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Une Taxonomie des implantations des
langages fonctionnels

Partie II : Appel par nom, appel par nécessité et
réduction de graphe

Résumé :Dans la première partie de ce travail [5], nous avons proposé une approche pour
formellement décrire et comparer les implantations de langages fonctionnels. Nous avons
appliqué cette approche à l’étude des mises en œuvre de l’appel par valeur. Ici, nous poursui-
vons notre exploration des techniques de mise en œuvre en étudiant l’appel par nom, l’appel
par nécessité et la réduction de graphe. Nous décrivons le processus de compilation comme
une suite de transformations de programmes dans le cadre fonctionnel. Les choix fondamen-
taux de mise en œuvre ainsi que les optimisations s’expriment naturellement comme des
transformations différentes. Nous décrivons et comparons les choix de compilation de
l’appel par nom dans les modèles à environnement et à réduction de graphes. Les différentes
options de compilation de laβ-réduction décrits dans [5] restent valides ici. Au lieu de cela,
nous décrivons de nouvelles possibilités plus spécifiques à la réduction de graphes. L’appel
par nécessité n’est rien d’autre qu’un raffinement de l’appel par nom intégrant le partage et
la mise à jour d’expressions. Nous présentons comment le partage peut s’exprimer dans
notre cadre et décrivons deux procédés de mise à jour. Enfin, nous cataloguons plusieurs
implantations connues de l’appel par nécessité.

Mots-clé : Compilation, optimisations, transformations de programmes,λ-calcul, combina-
teurs, réduction de graphes.
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1  Introduction

In part I [5], we proposed an approach to precisely describe and compare functional lan-
guages implementations. We focused on call-by-value and described well-known compilers
for strict languages. Here, we complete our exploration of the design space of implementa-
tions by studying call-by-name, call-by-need and graph reduction. Our approach is to ex-
press in a common framework the whole compilation process as a succession of program
transformations. The framework considered is a hierarchy of intermediate languages all of
which are subsets of the lambda-calculus. Our description of an implementation consists of a
series of transformationsΛ T1→ Λ1 →T2 … →Tn Λn each one compiling a particular task by
mapping an expression from one intermediate language into another. The last languageΛn
consists of functional expressions which can be seen as machine code (essentially, combina-
tors with explicit sequencing and calls). For each step, different transformations are de-
signed to represent fundamental choices or optimizations. A benefit of this approach is to
structure and decompose the implementation process. Two seemingly disparate implementa-
tions can be found to share some compilation steps.

The two steps which cause the greatest impact on the compiler structure are the imple-
mentation of the reduction strategy (searching for the next redex) and the environment man-
agement (compilation ofβ-reduction). For call-by-need, another important step is the
implementation of redex sharing and update whereas graph reduction brings the issue of
graph representation.

As in part I, we concentrate on pureλ-expressions and our source languageΛ is de-
scribed by the grammarE ::= x | λx.E | E1 E2. Most fundamental choices can be described for
this simple language. In section 2, we recall briefly the framework used to model the compi-
lation process. In section 3, we present the alternatives to compile call-by-name. The compi-
lation of control in graph reducers is peculiar. A separate, long sub-section (3.3), is devoted
to this point. This section ends with some comparisons, notably a study of the relationship
between the compilation of control in the environment and graph-based models. The differ-
ent options for the compilation ofβ-reduction described in [5] can be applied here as well.
Instead, we describe some other possibilities commonly used with graph reduction (section
4). The problem of the representation of sharing and implementation of updates is addressed
in section 5. Finally, in section 6, we classify some well-known call-by-need implementa-
tions. Proofs of the properties stated in this paper are sketched in the annex.

Note that this report is not intended to be read independently. Even if important points are briefly re-
called, we expect the reader to have some knowledge of Part I [5] or, at least, of its short version [4].
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2  General Framework

We quickly review the unified framework used in this paper. A more thorough presentation
can be found in [5].

Each compilation step is represented by a transformation from an intermediate language
to another one closer to a machine code. The whole implementation process is described via
a transformation sequence. The transformation sequence presented in this paper involves
four intermediate languages (Λ → Λs→ Λe→ Λk→ Λh) and describes the whole implementa-
tion process.

The first phase is the compilation of control which is described by transformations from
Λ to Λs. The intermediate languageΛs is of the form

Λs  E ::= x | pushs E | λsx.E | E1 o E2

Intuitively, o is a sequencing operator andE1 o E2 can be read “evaluateE1 then evaluate
E2”, pushi E returnsE as a result andλix.E binds the previous intermediate result tox before
evaluatingE. The pair (λs, pushs) specifies a component storing intermediate results (e.g. a
data stack). The most notable syntactic feature ofΛs is that it rules out unrestricted applica-
tions. Its main property is that the choice of the next weak redex is not relevant anymore (all
weak redexes are needed). This is the key point to view transformations fromΛ to Λs as
compiling the evaluation strategy.

Transformations fromΛs to Λe are used to compileβ-reduction. The languageΛe ex-
cludes unrestricted uses of variables which are now only needed to define macro-combina-
tors. The encoding of environment management is made possible using a new pair of
combinators (pushe, λe). They behave exactly aspushs andλs ; they just act on a (at least
conceptually) different component (e.g. a stack of environments). So,Λe is of the form

Λe  E ::= x | pushs E | λsx.E | pushe E | λex.E | E1 o E2

Transformations fromΛe to Λk describe compilation of control transfers. The language
Λk makes calls and returns explicit. It introduces the pair (pushk, λk) which specifies a com-
ponent storing return addresses. Since call-by-name or graph reduction do not introduce new
choicesw.r.t. control transfers, we do not describe this compilation step again. A last trans-
formation family (H) from Λk to Λh adds a memory component in order to express closure
sharing and updating. The languageΛh introduces the pair (pushh, λh) which specifies a glo-
bal heap. This last language can be seen as a machine code.

The intermediate languages are subsets ofλ-expressions, therefore substitution and the
notion of free or bound variables are the same as inλ-calculus. The basic combinators satis-
fy the following properties:

(βi) (pushi F) o (λix.E) = E[F/x]

(ηi) λix.(pushi x o E) = E if x does not occur free in E

(assoc) (E1 o E2) o E3 = E1 o (E2 o E3)
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We consider only reduction rules corresponding to the classicalβ-reduction:

(pushi F) o (λix.E) ➨ E[F/x]

As with all standard implementations, we are only interested in modeling weak reduc-
tions. Sub-expressions insidepushi’s andλi’s are not considered as redexes and from here on
we write “redex” (resp. reduction, normal form) for weak redex (resp. weak reduction, weak
normal form). A key property of the framework is that:

Property 1 In Λi all reduction strategies are normalizing.

Transformations of source programs will produce expressions denoting results (i.e.
which can be reduced to expressions of the formpushi F). In order to express laws more eas-
ily or to distinguish blocks of instructions, it is convenient to restrictΛi using a type system
(Figure 1).

Γ |−  E : σ Γ ∪ { x:σ}  |−  E : τ Γ |−  E1 : Riσ Γ |−  E2 : σ →i τ
  
Γ |− pushi E : Riσ Γ |− λix.E : σ →i τ Γ |−  E1 o E2 : τ

Figure 1 Λs typed subset (Λs
σ )

The type system restricts expressionsE1 o E2 so thatE1 must denote a result (i.e. has
type Riσ, Ri being a type constructor) andE2 must denote a function taking its argument
from thei component.

The framework enjoys also many algebraic laws useful to transform the functional code or to
prove the correctness or equivalence of program transformations such as

if x does not occur free in F (λix.E) o F = λix.(E o F) (L1)

∀E1:Riσ, if x does not occur free in E2 E1 o (λix.(E2 o E3)) = E2 o (E1 o (λix.E3)) (L2)

∀E1:Riσ, E2:Rjσ and x≡/ y E1 o (E2 o (λjx.λiy.E3)) =E2 o (E1 o (λiy.λjx.E3))(L3)

To simplify the presentation, we often omit parentheses and write for examplepushi E o

λix.F o G for (pushi E) o (λix.(F o G)). We also use syntactic sugar such as tuples (x1,…,xn)
and pattern-matchingλi(x1,…,xn).E.

The intermediate languagesΛi are subsets of theλ-calculus made of combinators. An
important point is that we do not have to give a precise definition to combinators. We just as-
sume that they respect properties (βi), (ηi) and (assoc). Definitions do not have to be chosen
until the very last step. Nevertheless, in order to provide some intuition, we give here possi-
ble definitions in terms of standardλ-expressions.

The most natural definition for the sequencing combinator iso = λxyz.x (y z). The pairs
of combinators (λi, pushi) can be seen as encoding a component of an underlying abstract
machine and their definitions specify the state transitions. We can choose to keep the compo-
nents separate or merge (some of) them.
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Keeping the components separate brings new properties such as

pushi E o pushj F = pushj F o pushi E if i≠j

allowing code motion and simplifications. Possible definitions (c, s, e being fresh variables)
follow:

λsx.X = λc.λ(s,x).λe.λk.λh.X c s e k h pushsN = λc.λs.λe.λk.λh.c (s,N) e k h

λex.X = λc.λs.λ(e,x).λk.λh.X c s e k h pusheN = λc.λs.λe.λk.λh.c s(e,N) k h

λkx.X = λc.λs.λe.λ(k,x).λh.X c s e k h pushk N = λc.λs.λe.λk.λh.c s e(k,N) h

λhx.X = λc.λs.λe.λk.λ(h,x).X c s e k h pushh N = λc.λs.λe.λk.λh.c s e k(h,N)

Then, the reduction of our expressions can be seen as state transitions of an abstract ma-
chine with five components (code, data stack, environment stack, control stack, heap), e.g.:

pushs N C S E K H→ C (S,N) E K H pushh N C S E K H→ C S E K (H,N)

A second option is to merge all components. The underlying abstract machine has only
two components (the code and a data-environment-control-heap stack).

λsx.X = λex.X = λkx.X = λhx.X = λc.λ(z,x).X c z

pushs N = pushe N = pushk N = pushh N = λc.λz.c (z,N)

and the reduction of our expressions are of the form

pushi N C Z→ C (Z,N)

Let us point out that our use of the term “abstract machines” should not suggest a layer
of interpretation. At the end of the compilation process, we get a realistic assembly code and
the “abstract machines” resemble real stack machines.
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3  Compilation of Control

We focus here on the compilation of the call-by-name reduction strategy. Call-by-need is
only a refinement involving redex sharing and update which is described in section 5. We
first present the two main choices taken by environment-based implementations: the push-
enter and the eval-apply models. Even if the push-enter and the eval-apply models can be
adopted by graph reduction as well, these implementations are at first so different that we
treat them apart. The graph-based implementations use an interpretative implementation of
the reduction strategy and are presented in 3.3.

3.1  The push-enter model

Contrary to call-by-value, the most natural choice to implement call-by-name is the push-en-
ter model. In call-by-name, a function is evaluated only when applied to an argument. They
do not have to be considered as results. An application can be compiled by applying the un-
evaluated function right away to its unevaluated argument. This option is taken by Tim [6],
the Krivine abstract machine (Mak) [3] and graph-based implementations.

The transformationNm formalizes this choice and is described in Figure 2.

Nm : Λ → Λs

Nm [[x]]  = x

Nm [[λx.E]]  = λsx.Nm [[E]]

Nm [[E1 E2]]  = pushs(Nm [[E2]]) o Nm [[E1]]

Figure 2  Compilation of Call-by-Name in the Push-Enter Model (Nm)

Variables are bound to arguments which must be evaluated when accessed. Functions
are not returned as results but assume that their argument is present. Applications are trans-
formed by returning the unevaluated argument to its function.

The correctness ofNm is stated by Property 2 which establishes that the reduction of
transformed expressions (*

➨) simulates the call-by-name reduction (cbn→) of sourceλ-ex-
pressions.

Property 2 ∀E closed∈ Λ, E cbn→ V ⇔ Nm [[E]] *
➨ Nm [[V]]

Example. Let E ≡ (λx.x)((λy.y)(λz.z)) then

Nm [[E]] ≡ pushs(pushs(λsz.z) o λsy.y) o λsx.x ➨ pushs(λsz.z) o λsy.y ➨ λsz.z ≡ Nm [[λz.z]]

The choice of redex inΛs does not matter anymore. The illicit (in call-by-name) reductionE
→ (λx.x)(λz.z) cannot occur withinNm [[E]] . This redex is no more a weak redex in theΛs
expression. ❒
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If Nm is arguably the simplest way to compile call-by-name, it makes however the com-
pilation of call-by-need problematic. After the evaluation of an unevaluated expression
bound to a variable (i.e. a closure), a call-by-need implementation updates it by its normal
form. As it stands,Nm makes it impossible to distinguish results of closures (which have to
be updated) from regular functions (which are applied right away). We already have encoun-
tered this same problem in the compilation of call-by-value within the push-enter model [5].
The solution is similar and consists in using marks. TheNml transformation (Figure 3) still
compiles call-by-name but adds the necessary combinators to deal with marks and updates.

Nml : Λ → Λs

Nml [[x]]  = x

Nml [[λx.E]]  = grabs(λsx.Nml [[E]])

Nml [[E1 E2]]  = pushs(Nml [[E2]]) o Nml [[E1]]

Figure 3  Compilation of Call-by-Name with Marks in the Push-Enter Model (Nml)

For call-by-name, it is sufficient thatgrabs E verifies the reduction rule

pushs V o grabs E ➨ pushs V o E

andNml would verify the analogue of Property 2. For call-by-need, we introduce a markε
supposed to be a distinguishable value along with the reduction rule

pushs ε o grabs E ➨ pushs E

Combinatorgrabs and the markε are identical to those introduced to compile call-by value
in [5]. They can be defined inΛs but, in practice,grabs would be implemented using a con-
ditional which tests the presence of a mark.

It is now easy to insert updates. For example, a callee update scheme can take the form:

Ucallee [[pushs E]]  = pushs (pushs @ o pushs ε o Ucallee [[E]]  o updt o resumes)

with resumes = λsx.grabsx

The closure stores its own address and a mark before its evaluation. The normal form of
the closure, of the formgrabs(λsx.E), takes the mark and passes (λsx.E) to updt which per-
forms the update according to the address, thenresumes resumes the global reduction. The
different options for updating closures are detailed in section 5.

3.2  The eval-apply model

In this scheme, applicationsE1 E2 are compiled by returningE2, evaluatingE1 and finally ap-
plying the evaluated function to the unevaluated argument. So, this choice considersλ-ab-
stractions as results and is formalized by the transformationNa in Figure 4.
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Na : Λ → Λs

Na [[x]]  = x

Na [[λx.E]]  = pushs (λsx.Na [[E]] )

Na [[E1 E2]]  = pushs (Na [[E2]]) o Na [[E1]] o app with app = λsx.x

Figure 4  Compilation of Call-by-Name in the Eval-Apply Model (Na)

The correctness ofNa is stated by Property 3 which establishes that the reduction of
transformed expressions simulates the call-by-name reduction of sourceλ-expressions.

Property 3 ∀E closed∈ Λ, E cbn→ V ⇔ Na [[E]] *
➨ Na [[V]]

It is clearly useless to store a function to apply it immediately after. This optimization is
expressed by the same law as the one used to simplify expressions produced byVa [5].

pushs E o app = E (pushs E o λsx.x =βs x[E/x] = E) (L4)

Example. Let E ≡ (λx.x)((λy.y)(λz.z)) then after simplifications

Na [[E]] ≡ pushs(pushs(pushs(λsz.z)) o λsy.y) o λsx.x

➨ pushs(pushs(λsz.z)) o λsy.y ➨ pushs(λsz.z) ≡ Na [[λz.z]] ❒

Like Nm, transformationNa may produce expressions such aspushs E1 o …o pushs En
which require a stack to store intermediate results. To get a stackless variant ofNa, the rule
for compositions should be changed into:

Nasl [[E1 E2]]  = pushs (Nasl [[E2]]) o (λsa.Nasl [[E1]] o (λsf.pushs a o f))

With this variant, the component on whichpushs andλs act may be a single register.

The implementation of call-by-need does not require any modification ofNa. For exam-
ple, a caller update scheme can take the form

Nal [[x]]  = x o updt

The result of a closure evaluation is of the formpushs(λsx.E) and is thus passed toupdt (see
section 5.2).

3.3  Graph Reduction

Graph-based implementations manipulate a graph representation of the sourceλ-expression.
The reduction consists in rewriting the graph more or less interpretatively. One of the moti-
vations of this approach is to elegantly represent sharing which is ubiquitous in call-by-need
implementations. So, even if call-by-value can be envisaged, well-known graph-based im-
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plementations consider only call-by-need. In the following, we focus on the push-enter mod-
el for call-by-name which is largely adopted by existing graph reducers. Others choices such
as call-by-value graph reducers and the eval-apply model are briefly described in section
3.3.4.

3.3.1  Graph building

As before, the compilation of control is expressed by transformations fromΛ to Λs. Howev-
er, this step is now divided in two parts: the graph construction and its reduction via an inter-
preter. The transformationG (Figure 5) produces an expression which builds a graph (for
now, only a tree) when reduced. This transformation is common to all the graph reduction
schemes we describe afterwards.

G : Λ → Λs

G [[x]]  = pushs x o mkVar s

G [[λx.E]]  = pushs(λsx.G [[E]])  o mkFuns

G [[E1 E2]]  = G [[E2]] o G [[E1]]  o mkApp s

Figure 5  Generic Graph Building Code (G)

The three new combinatorsmkVar s, mkFuns andmkApp s take their arguments on the
s component and return graph nodes (respectively variable, function and application nodes)
on s. The graph is scanned and reduced using a small interpreter denoted by the combinator
unwinds. After the compilation of control, the global expression is of the formG [[E]]  o un-
winds. In this setting, the push-enter and eval-apply models of compilation of call-by-value
and call-by-name are specified by defining the interactions ofunwinds with the three graph
builders (mkVar s, mkFuns, mkApp s).

These combinators can take several definitions implying different concrete representa-
tions of the graph. We present one possible definition in the next section but several others
are discussed in section 3.3.3.

3.3.2  Call-by-name: the push-enter model

This option is defined by the three properties in Figure 6.

(GNm1) (E o mkVar s) o unwinds = E o unwinds

(GNm2) V o (pushs F o mkFuns) o unwinds = (V o F) o unwinds

(GNm3) (E2 o E1 o mkApp s) o unwinds = E2 o E1 o unwinds

Figure 6  Properties of Graph Combinators for the Call-by-Name Push-Enter Model
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These properties can be explained intuitively as:

• (GNm1) The reduction of a variable node amounts to reduce the graph which has been
bound to the variable. The combinatormkVar s may seem useless since it is bypassed by
unwinds. However, when call-by-need is considered,mkVar s is needed to implement
updating without losing sharing properties. As the combinatorI  in [14], it represents in-
direction nodes.

• (GNm2) The reduction of a function node amounts to apply the function to its argument
and to reduce the resulting graph. This rule makes the push-enter model clear. The reduc-
tion of the function node does not return the functionF as a result, but immediately ap-
plies it.

• (GNm3) The reduction of an application node amounts to store the argument graph and to
reduce the function graph.

Figure 7 presents one possible instance of the graph combinators.

mkVar s = λsx.pushs x

mkFuns = λsf.pushs (λsa.(pushs a o f) o unwinds)

mkApp s = λsx1.λsx2.pushs (pushs x2 o x1)

unwinds = app = λsx.x

Figure 7  Instantiation of Graph Combinators According toGNm (Option Node-as-Code)

Here, the graph is not encoded by data structures but by code performing the needed ac-
tions. It simplifies the interpreter which just has to trigger a code; that is,unwinds boils
down to an application. It is easy to check that these definitions verify the conditions
(GNm1), (GNm2), and (GNm3). Moreover, the definition ofmkVar s (the identity function in
Λs) makes clear that indirection chains can be collapsed. That is to say:

∀E ∈ Λ, G [[E]] o mkVar s = G [[E]] (L5)

With this combinator instantiation, the graph is represented by closures. A more classi-
cal representation, based on data structures, arises with instantiations presented in section
3.3.3. The correctness ofGNm is stated by Property 4.

Property 4 ∀E closed∈ Λ, E cbn→ V ⇒ G [[E]] o unwinds = G [[V]]  o unwinds

The equality symbol (instead of a reduction symbol) on therhs of the implication
comes from the indirections which may remain in the normal form ofG [[E]] o unwinds. Ac-
tually, a more precise property would be:G [[E]] o unwinds reduces to an expressionX
which after removal of indirection chains is syntactically equal to the graph ofG [[V]] o un-
winds.
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Example. Let E ≡ (λx.x)((λy.y)(λz.z)) and

Iw ≡ (λsa. (pushs a o (λsw.pushs w o mkVar s)) o unwinds) then

G [[E]] o unwinds ≡ (G [[λz.z]] o G [[λy.y]] o mkApp s) o G [[λx.x]] o mkApp so unwinds

➨* pushs(pushs(pushs Iz o Iy) o Ix) o unwinds

➨ pushs(pushs Iz o Iy) o (λsa. (pushs a o (λsx.pushs x o mkVar s)) o unwinds)

➨* pushs (pushs Iz o Iy) o unwinds

➨ pushs Izo (λsa. (pushs a o (λsy.pushs y o mkVar s)) o unwinds)

➨* (pushs Izo mkVar s) o unwinds➨ pushs Izo unwinds

In this example, there is no indirection chain and the result is syntactically equal to the graph
of the source normal form. That is,pushs Izo unwinds is exactlyG [[λz.z]] o unwinds after the
few reductions corresponding to graph construction.

The first sequence of reductions corresponds to the graph construction. Thenunwinds scans
the (leftmost) spine (the firstpushs represents an application node). The graph representing
the function (λx.x) is applied. The result is the application nodepushs (pushs Iz o Iy) which is
scanned byunwinds. ❒

A naive implementation of call-by-need is possible without introducing marks. The
graph construction and reduction are distinct operations. This makes it possible to systemat-
ically update the graph [9]. For example, the reduction of an application node would store its
address. The definition ofmkApp s would be of the form

mkApp s = λsx1.λsx2.pushs (pushs @ o pushs x2 o x1)

The address would be updated after the construction of the reduced graph, that is

mkFuns = λsf.pushs (λsx.λs@.pushs @ o (pushs x o f) o updt o unwinds)

This update scheme is the G-Machine’s and is described in section 5.3.1.

Such a scheme performs many useless updates some of which can be detected by sim-
ple syntactic criteria or a sharing analysis. In order to benefit from this kind of information,
it must be possible to perform selective updates. However, like withNm, this facility imposes
the introduction of marks [1]. The combinatormkFuns is changed to test the presence of a
mark usinggrabs.

mkFuns = λsf.pushs (grabs(λsa.(pushs a o f) o unwinds))

Updatable/shared nodes can now be distinguished using a new kind of application node
mkAppSs defined as

mkAppSs = λsx1.λsx2.pushs (pushs @ o pushs ε o pushs x2 o x1 o updt o unwinds)
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The role of the markε is to suspend the reduction before the update (see section 5.3.2).

3.3.3  Alternate graph representations

A graph and its associated reducer can be seen as an abstract data type with different imple-
mentations [11]. We have already used one encoding which represents nodes by code (i.e.
closures). We present here two others solutions. Both of them verify properties (GNm1),
(GNm2) and (GNm3) and, therefore, implement a push-enter model of the compilation of
call-by-name.

A first natural solution is to represent the graph by a (for now) tree-like data structure.
We introduce three data constructorsVarNode, FunNode andAppNode and the interpreter
unwinds is defined as a case. Their definitions is given in Figure 8 in an Haskell-like syntax.

mkVar s = λsx.pushs (VarNode x)

mkFuns = λsf.pushs (FunNodef)

mkApp s = λsx1.λsx2. pushs (AppNodex1 x2)

unwinds = λsn. casen of

(VarNode e) → pushs e o unwinds

(FunNodee) → λsa.(pushs a o e) o unwinds

(AppNodee1 e2) → pushs e2 o pushs e1 o unwinds

Figure 8  Instantiation of Graph Combinators According toGNm (Option Node-as-Constructor)

The second solution is a refinement which is used by the G-machine. Each node enclos-
es in addition the code to be executed when it is unwound. The interpreterunwinds just exe-
cutes this code and does not have to perform a dynamic test.

mkVar s = λsx.pushs (tagVars, x) with tagVars = λsx.pushs x o unwinds

mkFuns = λsf.pushs (tagFuns, f) with tagFuns = λsf.λsx.(pushs x o f) ounwinds

mkApp s = λsx1.λsx2.pushs (tagApps, (x1, x2))

with tagApps = λs(x1,x2).pushs x2 o pushs x1 o unwinds

unwinds = λs(tag, data).pushs data o tag

Figure 9  Instantiation of Graph Combinators According toGNm (Option G-Machine)

This representation may appear very different of the first option presented in Figure 7.
However, at the end of the compilation process, both solutions come close. For example, af-
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ter the compilation ofβ-reduction, the “node-as-code” option represents nodes by closures
which resemble data-structures used by the G-machine. The efficiency of these two options
is comparable.

In fact, the G-machine uses a slightly more complex representation. Instead of the ad-
dress of a code, each node contains the address of a jump table. The reason is that, in the G-
machine, many operations (other thanunwinds) can be applied to a node (e.g. “eval” to re-
duce strictly the graph or “print” to display it). These operations are defined for each type of
node and stored in tables.

3.3.4  Graph reduction, eval-apply model and call-by-value

By far, the most common use of graph reduction is the implementation of call-by-need in the
push-enter model. However, the eval-apply model or the compilation of call-by-value can be
expressed as well. We examine each problem in turn. In both cases, the same graph has to be
built and the transformationG (of section 3.3.1) is reused. Only the graph reduction (ex-
pressed by the combinators properties) has to be adapted.

The eval-apply model for a call-by-name graph reducer can be defined by the properties
of Figure 10.

(GNa1) (E o mkVar s) o unwinds = E o unwinds

(GNa2) (pushs F o mkFuns) o unwinds = pushs F

(GNa3) (E2 o E1 o mkApp s) o unwinds = E2 o (E1 o unwinds) o appFuns

(GNa4) E o (pushs F) o appFuns = (E o F) o unwinds

Figure 10  Properties of Graph Combinators for the Call-by-Name Eval-Apply Model

The rule (GNa2) makes it clear that a function is considered as a result (there is noun-
winds in therhs to continue the reduction). The rule (GNa3) specifies that application nodes
must be reduced by evaluating the functionE1 and applying (appFuns) the result to the un-
evaluated argumentE2. Property (GNa4) defines the new application combinatorappFuns.
The “node-as-code” instantiation of the graph combinators is described in Figure 11.

mkVar s = λsx.pushs x mkFuns = λsf.pushs (pushs f)

mkApp s = λsx1.λsx2. pushs (pushs x2 o x1 o appFuns)

appFuns = app o unwinds unwinds = app = λsx.x

Figure 11  Instantiation of Graph Combinators According toGNa (Option Node-as-Code)
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In the definition ofappFuns, app calls the function of themkFuns node which builds a
graph whose reduction is triggered byunwinds. It is easy to check that Property 4 holds with
these definitions as well.

The eval-apply model for a call-by-value graph reducer can be defined by the following
properties.

(GVa1) (pushs E o mkVar s) o unwinds = pushs E

(GVa2) (pushs F o mkFuns) o unwinds = pushs F

(GVa3) (E2 o E1 o mkApp s) o unwinds = E2 o unwinds o E1 o unwindso appFun

(GVa4) E o pushs F o appFuns = (E o F) o unwinds

Figure 12  Properties of Graph Combinators for the Call-by-Value Eval-Apply Model

Functions and variables, which are bound to evaluated values, are returned as results
((GVa1), (GVa2)). The twounwinds in rule (GVa1) express the evaluation of the function and
its argument before application.

3.4  Comparisons

As we already shown in [5], it is possible to compare the complexity of each compilation
step. Here, we compare briefly the complexity ofNa andNm. Then, we exhibit the precise
relationship between the environment and graph approaches. In particular, we show how to
derive the transformationNm from G and the properties (GNm).

3.4.1  Push-enterversus eval-apply

TheNm scheme is simpler thanNa. It avoids the overhead of returning a function that always
has to be applied in call-by-name.Nm builds less closures and is more space and time effi-
cient than the correspondingNa code. The size of the transformed expressions gives an ap-
proximation of the overhead entailed by the encoding of the control. It is easy to show that
Na andNm produce a linear code expansion with respect to the size of the source expression.
More precisely:

if Size(E) = n thenSize (Na [[E]] ) ≤ 3nv+nλ-2

with nλ the number ofλ-abstractions and nv the number of variable occurrences (n=nλ+nv) of
the source expression. This expression reaches a maximum with nv=n-1. This upper bound
can be approached with, for example,λx1.x1 … x1. ForNm, the size of transformed expres-
sions is strictly smaller. More precisely:

if Size(E) = n thenSize (Nm [[E]] ) ≤ 2nv+nλ-1
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However, when call-by-need is considered,Nml must introduce marks and dynamic
tests in order to be able to update redexes. We have

if Size(E) = n thenSize (Nml [[E]] ) ≤ 2nv+2nλ-1

On the other hand,Na can directly insert update instructions. The comparison between
Na andNml is very similar to the comparison betweenVa andVm [5]. Na andNml perform
the same updates, however a code produced byNml builds less closures than the correspond-
ing Na code at the price of dynamic tests. A mark can be represented by one bit andNml is
likely to be, on average, less greedy on space resources. As with call-by-value, time efficien-
cy depends a lot of the respective costs of closure buildings and combinators such asgrabs
but also of the proportion of updatable closures. Many implementations use analysis to de-
tect unshared redexes which has not to be updated. The more redexes are detected unshared,
the less closures will have to be built byNml. As in [5], a more detailed comparison could be
conducted using symbolic costs and probabilities.

The graph reduction schemesGNm andGNa share the same differences asNml with Na.
However, the overhead induced by the graph construction and the interpreted reduction is
likely to mitigate these differences.

3.4.2  Graphversus environment

Even if their starting points are utterly different, graph reducers and environment machines
can be related. We illustrate this fact by comparing transformationNm with the GNm ap-
proach to graph reduction.

The two main departures of graph reduction from the environment approach are

• the potentially useless graph constructions. For example, the ruleG [[E1 E2]]  = G
[[E2]] o G [[E1]]  o mkApps builds a graph forE2 even ifE2 is never reduced (i.e. if it is
not needed). On the other hand,Nm suspends all operations (such as variable instantia-
tion) onE2 by building a closure (Nm [[E1 E2]]  = pushs (Nm [[E2]]) o Nm [[E1]] ).

• the interpretative nature of graph reduction. Even in the “node-as-code” instantiation,
each application node (mkApps) is “interpreted” byunwinds. In the environment family,
no interpreter is needed and this approach can be seen as the specialization of the inter-
preterunwinds according to the source graph built byG [[]] .

In order to formalize these two points, we first change the rule of graph building for ap-
plications by:

G [[E1 E2]]  = pushs (G [[E2]] o unwinds) o G [[E1]]  o mkApp s

This corresponds to a lazy graph construction where the graph argument is built only if
needed. In particular, variables will be bound to unbuilt graphs. This new kind of graph en-
tails to change property (GNm1) by

(GNm1) (pushs E o mkVar s) o unwinds = E
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We can now show thatNm [[E]]  is nothing else that the specialization ofunwinds with re-
spect to the graph ofE; that is:

Nm [[E]] =  G [[E]] o unwinds

This property can be shown by structural induction.

• G [[x]] o unwinds

= pushs x o mkVar s o unwinds = x = Nm [[x]] (def.G),(GNm1),(def.Nm)

• Note that (GNm2) holds for all expressionsV and could be written

λsv. pushs v o (pushs F o mkFuns) o unwinds = λsv. (pushs v o F) o unwinds

Using (assoc) and (ηs) we get (pushs F o mkFuns) o unwinds = F o unwinds (GNm2’)

So G [[λx.E]] o unwinds

= (pushs(λsx.G [[E]])  o mkFuns) o unwinds (def.G)

= (λsx.G [[E]])  o unwinds = (λsx.G [[E]]  o unwinds) (GNm2’), (L1)

= (λsx.Nm [[E]]) = Nm [[λx.E]] (induction hypothesis),(def.Nm)

• G [[E1 E2]] o unwinds

= pushs(G [[E2]] o unwinds) o G [[E1]]  o mkApp s o unwinds (def.G)

= pushs (G [[E2]] o unwinds) o G [[E1]]  o unwinds (GNm3)

= pushs (Nm [[E2]]) o Nm [[E1]] (induction hypothesis)

= Nm [[E1 E2]] (def. N) ❒

One can show similar properties between the environment based transformationsNml,
Na, Vm, andVa and the corresponding graph reducersGNml, GNa, GVm, andGVa.

These properties show that, as far as the compilation of control is concerned, environ-
ment based transformations are more efficient than their graph counterpart. However, opti-
mized graph reducers avoid as much as possible interpretative scans of the graph or graph
building and come close to environment-based implementations.
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4  Compilation of theβ-Reduction

This compilation step implements the substitution using transformations fromΛs to Λe.
These transformations are akin to abstraction algorithms and consist in replacing variables
by combinators. Compared toΛs, Λe adds the pair (pushe, λe) encoding a new environment
componente, and uses variables only to define combinators.

The different options for the compilation ofβ-reduction described in [5] can be applied
for call-by-name as well. We do not recall them here. Instead, we focus on abstraction algo-
rithms usually used by graph reduction. One of the most claimed advantage of graph reduc-
tion is to be well suited to parallel execution because it has no global environment structure.
So, in our framework, the transformations modeling the compilation ofβ-reduction for
graph reducers should not use thee component. We present two transformations to model
the environment management used in the G-machine[9] and in the SKI-machine[14]. We
first introduce general transformations which can be used along with any previous compila-
tion of control. Then, we specialize them to model accurately model existing graph reduc-
tion implementations. Finally, we briefly compare them.

4.1  A G-machine-like abstraction algorithm

The G-machine uses an abstraction algorithm close to the transformationAgdsb already de-
scribed in [5]. The transformationAgdsb specifies an environment manipulation scheme
avoiding stack elements reordering (swapse-less), environment duplication (duple-less), and
environment building (mkbind -less). The environments are unfolded (as sequences of clo-
sures) in the stack at a fixed place where they grow and shrink according to the binding
scope. We present here a slight variation ofAgdsb (Figure 13) which uses thes component to
store the environment instead ofe. This transformation introduces indexed combinators and
uses the notion of arity:

Definition An expression E of typeσ1→s …→s σn→s Rsσ, is said to have arity n.

The transformation uses a compile time environmentρ, and an indexk which represents
the number of closures stacked on the current environment (i.e. the environment depth). The
main call for a closed expressionE of arity p is: Agdsb’ [[E]]()  p. In the following,m denotes
the length of the environmentρ.

Agdsb’ : Λs → env→ int → Λe

Agdsb’ [[E1 o E2]] ρ k = Agdsb[[E1]] ρ k o Agdsb’ [[E2]] ρ (k+1)

Agdsb’ [[pushs E]] ρ k = pushs(storesp,m o Agdsb’ [[E]] ρ p o flushs1,m) o mkclosk,m (p arity ofE)

Agdsb’ [[λsx.E]] ρ k = storesk-1+m,1 o Agdsb’ [[E]] (ρ,x) (k −1) o flushsk-p+m,1 (p arity ofE)

Agdsb’ [[xi]] (…((ρ,xi),xi-1)…,x0) k = duplsk+m-i,1 o appclos

Figure 13  Abstraction Algorithm Dupl-less, Swap-less and Bind-less (Agdsb’)
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Agdsb’ needs five new combinators to express the environment manipulations. In the first
rule, both elements of a sequence use the same environmentρ, butE1 produces a result, so
the environment rank ofE2 is k+1. The second rule builds a closure (mkclos), which inserts
the environment under the arguments (stores), evaluatesE, then flushes the environment
(flushs). The rule forλs-abstractions adds a new binding to the environment (stores), evalu-
atesE, then removes it (flushs). Finally, the last rule accesses a closure (dupls) and calls it
(appclos). Figure 13 gives the definition of these (macro)combinators inΛs.

storesn,m = λsy1…λsym.λsx1…λsxn.pushs ym o … o pushs y1 o pushs xn o … o pushs x1

flushsn,m = λsx1…λsxn.λsy1…λsym.pushs xn o … o pushs x1

duplsn,m = λsx1…λsxn.λsy1…λsym.pushs ym o … o pushs y1 o

pushs xn o … o pushs x1 o pushs ym o … o pushs y1

mkclosk,m = λsc.λsx1…λsxk.λsy1…λsym.pushs ym o … o pushs y1 o

pushs xk o … o pushs x1 o pushs (pushs ym o … o pushs y1 o c)

appclos = app

Figure 14 Agdsb’ Indexed Combinators Definitions

The difference betweenAgdsb’ andAgdsb lies inmkclosk,m which does not fold an envi-
ronment ine. The proofs of correctness are similar.

Example. Let us consider the expressionλsx1.λsx0.pushs E o x1, with p the arity ofE, then

Agdsb’ [[λsx1.λsx0.pushs E o x1]] () 2

= stores1,1 ostores1,1 opushs(storesp,2 o Agdsb’ [[E]] (((),x1),x0) p o flushs1,2) omkclos0,2

o dupls2,1 o appcloso flushs2,1 o flushs1,1

The (originally empty) environment is under the two arguments of the expression. These two
arguments are added to the environment (stores1,1 o stores1,1). Then a closure ofE is built
(mkclos0,2). The value ofx1 is accessed (dupls2,1) and evaluated (appclos). Finally, x0 then
x1 are removed (flushs2,1 o flushs1,1) from the environment which is now empty and (concep-
tually) under the result ofpushs E o x1. ❒

This transformation can easily be optimized. For example, variables are bound to clo-
sures. With the original rules,Agdsb’ [[pushs x]] would build yet another closure. This useless
“boxing” can be avoided by the following rule:

Agdsb’ [[pushs xi]] (…((ρ,xi),xi-1)…,x0) k = duplsk+m-i,1

Others optimizations are described in [5].
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4.2  A SKI-like abstraction algorithm

Some abstraction algorithms do not use the environment notion, but encode separately every
substitution. A simple algorithm [14] uses only three combinators {S, K , I } but is inefficient
w.r.t. code expansion. Different refinements, which use extended combinators families (e.g.
{ S, K , I , B, C, S’, B’ , C’ }), have been proposed [15] [2] [10]. They usually lower the com-
plexity of code expansion from exponential with {S, K , I } to quadratic or even O(nlogn). We
describe only the SKI abstraction algorithm in our framework. It should be clear that the op-
timized versions could be expressed as easily.

The transformationSKI [[E]] x suppresses the free occurrences ofx in theΛs-expression
E using the combinators set {Ss, Ks, Is}. Their role is to distribute and propagate lazily the
values in the compiled expression.

SKI : Λs → var → Λe

SKI [[E]] x = pushs E o Ks , if E does not contain free occurrences ofx

SKI [[E1 o E2]] x = pushs (SKI [[E1]] x) o pushs (SKI [[E2]] x) o Ss

SKI [[pushs E]] x = pushs (SKI [[E]] x) o mkPush

SKI [[λsy.E]] x = SKI [[SKI [[E]] y]] x

SKI [[x]] x = Is

Figure 15  Abstraction Algorithm SKI (SKI)

An argument is either propagated to the sub-expressions (Ss), cancelled (Ks) or kept
(Is). A fourth combinator (mkPush) propagates the argument insidepushs’s. These combi-
nators are defined inΛs as follows:

Ss= λse2.λse1.λsx.(pushs x o e1) o pushs x o e2 Ks = λsy.λsx.y Is = λsx.x

mkPush= λse.λsx.pushs (pushs x o e)

Figure 16 SKI Combinator Definitions

The correctness of the transformationSKI is stated by Property 5.

Property 5 ∀E ∈ Λs, pushs x o SKI [[E]] x = E

The usual optimizations can be expressed. For example,S (K E) I  = E andS (K E2) (K
E1) = K  (E2 E1) corresponds respectively to the rules

pushs Is o mkPush o pushs (pushs E o Ks) o Ss= E

pushs (pushs E1 o Ks) o pushs (pushs E2 o Ks) o Ss=  pushs (E1 o E2) o Ks
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whose correction can be easily established using combinator definitions.

The abstraction algorithm could be extended with the combinatorsB, C, S’, B’ , C’  in
order to get a more compact code. For example,S’ can be encoded by

Ss’= λse3.λse2.λse1.λsx.(pushs x o e1) o (pushs x o e2)o e3

4.3  Specializations

The transformationsAgdsb’ andSKI can be applied to allΛs-expressions. In particular, they
can be composed with the transformations for the compilation of the graph reduction control
(section 3.3). The resulting code, although correct, does not always model accurately the
classical compilation schemes of the G- or SKI-machine. In order to do so, we specialize
them to the code produced byG [[]] . That is to say, we consider only expressions of the form

pushs xi o mkVar s pushs (λsx.E) o mkFuns E1 o E2 o mkApp s

It is of course unnecessary to abstract the graph combinators. The specialized version of
Agdsb’ is:

Agdsb’ [[pushs xi o mkVar s]] (…((ρ,xi),xi-1)…,x0) k = duplsk+m-i,1 o mkVar s

Agdsb’ [[E1 o E2 o mkApp s]] ρ k = Agdsb’ [[E1]] ρ k o Agdsb’ [[E2]] ρ (k+1) o mkApp s

Agdsb’ [[pushs (λsx.E) o mkFuns]] ρ k

= pushs(storesp,m o Agdsb’ [[λsx.E]] ρ p o flushs1,m) o mkclosk,m o mkFuns

This last rule must be modified since, in graph reduction, closures are encoded by graphs.
The combinatormkclosk,m is replaced by graph builder code and the rule for functions is:

Agdsb’ [[pushs (λsx.E) o mkFuns]] ρ k = duplsk,m o pushs(storesp,m o Agdsb’ [[λsx.E]] ρ p o

flushs1,m) o mkFuns (o mkApp s)
m

These two styles of closure representation (mkclosk,m or graph) are equivalent when un-
wound; that is:

pushs(storesp,m o Agdsb’ [[λsx.E]] ρ p o flushs1,m) o mkclosk,m o mkFuns o unwinds =

duplsk,m o pushs(storesp,m o Agdsb’ [[λsx.E]] ρ p o flushs1,m) o mkFuns (o mkApp s)
mo unwinds

A preliminary step of the G-machine is to transform (λ-lift ) source functions into super-
combinators [8]. This can be directly modeled by inserting copies of the environment (like
theAc1 scheme in [5]). Themkbind -less variations (likeAgdsb’) perform these copies (using
mkclos andstores) and, in a way, integrate theλ-lifting process. The produced code models
the usual G-machine instructions, for example:duplsk+m-i,1 for PUSH(k+m-i), mkApps for
MKAP , mkFuns for PUSHFUN f, andflushs1,m+1 for SLIDE (m+1).
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In the same way, a straightforward application ofSKI to graph reduction code does not
model accurately the SKI-machine. For example, the derived code would propagate the val-
ue of variables before building the graph. The SKI-machine does the reverse. The easiest
way to model precisely the SKI abstraction algorithm is to define a new ad-hoc transforma-
tion (Figure 17).

SKI’ : Λs → var → Λe

SKI’ [[E]] x = E o (pushs Ks o mkFuns) o mkApp s x not free inE

SKI’ [[E1 o E2 o mkApp s]] x

= SKI’ [[E1]] x o (SKI’ [[E2]] x o (pushs Sso mkFun) o mkApp s) o mkApp s

SKI’ [[pushs (λsy.E) o mkFuns]] x = SKI’ [[SKI’ [[E]] y]] x

SKI’ [[pushs x o mkVar s]] x = pushs Is o mkFuns

Figure 17  Abstraction SKI (SKI’)

The new versions of theSs, Ks, Is combinators build or select a graph. They can be de-
fined as:

Ss= λse2.λse1.λsx.(pushs x o pushs e1 o mkApp s) o (pushs x o pushs e2 o mkApp s) o mkApp s

Ks = λse.λsx.pushs e Is = λsx.pushs x

4.4  Comparison

With the hypothesis that every combinator can be implemented by a constant time operation,
the size of transformed expressions gives a measure of the overhead entailed by the compila-
tion of β-reduction. It is then possible to compare the different compilation techniques ofβ-
reduction by evaluating the complexity of the corresponding transformations in terms of
code expansion. It is easy to show thatAgdsb’ entails a code expansion which is linear with
respect to the size of the source expression. More precisely:

If Size (E) = s thenSize (Agdsb’ (Nm [[E]] )) ≤ 6nv+2nλ-4

with nλ the number ofλ-abstractions andnv the number of variables occurrences (s=nλ+nv)
of the source expression. However, assuming a standard stack machine where the component
s is implemented as a data stack,storesn,m andflushsn,m have a O(m+n) cost andduplsn,m
andmkclosn,m have a O(m) cost, wheren is the number of closures stacked on the environ-
ment (maxnv), andm is the environment length (maxnλ). In this case, the size function must
be weighted according to the indexed combinators costs. ForAgdsb’, with the common hy-
pothesis that closure arity is not greater than 1, we get:

If Size (E) = s thenCost (Agdsb’ (Nm [[E]] )) ≤ 2nλ
2+5nλnv-7nλ+2nv
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The formula makes clear that the environment length (nλ) is the predominant criterion
for the efficiency ofAgdsb’. This expression reach a maximum withnλ=5s/6-3/2. The upper
bound can be approached with, for example, the expressionλx1…λxn.xn.

The same kind of study can be conducted forSKI. In this case, the hypothesis that com-
binators can be implemented in constant time is sound. It is then easy to prove that the sim-
ple version presented entails an exponential code expansion:

If Size (E) = s thenSize (SKI (Nm [[E]] )) ≤ (5(nv-1))nλ+(2nv)
nλ

The optimized versions (with {S, K , I , B, C, S’, B’ , C’ }) induces a quadratic (O(n2))
code expansion. Balancing source expressions reduces this upper bound to O(nlogn) [2].
This last result is optimal with a finite set of combinators. This balancing technique could be
applied toAgdsb’ as well to get a O(nlogn) complexity for environment management.
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5  Closure Sharing and Updates

The call-by-need strategy is an optimization of the call-by-name strategy which shares and
updates closures. In order to express sharing, we introduce a memory component to store
closures. The evaluation of an unevaluated argument amounts to access a closure in the
memory, to reduce it, and to update the memory with the closure normal form. This way, ev-
ery argument are reduced at most once.

We choose to apply this compilation step after the compilation of the sequence breaks
(see [5] for a description of this step). A new intermediate languageΛh adds toΛk the combi-
nator pair (pushh, λh) which specifies a memory componenth. This component is represent-
ed and accessed via a heap pointer and should logically be instantiated as a separated
component.

A first transformationHc from Λk to Λh threads the componenth where closures are al-
located and accessed. Then, two possible implementations of updates are expressed and we
present several options specific to graph reduction.

5.1  Introduction of a heap

The transformationHc (Figure 18) introduces a new componenth, which encodes a heap
threaded through the expression. Throughout the reduction of such an expression, there is
only one reference to the heap (i.e.h is single-threaded [13]). The transformed expression
Hc [[E]]  takes the heap as argument and is reduced exactly asE except that it also returns the
heap as result.

Hc : Λk → Λh with i ≡ s,e or k andh a fresh variable

Hc [[E1 o E2]] = Hc [[E1]] o Hc [[E2]]

Hc [[pushi E]] = λhh.pushi (Hc [[E]] ) o pushh h

Hc [[λix.E]] = λhh.λix.pushh h o Hc [[E]]

Hc [[x]] = x

Figure 18  Introducing a Heap (Hc)

For now, there is no interaction between the reduction process andh content. To express
closure allocation and access, addresses are represented by integers and the heap is repre-
sented by a pair made of a list of written cells {address, value} and the address of the next
free cell. The initial empty heap is notedemptyH and is defined as ((),0). We introduce three
combinators performing basic heap manipulations:

alloc = λh(heap,free).pushs free o pushh (heap,free+1)

write  = λh(heap,free).λsadd.λsval.pushh ((heap,{add,val}),  free)
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read =λh((heap,{add1,val}) ,free).λsadd2. if add1=add2 thenpushs val

elsepushh (heap,free) o pushs add2 o read

Figure 19 Heap Manipulation Combinators (alloc, write  and read)

It is sufficient to changeHc rules forpushs E andx to make closure allocation and ac-
cess explicit (Figure 20). In our framework, constructions of updatable closures are of the
form pushs E with E:Rsσ. The motivation for this criterion is that there may be closures of
the formpushs E whereE denotes a function (asNm produces). In this case,E does not yield
a result and that forbids updating. Accesses of updatable closures are of the formx : Rsτ
wherex is bound by aλs. The reason is that there may be expressions of the formλex…x…
wherex denotes a result but not a closure (not in thes component).

Hc : Λk → Λh with E : Rsσ and x : Rsτ bound byλsx.

Hc [[pushs E]] = Store[Hc [[E]] ]

with Store [E] ≡ λhh.pushh h o alloc o λhh.λsa.

pushs E o pushs a o pushh h o write o λhh. pushs a o pushh h

Hc [[x]] = Call[x]

with Call [E] ≡ λhh.pushs E o pushh h o read o λsy. pushh h o y

Figure 20  Allocating and Accessing Closures (Hc)

The contextStore[E] can be read as: allocate a new cell in the heap, write the codeE in
this cell, return its addressa and the heap. The contextCall[E] can be read as: access the ex-
pression stored in the heap in the cell of addressE, then reduce it (with the heap as an argu-
ment). Henceforth, the argument of a function is a closure address rather than the closure
itself. Sinceh is single-threaded, the combinatorsalloc, write  andread can be implemented
efficiently as constant time operators on a mutable data structure.

We can apply the transformationHc to get new versions of the combinators used by the
previous compilation steps. When a combinator does not create nor call a closure, the trans-
formationHc threads the heap without interaction. For example, for the combinatorflushs
introduced by the abstractionAgdsb’, we get:

flushsh n,m = Hc [[flushsn,m]]  = Hc [[λsx1…λsxn.λsy1…λsym.pushs xn o … o pushs x1]]

= λhh.λsx1…λsxn.λsy1…λsym.pushs xn o … o pushs x1 o pushh h

On the other hand, combinators such asmkclos andappcloscreate or call closures. So,
their transformed definitions useStore andCall :

mkclosh k,m = Hc [[mkclosk,m]]
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= Hc [[λsx.λsx1…λsxk.λsy1…λsym.pushs ym o … o pushs y1 o

pushs xk o … o pushs x1 o pushs (pushs ym o … o pushs y1 o x)]]

= λhh.λsx.λsx1…λsxk.λsy1…λsym.pushs ym o … o pushs y1 o

pushs xk o … o pushs x1 o pushh h o Store[pushs ym o … o pushs y1 o x]

appclosh = Hc [[appclos]]  = Hc [[λsx.x]]  = λhh.λsx.pushh h o Call[x]

The transformationHc handles closures but it could also be used to model memory manage-
ment for others components. For example, the transformationAs ([5]) represents environ-
ment as trees (using pairs) and one may want to express the implicit allocations needed to
store such trees.

5.2  Updating

The transformationHc only makes memory management explicit. A heap stored closure is
still reduced every time it is accessed. The call-by-need strategy updates the heap allocated
closures with their normal forms.

The main choice is either the update is performed by the caller (i.e. by the code from
which the closure is accessed) or by the callee (i.e. by the code of the closure itself). The
caller update scheme updates a closure every time it is accessed. This scheme is implement-
ed by a first version of the Krivine abstract machine [3]. The callee-update scheme updates
closures only the first time they are accessed. Once in normal form, others accesses will not
entail further (useless) updates. This scheme is implemented by all the realistic, environ-
ment-based implementations. In both cases, the shared expression is bracketed by codes
storing the update address and performing the update.

5.2.1  Caller update

The transformationUcaller specializes theHc rule for variables in order to update closures af-
ter calling (Figure 21).

Ucaller : Λk → Λh with x : Rsτ bound byλs

Ucaller [[x]] = pushs x o swapsh o Call[x] o updt

with swapsh = λsa.λhh.pushs a o pushh h

and updt = λhh.λsb.λsa.pushs (λhh.pushs b o pushh h) o pushs a o pushh h o write

o λhh.pushs b o pushh h

Figure 21  Caller ClosureUpdate (Ucaller)



A Taxonomy of Functional Language Implementations 27

This transformation introduces a combinatorupdt which takes as argument the heaph,
the addressb of the result, and the addressa of the closure to be updated. It returns the ad-
dressb and the heap where the cella contains now an indirection tob. The combinatorswap-

sh reorders the addressx and the heap.

For the sake of simplicity, we have presented a generic transformationUcaller which
transforms anyΛk expression. This transformation introduces sequence breaks: a closure
call is followed by an update (Call[x] o updt). This is annoying since control transfers have
already been compiled. The solution is to specializeUcaller to different forms of codes pro-
duced by the transformationsS andSl which compile control transfers [5]. In doing so, the
combinatorupdt can be shifted to the beginning of the code which follows the closure call.

5.2.2  Callee update

The transformationUcallee specializes theHc rule forpushs E in order to introduce self up-
dating closures.

Ucallee : Λk → Λh with E : Rsσ

Ucallee [[pushs E]] = Store[pushs a o swapsh o Ucallee [[E]] o updt]

Figure 22  Callee Closure Update (Ucallee)

A closure is allocated in the heap when it is created as inHc, but its code is modified.
The closure now stores its own address (pushs a), and its evaluation is followed byupdt.
Note thata is a variable bound in the contextStore[] (see the definition ofStore) and de-
notes the address of a fresh allocated cell. Of course, whenE is already (syntactically) in
normal form the simple ruleUcallee [[pushs E]] = Store[Ucallee [[E]] ] suffices. Thus, a closure
is updated at most once (i.e. after the first access) because the compiled code of its normal
form (Hc [[pushs N]] ) contains noupdt.

The transformationUcallee introduces also sequence breaks (Ucallee [[E]] o updt) which
are suppressed in the same way asUcaller by specializing the transformation.

5.2.3  Updating and the push-enter model

The caller update and the callee update schemes can be used withNm. As noted in section
3.1, marks have to be inserted in the expressions to pause the reduction and insert updating
codes. In a caller update scheme,Ucaller is specialized as:

Ucaller [[x]] = pushs x o swapsh o pushs ε o swapsh o Call[x] o updt o resumeh

with resumeh = λhh.λsx.pushs h o grabh x

In the same way, in a callee update scheme,Ucallee is specialized as:

Ucallee [[pushs E]] =
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Store[pushs ε o swapsh o pushs a o swapsh o Ucallee [[E]] o updt o resumeh]

In both cases, an evaluation context is isolated by inserting a markε after the update ad-
dress (pushs x or pushs a); the combinatorgrabh is defined byHc [[grabs]] .

The codes produced byNa andNml have the same update opportunities. As in call-by-
name, theNml scheme may prevent from building unnecessary intermediate closures.

5.3  Updating and graph reduction

The previous transformations can be used to transform the call-by-name graph reduction
schemes into call-by-need. Here, we present transformations to model two updating tech-
niques (spine and spineless variations) which has been introduced for the G-machine. The
spine variation, the standard technique for the G-machine, does not fit with our modeling
and an ad-hoc transformation must be defined. The spineless variation is found by using
Ucallee.

5.3.1  G-machine

As suggested in section 3.3.2, the use of marks is not mandatory to express updating in the
G-machine. Graph building and graph reduction are separate steps. Updates can be system-
atically inserted between each graph building and reduction step. However this scheme can-
not be expressed using the previous transformations. The canonical definition ofmkApp s
for GNm is:

mkApp s = λsx1.λsx2.pushs (pushs x2 o x1) where pushs x2 o x1 : σ1 →s σ2

SinceHc shares only expressions of the formpushs E with E:Rsσ, application nodes will not
be considered for updating with this definition ofmkApp s.

It is easy to model the G-machine scheme by a new transformation. We present in Fig-
ure 23 only the two most interesting rules:

Uspine : Λi → Λh

Uspine [[mkApp s]]  = Uspine [[λsx1.λsx2.pushs (pushs x2 o x1)]]

= λhh.λsx1.λsx2.pushh h o Store[pushs a o swapsh o pushs x2 o swapsh o Call[x1]]

Uspine [[mkFuns]]  = Uspine [[λsf.pushs (f o app)]]

= λhh.λsf.Store[f o updt o λhh.λsx.pushh h o x]

Figure 23  Updates in the G-machine (Uspine)

An application node is allocated in the heap as it is created. When reduced, its address
is stored before stacking the graph argument. In the same way, function nodes are created/al-
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located in the heap. When reduced, the functionf is called; it takes its argument and yields a
graph as result. The combinatorupdt takes this graph and the address of the application
node to perform the update. Contrary to the standard options, address storing and updating
do not bracket the updatable expression anymore. These operations are done independently
respectively onmkApp s and mkFuns nodes. Note that when an application node is un-
wound, its address (which is necessary for the latter update) and its right son (i.e. the argu-
ment) are stacked. Actually, as the G-machine does, it is sufficient to stack the application
node addresses (i.e. the leftmost spine) and change accesses byaccessi o accessRightSon.

5.3.2  Spineless G-machine

The spineless G-machine [1] updates only selected application nodes. Unwinding applica-
tion nodes entails to stack either their address (updatable) or only the argument address (non
updatable). In general, the complete leftmost spine of the graph does not appears in the
stack. The code must annotate updatable nodes and marks are necessary to dynamically de-
tect when an update must be performed (see section 3.3.2). Updatable nodes are distin-
guished using the combinatormkAppSs which has the same definition asmkApp s.

mkAppSs = λsx1.λsx2. pushs (pushs x2 o x1)

The transformationUcallee for the push-enter model (section 5.2.3) can be applied to
these nodes. We get:

Ucallee [[mkAppSs]] = λhh. λsx1.λsx2. Store[pushs ε o swapsh o pushs a o swapsh o

Ucallee [[pushs x2 o x1]] o updt o resumeh]

A caller update variation can be expressed too. This can be done by annotating updat-
ablemkVar s nodes.

5.4  Remarks

The comparison of the transformationsUcaller andUcallee is easy. Both transformations in-
duce a linear code expansion. It is nevertheless clear that theUcallee scheme which updates
closures at most once is more efficient thanUcaller which updates closures at every access.

Two techniques could be compared in the graph reduction: the spine push-enter scheme
(without marks), and the spineless push-enter scheme (with mark). In practice, the spineless
scheme seems to be more efficient than the spine scheme. The inherent interpreting overhead
in graph reduction favors the use of dynamic tests (e.g. marks).

The introduction of the threaded memory component in our functional intermediate
code makes formal manipulations more complicated. For example, a property ensuring that
the reduction ofHc [[E]] simulates the reduction ofE, should use a decompilation transfor-
mation in order to replace the addresses in reduced expressions by their actual values which
lie in the heap.
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6  Classical Functional Implementations

Figure 24 states the main design choices structuring several classical call-by-name and call-
by-need implementations.

Compiler Transformations Components

Clean Nml Ac1 UCallee s e k h

G-machine GNm Acdsb’ USpine s e k h

G-machine spineless GNml Acdsb’ UCallee s e k h

G-machine spineless tagless Nml Ac3 UCallee (s≡ k) e h

Mak Nml As USpine s≡ e ≡ k h

SKI-machine GNm SKI’ USpine s h

Tabac Na Ac2dsb UHybrid (s≡ e) k h

Tim Nml Ac1m Ucallee s e k h

Figure 24 Several Classical Compilation Schemes

There are cosmetic differences between our descriptions and the real implementations.
Also, some extensions and optimizations are not described here. Let us quickly review the
differences between Figure 24 and real implementations.

The Clean implementation is based on graph rewriting, however the final code is similar
to environment machines (for example, a closure is encoded by a n-ary node). The numerous
optimizations and especially the lack of clear description ([12] presents mostly examples of
final codes) makes the identification of compilation choices difficult.

The G-machine [9] and the spineless G-machine [1] transform the source program in a
(super)combinators set. Theλ-lifting transformation [8] is modeled by the implicit copies of
Acdsb’. A difference is that ourgrabs combinator performs a test for every argument, whereas
the real machines perform only one test for all the arguments (by comparison of the arity
with the activation record size). So, a n-ary combinatorgrabsn should be introduced. Then,
our descriptions would be accurate.

The spineless tagless G-machine [11] does not apply theλ-lifting transformation and
uses a local and a global environment. As before, the representation of closures differs and
the machine uses a n-ary version ofgrabs. The abstraction with two environments is repre-
sented in [5] by theAc3 transformation. As noted in [5], local environments are not directly
compatible withgrabs, and extra environment copies must be inserted. So, even specialized
to graph reduction, the transformationAc3 would not model precisely the spineless tagless
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G-machine. In this case, the differences cannot be called “cosmetic”. The simplest way to
model faithfully the real machine would be to introduce an ad-hoc abstraction algorithm.

The Krivine abstract machine Mak [3] is precisely modeled by the transformations
composition:UCallee • As • Nml.

The SKI-machine [14] reduces a graph made of combinatorsS, K , I  and application
nodes. The graph representing the source expression is totally built at compile time. The ma-
chine is made of a recursive interpreter and a data stack to store the unwound spine. Even if
the description of the SKI-machine in [14] is somewhat informal, we think that our model-
ing is close to the real machine.

The Tabac compiler is a by-product of our work in [7] and implements strict or non-
strict languages by program transformations. Its lazy version uses an hybrid caller-callee up-
date scheme not described in this paper. Tabac use numerous optimizations not described
here. Apart from these minor differences, our modeling is faithful.

Our description of the call-by-name version of Tim is accurate according to [6]. Howev-
er, a n-ary version ofgrabs should be added to our call-by-need version.
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7  Conclusion

We have presented a framework to describe, prove and compare functional implementation
techniques and optimizations. We have completed previous work on call-by-value, with the
description of call-by-name, call-by-need and graph reduction implementations. We have
described the different control compilation schemes for environment machines (sections 3.1
and 3.2) and for graph reduction machines (section 3.3). Their description in a unified
framework allowed us to formally relate them (3.4.2). We have presented a G-machine-like
β-reduction compilation scheme and a SKI-like abstraction algorithm (section 4). Finally,
we have expressed closure sharing and updating inherent to the call-by-need strategy (sec-
tion 5). At each stage, the various options are expressed as transformations and briefly com-
pared.

Our approach focuses on (but is not restricted to) the description and comparison of
fundamental options. Our transformations are designed to model a precise compilation step
and are genericw.r.t. the other steps. It is then not surprising that, often, simple compositions
of transformations does not model accurately real implementations whose design is more
ad-hoc than generic. In most cases, the differences are nevertheless superficial and it is suffi-
cient to specialize transformations to model precisely existing implementations.

The use of program transformations appeared to be suited to model precisely and com-
pletely the compilation process. The unified framework simplifies correctness proofs and
makes it possible to reason about the efficiency of the produced code as well as about the
complexity of transformations themselves. Actually, these advantages appear clearly only
until the last compilation step. The introduction of a threaded state seriously complicates
program manipulations and correctness proofs. This is not surprising, because our final code
is similar to a real machine code.

This report along with Part I provides a general taxonomy of known sequential imple-
mentations of functional languages. Our main goal was to structure and clarify the design
space of functional languages implementations. The exploration is still far from complete; in
particular:

• We have suggested how decurryfication, peephole optimizations and unboxing could be
expressed [5]. A systematic description of standard optimizations in our framework
could be undertaken.

• We have shown, on a few instances, how formal comparisons of transformations can be
made. Many interesting comparisons remains to be done.

• New combinations of transformations or the design of hybrid transformations (mixing
several compilation schemes) deserve further studies.

• A last step towards high quality machine code would be the modeling of register alloca-
tion. This could be done via the introduction of another component: a vector of registers.

We believe that the accomplished work already shows that our framework is expressive
and powerful enough to tackle these problems.
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Annex
Property 1 is shown in [5]. The correctness proofs of  and Property 3 are similar to the proofs
of the corresponding properties forVa andVm [5]. We do not detail these proofs here.

A  Proof of Property 4

Call-by-name reduction is described by the following natural semantics:

E1 cbn
→ λx.F F[E2/x]

cbn
→ N

 N normal form
E1 E2 cbn

→ N

The proof of Property 4 is on the shape of the reduction trees.

Axioms.

If E is not reducible, it is of the formλx.F (E is closed). We have thenE ≡ V and the property
is trivially verified.

Induction.

If E is reducible, that is,E ≡ E1 E2, E1 cbn
→ λx.F andF[E2/x]

cbn
→ N. By induction hypothesis,

we haveG [[E1]] o unwinds = G [[λx.F]] o unwinds andG [[F[E2/x]]] o unwinds = G [[N]] o un-
winds. Moreover, it is easy to prove by structural induction onF that

Lemma 6 (G [[F]][ G [[E2]]/ pushs x]) o unwinds = (G [[F[ E2/x]]]) o unwinds

SoG [[E1 E2]] o unwinds ≡ G [[E2]] o G [[E1]] o mkApp s o unwinds

= G [[E2]] o G [[E1]] o unwinds (GNm3)

= G [[E2]] o G [[λx.F]] o unwinds induction hypothesis

≡ G [[E2]] o pushs(λsx.G [[F]]) o mkFunso unwinds (def.G)

= (G [[E2]] o λsx.G [[F]]) o unwinds (GNm2)

= (G [[F]][ G [[E2]]/ pushs x]) o unwinds (β)

= (G [[F[ E2/x]]]) o unwinds (Lemma 6)

= G [[N]] o unwinds induction hypothesis❒

B  Proof of Property 5

We prove∀E ∈ Λs, pushs x o SKI [[E]] x = E by structural induction onE.
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• E ≡ E1 o E2

pushs x o SKI [[E1 o E2]] x

= pushs x o pushs (SKI [[E1]] x) o pushs (SKI [[E2]] x) o Ss def.SKI

= (pushs x o SKI [[E1]] x) o pushs x o SKI [[E2]] x def.Ss

= E1 o E2 induction hypothesis

• E ≡ pushs V

pushs x o SKI [[pushs V]] x

= pushs x o pushs (SKI [[V]] x) o mkPush def.SKI

= pushs (pushs x o SKI [[V]] x) def.mkPush

= pushs V induction hypothesis

• E ≡ F andF has nox free occurrence

pushs x o SKI [[F]] x = pushs x o pushs F o Ks = pushs F def.SKI, def.Ks

• E ≡ x

pushs x o SKI [[x]] x = pushs x o Is = x def.SKI, def.Is ❒
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