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Abstract: Dataflow programming models are well-suited to program many-core streaming appli-
cations. However, many streaming applications have a dynamic behavior. To capture this behavior,
parametric dataflow models have been introduced over the years. Still, such models do not allow
the topology of the dataflow graph to change at runtime, a feature that is also required to program
modern streaming applications. To overcome these restrictions, we propose a new model of com-
putation, the Boolean Parametric Data Flow (BPDF) model which combines integer parameters
(to express dynamic rates) and boolean parameters (to express the activation and deactivation of
communication channels). High dynamicity is provided by integer parameters which can change
at each basic iteration and boolean parameters which can even change within the iteration.
The major challenge with such dynamic models is to guarantee liveness and boundedness. We
present static analyses which ensure statically the liveness and the boundedness of BDPF graphs.
We also introduce a scheduling methodology to implement BPDF graphs on highly parallel plat-
forms. Finally, we demonstrate our approach using a video decoder case study.
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Résumé : Les modèles de calcul flots de données sont bien adaptés à la programmation des
applications de streaming sur les architectures multi-cœurs. Or, de nombreuses applications
de streaming ont un comportement dynamique. Afin de prendre en compte cette dynamicité,
plusieurs modèles de calcul paramétriques ont été proposés au cours des années récentes. Toute-
fois, ces modèles ne permettent pas de prendre en compte les reconfigurations dynamiques de
la topologie d’un réseau flots de données, ce qui est requis dans les applications de streaming.
Afin de résoudre ce problème, nous proposons un nouveau modèle de calcul, le modèle BPDF
(« Boolean Parametric Data Flow »), qui combine des paramètres entiers (pour représenter les
taux d’entrées sorties dynamiques) et des paramètres booléens (pour représenter l’activation et la
désactivation des canaux de communication). La dynamicité est vient du fait que les paramètres
entiers peuvent changer à chaque itération, et du fait que les paramètres booléens peuvent même
changer au sein d’une itération.

Le principal défi avec de tels modèles dynamiques de calcul est de garantir les propriétés de
vivacité et de bornage. Nous présentons des analyses statiques qui permettent de garantir sta-
tiquement la vivacité et le bornage d’un réseau BPDF. Nous présentons également une méthode
d’ordonnancement afin de mettre en œuvre des réseaux BPDF sur des plateformes hautement
parallèles. Enfin, nous illustrons notre approche avec une étude de cas d’un décodeur vidéo.

Mots-clés : Modèle de calcul flot de données dynamicité, paramètres, vivacité, bornage,
ordonnancement
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1 Introduction

Dataflow models of computation, such as SDF [10], have been very popular for designing stream-
ing applications. These models allow static analyses to guarantee the boundedness and liveness
of an application. However, they generally lack the expressivity and dynamicity needed by mod-
ern streaming applications such as high definition video codecs. To overcome this limitation,
several parametric dataflow models have been proposed over the years, for instance PSDF [3],
SADF [13], VRDF [16], or SPDF [7]. In contrast to SDF, these models allow the production
and consumption rates of dataflow actors to change at runtime according to the values of the
manipulated data (for instance the inputs).

Still, this is not enough because these parametric models do not allow the topology of the
dataflow graph to change at runtime, a feature that is also required to program modern stream-
ing applications. We propose a new parametric model of computation (MoC), called Boolean
Parametric Data Flow (BPDF), allowing dynamic changes of the graph topology. In short, as in
other parametric dataflow models, each BPDF actor has input ports (resp. output) labeled with
a production rate (resp. consumption) that can be parametric (a product of integers and sym-
bolic parameters). Integer parameters are allowed to change at runtime, between two iterations
of the BPDF graph. Moreover, each BPDF edge can be annotated with a boolean expression
defined using boolean parameters that are allowed to change at runtime, even inside an iteration
of the graph. When a boolean expression is false, the edge it annotates is considered disabled
(absent). Therefore, the topology of the BPDF graph changes according to the values taken by
the boolean parameters.

As with the previous work on parametric models, the major challenge with BPDF is to allow
more dynamicity while preserving liveness and boundedness guarantees. We propose syntactic
criteria and algorithms to solve symbolically the balance equations, to ensure boundedness and
to check that the number of initial tokens is sufficient to guarantee the liveness of a BPDF graph
with cycles.

Because of the expected quality of service (e.g., high definition video), modern streaming
applications are executed on many-core chips. Yet, the parallel implementation of parametric
dataflow applications on such platforms remains a major challenge. We provide a scheduling
algorithm for BPDF graphs targeted towards the new Sthorm many-core chip of STMicroelec-
tronics [2]. In summary, our contributions consist in

• a novel model of computation called Boolean Parametric Data Flow (BPDF);

• algorithms to guarantee the boundedness and liveness of BPDF graphs;

• an approach to schedule BPDF graphs on manycore execution platforms;

• a case study based on the recent video codec VC-1.

The paper is organized as follows. Section 2 introduces the terminology of dataflow using SDF
and presents our BPDF model. In Section 3, we describe the syntactic criteria and static analyses
used to ensure boundedness and liveness. Section 4 presents the implementation of parameter
communication and a method to schedule BPDF applications on many-core platforms. The
model and its parallel implementation are illustrated in Section 5 by a case study. Finally, we
summarize our contributions in Section 6.

RR n° 8333



4 Vagelis Bebelis , Pascal Fradet , Alain Girault , Bruno Lavigueur

2 Model of computation

We first present SDF (synchronous dataflow [10]), one of the simplest dataflow MoC. Then, we
introduce our model – BPDF (Boolean Parametric DataFlow) – as an extension of SDF with
integer and boolean parameters.

2.1 Synchronous Data Flow Model

In SDF, a program is defined by a directed graph, where nodes – called actors – are functional
units. The actors have data ports connected by edges which can be seen as Fifo (first-in first-out)
channels. The atomic execution of a given actor – called actor firing – consumes data tokens
from all its incoming edges (its inputs) and produces data tokens to all its outgoing edges (its
outputs). The number of tokens consumed or produced at a given port at each firing is called
the rate. It is denoted as r(πm) where πm is a port. An actor can fire only when all its input
edges have enough tokens (i.e., at least the number specified by the rate). In SDF, all rates are
constant integers, therefore known at compile time.

data port π2

A B

2

1 2

1

C

initial tokens

4 1

ratedata port π1

Figure 1: A simple SDF graph.

Figure 1 shows a simple SDF graph with three interconnected actors A, B and C. Actor A
has one input and one output port, whose rates are 2 and 4, respectively.

The state of a dataflow graph is the number of tokens present at each edge (i.e., buffered in
each Fifo). Each edge carries zero or more tokens at any moment of time. The initial state of
the graph is specified by the number of initial tokens. For instance, edge (C,A) in Figure 1 has
two initial tokens. After the first firing of actor A, the edge (A,B) gets four tokens while the
two tokens of (C,A) are consumed.

A major advantage of SDF is that, if it exists, a bounded schedule can be found statically.
Such a schedule ensures that each actor is eventually fired (ensuring liveness) and that the graph
returns to its initial state after a certain sequence of firings (ensuring boundedness of the Fifos).
Such sequence is called an iteration and can be repeated an infinite number of times (in the case
of a reactive system).

The numbers of firings of the different actors per iteration are computed by solving the so-
called system of balance equations. This system is made of one equation per edge. Consider an
edge (X1, X2) connecting the ports π1 and π2; its balance equation is:

#X1 · r(π1) = #X2 · r(π2) (1)

This equation states that, in an iteration, the number of firings of the producer X1, denoted
#X1, multiplied by its rate r(π1), should be equal to the same expression for the consumer X2.
For example, the balance equation for edge (A,B) in Figure 1 is: #A · 4 = #B · 1.

The existence of solutions of the system of balance equations is referred to as rate consistency.
The graph of Figure 1 is rate-consistent, and the solutions are: #A = 1, #B = 4 and #C = 2.
Such a set of solutions forms a repetition vector noted [#A,#B,#C] = [1, 4, 2]. Note that multi-
plying the solutions by the same positive constant makes another set of solutions. One usually

Inria
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considers only the minimal strictly positive integer solutions which are obtained by eliminating
common factors.

The minimal solutions determine the number of firings of each actor per iteration. The next
step is to determine a static order – the schedule – in which those firings can be executed. The
schedule is obtained by an abstract computation where an actor is fired only when it has enough
input tokens. The graph of Figure 1 can only start by firing A; then, B has enough input tokens
to be fired four times, and finally C twice. Since each actor has been fired the exact number of
times required by its solution, a schedule has been found. We represent it as the string AB4C2

where the superscripts denote repetition count. Another valid schedule for the same graph is
AB2CB2C which can also be written as A(B2C)2.

2.2 Boolean Parametric Data Flow Model

We extend SDF by allowing rates to be parametric and edges to be annotated with a boolean
condition. BPDF rates are products of positive integers (k) or symbolic variables (p). They are
defined by the grammar:

R ::= k | p | R1 · R2 where k ∈ N∗ and p ∈ Pi

with Pi denoting a set of symbolic variables that are the integer parameters. To ensure bound-
edness, a programmer using BPDF must specify a maximal value for each parameter. We do not
fix specific values in the examples but we will denote the maximum of a parameter p as pmax;
any given parameter p belongs to the interval [1..pmax]. We restrict integers to non-zero values to
avoid division by zero when it comes to the analysis of the graph. This way, we strictly separate
the role of rates (directly linked with the graph iteration) from the role of conditions (disabling
edges and topology changes).

Each BPDF edge is annotated by a boolean condition which deactivate the edge when it
evaluates to false. These boolean expressions are defined by the grammar:

B ::= tt | ff | b | ¬B | B1 ∧ B2 | B1 ∨ B2

where b belongs to the set of symbolic variables Pb denoting boolean parameters.
Unlike the rates of SDF graphs that are fixed at compile time, the parametric rates of a

BPDF graph can change dynamically between iterations. This change can be performed by a
single actor or a centralized scheduler. This choice is implementation dependent and does not
interact with the analyses or compilation process.

Moreover, each boolean parameter is modified by a single actor called its modifier. In BPDF,
a modifier may change a boolean parameter within iterations using the annotation b@α where
b is the boolean parameter to be set and α is the period of changes. The period of a boolean
parameter b is the exact (possibly symbolic) number of firings of its modifier between two changes.

Intuitively, a BPDF actor reads and/or writes boolean parameters at specific periods. When
it fires, it first evaluates the condition of its edges according to the current value of the boolean
parameters. Then, it produces (resp. consumes) tokens on its outgoing (resp. incoming) edges
that are annotated by a true condition only. It implies that a completely disconnected actor,
i.e., whose edges are all annotated by false (ff), fires (at least conceptually) but does not read
nor write any channel except for reading or writing boolean parameters. It can do so until one
of boolean parameter changes and sets one of the edge conditions to true (tt).

Boolean parameter communication must ensure that the parameters are written and read at
the right pace without introducing deadlocks. The implementation of the boolean parameter
communication is described in Section 3.3 and refined in Section 4.1.

RR n° 8333



6 Vagelis Bebelis , Pascal Fradet , Alain Girault , Bruno Lavigueur

Figure 2 shows a simple BPDF graph where actors have constant or parametric rates (e.g., p
for the output rate of A). Omitted rates and conditions equal to 1 and tt respectively. Without
going into details, the repetition vector is [2, 2p, p, 2p, 2p] (see Section 3.1).

The edges (B,D), (B,C) and (C,E) are conditional. They are present only when their
condition (here b or ¬b) is true. A sample execution of the graph is the following: A fires and
produces p tokens on edge (A,B). Then B fires and sets the value of boolean parameter b. If
b is true, B does not produce tokens on edge (B,D). As the edge is disabled, D fires twice
without consuming tokens. B will fire a second time without changing the value of b enabling
C to fire once. Finally, E will consume the tokens produced by C and D. If b is set to false,
C is disconnected and it will fire without producing or consuming tokens. D and E will fire
as expected. This continues until each actor has fired a number of times equal to its repetition
count (as in SDF).

Further details on the execution of the model as well as its constraints that ensure bounded-
ness and liveness are presented in Section 3.

A B
b@2

C

D

E
p

b
2

¬b

2
b

Figure 2: A simple BPDF graph with integer parameter p and boolean parameter b

Formally, a BPDF graph is defined as a 9-tuple
(G,Pi,Pb, β, ι, δ, ρ,M, α) where:

• G is a directed connected graph (A, E) with A a set of actors and E ⊆ A × A a set of
directed edges;

• Pi and Pb are sets of integer and boolean parameters;

• β : E → B and ι : E → N associate each edge with its condition and number of initial
tokens, respectively;

• δ : Pi → N∗ returns the maximal values of each integer parameter;

• ρ : A × E → R returns for each port (represented by an actor and one of its edges) its
associated (possibly symbolic) rate;

• M : Pb → A and α : Pb → R return for each boolean parameter its modifier and its change
period, respectively.

A user of a boolean parameter b is an actor connected by an edge whose condition involves b.

Definition 1. The set of users of b, written Users(b), is defined as Users(b) = {A,B | (A,B) ∈
E , b ∈ β(A,B)}

In addition of periods, we also use the dual notion of frequency which is the number of times
a parameter may change within an iteration.

Definition 2. The frequency of a parameter b , written freq(b), is defined as freq(b) = #M(b)
α(b) .

Inria
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BPDF combines parametric rates and frequent topology reconfiguration as no other dataflow
model proposes. Furthermore, as shown in the next section, this gain in expressivity does not
prohibit effective static analyses.

3 Static Analyses

This section presents the three static analyses needed to ensure boundedness and liveness of
BPDF graphs. In Section 3.1, we check rate consistency by adapting the analysis of SDF to
BPDF. Conditions for consistency and solutions of balance equations are computed in terms of
symbolic expressions. In Section 3.2, we check that the change periods of each boolean parameter
are safe and show that, along with rate consistency, it ensures boundedness. Section 3.3 completes
the analysis chain by checking for liveness.

3.1 Rate Consistency

As in SDF, we check the rate consistency of a BPDF graph by generating the associated system
of balance equations. This system must be shown to have a non null solution for all possible
values of parameters.

The equations are generated by considering the symbolic rates and by ignoring the boolean
conditions on the edges. This enforces the system to be rate consistent for all possible configura-
tions of the graph. Indeed, if the system is rate consistent when all edges are present (enabled),
then it is also consistent when one or several edges are removed (disabled). Indeed, when remov-
ing edges, the resulting system of balance equations will be a subset of the system of equations
of the fully connected graph. Checking rate consistency of all edges maybe considered too strict
because it does not take into account the fact that some edges cannot be active at the same time
(e.g., two edges annotated by b and ¬b). On the other hand, it simplifies the understanding and
implementation since a graph has a unique (although parametric) iteration vector.

We generalize the algorithm for solving the balance equations presented in [1] from SDF to
BPDF by doing the same operations with symbolic factors. The algorithm relies on multiplica-
tion, division and greatest common divisor (gcd) of rates. These operations are easily expressed
on R by putting symbolic expressions on the form:

k0 · k1 · k2 · · ·︸ ︷︷ ︸
prime decomposition

· p1 · p1 · · · p1︸ ︷︷ ︸
the power of p1

· p2 · p2 · · · p2︸ ︷︷ ︸
the power of p2

. . .

The minimal solutions for all actors are found by eliminating all the prime or parametric factors
common to all solutions.

If the undirected version of the BPDF graph is acyclic, a solution to the balance equations
always exists and can be found as follows. We arbitrarily set one of the solutions to 1 then
recursively solve each equation. Finally, we normalize the solutions to integers. Consider, for
instance, the graph of Figure2. By setting #A = 1, we consecutively get:

#B = p, #C =
p

2
, #D = p, and #E = p

To normalize the fractional solutions we multiply with the least common multiple of the denom-
inators, in this case 2. Finally, we get the repetition vector

[#A,#B,#C,#D,#E] = [2, 2p, p, 2p, 2p]

that is, A2B2pCpD2pE2p for short.

RR n° 8333



8 Vagelis Bebelis , Pascal Fradet , Alain Girault , Bruno Lavigueur

When the BPDF graph contains an undirected cycle, the graph may be rate inconsistent.
There is, however, a necessary and sufficient condition for the existence of solutions. Each
undirected cycle X1, X2, . . . , Xn, X1 should satisfy the following condition:

(Cycle condition) p1 · p2 . . . · pn = q1 · q2 . . . · qn

where pi and qj denote the production and consumption rates of edge (Xi, Xj). This condition
enforces that the product of “output” rates of a cycle should be equal to the product of “input”
rates of this cycle.

Property 1 (Consistency). An BPDF graph is rate consistent if all its undirected cycles satisfy
the cycle condition.

Proof. To prove Prop. 1, we consider a cycle

X1
p1 q2

X2
p2

. . .
qn
Xn

pn q1
X1

We show that the solutions found for the tree obtained by removing the edge Xn
pn q1X1 are

also solutions for the balance equation of the suppressed edge. The solutions verify the following
balance equations:

#Xi · pi = #Xi+1 · qi+1 for i = 1 . . . n− 1

then multiplying all the lhs and rhs of the n− 1 equations, we get

#X1 · . . . ·#Xn−1 · p1 . . . · pn−1 = #X2 · . . . ·#Xn · q2 . . . · qn

Removing the common factors yields

#X1 · p1 · p2 . . . · pn−1 = #Xn · q2 · . . . · qn

Multiplying both sides by q1, we get

#X1 · q1 · p1 · p2 . . . · pn−1 = #Xn · q1 · q2 . . . · qn

Then, using the cycle condition gives

#X1 · q1 · p1 · p2 . . . · pn−1 = #Xn · p1 · p2 . . . · pn

And, by simplifying by p1 · p2 . . . · pn−1, we finally get

#X1 · q1 = #Xn · pn

which is the balance equation corresponding to the suppressed edge. The cycle condition
guarantees that the balance equation of any suppressed edge is satisfied. Hence, the generic
solutions satisfy the balance equations for all edges, which guarantees rate consistency of the
graph.

Rate consistency analysis either returns for each actor its (symbolic) minimal solution, or
returns an unsatisfied cycle condition that can be used by the programmer to fix his BPDF
graph.

Inria
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3.2 Boundedness

If the BPDF graph returns to its initial state after each iteration, then all integer parameters
can be modified at these points and boundedness is guaranteed. Without boolean parameters on
the edges, rate consistency is sufficient to ensure that the graph returns to its initial state after
each iteration. However, in BPDF, boolean parameters may change at a faster period by using
the “b@α” annotation. Yet, not all periods are safe and their consistency must be checked.

The criterion ensuring that parameter modification periods are safe relies on the notions of
regions and local iterations. Intuitively, the criterion states that a parameter can be modified
once per local iteration of its region. For Figure 2, the region of b consists of actors B, C, D,
and E, so b can be changed after each local iteration (B2CD2E2)1, i.e., after every 2 firings
of B.

Definition 3 (Region). The region of a boolean parameter b, noted R(b), is defined as:

R(b) = {M(b)} ∪Users(b)

The region of b is the set containing its modifier and all its users. For example, the region of
b in Figure 2 is R(b) = {B,C,D,E}.

The solutions of the system of balance equations are global solutions in that they define the
number of firings for the global iteration of the whole graph. Local solutions are solutions for a
subset of actors; they denote a nested iteration.

Definition 4 (Local solutions). The local solution of an actor Xi in a subset of actors L =

{X1, . . . , Xn}, written #LXi, is defined as:

#LXi =
#Xi

gcd(#X1, . . . ,#Xn)

For example, the global solutions of the actors of R(b) in Figure 2 are #B = 2p, #C = p,
#D = 2p and #E = 2p. The gcd is p and their local solutions in R(b) are #R(b)B = 2,
#R(b)C = 1, #R(b)D = 2 and #R(b)E = 2. After one local iteration B2CD2E2, all the edges
influenced by b return to their initial state. Therefore, b can be changed between such local
iterations. That is, B may modify b after 2 firings (as specified by the “b@2” annotation) and
may do so freq(b) = p times during the iteration. The actors C, D and E must read the new
value of b after 1, 2, and 2 firings, respectively (and do so p times during the iteration).

However, local iterations can only be defined when the number of firings of each actor in the
region of a parameter b is a multiple of the frequency of b (see Def. 2). This property is called
period safety.

Definition 5 (Period Safety). A BPDF graph is
period safe if and only if, for each boolean parameter b ∈ Pb and each actor X ∈ R(b),

∃k ∈ N, #X = k · freq(b)

The factor k is the reading (or writing) period of b for X.

Period safety ensures that, during a local iteration of a region of a given boolean parameter,
the number of tokens produced on any edge of this region equals the number of tokens consumed
from this edge. It is ensured by a simple syntactic check on BPDF graphs.

1It is called local iteration of the region of b because the iteration A2B2pCpD2pE2p can be factorized as
A2(B2CD2E2)p.

RR n° 8333



10 Vagelis Bebelis , Pascal Fradet , Alain Girault , Bruno Lavigueur

In Figure 2, R(b) = {B,C,D,E}, freq(b) = p, and the solutions are AB2pCpD2pE2p. Each
solution of the actors of R(b) is a multiple of the frequency p. The annotation b@2 of B is thus
period safe. Parameter b can be changed after each sub-sequence of firings (B2CD2E2).

Consider now the same graph but with the annotation b@1 instead. This graph is not period
safe since the frequency of b becomes 2p whereas the solution of C is p (not a multiple of the
frequency). Assume that B sets b to tt during its first firing and to ff for the rest of the
iteration. Actor B will produce one token to the edge (B,C) and (2p − 1) tokens to (B,D).
Actor C requiring two tokens will not fire and will not produce any tokens on (C,E), E will be
blocked waiting for reading a token on (C,E) before being able to read the next value of b. As
a consequence, tokens will accumulate on the edge (D,E). The graph would not return to its
initial state. Actually, boundedness and liveness would not be guaranteed.

Property 2 (Boundedness). A rate consistent,
period safe and live BPDF graph returns to its initial state at the end of its iteration.

Proof. To prove Prop. 2, we consider an arbitrary edge

X
x f(b1,··· ,bn) y−−−−−−−−−−−−→ Y

and show that during an iteration X produce the same number of tokens that Y consumes. Any
edge returns to its initial state after one iteration and therefore the graph.

The condition f(b1, · · · , bn) is a boolean condition depending on n boolean parameters
b1, b2, ..., bn. Due to period safety, for each bi ∈ {b1, · · · , bn} we have:

∃ki, li ∈ N, #X = ki · freq(bi) and #Y = li · freq(bi) (2)

By rate consistency, we also have #X · x = #Y · y. Therefore, for each bi

ki · x = li · y (3)

When actorX (resp. Y ) is fired, it produces x (resp. consumes y) tokens if f(b1, · · · , bn) and 0
otherwise. We write that X produces prod(b1, · · · , bn) and Y consumes
cons(b1, · · · , bn) with

prod(b1, · · · , bn) = if f(b1, · · · , bn) then x else 0

cons(b1, · · · , bn) = if f(b1, · · · , bn) then y else 0

During an iteration, there will be freq(bi) (potentially different) values of boolean bi. We note
these values as the vector ~bi. Let ↑ be the upsampling operator defined as

[x1, . . . , xn] ↑ k = [x1, · · · , x1︸ ︷︷ ︸
k

, · · · , xn, · · · , xn︸ ︷︷ ︸
k

]

Then, ~bi ↑ ki is a vector such that the boolean at rank i represents the value that is used by X
at its ith firing. The total production of tokens on the edge is:

P = sum (mapn prod [~b1 ↑ k1, · · · , ~bn ↑ kn])

with
sum [a1, · · · , an] = a1 + · · ·+ an
mapn f [a1,1, · · · , a1,m] · · · [an,1, · · · , an,m]

= [f(a1,1, · · · , an,1), · · · , f(a1,m, · · · , an,m)]

Inria
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Equivalently the total token consumption is:

C = sum (mapn cons [~b1 ↑ l1, · · · , ~bn ↑ ln])

It is easy to show the following properties on vector functions

(sum v) x = sum (v ↑ x) (4)
(mapn f [v1 · · · vn]) ↑ x = mapn f [v1 ↑ x · · · vn ↑ x] (5)

(v ↑ x) ↑ y = v ↑ (x · y) (6)

and that, by rate consistency

sum (mapn prod v) x = sum (mapn cons v) y (7)

Then,
P = sum (mapn prod [~b1 ↑ k1, · · · , ~bn ↑ kn])

= 1
x x (sum (mapn prod [~b1 ↑ k1, · · · , ~bn ↑ kn]))

= 1
x (sum (mapn prod [~b1 ↑ k1x, · · · , ~bn ↑ knx]))

by (4), (5) and (6)
= 1

x (sum (mapn prod [~b1 ↑ l1y, · · · , ~bn ↑ lny]))

by (3)
= y

x (sum (mapn prod [~b1 ↑ l1, · · · , ~bn ↑ ln]))

by (6), (5) and (4)
= y

x
x
y (sum (mapn cons [~b1 ↑ l1, · · · , ~bn ↑ ln]))

by (7)
= C

Therefore, for any edge and any successive boolean values, the number of produced tokens is
equal the number of consumed tokens in an iteration.

Since, during an iteration, the numbers of tokens produced and consumed on each edge are
the same, the graph returns to its initial state. Rate consistency and period safety were crucial
to ensure this property. However, we assumed that actors could be fired in the right order to
respect dataflow and parameter communication constraints. This holds only when the graph is
live and the next section shows how it is checked.

3.3 Liveness

In SDF, checking liveness is performed by finding a schedule for a basic iteration. Since each
actor must be fired a fixed number of times in each iteration, this can be done by an exhaustive
search. The situation is more complex in BPDF for two reasons:

• First, boolean parameters have to be communicated within the iteration, from modifiers
to users. This introduces new constraints among firings of modifiers and users which may
introduce deadlocks.

• Second, actors may have to be fired a parametric number of times during an iteration.
Finding a schedule may, in general, involve some inductive reasoning.
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Boolean parameter communication is implemented by adding to the BPDF graph new edges.
For each parameter boolean b, we add between its modifier M(b) and each user U of b an edge
M(b)

u m−−−−−→ U , with u and m being the local solutions of U and M(b) in the region of b:

u = #R(b)U and m = #R(b)M

In other words, M(b) and U occur as (. . .M(b)m . . . Uu . . .) in the local iteration corresponding
to the region of b. It is easy to see that the solutions of the balance equations of the original
graph are also valid for these new edges. During a local iteration, M(b) will produce m ·u copies
of the value of b, which will all be read by U during this local iteration. We present in Section 4.1
a refinement of this implementation, which sends only one copy for each value of b.

This implementation allows modifiers to change the value of a boolean parameter even when
the previously sent value has not been read. In this context, the effect of boolean parameters
might be better described as disabling ports instead of edges. Indeed, at a given instant the
input and output ports of an edge may be in a different state. The BPDF MoC ensures that the
same number of tokens will be produced and consumed on each edge during an iteration (see
Property 2).

The newly added communication edges may introduce new cycles in the graph, and subse-
quently deadlocks. As a consequence, liveness analysis must be performed on the BPDF graph
augmented with all its communication edges. The fully connected graph includes all possible
constraints, therefore if it is live, all resulting subgraphs with less edges (and thus less constraints)
will be live too.

Acyclic BPDF graphs are always live. In such case, the topological order of the DAG defines
a single appearance schedule [1]. For general graphs, a first simple criterion to ensure liveness is
to check that every cycle contains a saturated edge. An edge (A,B) is said to be saturated if it
contains enough initial tokens to fire B #B times. Since this edge has at least the total number
of tokens consumed by B in a complete iteration, it does not introduce any constraints and can
be ignored. If each cycle has a saturated edge, then the graph can be considered as acyclic and
therefore live. The single appearance schedule corresponding to the topological order of the DAG
obtained by removing all the saturated edges is also a schedule for the original graph.

When there are cycles without any saturated edge, we adapt the approach taken in SDF.
Checking the liveness of cyclic SDF graphs is done by computing an iteration by abstract execu-
tion. Since the total number of firings is fixed, all possible ordering of firings can be tested. We
adapt this approach to BPDF by

• ignoring booleans (all edges are assumed to be always enabled);

• testing all schedules where each consecutive firings of an actorAs represents a non-parametric
(integer) fractional of its number of firings in the iteration i.e., ∃k ∈ N,#A = k · s

Ignoring boolean conditions is safe since it maximizes constraints. If a schedule is found by
assuming that all conditional edges are enabled, it will be also valid if some of these edges are
disabled.

By considering only occurrences of the form As with
#A = k · s, we bound the number of such occurrences. For instance, if #A = k · p, then at
most k occurrences will be considered in the abstract execution. With this constraint, the live-
ness algorithm of SDF can be reused. We refer to this algorithm as Parametric SDF-like Liveness
Checking (PSLC). For instance, the graph of Figure 3a (with repetition vector AB2pC2p) has
a cycle without any saturated edge. Still, the PSLC algorithm finds the schedule A(BpCp)2 so
this graph is live.
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Figure 3: Simple live BPDF graphs

Yet, there are cycles for which this approach is not sufficient. Consider, for example, the
graph of Figure 3b. Its repetition vector is also AB2pC2p and it is clearly live with the schedule
A(BC)2p. However, the PSLC algorithm cannot find it. In this case, a simple inductive reasoning
would suffice. However, such an inductive approach gets complex to define in general. We
continue by refining the SDF algorithm.

To deal with such problematic cycles, we use the standard clustering technique described
in [1]. Clustering a subgraph G′ of a graph G involves replacing G′ by a single actor Z. The new
actor Z is connected to the same external ports as G′ was, but the port rates must be adjusted.
The port rate r of an actor A ∈ G′ is replaced by r ·#A′A, where #A′A is the local solution of
A in the set of actors A′ of G′.

In general, clustering arbitrary subgraphs can introduce cycles. Here, by clustering only
cycles, we do not introduce new ones. For each cycle C = X1, . . . , Xn, our PSLC algorithm finds
a local schedule. If this schedule does not fire the actors a non-parametric (integer) fractional of
its total number of firings, the cycle is clustered into a new actor Z. The rate r of each port of
an actor Xi connected to the rest of the graph is replaced by r ·#CXi. It follows that a firing
of Z corresponds to the firings Xk1

1 , . . . , Xkn
n with ki = #CXi.

For instance, the local schedule for the cycle of the graph of Figure 3b is AB. Each actor is
not fired a non-parametric (integer) fractional of its total number of firings (2p). The cycle is
clustered into a new actor Z to get the new graph

A
2p 1−−−−−→ Z

The PSLC algorithm now finds the schedule AZ2p which corresponds to A(BC)2p for the original
graph, which is therefore correctly found to be live.

A final refinement is needed to take into account false cycles. For instance, the previous
algorithm would fail to find a schedule for the cycle in Fig 3c since it does not have any initial
token. However, it is clear that one of its two edges is always disabled; in other words, the cycle
is false. We deal with this issue by using clustering. False cycles are detected using a truth table
for all the conditions of the cycle. If, for each combination of values of the boolean parameters,
at least one condition is false, then the cycle is false. Such false cycles can be clustered since
there exists a schedule (possibly different) for each values of parameters (the graph is acyclic).
Firing the resulting actor corresponds to executing a different schedule depending of boolean
conditions. However, in all cases, the local schedule fires the actors the same number of times
(i.e., each Xi is fired #CXi).

The false cycle of Fig 3c can be clustered into a new actor Z. A firing of Z corresponds to the
schedule BC (i.e., fire B then C) if b = tt, and to CB otherwise. The global schedule (AZ)2p

is now easily found. It corresponds to the schedule A(if b then BC else CB)2p for the original
graph.

To summarize, liveness checking proceeds by adding to the graph all the required boolean
parameter communication edges, by suppressing the saturated edges, by detecting and clustering
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all false cycles, by clustering all true cycles whose local schedule does not fire actors a fractional
part of their global solutions, and finally by finding a schedule using the PSLC algorithm. If the
last step succeeds, a sequential schedule has been found and the graph is live.

The above analysis is incomplete and there are live BPDF graphs that will be rejected, but
it is sufficient in practice. Moreover, the above analysis does not try to estimate the minimal
number of initial tokens for the graph to be live. The goal of the analysis is to verify that the
graph is live, given an amount of initial tokens.

4 Implementation

The implementation of a bounded and live BPDF graph consists of two main tasks: parameter
communication and scheduling.

4.1 Parameter Communication

Since integer parameters can only be changed between iterations, their communication is natu-
rally synchronized and can be centralized. Hence, we focus here on boolean parameter commu-
nication, which requires synchronization between the firings of modifiers and users.

In Section 3.3, we implemented this synchronization by adding, for each parameter b with its
modifier M(b) and each user U of b, an edge M(b)

u m−−−−−→ U with u and m being the periods of
reading (by U) and writing (by M(b)) of b. With this pure dataflow implementation, if u < m,
then each user U must wait for several firings of M(b) before it can read the parameter and fire
itself. This is more constrained than needed. The user could read the new value of a parameter
just after one firing of its modifier.

We therefore propose a less constrained and more efficient implementation. Consider the
following sub-graph:

R
x f(b2) r−−−−−−−−→ X

b1@a

w g(b1,b2) y−−−−−−−−−−→M

Actor X is the modifier of b1 and a user of b2; it reads and writes tokens to and from conditional
edges. The wrapper in Figure 4 implements one firing of X.

Actor X being the modifier of b1, it must send a new value to each user of b1 every a firings.
Counter b1 and instruction write_p are used for that purpose. The edges between X and users
Ui are denoted by U_i. Actor X must also read b2 every #X/freq(b) firings (the period safety
ensures that this number is an integer). Counter b2 implements this periodic reading. When it
fires, X consumes r tokens on edge (R,X) if f(b2) = tt and produces w tokens on edge (X,W )

if g(b1, b2) = tt.
Such wrappers can be easily extended to implement writers and readers of any number of

boolean parameters. Their role is to synchronize the firings of modifiers and users for parameter
communication. A user will be blocked waiting for the modifier to produce the new boolean
value that it needs. Thus, if a completely disconnected actor can fire without constraint, it will
eventually have to wait in order to read (or write) a new boolean value.

This implementation can be described in a dataflow-like manner by adding edges between
modifiers and users of the form

M
1

α(b)
1

u(b)−−−−−−−−→ U
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// The counters for parameters b1 and b2
// are initialized to zero

// Write b1 at the right period
// for each user U_i

if b1=0 then
compute_new_b;
write_p(b,U_1);...; write_p(b,U_n);

// Read b2 at the right period
if b2=0 then read_p(b2,M);

// Read r tokens on (R,X) if enabled
if f(b2) then read(r,R);
...

// Write w tokens to (X,W) if enabled
if g(b1,b2) then write(w,W);

...
// Increment the counters modulo
// the writing and reading periods

b1=(b1+1) mod a;
b2=(b2+1) mod (#X/freq(b));

Figure 4: Wrapper implementation of a modifier and user

where u(b) denotes the reading period of b by U and a fractional rate a
b is means “produce/con-

sume a tokens each b firings”. A similar extension for SDF has been proposed in the fractional
rate dataflow model [11].

4.2 Scheduling

In Section 3.3, we described a way to find sequential schedules for BPDF applications. However,
our objective is to use BPDF to implement streaming applications on multi-cores with highly
parallel schedules.

We focus on many-core platforms such as Sthorm developed by STMicroelectronics [2]. The
native dataflow programming model of Sthorm uses the notion of slots to schedule the firing
of actors. At the beginning of a slot, the controller selects several actors to be fired, and their
execution takes place concurrently. When all previous executions are completed, the next slot
starts. When the actors execute, the controller executes concurrently to select the next set of
actors.

We describe here how to generate slotted, parallel, and as soon as possible (ASAP) sched-
ules. We choose ASAP scheduling because it is highly parallel and typically used in streaming
applications.

We assume that each actor is mapped onto a separate processing element of the many-core
platform 2, and can be executed in parallel with other actors. An ASAP schedule is described
by a set of constraints on the ordering of actor firings. A constraint is a relationship between
two firing slots, of the form:

Ai > Bf(i) (8)

where Ai denotes the slot of the ith firing of actor A, and Bf(i) denotes the slot of the f(i)th
firing of actor B (where f is any total function from N∗ to Z). The constraint simply states that
Ai must be scheduled at a later slot than Bf(i).

Consider the simple BPDF edge

2This is driven by the kind of applications we target, e.g., high- definition codecs, which require very high
performance that can only be achieved in hardware.
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A B
rA rBc

k

with production/consumption rates rA and rB , boolean guard c, and k initial tokens. The
corresponding data dependency is captured by the following constraint:

Bi > Af(i) if c with f(i) =
⌈rB · i− k

rA

⌉
(9)

This constraint ensures that A has fired enough times so that, along with the k initial tokens,
at least rB tokens are present on the edge to allow B to fire. When c is false, the disabled edge
does not enforce any constraint on B. These data dependencies (or dataflow constraints) are
automatically generated for a BPDF graph.

Each edge of the BPDF graph produces one such dataflow constraint. Moreover, for each
boolean parameter b, we add a constraint between its modifier M(b) and each of its user U , of
the form:

Ui > M(b)f(i) with f(i) = (
⌈ i
πr

⌉
− 1) · α(b) + 1 (10)

where πr denotes the reading period of the user (πr = #U/freq(b)). Such parameter communi-
cation constraint guarantees that the new values of the boolean parameter are produced by the
modifier before being read by the users.

These constraints must be satisfied by any schedule. The parallel ASAP schedule is specified
by taking, for each firing, the earliest slot satisfying all constraints. For each actor X, its
constraints Xi > A1

f1(i), . . . , Xi > Anfn(i) are gathered in an equation of the form

Xi = max(A1
f1(i), . . . , A

n
fn(i)) + 1

which defines the ASAP slot that satisfies the constraints. In many cases, these equations can
be simplified at compile time to produce quasi-static schedules. A detailed description of this
process is out of scope of this paper. We present the main ideas on our running example.

Consider the graph in Figure 2, its dataflow constraints are:

Bi > Ad ip e, Ci > B2i if b, Di > Bi if ¬b,

Ei > Cd i2 eif b, Ei > Di

Its parameter communication constraints are:

Ci > B2i−1, Di > B2d i2 e−1, Ei > B2d i2 e−1

Finally, because each actor X is implemented as a hardware processing element, we have the im-
plicit sequencing constraint ∀i ∈ [1..#X], Xi > Xi−1, with the default value X0 = 0. Gathering
all these constraints for each actor, we get:

Ai = Ai−1 + 1 i ∈ [1..2]

Bi = max(Ad ip e, Bi−1) + 1 i ∈ [1..2p]

Ci =

{
max(B2i, B2i−1, Ci−1) + 1 if b

max(B2i−1, Ci−1) + 1 if ¬b
i ∈ [1..p]

And for i ∈ [1..2p]

Di =

{
max(B2d i2 e−1, Di−1) + 1 if b
max(Bi, B2d i2 e−1, Di−1) + 1 if ¬b

Ei =

{
max(B2d i2 e−1, Cd i2 e, Di, Ei−1) + 1 if b
max(Bi, B2d i2 e−1, Di, Ei−1) + 1 if ¬b
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Figure 5: The VC-1 decoder captured in BPDF.

These functions are evaluated by the dynamic scheduler as soon as the parameters are known at
runtime. They can also be simplified at compile time. Actor A fires only twice and its scheduling
function can be inlined and simplified into A1 = 1 and A2 = 2. Reporting these values in the
function Bi, we get B1 = 2; for i > 1, the max function can be suppressed and we get Bi = i+ 1.
Replacing Bi by i+ 1 in function Ci yields:

Ci = if b then 2i+ 2 else 2i+ 1

Similarly for D, we end up with Di = i + 2 in both cases b and ¬b. For E, the simplification
cannot suppress all max functions. We get:

Ei = if b then i+ 4 else max(i+ 2, Ei−1) + 1

Using these solutions, we can express the schedule of each actor as separate sequences of slots of
the form:

A : FF
B : EF2p

C : E2
(
b ? EF : ΦE

)p
D : E2F2p

where E denotes no firing, Φ a dummy 3 firing of a disconnected actor, and F a real firing. The
expression (b ? E : F ) executes the sequence E when b is true and F otherwise. For instance,
C is not fired in the two first slots. Then, if b is true, it waits one slot and fires in the following
slot; otherwise it performs a dummy firing and waits one more slot. This conditional sequence
is repeated p times. The execution sequence of actor E cannot be put in this regular expression
style and remains in a recursive form. These sequences can be easily combined and implemented
as standard quasi-static schedules.

5 Case Study

In this section, the VC-1 video decoder is described in BPDF (Fig.5) and scheduled using the
constraint framework. Each iteration of the graph corresponds to the computation of a single
slice of a video frame.

3Dummy firing is a firing where the actor does nothing or is skipped altogether
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The decoder is composed of two main pipelines, the inter and the intra. The inter pipeline
is composed of actors MV PRED, PREF, and MCOMP, while the intra pipeline is composed of
actors PRED, IZZ, ACDC, IQIT, and SMOOTH.

The decoder makes use of two integers and three boolean parameters. The integer parameters
are p, which encodes the slice size in macroblocks, and q, which encodes the macroblock size in
blocks. The boolean parameters capture whether a block is using intra (a) or inter (b) information
and whether it is coded (c) or not. With these three boolean parameters, three possible modes
of operation can be distinguished.

a ∧ ¬b : Intra only
¬a ∧ b : Inter only
a ∧ b : Intra and Inter

In the Intra only case, the value of the current block depends only on the values of the sur-
rounding blocks. The inter pipeline is disabled. In the Inter only case, the value of the current
block depends on the value of another block from a previous frame, as defined with a motion
vector. Only the inter pipeline is used. Finally, in the Intra and Inter case, both pipelines are
used but in the intra part the PRED actor is bypassed.

The case where both a and b are false is supposed not to occur: this configuration is invalid.
The third boolean parameter c (coded) is used to bypass the inverse quantization and inverse
transform (IQIT) when the block is not coded.

Two auxiliary actors are responsible for the boolean parameter modifications. Slice to Mac-
roBlock (SMB) reads a slice, one macroblock at a time, and sets the macroblock parameter b.
MacroBlock to Block (MBB) reads a macroblock, one block at a time, and sets the block param-
eters a and c.

Using the scheduling technique proposed in Section 4.2, the as soon as possible execution
sequences of each actor are produced shown in Table 1. The complete schedule is the parallel
combination of all sequences, which exhibits a high level of parallelism as there can be up to 8
actors executing concurrently.

An example of how the schedule is affected by the boolean parameters is given below. For
the sake of simplicity we demonstrate only the change of boolean c in the intra pipeline:

...|b=tt|a=tt| | | | |...

...| |c=tt|c=ff| | | |...

...| SMB |MBB |MBB |... |... |... |...

...|... | |IZZ | |IZZ | |...

...|... | | |ACDC| |ACDC |...

...|... | | |IQIT| | |...

...|... | | | |SMOOTH|SMOOTH |...

The VC-1 decoder could also be expressed without boolean parameters. However, in such
a case, many actors would fire without performing useful computation. This would result in a
much less efficient implementation of VC-1, since the extra firings would still consume both time
and power to execute.

6 Conclusion

Several dataflow models supporting booleans have been proposed in the past, most notably the
Boolean Data Flow (BDF) model [5]. The problem of bounded execution of a BDF graph is
proved to be undecidable. Buck proposes a scheduling algorithm that uses a clustering technique
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VLD F
SMB EFp

MBB E2Fpq

MV PRED E2(b ? F : Φ)p

PREF E3(b ? F : Φ)p

MCOMP E4(b ? F : Φ)p

PRED E3
[(

(¬b ∧ a) ? F : Φ
)
E2

]pq
IZZ E2

[(
(¬b ∧ a) ? E2 : E

)
F
]pq

ACDC FE
(
(¬b ∧ a) ? E2 : E

)[
F
(
(¬b ∧ a) ? E2 : E

)]pq−1

IQIT E2
[(
a ?

(
(¬b ? E2 : E)(c ? F : Φ)

)
: Φ

)]pq
SMOOTH E2

[(
a ?

(
(¬b ? E2 : E)(c ? EF : F)

)
: Φ

)]pq
ADD E2

[(
a ? (b ? E : E2)(c ? E2 : E) : E

)qF]p
OUTPUT E2

[(
a ? (b ? E : E2)(c ? E2 : E) : E

)qE]pF
Table 1: ASAP execution sequences for each VC-1 actor

to produce bounded schedules for a subset of BDF graphs. Yet, the analysis is restricted to BDF
graphs that admit a single appearance schedule and are free of directed cycles.

Another difference between BDF and BPDF is that, in BPDF, the graph iteration is cleanly
defined using either constant values or integer parameters. Thus, the number of firings of each
actor is known at the beginning of each graph iteration. The balance equations in BDF are
solved using a parameter based on the boolean values, which leads to a boolean dependent graph
iteration. This means that the number of firings of each actor is unknown until the end of the
iteration.

Although, in some cases, a repetition vector can be produced for a BDF graph to guarantee
a bounded memory execution, the clustering algorithm produces a schedule with no finite exe-
cution, disregarding the repetition vector and the graph iteration. In BPDF, the graph iteration
can always be respected while the boundedness is guaranteed.

Integer Data Flow (IDF) [6] is an extension of BDF that uses integer parameters to introduce
actors that act as switch case structures. This can be achieved with BPDF by using multiple
boolean parameters. IDF suffers from the the same decidability limitations as BDF. This is
because both models are Turing complete, in contrast with BPDF which is not as expressive.

Other related models include Cyclo-Static [4] and Cyclo-Dynamic Data Flow [15], ∗-Charts [8],
Bounded Dynamic Data Flow with control flow [12], and dynamic configuration of PSDF graphs [9].
None of them provide any of the static guarantees that BPDF model does (mostly because the
analyses depend on the boolean values). Some of these MoCs also lack a complete and formal
presentation. Models such as PSDF [3], SADF [13], VRDF [16], or SPDF [7] propose parametric
rates without dynamic topology changes. Our integer parameters, changing only between itera-
tions, can be compared to those of PSDF. Our boolean parameters are closer to the parametric
rates of SPDF which are also allowed to change within iterations. In contrast with BPDF, tele-
port messaging [14] uses parameters to change the internal functionality of the actors. BPDF
uses parameters to change port rates and the graph topology.

We presented BPDF, a novel parametric dataflow model of computation for streaming appli-
cations with dynamic changes of rates and of the graph topology. We described static analyses
to guarantee the bounded and live execution of BPDF graphs. Compared to existing models,
BPDF provides increased expressiveness by combining integer parameters for the input and out-
put rates of the actors, and boolean parameters for the enabling conditions of the edges. Integer
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parameters can change between iterations, while boolean parameters, which allow the graph
topology to change dynamically, can change also during an iteration.

Finally, we described a method to implement BPDF graphs onto many-core platforms while
effectively utilizing the high parallelism that they provide. We demonstrated such a case with a
modern video decoder, captured in BPDF and scheduled using the aforementioned method.

As future work, we want to explore the scheduling possibilities of BPDF extended with user-
defined scheduling constraints. With these additional constraints, we can tweak the schedule
and optimize several criteria like power consumption. Finally, an implementation on STMicro-
electronics’ many-core platform Sthorm is in progress. We want to evaluate various scheduling
techniques for several applications (e.g., VC-1, H.264 and HEVC) on the platform.
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