.x andn = Ax.f" x. The successor functi@ is
defined byS" = Axyz.y (X y z).

I = Ax.X, K = Axy.x, A = Axy.y x andY = (Axy.y (X X ¥))Axy.y (X x y)) (Turing’s fixed point
combinator)

Q=Y (Awen.e Hn)A w (S n))
The familyH; is represented iyl i with
H =Aieon. nL (Aac.al W i) (e Rna) K c))l

where W = Aili (Axyz.z X)K
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L =AabAx.a Ac.b Af.fx c))
R =Y (AruvwxyAf.f (\cwA Qu (vc)) X (ruv)y)

We can easily check that these definitions imply the reduction rules previously assumed, for ex-
ample QEn [J EH,AQn+lorREFGHI [J Mf(ACGAQE(Fc))(HREF)I).

4 Strong Reduction

Full normal forms are evaluated by first reducing expressions to hnf and then reducing the arguments
of the head variable. We follow the same idea as for head reduction. Instead of instantiating variables
by combinatordH; we use the familys which will carry out the evaluation before reconstructing.

The recursive continuatiad is the same as before except that it api8i@sstead oH; to theA-ab-
straction.

If M is a closed expression, its transformed form willAf#) A Q 0 with

QMn 5 MS,AQn+l Q)
with SMNn gy ME,BH;Nn S
where EEMNP 5 NE P(MAQIC) (E)
BMN 5 NA (B)
CMNP g PQALf (Ac. ¢ M) N) ©)

When the hnf is reached the head variable previously instantiagdsbyalled. It triggers the eval-
uation of its arguments vig; and inserH; as last continuatiork; applies the arguments £ Q i
which will be evaluated in a right to left order and inserts the continu@tioeeded to put back the
evaluated arguments; X.., X, in cps form (i.eAf.f X1 (...(Af.f X, E)...)). The role oH;’s is still to
reconstruct the expression. Combinathrkeeps the same definition except FPowhich have now
the simplified reduction rule

REFGHI=Af(Ac.G(Fc) (HREF)I) R)

WhenR is applied, the arguments are already evaluated and reconstructed so there is no need to ap-
ply them toA Qi as before.

Example: Let M =AX.(AW.Ay. w y ((AV. V) X)) Az. z) X
Its strong reduction is
E = AX(AY.(AZ. Z) Y((AV. V) X)) X
= AX.(AZ. Z) X((AV. V) X)

= AXX((AV. V) X)
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& AXXX
After cps conversion and simplification the expression becomes
AM) = AX. (AW. Ay.Ac. w(ARFy (AF.F ((Av. v) X) €))(Az.2) (\f.f x C)

The weak head reduction of the cps expression is (reductions corresponding to strong reductions of
the source expression are marked )y

AM)AQD 3 (X ACW. Ay Ac. wARFy (ARF (AV. V) X) ©))(Az.2) Af.fx ©) SyA Q T
(AW. Ay Ac. wARFy (AT (V. V) Sp) ©) (A\z.2) ARF SpA) QT

=N

(\YAC. Az.2) ATy (ALF (W. V) Sp) ©)) Af.f SpA) Q 1 0

S

(AYAC. Az.2) (AFFy (ARF (A, V) Sp) ©)) SoA Q 1
(\C. (A\z.Z) (MEF Sy (MEF (W V) S e) A Q T 0
(A\z.2) Sy (\F ((AV. v) Sp) A) Q T

q Je g

Sy (AfF ((AV. V) S) A) Q 1 the hnfis reached, the reduction ruleSgiis used.]
(Mf (AW V) S) A)E;BHpQ1

g

E; (AW V)S) ABH,Q1

Yo F

(AW.V)SSAQIC)AHQ1

SHAQ 1CA Hp Q 1 the nf is reached ; the reconstruction bedihs.

o g

HoAQICAH,Q1

(AXAcX (A (R1T(AcA.fxc)) (KC)CAHQ1L

g

C (AACX (A (RI(AcALfxC) (KC)AHQ1L

g

L HpXQ1

with X = Af (Ac.cQxAc.x (A (R1(AcAf.fxc)) (K c) A
- AXACX (X R 1 (AcAffxc)) (K )

The wh-reduction is completed. Now, we show that the result is equivalent to the normal form
in cps form.

X 5 OAf(AXX) A (A),(K)
and XR1(cALfxc) (Kc) RIMCALIxC) AXX) A (K c)

*

L OMFC.QAxXX) (AcARfx c) c) A (RI(cALfxc)) (K ©) R)
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LoMfxec sinceA (R 1 (AcAffxc)) (K o) L ¢ A),(K)
and Ac.Acx.x) AcAf.fxc)c — Acxc—p X

SoAxAcx (X R 1 (\cAffx c) (K c) 5 AX.Ac.xX (Af.f x c) which is the normal form in cps
form. 0

All the reductions taking place during the strong reduction of the source expression are carried
out by wh-reduction of the transformed expression. We do not really get the full normal form since
the reconstruction can not be achieved completely by weak head reduction. As before the reconstruc-
tion is lazy. However the result is convertible to the normal form in cps and the complexity of this
last step is bounded by the size of the normal form. If we were just interested in normal forms as a
syntactic resultH;’s could be replaced by functions printing the nf instead of building a suspension
representing it. In this case, the evaluation would be completely carried out by wh-reduction.

We have the analogues of Property 2 and Property 3. The following property states that for any
closed expression E the weak head reductioi{B) A Q 0 simulates the strong reduction of E.

Property 4 Let E be a closed expression, if@ S then there exists an expression X such that
NME)AQO %_X & A(S)A QOandif Sis anfthen X is a whnf. Furthermore, E does not have a
nf iff A(E) A Q 0 does not have a whnf.

The result of the evaluation o{E) A Q 0is interconvertible with the nf in cps.

Property 5 If a closed expression E has a normal form théf) - A(E)A QO

5 Head Reduction of Typed Lambda Expressions

In the previous sections we needed to count the number of leddidgring the evaluation. Using
some form of typing it is possible to know the functionality of the expression prior to evaluation and
thus get rid of this counter. We consider only head reduction ; typing does not seem to simplify the
compilation of strong reduction.

Simply typedA-calculus would suit our purposes but would harshly restrict the class of expres-
sions. More flexible typing systems are sufficient. One candidate is reflexive reducing typing [1]
which has already been used in [8] to determine the functionality of expressions. It is shown in [1]
that we can restrict a language to reflexive reducing types without weakening its expressive power.
Reflexive reducing types are defined by (possibly recursive) equations of the foop - ... -

o,- a,0q, ..., 04 being themselves reflexive reducing types armting a base type (not a reflex-

ive type). This enables us to type recursive functions but not for exalxglax)(Axy.xx) (this ex-
pression has the reflexive type- a - o with c =a — ¢ which is not reducing). We do not dwell

here on the details of this typing system. The important point for us is that a closed expression with
typeo =0y ... - Oy~ @ has a hnf of the formx,. ...Ax,.x; E;...Ep.

If the expression to reduce to hnf has functionality n then the transformed expression is

NE) (Af.f Xln .. (MFXTL,)...) and we note\(E) (>H<n L.
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That is, we apply the expression to n arguments in order to remove the n leading abstractions.
Combinatorsx;, play the same role as the combinatdysntroduced in section 3. They will be sub-
stituted for variables and used to start the reconstruction process.

XI, E =M - ACx; (E Ry (ACX, ©)) (K ©)) (X)
CombinatoR,, used in the definition O{in plays the same role &sin the definition oH;.
R, E F G H=Af(Ac.FL, (Ec)) (G R,E) H) R)

In the preceding sections, the reconstruction of subexpressions was based on the same tech-
nique as the reduction of the global expression: each subexpression was applied to coninuation
and was rebuild after being reduced to hnf. Here, there is no type information available on the subex-
pressions and we cannot use the same method as for the global expression. In particular, a subexpres
sion (\.z.E) can not be reduced since we do not know its functionality. However, it may contain
occurrences of combinatoxg, which are to be removed. This case is treated using combihators
andZ,, which carry on the reconstruction inside Mabstraction.

L, E =AXy . AZAC. E@Zr2)L,, (X, ©) (L)
Z,EF=AX,.\c. E (F R, (A\cx, ©)) (K ¢)) @)

For example, if the hnf is of the forikx;. ...AXp.X; ...(Az.E)... thenR,, applies each subexpres-
sion toL , and (>g, c) and we will get for tha- abstractlon)(z E)

Ae.AZE)L, (X, €) - Ac.L,(Az.E) (%, c)
~ Ae.(AKp . AZAc. AZ.E) €, 2) Ly (% C)(X, ©)
~ AzZAc. EZ,z/Z]L,, (%, ©)

The list of variables has been pushed insidé\tabstraction and the reconstruction can contin-
ue. Variable z is replaced b¥ ( z) so that when it is applied to the |i§ﬁ (x) it returns z. Combina-
torsRp, Ly, X}, , Znact very much like combinators used in abstraction algoritiinds a selector
(it selects the |th varlabIeXn is (like K) a destructor (it ignores the list and returns its first argu-
ment),R,, andL , distribute the list of vanable&aéxn c) throughout the expression.

The head normal form (if any) of E will be of the fo(hx;....Axp.X; E;...Ep) SONE) (Xn L)
will be reduced (by weak head reductlon)xp(Ep L,,) and then, according to the definition of
comblnator9(' to)\cxn AC.X ((Ep L) (R, (Ac.x, c)) (K c)). As before the continuatioK (C) re-
moves reconstructlng expressions and returns the final continuation.

Example. Let us take an example to illustrate the reconstruction process.
Let E =AX.Aw.w (AY.W)) X 1 AX.X (Ay.X)
The transformed expression after simplification is

ANE) = AX. Ac. (Aw. w (Af.f (Ay.w) €)) X)



Head Reduction of Typed Lambda Expressions 11

Since the expression has a type of the form a its hnf has one leadingand the transformed ex-
pression is applied to one argummj{t. The weak head reduction of this expression goes as follow

AE) MF XLy
w (AX.Ac. Aw. w (ARf (Ay.w) €)) X)X % L,

w Aw.wALf (Ay.w) Ly)) X% Xi (resp.L ) is substituted for x (resp. c)
@ Xi (AfF(Ay- X L) this step corresponds to the source head-reduction
@ AcX Acx ((Aff ()\Cy.Xi) L1 (R; (AcAf.fxc)) (K €)) the hnf is reached

We now check that this hnf can be reconstructegxtoAc.x (Af.f (Agy.x) ) which is the prin-
cipal hnf in cps.

ALF Y X)Ly (Ry AcARfxc)) (K ©) » Ry ACARfx ) Ay XT) Ly (K ©)

L OAF(AC.QXT) Ly (AeAfEx €) ©) Ly (Ry AcAffx c)) (K c)) R)
% OMF(ACLy Ay X1) (Mffxc) e L).(K)
% MF(ACAXAYAC.AY.XT) Z1Y) Ly (ffx c)(Mfx c)) ¢ L)
% OMFOYACX] Ly (ffxc)c
XLy % AgxAcx Ly (R (ACARfX ) (K €)) 5 Ax.X (K),(X),(L),()
LM (AYACAXX) AREXC)) C — ARF(AY.X) C M)
SoAx. Aex (MF (AY:XT) Ly (Ry AcAffx c)) (K €)) & Agx. Acx (Af.F (Agy.x) ©) 0

The following property states that for any closed expression E ofotype ... - o, o the
weak head reduction o(E) (X, L) simulates the head reduction of E.

Property 6 Let E be a closed expression of functionality n, i@EH then there exists an expression
X such thatA\(E) (X, L) % Xa A(H) (X,; Lp) and if H is a hnf then X is a whnf. Further-
more, E does not have a hnf iff(E) (X,, L) does not have a whnf.

If E has a normal form the result of the evaluation) O?n L) is interconvertible with the
principal hnf in cps form.

Property 7 If E, a closed expression of functionality n, has a normal form then

NE) - ME)X, Lp)

This approach may also be useful to finely control the evaluation. For example, applying an ex-
pression of functionality n to p (< n) arguments will stop the evaluation when the expression has p
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leading lambdas. The normal form obtained will be a whnf but of a more evaluated form than the
principal one.

6 Applications

Among practical applications of head reduction listed in the introduction, one is to compile more ef-
ficient evaluation strategies. We describe better this question in the next section and suggest in sec-
tion 6.2 how our approach can be used to compile such strategies. Implementation issues are
discussed in 6.3.

6.1 Spine Strategies

Even when evaluating weak-head-normal forms it is sometimes better to reduce sub-terms in head
normal forms. For example, in lazy graph reduction, the implementatigmenfuction §x.E)F -

E[F/x] implies making a copy of the body E before the substitution. It is well known that this may
lose sharing and work may be duplicated [17]. Program transformations, such as fully lazy lambda-
lifting [9], aim at maximizing sharing but duplication of work can still occur. Another approach used

to avoid recomputation is to consider alternative evaluation strategies. If the expression to reduce is
(AX.E)F we know that the whnf of the body E will be needed and so it is safe to reduce E prior to the
B-reduction. This computation rule belongs to the so-called spine-strategies [3]. It never takes more
reductions than normal order and may save duplication of work.

A revealing example, taken from [7], is the reduction gi Avhere the family oh-expressions
A is defined by A =Ax.x1 and A, = Ah.Aw.w h (w w)) A1

Ap | is reduced using the call-by-name weak head graph reduction as follows:
A, =(Ah.Aw.w h (ww)) A |

- Aww Il (ww)) Ay

- Apql (¢ 2)=Ah.Awwh (Ww)) A, | () (» representing the sharing of,A)
- Aw.w I (Ww)) Aqp (Ap1®)

The sharing is lost and the redexes insi¢g Are duplicated. The complexity of the evaluation
is O(2Y). On the other hand, by reducikeabstractions to hnf befofreductions the evaluation se-
quence becomes

Anl =@Ah.Aw.w h (ww)) A |
- (AhAL h(e)]
4(n:1) (Ah.Agh (¢ #)) | A1 reduces to Ain 4(n-1) steps

S (AR (Age)) | - (MM Age) T - (AR T = |
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and the As remain shared until they are reduced to their hpfihe complexity of the evalua-
tion drops from exponential to linear.

Of course this strategy alone is not optimal (optimal reductidrexfpressions is more complex
[11][12]) and work can still be duplicated. But in [16] Staples proposes a similar evaluation strategy
with the additional rule that substitutions are not carried out inside redexes (they are suspended until
the redex is needed and reduced to hnf). This reduction has been shown to be optintabfoua
lus with explicit substitutions.

6.2 Sharing Hnf's

We saw that evaluating tReabstraction to hnf before thgreduction can save work by sharing

hnf’s instead of whnf’s. We study in this section how to make use of our approach to implement such
a strategy. The straightforward idea of applying the continu&itm eachA-expression not in hnf

does not work. Our previous results were relying on the fact that the expression to be reduced was
closed. Here, even if the global expression is closed, we may have to reduce to hnf sub-expressions
containing free variables.

For example, ifXw.w 1) (Ax. I (Ay. | X) 1) is cps converted and the tweabstractions not in hnf
(AcX....) and Qy....) are applied té\ Q O then during the reduction ok. ...) we will have to re-
duce to hnfXy....) A Q 0 but x is already instantiated bl and we will getXy.Hp) A Q0 - Hg
A Q1 - (AY.y) which is false ; the cps hnf ofy. | x) should have begn.y. Hp) and the enclosing
evaluation of Xcx. ...) can continue. The problem comes from free variables already instantiated
when a new head reduction begins.

The simplest solution would be to transform Mabstractions into supercombinators uskag
lifting [9]. The supercombinators (not already in hnf) will be applied @ 0 and their hnfs will be
shared naturally. However, it is not clear whether we share the same computations by (spine-)reduc-
ing an expression and its supercombinator form. In order to validate this approach, we would have to
prove that this kind of transformation does not change the complexity of a spine reduction.

Another solution to the free variable problem is to change the rule of cps conversion for applica-
tions by

N(E F) = Ac.AKE) (ALF (Z A*(F)) c)
withZECQn - EAQn(H, C)Qn

A sub-expression is evaluated to hnf usihgvhich triggers it with indexn instead ofO. It
amounts to closing the expression since we know at this point that the source expression has at most
n free variablesand &£ Qn - (AX, . E)A Q0. The result will be of the form\(x,, . H) (p=n) and
(AXp - H) (H, C) reduces toNXp+1. ---(AXp-H[Hp /X, 1)...), that is, the hnf of E with its free
variables still instantiated by their correspondihg Returning to the previous example, the reduc-
tion now looks like

Z(AYHpCQ1- A\YH)AQINFfH,C)Q1 - H)AQ2(\.fHyC)Q1

S AXAY-X) MFHEC)QL & (\y.Hp) CQ1 - ...
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6.3 Implementation issues

The most obvious way to implement our approach is to transform expressions as previously de-
scribed and give the result to a compiler. The combin&tp€ ...are compiled like other functions

and the reconstruction is naturally implemented by closure building. However, with compilers which
already integrate a cps conversion, a more efficient way would be to directly use the cps phase. This
is less trivial since the following steps expect only cps expressions and we have to introduce special
combinators which are not in cps. One solution is to implement those combinators by hand so that
the compiler uses them like primitive functions. We plan such an integration in our cps-based com-
piler. Further work is still needed on different extensions:

« So far we have only considered call by name. As cps conversion can be used to compile different
computation rules (call-by-value, call-by-name with strictness annotationis,is likely that our
method could be extended to treat those strategies as well.

» This method should be extended ty-ealculus with constants and primitive operators.

If we just aim at reducing a program to hnf/nf and print the result then our approach will be very
efficient. The whole evaluation is a weak reduction which can be completely compiled. The only
slight overhead will be a few more reductions for each leading lambda and printing the result which
should be proportional to the size of the expression.

The costly part of head/strong reduction is the reconstruction of expressions which happens
when we actually use (i.e. apply) the hnf/nf. In particular, reconstructing uses a lot of memory space.
In order to implement efficient evaluation strategies as described in section 6.1, it would be useful to
develop the following points:

» Several analyses can detect expressions for which wh-reduction is better and should be imple-
mented as well. For example, one policy could be thaalstraction will be reduced to hnf prior
to B-reduction only if it is shared (using a sharing analysis), complex enough (using a complexity
analysis) and of course not already in hnf.

» Computation can still be duplicated by performing substitutions inside redexes. It would be inter-
esting to extend our work to compile Staples’ method [16] which avoids this loss of sharing.

We did a few experiments using the trivial way (i.e. transforming source expressions before giv-
ing them to our compiler). We transformed the family of expressigndefined in section 6.1 into
supercombinators and into cps form. The evaluation,gfl Aakes around 1s using standard reduc-
tion and around 1ms when each supercombinator is appli&dXd. This result is not surprising
since the theoretical complexity is exponential in one case and linear in the other. More interestingly,
we redefined the family pAby Ag = Ax.x | and A, = Ah.Aw.w h (Ag w)) A,.;. Here, the wh-reduc-
tion of A, | does not duplicate work (the second occurrence of w is not needed) and nothing is saved
by using head reduction. We found that the head reduction of supercombinators made the evaluation
3 to 4 times slower than the standard wh-reduction.

This example indicates the cost of reconstructing expressions. This cost is acceptable when the
final goal is to implement symbolic evaluation. When the goal is to evaluate whnf's more efficiently
by sharing hnf’s then such examples should be avoided using analyses. In [4] Crégut gives a function
for which the reduction take$ isteps when sharing hnf’s whereas it takes only n steps using stan-
dard wh-reduction. It is also shown that this is the worst case.
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7 Conclusion

Implementation of head and strong reduction has also been studied by Crégut [4] and Nadathur and
Wilson [13]. Crégut’s abstract machine is based on De Bruijn’s notation. Two versions have been de-
veloped. The first one evaluates the head or full normal form of the global expression. The second
one implements a spine strategy and shares head normal forms. Terms are extended with formal vari-
ables and the machine state includes two indexes. One plays the role of our binder level as in section
3 and 4, the other one is needed (only in the second version of the machine) to deal with the problem
of free variables in subexpressions exposed in section 6.2. The algorithm presented in [13] was mo-
tivated by the implementation aProlog [14]. It evaluates terms to hnf and expressed as an abstract
machine, this technique resembles Crégut’s. It is also based on De Bruijn notation and the machine
state includes two indexes.

We described in this paper how to use cps conversion to compile head and strong reduction. The
hnf’s or nf's of cps-expressions are evaluated by weak head reduction and at each step the unique
(weak) redex is the leftmost application. The technique does not require to modify the standard cps
cbn conversion. The cps expression is just applied to a special continuation and an index to keep
track of the binder length. We presented a way to get rid of this index and suggested applications for
our technique. Compared to [4] and [13] we do not have a second index or special structures like for-
mal variables. But the main difference is that we proceed by program transformations and stay with-
in the functional framework. Used as a preliminary step our technique allows a standard compiler to
evaluate undek’s. Thus we can take advantage of all the classical compiling tools like analyses,
transformations or simplifications. As already emphasized in [6], another advantage of this approach
is that we do not have to introduce an abstract machine which makes correctness proofs simpler. Fur-
thermore, optimizations of this compilation step can be easily expressed and justified in the function-

al framework.

Apart from the practical issues discussed in section 6.3, several others research directions like
the application of this approach to partial evaluation or to the compilativpafiog should be ex-
plored.
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Annex

The proofs of Property 2 and Property 3 are described here in details. They are elementary even if
the expressions involved (usually of the general fdxq ...Ax,.Fq Fy...Fp) and cps conversion af-

fect the readability. The proofs of the corresponding properties for strong reduction and head reduc-
tion of typedA-expressions are very similar and are just sketched. We use the convention that in an

expression all bound variables are different from the free variables (it can be seen as an implicit use
of a-conversion).

A Proof of Property 2

In the following %, stands for variables;x..,x, whereas H stands for combinatotid,...,Hp 1.
We will need the following lemmas.

Lemma 8 A(E)[A(F)/x] = A(E[F/X])
Lemma 9 if x #y and x does not occur free in G then E[F/X][GHE[G/Y][F[G/y]/X]
Lemma 8 is shown in [15] and Lemma 9 is shown in [2] (2.1.16 pp. 27).

Let us show that the property holds for one reduction step. The expression must be of ¥g.form
. MXn.(AY.E) Ry Fy... Fp, with n20, p=0 and

M ((\YV.E) RyFr...Fy ¢ My -E[Fgly] Fy...Fp
AN, -AYV.E) Ry Fp...F) AQD
=AKn (AC....ACQAY.AE)) MLF A(Fp) ©)) ... (AR.F A(Fp) ¢)) A QO
(AC....A\c.(AY.NE)) ALF A(Fg) ©)) ...(ALF ALFY) ©))[Hy /%y TA QN
AY.NE)H, /%y 1) MFIH, /Xy 1OMFAFDIH, %, ...
. LEAFIIH, /Xy TA) QN

S0 =0

Administrative reductions are now completed ; the proper reduction takes place
= ME)H, Xy 1[INFHy Xy Iyl MFAFD[Hy Xy T
. MFAFDIH, %, 1A) QN
On the other hand
AN, -E[Fy/y] F1...F) AQO
=AKn (Ac....Ac.AY.AE[FY]) AfE ALFY) ©)) ... (AR A(F,) ) A QO
& MEFYYDIHn Ky 1 ALFAFDIH, Xy 1. AF)[H, /Xy 1A) Qn
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NE[FYY]) [Hy /%, 1= AEINFY] [Hy /%, ] Lemma 8

since theH;’s are closed we can apply Lemma 9 (actually a straightforward generalization of it) to
get

NEINFY] [Hy %0 1= MEHy X IAFOIHn Xy 1]
So both expressions are identical and the property holds for one reduction step.

We can now show Property 2. The base case (no reduction step) is trivial. Let the property hold for n
(n=0) reduction steps, that is

Eo D E andAMEQ)AQOD % X, & AE)AQO
then if E, \}7 E,+1 we have shown that there is an expressign Xuch that

ANE) A Q 0 \T_V» Xni1 & NEq+1) A Q 0 and the reduction ;Lv contains the administrative re-
ductions followed by a proper reduction,®E,) AQ0 & X, & Xp+1- Thus

w
ME)AQD & Xnut & ANEn) AQO

Eb, " o E, 1 o Em
w W
AEg) A Q 0 NE,) AQ 0 MEn+) AQ 0
+ w |a ¥ Wl a
w w
Xn T e Xnn
W

Concerning the second part of the property, if an expresgidods not have a hnf there is an infinite
reduction sequenceks E; g ... Itis clear from the proof above that the corresponding weak
head reduction on(Ey) A Q 0 will also be infinite, so this expression does not have a whnf. Con-
cerning the reverse implication, |5H§as a hnf H, there is an integer n such tt@agEH so there is
aXsuchthah(E)) AQO L X & _A(H)A QO. His of the form\x;. ...\X,.x; Ey...E and, after
administrative reductlonS\((H) A Q 0is of the formH; C Q n. Then the reduction rule &f; yields

a whnf. O

B Proof of Property 3

Itis clear that if E- F then\(E) 5 A(F): the redexXx.M) N in E which appears aA€. A X.ANM))
(Af.f A(N) c) in A(E) can be reduced kc. A{M)[ A{N)/X] c) - AM[A(N)/X] = AM[N/x]) (Lem-
ma 8) in order to gex(F). If \(E) —» A(F) then obviously\(E) A Q 0 - A(F) A Q 0O (just pick up
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the same redex). If E has a normal form S the®ES andA\(E) 5 A(S) andA\(E)A Q0 5 a(S)
A Q0. So we just have to show that for any closed normal fori{S),  A(S)A Q 0.

Actually we prove the stronger property: for every set of variablgs. {x,} containing the free
variables of a normal form 3(S) - Ac.A{AX, . S)A Q 0 (x, c). This is proved by structural in-
duction over the set of normal forms which is defined by SAxx.|...AX,. X S;...Sy,

e S=x1<i<n
NS) =X
ACANX, . S)YAQO (X, C)=Ac.AX, . %) AQO (X, C)
S XcH 1 AQN (X, ©)
B XA Xy Acx (A (RN (Acx, ©) (K ) (%, ©)
EXc(AXn ACx €) (X €) = ACAXy %) (X ©)
= Ac.(AC.C AXq. ...(AC.C AXn-Xi))...) AFEFxq (...(Af.FXx,C)...))
EXexc—px
* S=MXp+1 --MXp X Sp... Sy 1<i<p and &n
AMS)=AXns1- - AXpAC. X% (M(Sm)  ©)
ACADK, . SYA QO (X €)=AC.AKp . ACx (ASy) ©)A QO (X, ©)
8 XcHi1 ContQp (X, ¢)
with Cont =Af.f A(SP[H, /%y 1...(ARF A(SWIH, /%, TA) ...)
EheAxp Acx (Cont Rp (Acx, ©)) (K ©)) (%, ©)
B AXns1 - AXp. Ac.x (Cont R p (Ac.x, ©)) (K ¢)))
Cont Rp (A\c.x, ©)) (K €)=aMF (AcASPIH, /%y JAQP (X ©))(..(A (R (\cx, ©)) (K ©))...)
We know that\(\X, .E)A Q0=(\X, .ME)AQO0 5 A(E[H, /X, ) AQp, so
ACAS)Hp /% TAQP (X, € < AcAMK, . S)AQO (X, ©)
- ANS) by induction hypothesis
and sinceA (R (\c.x, ¢)) (K ¢) 5 ¢, we have ConR (Ac.x, ©)) K ¢)) = A(Sy) ¢, hence

ACAQAXy: .. My X1 - AXp. % S1...Sm) (K €©) & AXnag: - AXp: ACX (A(Sy) €)= A(S) D
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C Proof of Property 4
We prove the progerty for expressions with_free variables: if E has its free variables included in
{X1,---.Xg} then E 5 S impliesA(AX, . E)A Q0 % Xa MAX, - S)A Q 0. The proof of the

property for one reduction step is done by induction on the definition of strong reduction (section 2)
and is otherwise similar to the proof of Property 2. O

D Proof of Property 5

As with Property 3 we show that if S is a normal form with a set of free variables included in
{X1,.... X} then A(AX,, . S) « A(AX, . S)A Q0. This is proved by structural induction over the set
of normal forms which is defined by S =X4;. ...AX,. X S;... Sy, O

E Proof of Property 6

The expression must be of the fokxy. ...Axqy.(AY.E) Fy Fy...F,, where @0 and &msn ; n being
the functionality of the expression.The proof is similar to the proof of Property 2 still using Lemma 8
and Lemma 9. 0

F Proof of Property 7

As with Property 3 we just show that for any closed normal form S of functionalifg),- A(S)
(X, Lp)- The normal form must be of the formE3x;. ...AXp. X ;... Sy

AS) = Ay - Ac. % (A(Sy) ©)
A(S) Kn L) 2 Xn (ASm) [Xn % 1Lo)
B AKn - Ac. % (MSm) [Xn %n 1Lp) (Rn(Ac. %, ©)) K c))
B NKq - Ac. % AEF(ACA(SPIXy Xn 1Ly Ky ©) ...l (Ry (Ac. %, ©))(K ©))...)
and since, (R, (Ac. %, €)) Kc) 5 A\Xy...)(Kc) - KcXgAXp...) - ¢C
B AKn - Ac. x AFACAS)IXp Kp 1L %y ©))-..0)...)
If we show that for every normal form, S(S)[X,, /X, 1L, = A(AX, .S) then
o AXpy - Ac. % (A\LF (Ac.AAX, .S) (X, ©))...ALF (A\c.AAX,, .S,y) (X, ©)) ©)...)
B XK . Ac. % (A(Sy) ©)
We prove the stronger property: If S is a normal form with a set of free variables included in
X1, X 21, 2ok then A(S) [Xyy Xy 1[Zn 2, 125 1Lp « AMAX, - S) This is proved by struc-
tural induction over the set of normal forms defined by S xxy.|...AXp. ¥ S... Sy O
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