
IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
87

42
--

FR
+E

N
G

RESEARCH
REPORT
N° 8742
January 2016

Project-Team Spades

Symbolic Analysis of
Dataflow Graphs
(Extended Version)
Adnan Bouakaz, Pascal Fradet, Alain Girault

RESEARCH CENTRE
GRENOBLE – RHÔNE-ALPES

Inovallée
655 avenue de l’Europe Montbonnot
38334 Saint Ismier Cedex

Symbolic Analysis of Data�ow Graphs
(Extended Version)

Adnan Bouakaz, Pascal Fradet, Alain Girault

Project-Team Spades

Research Report n° 8742 � version 2 � initial version January 2016 �
revised version January 2016 � 60 pages

Abstract: The synchronous data�ow model is widely used to design embedded stream-
processing applications under strict quality-of-service requirements (e.g., bu�ering memory,
throughput, input-output latency). The required analyses can either be performed at compile
time (for design space exploration) or at run-time (for resource management and recon�gurable
systems). However, they may cause a huge run-time overhead or make design space exploration
unacceptably slow due to their exponential time complexity.
In this paper, we argue that symbolic analyses are more appropriate since they express the system
performance as a function of parameters (i.e., input and output rates, execution times). Such
functions can be quickly evaluated for each di�erent con�guration or checked w.r.t. di�erent quality-
of-service requirements. We provide symbolic analyses for computing the maximal throughput of
acyclic graphs, the minimum required bu�ers for which as soon as possible scheduling achieves
this throughput, and �nally the corresponding input-output latency of the graph. The paper �rst
investigates these problems for a simple graph made of a single parametric edge. The results are
then extended to general acyclic graphs using linear approximation techniques. We assess the
proposed analyses experimentally on both synthetic and real benchmarks.

Key-words: Synchronous data�ow graphs, as soon as possible scheduling, bu�er minimization,
throughput, latency, symbolic analysis

Analyse Symbolique des Graphes Flots de Données (Version
Étendue)

Résumé : Les graphes �ots de données sont largement utilisés pour modéliser les applications
de traitement de signal et de streaming. Ces modèles permettent de prévoir et garantir les per-
formances (e.g., débit, tailles des bu�ers, latence) de ces applications. L'analyse de performance
peut être e�ectuée au moment de compilation (exploration de l'espace de conception) ou au mo-
ment d'exécution (gestion de ressources, systèmes adaptables). Cependant, ces algorithmes ont
souvent une complexité exponentielle, et peuvent donc introduire une pénalité signi�cative au
moment d'exécution ou rendre l'exploration de l'espace de conception excessivement lente. Nous
montrons dans ce papier que les analyses symboliques sont mieux adaptées dans ce contexte car
elles expriment la performance du système par des fonctions en termes de paramètres (i.e., taux
de production et de consommation, temps d'exécution). Telles fonctions peuvent être rapide-
ment réévaluées pour tout changement de con�guration du système ou utilisées pour véri�er la
satis�abilité des besoins non fonctionnels.

Nous proposons des analyses symboliques pour calculer le débit maximale des graphes acy-
cliques, les tailles de bu�ers minimales requise pour réaliser ce débit, et la latence entrée/sortie.
Nous e�ectuons d'abord une étude analytique et exacte dans le cas d'un graphe avec seulement
deux acteurs. En suite, nous étendons ces résultats pour les graphes acycliques. En�n, nous
évaluons notre approche en utilisant des cas d'études réels et des benchmarks synthétiques.

Mots-clés : graphes �ots de données, débit, tailles minimales des bu�ers, latence, analyse
symbolique

Symbolic Analysis of Data�ow Graphs 3

1 Introduction

Embedded stream-processing applications become computationally intensive with strict quality-
of-service requirements. Many-core platforms are hence required for performance, scalability and
energy consumption reasons [14]. To take advantage of such platforms, design models should
express task-level parallelism and be simple enough to allow predictable system design.

Data�ow process networks (DPN) [7] and Kahn process networks (KPN) [13] allow to explic-
itly express parallelism and communications where tasks (or actors) are independent and commu-
nicate only through channels. Using a data�ow model, concurrency can be implemented without
explicit synchronization mechanisms and data races are ruled out by construction. Furthermore,
these models are inherently functionally deterministic, i.e., for the same input sequence, the
system will always produce the same output results. However, many important properties such
as boundedness (i.e., the system can execute in �nite memory) and liveness (i.e., no part of the
system will deadlock) are undecidable.

The synchronous data�ow (SDF) model [15] is a restriction of DPN and comes with static
analyses that guarantee the boundedness and liveness of an application as well as predictable
performances (e.g. throughput, latency, memory requirements). For these reasons, it is widely
used to design digital signal processing and concurrent real-time streaming applications on many-
core platforms.

In response to the increasing complexity of stream-processing systems, many parametric ex-
tensions of the SDF model have been proposed (e.g., PSDF [4], SPDF [9], BPDF [2], πSDF [8], etc.)
in which the graph (e.g., its communication rates or channels) may change at run-time.

Performance analyses of SDF graphs are used to check whether non-functional requirements
are met. They can be performed both at design time and at run-time. At design time, it is a
crucial step in the development of embedded applications. Many decisions and settings of the
system need to be explored (e.g. hardware/software partitioning, memory allocation, granularity
and di�erent implementations of tasks, processor speeds, etc.) and the best options that satisfy
the non-functional requirements can be chosen. At run-time, performance analysis is performed
either for resource management or to cope with the dynamic behavior of parametric extensions
of SDF.

The most prominent performance constraints of real-time stream-processing systems are
throughput, latency and memory. Throughput is a crucial timing constraint of stream-processing
systems. For example, a video decoder is supposed to decode a minimum number of frames per
second. A throughput-optimal scheduling policy, such as self-timed scheduling, allows the de-
signer to guarantee the timing requirements, and to use dynamic voltage and frequency scaling
(DVFS) techniques to reduce energy consumption in case the maximum throughput is larger
than the desired quality-of-service [17,21]. Latency is another important timing constraint that
is usually used in the design of real-time control systems. It measures the time delay between the
stimulation and response, and hence the reactiveness of the system and its ability to deliver a
regular and timely response. Most embedded systems must comply to severe constraints on the
size, weight, power and cost. Therefore, minimization of memory requirements is a primordial
step in the design of such systems. These three measures (throughput, latency and memory) are
often antagonistic. A huge e�ort have been devoted in the past decades to solve these problems.

In this paper, we focus on self-timed scheduling which produces maximal throughput (with
su�ciently large bu�ers). We propose symbolic analyses of data�ow graphs where communica-
tion rates and execution times of actors are parameters. Most non-functional properties of the
application can be described as a function of these parameters. By evaluating these functions
for speci�c values of parameters, the properties and performance of speci�c con�gurations can
be obtained e�ciently. We propose three symbolic analyses of acyclic graphs under self-timed

RR n° 8742

4 Bouakaz & Fradet & Girault

scheduling to answer the following questions:

Q1. What is the throughput of the application?

Q2. What are the minimum channel sizes that allow the application to achieve its maximum
throughput?

Q3. What is the latency of the application under such channel sizes?

partially specified

 SDF graph
 SDF graphparametric

dataflow graph

 result
(throughput, latency, buffer sizes, ...)

numerical

 analysis

symbolic

analysis

Symbolic

formulas

Numerical

evaluation

numerical analysis

symbolic analysis

Instantiation

SDF graph

Symbolic

evaluation

Figure 1: Symbolic and numerical analyses.

Although our symbolic analyses may give only approximate (but safe) results, they are very
useful in many cases (see Fig. 1) :

1. At early design stages, the SDF model of the application is usually partially speci�ed and de-
sign space exploration may require analyzing of a potentially huge number of con�gurations
(path 3). Symbolic analyses are a big advantage in this case: formulas are generated only once
and simply evaluated for each possible con�guration (i.e., set of parameters) (path 4). Indeed,
exact algorithms for throughput and latency computation may be acceptable at compile-time in
practice; however, frequent calls to these algorithms to check a large set of con�guration values
make design space exploration unacceptably slow.

2. Similarly, non-functional requirements of parametric data�ow models can be expressed symboli-
cally as parametric formulas at compile-time. Then, the requirements can be either checked by
evaluating formulas for all potential con�gurations (path 6b) or, better, by an analytic proof
(path 6a). For instance, the designer could be interested in ensuring at compile-time that the
throughput of the application is never below some given quality-of-service regardless of parame-
ters changes at runtime.

3. For dynamic models and run-time resource management, appropriate settings have sometimes to
be chosen dynamically. Consider, for instance, a parametric application where frequency scaling
is used to guarantee a speci�c throughput and to minimize power consumption. In such case,
frequency must be adjusted at each parameter change. Instantiating the graph (path 5) and
performing a numerical analysis is far too costly at run-time. Consequently, fast analyses, like
the evaluation of symbolic formulas, are required (path 6b).

Inria

Symbolic Analysis of Data�ow Graphs 5

4. Finally, even for completely static SDF models, many analyses have an exponential complexity.
Indeed, exact algorithms for minimal bu�er sizes are too expensive even for small graphs. [16]
shows that this problem is NP-complete for homogeneous SDF (HSDF) graphs. Moreover, SDF-
to-HSDF conversion may lead to an exponential growth of the size of the graph. Our symbolic
analysis (path 2) is much more e�cient and its approximate solution can also be considered as
a starting point to prune the parameter space and hence improve the performance of the exact
algorithm.

The article is organized as follows. Section 2 introduces the application model, the scheduling
policy, and the needed de�nitions. Section 3 presents the throughput analysis of acyclic SDF
graphs and a new generic result (the duality theorem) required to solve the other questions.
We present in Section 4 di�erent symbolic analyses for a single SDF edge A

p q−−→B. Section 5
describes linearization techniques for graph A

p q−−→B that are used in Sections 6 and 7 to extend
the results of Section 4 to general acyclic graphs. The proposed algorithms are evaluated on
both synthetic and real benchmarks in Section 8. Finally, we review related work in Section 9
and conclude in Section 10. Proofs of all properties and theorems can be found in the appendix
which has the same structure as the paper for a better readability.

2 Background

In this section, we �rst introduce the application model and the scheduling policy. Then, we
review some useful de�nitions and properties.

2.1 Application model

An SDF graph G=(V,E) consists of a �nite set of actors (computation nodes) V and a �nite set
of edges E that can be seen as unbounded FIFO channels. The execution of a given actor (called
�ring) starts by consuming data tokens from all its incoming edges (its inputs), computes and
�nishes by producing data tokens to all its outgoing edges (its outputs). The number of tokens

Figure 2: A simple SDF graph

consumed (resp. produced) at a given input (resp. output) edge at each �ring is its consumption
(resp. production) rate. An actor can �re only when all its input edges have enough tokens
(i.e., at least the number speci�ed by the corresponding rate). An edge may contain some initial
tokens (also called delays). In the following, we denote the execution time of an actor X by tX .
For instance, Fig. 2 shows an SDF graph with two actors A and B, with execution times tA = 20
and tB = 7 respectively. The production and consumption rates of channel A → B are 8 and 5
respectively. This edge carries one initial token (represented by the black dot).

The state of a data�ow graph is the vector of the number of tokens present at each edge
(i.e., bu�ered in each FIFO channel). Each edge carries zero or more tokens at any moment.
The initial state of a graph is speci�ed by the number of initial tokens on its edges. The state
of the graph of Fig. 2 is represented by the vector [iAB = 1].

An iteration of an SDF graph is a non empty sequence of �rings that returns the graph to its
initial state. For the graph in Fig. 2, �ring actor A �ve times (producing 40 tokens) and actor
B eight times (consuming 40 tokens) forms an iteration. The repetition vector ~z = [zA=5, zB=8]

RR n° 8742

6 Bouakaz & Fradet & Girault

indicates the number of �rings of actors per iteration. If such a vector exists, then the graph is
said to be consistent [15]. We write zX the number of �rings of actor X in the iteration. The
repetition vector is obtained by solving a system of balance equations. Each edge A

p q−−→B is
associated with the balance equation zAp = zBq, which states that all produced tokens during
an iteration must be consumed within the same iteration.

In this paper, we study only consistent acyclic SDF graphs with initially empty channels.
Inconsistent graphs are of less importance since they cannot be implemented with bounded
memory without deadlocking.

Homogeneous SDF (HSDF) is a restriction of SDF where all the production and consumption
rates are equal to 1. HSDF graphs are particularly useful because (i) their throughput can be
computed as the inverse of the maximal cycle mean (MCM) of the graph; and, (ii) any consistent
SDF graph can be converted into an HSDF graph. The cycle mean of a cycle is equal to the sum
of execution times of the actors in the cycle divided by the number of delays (i.e., initial tokens)
in the channels of this cycle. This provides a way to compute the throughput of any SDF graph.
There are two drawbacks in this approach: �rst, the translation from SDF to HSDF may lead
to an exponential increase of the number of nodes; second, partially speci�ed or parametric SDF
graphs cannot be converted into HSDF.

2.2 Scheduling policy

In this paper, we focus on as soon as possible (ASAP) scheduling of consistent graphs without
auto-concurrency (i.e., two �rings of the same actor cannot overlap). In such self-timed exe-
cutions [20], an actor �res as soon as it becomes idle (no auto-concurrency) and has enough
tokens on its input channels. We assume that there are su�cient processing units, e.g., there
are as many processors as actors or all actors are implemented in hardware. ASAP scheduling
allows the graph to reach its maximal throughput. Such schedules are naturally pipelined and
composed of a prologue followed by a steady state that repeats in�nitely. Fig. 3 shows an ASAP
schedule where thick broken lines represent the iterations boundaries.

A

B

LG(2)
`G(2)

PG

prologue phase steady state
...

...

Figure 3: ASAP schedule of graph A 3 2−−→B with tA=15 and tB=8

Fig. 4 shows how to make the absence of auto-concurrency explicit in an SDF graph by adding
self-edges with rates equal to 1 and one initial token. A �ring of actor A will consume the unique
token in its self-edge, preventing any other �ring of A until another token is produced to the
self-edge at the end of the current �ring. Disabling auto-concurrency is mandatory for stateful
actors to ensure proper state update.

In the SDF model, channels are unbounded. However, the size of a channel A
p q−−→B can be

constrained to d tokens by adding a backward channel B
q p−−→A with d initial tokens, as shown

in Fig. 4. This modeling, assumed in most works, enforces that an actor can start �ring only if
there is enough space on its output channels. Moreover, the empty space is made available not at

Inria

Symbolic Analysis of Data�ow Graphs 7

Figure 4: The SDF graph of Fig. 2 with channel size constraint and auto-concurrency disabled

the beginning of the �ring of the consumer but when it produces the tokens representing bu�er
places. One could imagine a less conservative modeling where the consumer makes the empty
space available just after consumption, and the producer checks whether there is enough empty
space only at the end of its �ring. This is illustrated in Fig. 5 where an actor X is represented by
di�erent actors for reading inputs (Xr), computing (Xc) and writing results (Xw). For instance,
Aw produces 8 tokens (and checks for 8 places) only after the computation (Ac); Br frees 5 bu�er
places before the computation (Bc) starts. Note that only actors representing computation have
a non-null execution time. Actually, the graph in Fig. 2 requires a minimum bu�er size of 20

Figure 5: Less conservative modeling of channel size constraint on the graph of Fig. 2

to achieve the maximal throughput when using the �rst modeling technique (Fig. 4) whereas it
only needs 12 when using the second (Fig. 5). This shows that di�erent modeling techniques may
lead to di�erent symbolic formulas. However, the approach proposed in this paper for symbolic
computation of bu�er sizes can be adapted to any modeling technique.

2.3 De�nitions

The multi-iteration latency LG(n) of the �rst n iterations of a graph G is equal to the �nish time
of the last �ring of its �rst n iterations (assuming timing starts at the very �rst �ring).

The period PG of the execution of a graph G is the average length of an iteration and is
formally de�ned as

PG = lim
n→∞

LG(n)

n
(1)

The throughput TG of a graph G is the number of iterations per unit of time, hence:

TG = 1/PG (2)

Eq.(1) and Eq.(2) show the relation between throughput and multi-iteration latency. This
relation is particularly useful in the case of parametric dynamic data�ow models where parameter
recon�gurations are frequent. Hence, if a given con�guration lasts only during m iterations, then
m/LG(m) gives the achievable throughput for the current con�guration. The designer can use
this information, for instance, to reduce the frequency of processors and save energy as long as
the desired quality-of-service is guaranteed.

The input-output latency `G(n) of the nth iteration of a graph G is equal to the time between
the start time of the �rst �ring and the �nish time of the last �ring of the nth iteration. The def-
inition given in [12] is slightly di�erent but in our context (graphs with initially empty channels)
the two de�nitions are equivalent.

RR n° 8742

8 Bouakaz & Fradet & Girault

The input-output latency of the complete execution `G is de�ned as the maximal latency over
all iterations:

`G = max
n=1..∞

`G(n) (3)

Input-output latency is particularly useful in case of real-time control systems since it speci�es
the maximum delay between sampling data from sensors and sending control commands to the
actuators.

For a channel A
p q−−→B with d initial tokens, the ith �ring of B (denoted Bi) is enabled if and

only if the number of produced tokens is larger than i q. Hence, B has to wait for the jth �ring
of A (denoted Aj) such that j p+ d ≥ iq. The data-dependency between A and B is formalized
by the following equation.

Bi ≥ Aj with j =

⌈
i q − d
p

⌉
(4)

The ceiling function makes symbolic manipulations di�cult. We propose in Section 4 a new
characterization that is more intuitive and suitable to reason about bu�er sizes and latency.

3 Throughput and Duality

In this section, we �rst determine the exact maximal throughput for acyclic SDF graphs (Q1).
Then, we introduce the notion of duality and present a proerty on dual graphs that is used to
address the minimum bu�er sizes and latency questions.

Property 3.1 (Throughput). The maximal throughput of an acyclic SDF graph G=(V,E) is
equal to

TG =
1

max
A∈V
{zAtA}

(5)

Hence, the minimal period is PG = max
A∈V
{zAtA}.

We say that actor A imposes a higher load than actor B when zAtA > zBtB . The throughput
and period of an acyclic graph are therefore de�ned by the actor which has the highest load;
i.e., actor argmaxA∈V {zAtA}. This implies that this actor never gets idle once the execution
enters the steady state.

De�nition 3.1. The dual of an SDF graph G, denoted G−1, is obtained by reversing all edges
of G.

Theorem 3.1 (Duality theorem). Let G be any (cyclic or not) live SDF graph and G−1 be its
dual, then TG = TG−1 and ∀i. LG(i) = LG−1(i).

Fig. 6 illustrates the duality theorem with the SDF graph Ga of Fig. 4. The latency of the
�rst iteration of the ASAP execution of that graph is equal to the latency of the �rst iteration
of its dual i.e., LGa

(1) = LGa
−1(1).

Inria

Symbolic Analysis of Data�ow Graphs 9

Figure 6: Illustration of the duality theorem.

Note 3.1. The ALAP (As Late As Possible) schedule of graph G is identical to the reversed
ASAP schedule of its dual G−1. In other terms, the ALAP schedule of G in the time interval
[0, n] is identical to the ASAP schedule of G−1 starting at n and ending at 0. This provides
a second method to prove the �rst part of the duality theorem; i.e., TG = TG−1 . Indeed, [10]
states that both the ASAP schedule and the ALAP schedule of an SDF graph have the same
throughput.

We use the transformation of a graph to its dual as well as the associated theorem at several
occasions during the analysis of minimal bu�er sizes and latency.

4 The parametric graph A
p q−−→B

This section focuses on the simplest parameric acyclic SDF graph made of a single edge: G =

A
p q−−→B. We provide exact symbolic formulas for minimum bu�er size and latency questions.

The graph G is parametrized by the production and consumption rates p, q ∈ N+ as well as the
execution times tA, tB ∈ R+. This section shows that the symbolic analysis, even for such simple
graphs, is quite involved.

The balance equation zAp = zBq entails that the repetition vector of this graph is:

[zA=q/ gcd(p, q), zB=p/ gcd(p, q)]

and, according to Property 3.1, its throughput is:

TG =
1

max(zAtA, zBtB)
(6)

4.1 Enabling patterns

We introduce enabling patterns, which characterize the data-dependency between a producer and
a consumer. Compared to Eq. (4), they are more intuitive and suitable to the reasoning about
bu�er sizes and latency.

Enabling patterns between the producer A and consumer B are de�ned by the following
grammar:

P ::= Ai Bj | [P]x=1..k | P1;P2

where i, j, k evaluate to positive integers.
An enabling pattern P is either a basic pattern (Ai Bj), a repetition for k times ([P]x=1..k),

or a sequence of enabling patterns P1;P2, The expressions i, j or k are arithmetic expressions
made of integers, parameters or pattern variables de�ned by enclosing repetition patterns.

RR n° 8742

10 Bouakaz & Fradet & Girault

The semantics of an enabling pattern between actors A and B is de�ned w.r.t. two counters
a and b representing the number of completed �rings of A and B (initially 0). The pattern
Ai Bj ;P w.r.t. (a, b) means that:

� a �rings of A have produced enough tokens to �re actor B b times and not more;

� then, if A is not �red at least i times more, then B cannot be �red; otherwise B can be
�red j times and not more;

� the subsequent pattern P is considered with the new values (a+ i, b+ j).

Formally

i ≥ 1 j ≥ 1 ap ≥ bq (a+ i− 1)p < (b+ 1)q (b+ j)q ≤ (a+ i)p < (b+ j + 1)q

(a, b, Ai Bj) = (a+ i, b+ j)

A repetition [P]x=1..k is a sequence of k patterns P . The pattern [P]x=1..k is also written [P]k if
the pattern variable x is not used in P .

A correct enabling pattern describes an entire iteration, that is, at the end of the pattern, we
should have a = zA and b = zB .

For example, the enabling pattern of A 3 6−−→B is A2 B ; i.e., after every two �rings of actor
A, one �ring of B is enabled (B1 is written B). The enabling pattern of A 8 5−−→B is:

A B ;A B2;A B ; [A B2]2

which is illustrated in Fig. 7. This pattern can also be written as the factorized pattern:[
A B ; [A B2]i

]i=1··2

This factorized representation is particularly useful when the length and shape of enabling pat-
terns depend on parameters.

Figure 7: An ASAP execution of A 8 5−−→B with tA = 20 and tB = 7.

Depending on the production and consumption rates p and q, there are six possible enabling
patterns.

Property 4.1. Fig. 8 gathers all possible enabling patterns for the graph A
p q−−→B.

4.2 Minimum bu�er size for maximum throughput of A
p q−−→B

We now use enabling patterns to compute the minimum size of the bu�er A
p q−−→ B (denoted

θA,B) such that the ASAP execution achieves the maximal throughput (given by Eq. (6)) or,
equivalently, the minimal period. The bu�er size is modeled by adding a backward edge with
θA,B initial tokens. We distinguish two cases:

Inria

Symbolic Analysis of Data�ow Graphs 11

Case A. p ≥ q
Let p = kq + r with 0 ≤ r < q

Case A.1. r = 0

A Bk

Case A.2. q ≤ 2r[
A Bk;

[
A Bk+1

]αj
]j=1·· q−r

gcd(p,q)

Case A.3. q > 2r[[
A Bk

]βj
;A Bk+1

]j=1·· r
gcd(p,q)

where αj =
⌊

jr
q−r

⌋
−
⌊

(j−1)r
q−r

⌋
and βj =

⌈
jq
r

⌉
−
⌈

(j−1)q
r

⌉
− 1.

Case B. p < q
Let q = kp+ r with 0 ≤ r < p

Case B.1. r = 0

Ak B

Case B.2. p ≥ 2r[
Ak+1 B ;

[
Ak B

]γj]j=1·· r
gcd(p,q)

Case B.3. p < 2r[[
Ak+1 B

]λj
;Ak B

]j=1·· p−r
gcd(p,q)

where γj =
⌊

jp
r

⌋
−
⌊

(j−1)p
r

⌋
− 1

and λj =
⌈

jr
p−r

⌉
−
⌈

(j−1)r
p−r

⌉
.

Figure 8: Enabling patterns.

• Case zAtA ≥ zBtB (i.e., qtA ≥ ptB): Actor A has the highest load and should �re consecutively
for maximal throughput. Let δj be the minimum number of initial tokens in the backward edge
(representing the bu�er size) such that the jth �ring of A can occur immediately after the (j−1)th

�ring of A. By de�nition of θA,B , we have θA,B = max
j
δj . Let xj denote the number of �rings of

B that have �nished by the start of the jth �ring of A. Hence, δj = jp− xjq and

θA,B = max
j

(jp− xjq) (7)

The main di�culty when solving symbolically Eq. (7) is to identify an analytic formula for
sequence (xj). Enabling patterns are the key to solve this problem. A trivial case is (A.1) where
p = kq and the enabling pattern is A Bk. In order to perform the �rst two �rings of A
consecutively, the backward edge should have at least 2p tokens. Futhermore, since qtA ≥ kqtB
(hence tA ≥ ktB), the k �rings of B complete before the third �ring of A which still needs 2p
initial tokens (i.e., δ3 = 2p) in order to �re again immediately. Hence, the minimum bu�er
size is 2p. However, unlike sequence (xj), enabling patterns are time-independent. Thus, when
considering execution times tA and tB , three cases will emerge (see I., II. and III. in Fig. 9); each
one has to be solved w.r.t. all possible enabling patterns. The three cases should be read as (I)
else (II) otherwise (III). These cases are described in the appendix (Section B.2). For instance,
case (I) corresponds to the case where at any given enabling point (i.e., any in the enabling
pattern), all newly enabled �rings of B complete their execution before the next enabling point.

Property 4.2. If zAtA ≥ zBtB, the minimum bu�er sizes of A
p q−−→B for maximal throughput

are given by the symbolic formulas of Fig. 9.

• Case zAtA < zBtB (i.e., qtA < ptB): Actor B has the highest load and should �re consecutively
for maximal throughput. However, in general all �rings of B cannot be consecutive since initially,

RR n° 8742

12 Bouakaz & Fradet & Girault

Case I.
Case I.1. A.1 ∨ ((A.2 ∨A.3) ∧ (tA ≥ (k + 1)tB))

θA,B = 2p+ q − gcd(p, q) (8)

Case I.2. B.1 ∨ ((B.2 ∨ B.3) ∧ (tB ≤ ktA))

θA,B = p+ q − gcd(p, q) +

⌈
tB
tA

⌉
p (9)

Case II.

Case II.1. (A.2 ∧ r′ ≥ d r
q−r e

d r
q−r e+1

tB) ∨ (A.3 ∧ r′ ≥ 1

b q
r c
tB) where r′ = tA − ktB

θA,B = 2p+ q − gcd(p, q) +

⌈
tB − r′

r′

⌉
r (10)

Case II.2. (B.2 ∧ r′ ≤ 1

d p
r e
tA) ∨ (B.3 ∧ r′ ≤ b r

p−r c
b r

p−r c+1
tA) where r′ = tB − ktA

θA,B = p+ 2q − gcd(p, q) +

⌈
r′

tA − r′

⌉
(p− r) (11)

Case III.
Case III.1. A.2

θA,B = 2p+ q + r − gcd(p, q) +
n−1
max
j=1

(jr mod (q − r)) (12)

where n is the smallest positive integer such that
⌊

nr′

tB−r′

⌋
≥
⌈
nr
q−r

⌉
and r′ = tA − ktB .

Cases III.(A.3), III.(B.2), III.(B.3) see the proof in the appendix.

Figure 9: Minimum bu�er size θA,B when zAtA ≥ zBtB .

there are no tokens to be consumed. The previous approach can still be followed using the duality
theorem. Since the graph G and its dual G−1 have the same throughput, we can apply the former
reasoning on G−1 where B is the producer and has the highest load. Then, Property 4.3 will be
used.

Property 4.3. If θB,A is the minimum bu�er size that allows the ASAP execution of G−1 to
achieve its maximal throughput, then the minimal bu�er size θA,B for G is such that θA,B = θB,A.

Note 4.1. If actors A and B impose the same load (i.e., zAtA = zBtB), then all four cases
(III.A.2, III.A.3, III.B.2 and III.B.3) give the same upper bound :

θuA,B = 2(p+ q − gcd(p, q)) (13)

This bound is also tight, in the sense that for all p, q, there exist tA and tB such that θA,B as
given in Fig. 9 is equal to θuA,B . This upper bound does not depend on the execution times of

Inria

Symbolic Analysis of Data�ow Graphs 13

the actors. Therefore, it can be used as a safe bu�er size if the execution times of actors are
unknown.

Property 4.4. If If zAtA ≥ zBtB and the channel A
p q−−→B contains d initial tokens, then the

minimum bu�er size θ′A,B that allows the maximum throughput is

θ′A,B = max{0, θA,B − d+ d mod gcd(p, q)} (14)

with θA,B as de�ned in Fig. 9.

4.3 Multi-iteration latency of A
p q−−→B

In this section, we derive analytical formulas for the multi-iteration latency of the �rst n iterations
(i.e. LG(n)) of graph A

p q−−→ B. Since we use the multi-iteration latency to approximate the
maximal achievable throughput, we will suppose that bu�ers are unbounded. There are two
cases depending on whether A or B imposes the highest load.

• Case zAtA ≥ zBtB , i.e., A imposes a higher load than B. As illustrated in Fig. 10, actor A
never gets idle and PG = zAtA. Therefore, we can put

LG(n) = nPG + ∆A,B (15)

such that ∆A,B is the remaining execution time for actor B after actor A has �nished its �rings of
the nth iteration (∆A,B is constant over all iterations). The value of ∆A,B is given by Property 4.5.
Eq.(15) shows that the multi-iteration latency will under-approximate the maximal throughput
by only a small amount that decreases with the value of n; i.e.,

T̂G =
n

LG(n)
=

n

nPG + ∆A,B
≤ TG =

1

PG

Figure 10: Multi-iteration latency LG(2), case zAtA≥zBtB (p=5, q=3, tA=14, tB=8).

Property 4.5. If zAtA ≥ zBtB, then the value of ∆A,B is given by the symbolic formulas of
Fig. 11.

• Case zAtA < zBtB , i.e., B imposes a higher load than A. As illustrated in Fig. 12, actor
B never gets idle in the steady state. However, in general all �rings of B cannot be consecutive
since initially, there are no tokens on the forward edge A→ B. Note that ∆A,B is not constant
over all iterations and diverges to in�nity if the bu�er is supposed unbounded. A simpler way to
compute LG(n) is to use the duality theorem. We have LG(n) = LG−1(n). Since the producer
B in graph G−1 imposes the highest load, we have LG−1(n) = nPG−1 + ∆B,A where ∆B,A can be
easily computed using Property 4.5.

RR n° 8742

14 Bouakaz & Fradet & Girault

Case I.

∆A,B =

⌈
p

q

⌉
tB (16)

Case II.
Case II.1.

∆A,B = tA +

⌈
r

q − r

⌉
((k + 1)tB − tA) (17)

Case II.2.

∆A,B = tB +

⌈
p− r
r

⌉
(tB − ktA) (18)

Case III.
Case III.1. Let r′ = tA − ktB and n = q−r

gcd(p,q)

∆A,B = tA + r′ +
tBr − qr′

gcd(p, q)
+ (tB − r′)

n−1
max
j=0

(
jr′

tB − r′
−
⌊

jr

q − r

⌋)
(19)

Cases III.(A.3), III.(B.2), III.(B.3): see the proof in the appendix.

Figure 11: Multi-iteration latency: value of ∆A,B .

Figure 12: Multi-iteration latency LG(2), case zAtA<zBtB (p=5, q=3, tA=14,tB=12).

4.4 Input-output latency of A
p q−−→B

In this section, we derive analytical formulas for the input-output latency `G(n) of graph A
p q−−→

B. There are two cases depending on which A or B imposes the highest load.

• Case A imposes a higher load than B: The input-output latency is equal to the �nish time
of the nth iteration, which is equal to LG(n) = nPG + ∆A,B (Eq. (15)), minus the start time of
the �rst �ring of A in the nth iteration. This start time is equal to (n− 1)PG since A never gets
idle. Therefore, we have

`G(n) = LG(n)− (n− 1)PG = PG + ∆A,B (20)

Hence, `G = PG + ∆A,B = LG(1); i.e., the �rst iteration results in the maximum delay between
sampling inputs and sending results.

• Case B imposes a higher load than A: We have `G(n) = LG(n) − (n − 1)zAtA if the bu�er
is unbounded. In this case, the input-output latency diverges with n. However, in practice the

Inria

Symbolic Analysis of Data�ow Graphs 15

bu�er is bounded. The bu�er size will impact the input-output latency since the �rings of A
will not be consecutive. As in the previous case, we will assume that the bu�er size is larger
than θA,B to allow the maximal throughput (i.e., B runs consecutively in the steady state). We
propose an over-approximation of the maximum input-output latency, which uses a linearization
technique presented in Section 5.2.

5 Linearization of A
p q−−→B

In order to use the results of the previous section to obtain approximate analyses of general
acyclic data�ow graphs, we make use of a technique that linearizes the �rings of actors. We
propose a forward linearization (i.e., linearizing the �rings of the consumer) and a backward
linearization (i.e., linearizing the �rings of the producer).

5.1 Forward linearization of graph A
p q−−→B

Consider the graph G = A
p q−−→B, where, as illustrated in Fig. 13, the �rings of A are consecutive

while those of B are neither consecutive nor uniformly distributed. Let fB(i) denote the �nish
time of the ith �ring of actor B. In order to derive formulas that can be composed (e.g., to deal
with a chain of actors), we transform B into two �ctive actors Bu (upper bound) and B` (lower
bound) that �re consecutively as many times as B and such that

∀i. fB`(i) ≤ fB(i) ≤ fBu(i)

Actor Bx (i.e., Bu or B`) has a starting time t0Bx and an execution time tBx , and since it �res
consecutively fBx(i) = itBx + t0Bx .

In the following, we will present tight linearizations, in the sense that ∃i. fB(i) = fBx(i). For
instance, we can see in Fig. 13 that both the 5th �rings of B and Bs �nish at the same time.

5.1.1 Upper bound linearization

We present two linearization methods, Push and Stretch, illustrated in Fig. 13. Push considers
the actor Bp which is obtained by pushing all �rings of B to the right end to get rid of all the
gaps. This method is suitable only for a �nite number of iterations, say n. The execution time
remains the same (i.e., tBp = tB) but the starting time of the consecutive �rings is equal to the
multi-iteration latency LG(n) minus the execution time of nzB �rings: t0Bp = LG(n)− nzBtB .

Figure 13: Upper bound linearization (p = 8, q = 5, tA = 20, tB = 7).

The second method, Stretch, considers the actor Bs which is obtained by increasing the
execution time of B in order to �ll the gaps over an in�nite execution. We distinguish two cases:

RR n° 8742

16 Bouakaz & Fradet & Girault

• Case zAtA ≥ zBtB : This case is illustrated in Fig. 13. We have tBs = qtA
p , i.e., both A and Bs

have the same load. The starting time t0Bs is computed as follows. We have fBs(i) = itBs + t0Bs ≥
fB(i). Hence, t0Bs = max

i
(fB(i) − itBs). As in the case of the minimum bu�er size problem, we

have to consider the three cases (I), (II) and (III) and all six enabling patterns. It can be shown
(see appendix C.1) that t0Bs = tA + tB − gcd(p,q)

p tA. We conclude that:

∀i. fBs(i) =
qtA
p
i+

(
tA + tB −

gcd(p, q)

p
tA

)
(21)

Method Stretch may advance the starting of some �rings (e.g., the 2th �ring of Bs in Fig. 13),
but always postpone their endings.

• Case zAtA < zBtB : In this case, methods Push and Stretch are identical. The �rings of B are
consecutive in the steady state. Therefore, we can take tBs = tBp = tB and, using the duality
theorem, we have LG(n) = LG−1(n) = nzBtB + ∆B,A and we can take t0Bs = ∆B,A, where ∆B,A
is computed on the dual graph (see Property 4.5).

5.1.2 Lower bound linearization

For lower bound linearization, we use the Stretch method; i.e., the execution time of B is
increased in order to �ll the gaps over an in�nite execution such that ∀i. fB`(i) = itB`+t0B` ≤ fB(i).
Again, we distinguish two cases:

• Case zAtA ≥ zBtB : We have tB` = qtA
p and t0B` = min

i
(fB(i)− itB`). Fig. 14 shows the symbolic

formulas for t0B` . The reader may refer appendix C.1 for details.

Case A. p ≥ q
Let p = kq + r with 0 ≤ r < q

t0B` = ktB + min

{
tB ,

rtA
p

}
(22)

Case B. p < q

Let q = kp+ r with 0 ≤ r < p and σ = ptB − qtA
Case I.

t0B` = tB (23)

Cases II + III.

t0B` = tB +
p− r
p

tA +
⌊p
r

⌋ σ
p

+ min

{
−σ
p
,
r − (p mod r)

p
tA

}
(24)

Figure 14: Linear lower bound linearization in case zAtA ≥ zBtB .

• Case zAtA < zBtB : This case is equivalent to a push to the left. Hence, tB` = tB and t0B` is
equal to the start time of the �rst �ring of B.

Thanks to this linearizations, a chain A
p q−−−→B

p′ q′−−−−→C can be treated by �rst scheduling the
subgraph A

p q−−→B, then linearizing the �rings of B if they are not consecutive, then scheduling

Inria

Symbolic Analysis of Data�ow Graphs 17

the subgraph Bx
p′ q′−−−→C, and �nally combining the two schedules. Thanks to this approach, we

can compute a safe upper bound of the minimum bu�er sizes for a chain A → B → C, instead
of trying to combine the formulas of Fig. 9, and hence solving very complicated combinations.

5.2 Backward linearization of graph A
p q−−→B

In this section, we propose a backward lower bound linearization of the producer, which is needed
to compute the input-output latency of chains. The previous section describes a forward lower
bound linearization; i.e., a transformation of the �rings of the consumer and not those of the
producer.

If A imposes a higher load than B, then the backward linearization is trivial since the �rings
of A are already consecutive, assuming that the bu�er size allows the throughput to be maximal.

Suppose now that B imposes a higher load than A and that the channel is large enough to
allow B to run consecutively in the steady state (i.e., the ASAP execution achieves its maximal
throughput). A safe bu�er size will be θA,B as described in Section 4.2.

Let sX(i) denote the start time of the ith �ring of an actor X. We want to transform actor
A into a �ctive actor A` with consecutive �rings such that ∀i. sA`(i) ≤ sA(i); i.e., start times are
moved backward. This constraint is su�cient in this case to guarantee an over-approximation of
the input-output latency. However, if channel A→ B is a part of a chain (say Z → A→ B), then
we also need to ensure that the �nish times of A` are not postponed; otherwise, this may impact
the schedule of graph Z → A` by delaying the �rings of Z (due to the bu�er size constraint)
and hence under-approximating the input-output latency. Therefore, the required linearization
constraint is rather

∀i.fA`(i) ≤ fA(i)

Property 5.1. If zAtA < zBtB, then a valid backward lower bound linearization of A is given by

fA`(i) = itA` + (t0A` + sB(j0 + 1)− i0tA`) (25)

where (i0, j0) is a solution of equation i0p − j0q = d (d is the bu�er size), and tA` and t0A` are
the results of the forward lower bound linearization of A in the dual graph G−1.

We show now how to use this property to compute an upper bound of the input-output
latency of graph A

p q−−→B in case B imposes a higher load than A. Fig. 15 illustrates the ASAP
execution of the graph G = A

8 5−−→B such that tA = 5, tB = 6 and the bu�er size d is equal to
22. Actor A` represents the backward lower bound linearization of A.

Let ρ denote the length of the interval between the �nish time of the �rings of B after n
iterations, i.e., LG(n), and the �nish time of the �rings of A` also after n iterations, i.e., fA`(nzA).
So, ρ = LG(n) − fA`(nzA) which is constant over the values of n. The maximum input-output
latency can therefore be given by

ˆ̀
G = PG + ρ (26)

Since LG(n) = nPG + ∆B,A, fA`(nzA) = nPG + (t0A` + sB(j0 + 1) − i0tA`) and sB(j0 + 1) =
j0tB + ∆B,A, we have

ρ = i0tA` − j0tB − t0A` =
d

q
tB − t0A` (27)

RR n° 8742

18 Bouakaz & Fradet & Girault

Figure 15: Backward lower bound linearization.

6 Bu�er Sizing for Acyclic graphs

Exact symbolic bu�er sizing for a single edge graph is already so complex that it seems to be
out of reach for arbitrary (even acyclic) graphs. This section shows how to use the previous
results to obtain approximate analyses for the minimum bu�er sizes of general acyclic data�ow
graphs in order to reach the maximal throughput. To achieve this, we make use of the forward
linearization techniques.

We �rst present formulas to compute safe upper bounds for general acyclic graphs, then we
present a heuristic that improves this bound for chains, trees (a DAG with only forks), and in-
trees (a DAG with only joins). These kinds of graphs, especially chains, are common in streaming
applications. Finally, we present the exact numerical analysis that is used later to evaluate our
approximate analyses.

6.1 Safe upper bounds

We �rst present a negative result. Let G be an acyclic graph and let the size of each channel
A

p q−−→B be equal to θA,B as de�ned in Section 4.2. These bu�er sizes do not always permit max-
imal throughput. They do however allow maximal throughput in some speci�c cases described
in the next section. A simple counterexample is the graph Gb = A

3 4−−→B
4 2−−→C with tA = 16,

tB = 11 and tC = 12. The repetition vector is ~z = [4, 3, 6]. Actor C imposes the higher load, hence
the minimal period of this graph is PGb

= zCtC = 72. We have θA,B = 9 and θB,C = 6. Locally,
these bu�er sizes allow the producers to run freely without any constraint from the consumers.
However, when they are put together (i.e., the global execution), the maximal throughput, where
actor C �res consecutively, cannot be achieved (see Fig. 16). The computation of θB,C assumes
that the execution time of actor B is tB = 11. However, as illustrated in Fig. 16, there are gaps
between the �rings of B due to the data-dependency A→ B. The global execution proceeds as
if the execution times of B were sometimes longer than 11.

Figure 16: ASAP execution of the graph Gb = A
3 4−−→B

4 2−−→C.

Property 6.1. Let G be a graph without any undirected cycle, if the bu�er of every channel

A
p q−−→ B in G is at least θuA,B = 2(p + q − gcd(p, q)), then the ASAP execution of the graph

achieves the maximal throughput.

Inria

Symbolic Analysis of Data�ow Graphs 19

Note 6.1. Since the minimum bu�er sizes below which the graph is de�nitely not live are equal
to p + q − gcd(p, q) [1], Property 6.1 provides a �rst solution that is less than twice the exact
one. For parametric data�ow models, the upper bound θuA,B can actually be reached for some
con�gurations. However, if the system supports dynamic reallocation of memory, it is still useful
to evaluate the minimal bu�er sizes in order to adjust the bu�ers sizes after each con�guration
change.

Unfortunately, Property 6.1 does not hold for general acyclic graphs that contain undirected
cycles. A counterexample is the graph Gc = {A 4 3−−−→B

3 8−−−→D, A 1 3−−−→C
3 2−−−→D} with tA = 4,

tB = 3, tC = 12 and tD = 8. The repetition vector is ~z = [6, 8, 2, 3] and all actors impose the
same load (i.e., ∀X. zXtX = 24). The ASAP execution when all bu�er sizes are equal to their
upper bound 2(p+ q − gcd(p, q)) is shown in Fig. 17. Actor A does not �re consecutively so the
throughput is not maximal. The reason is that the chain A�C �D imposes an earliest start
time for D that is after the earliest start time imposed by the chain A�B�D. More precisely,
the �rst �ring of actor D is delayed by actor C (i.e., by the second chain), which delays the
7th �ring of B, which in turn delays the 8th �ring of A. Let fuD,1 (resp. fuD,2) denote the linear
upper bound on the �nish times of actor D following the �rst (resp. second) chain. We have
fuD,1(i) = 8i + 16 and fuD,2(i) = 8i + 28, hence fuD,2(i) > fuD,1(i). In order to prevent the second
chain A→ C → D from impacting the schedule of the �rst chain A→ B → D, we must increase
the size of bu�er B�D so that B can �re without being blocked during fuD,2(i)−fuD,1(i) = 28−16
time units. Since B produces 3 tokens per �ring and tB = 3, the size of the B�D bu�er must
be increased by

⌈
28−16

3

⌉
× 3 = 12.

Figure 17: ASAP execution of Gc

In the general case, Eq.(60) gives the value of sAn
for a chain A1�A2� . . .�An where all

actors have the same load. If the actors do not have the same load, we consider, as in the proof
of Property 6.1, the chain where all actors have the same load i.e., the maximum load of the
original chain.

Property 6.2. Let two di�erent chains from A1 to An such that fAu
n,1(i) = tAni+ s1, fAu

n,2(i) =
tAni+ s2 and s1 < s2. To prevent the second chain from disturbing the schedule of the �rst one,

it su�ces to increase the size of the last channel An−1
p q−−→An of the �rst chain by ζ with

ζ =

⌈
s2 − s1
tAn−1

⌉
p (28)

This approach can be extended to deal with any acyclic graph with undirected cycles as shown
in Algorithm 1. Such an approach is safe but not always needed (e.g., when the predecessors of
a node do not have common ancestors).

Note 6.2. The value of ζ, like the value of θuA,B , does not actually depend on execution times.
Indeed, Eq. (60) shows that s1 and s2 can be expressed as zAntAnk1 and zAntAnk2. Since zAntAn =
zAn−1

tAn−1
, term s2−s1

tAn−1
can be expressed as zAn−1

(k2 − k1), which does not depend on execution

times.

RR n° 8742

20 Bouakaz & Fradet & Girault

ALGORITHM 1: Safe upper bounds for graphs with undirected cycles

Input: SDF graph with undirected cycles, all actors impose the same load.

Output: Safe bu�er sizes.

L: list of actors in a topological order;

while L 6= ∅ do
B = dequeue(L);
pred(B) = incoming-edges(B);
if pred(B) = ∅ then sB = 0 ;

else

for each edge A
p q−−→B ∈ pred(B) do sB,A = sA + tB

q
(p+ q − gcd(p, q)) ;

sB = max
A

p q−−→B∈pred(B)

(sB,A);

for each edge A
p q−−→B ∈ pred(B) do size(A

p q−−→B) = θuA,B +

⌈
sB−sA
tAn−1

⌉
p ;

Note 6.3. There is a second more precise but more complicated method to compute the size of
the last channel An−1

p q−−→An in Property 6.2. Consider a single edge graph An−1
p q−−→An where

An−1 and An impose the same load. Hence, θAn−1,An
= 2(p + q − gcd(p, q)) is the minimum

bu�er size that allows the ASAP execution to achieve the maximal throughput. As indicated
in the proof of Property 6.1, the same size allows both actors to �re consecutively once they
start �ring, as long as the start time of An is less than or equal to sAn

=
tAn

q (p+ q − gcd(p, q)).
Let θAn−1,An(x) denote the minimum bu�er size for a maximal throughput where �rings of An
can start only after x unit of times. We are interested in computing θAn−1,An

(sAn
+ (s2 − s1)),

i.e., the impact of the extra delay on the bu�er size. Following the same approach used to deduce
Eq. (59), we have

θAn−1,An
(sAn

+ (s2 − s1)) = max
j

(
jp− q

⌊
jp− (2p+ q − gcd(p, q))

q
− s2 − s1

tAn

⌋
0

)
This can be over-approximated by 2p+ 2q−gcd(p, q) +

⌊
(s2−s1)p
tAn−1

⌋
. So, the value of ζ in this case

is equal to
⌊
(s2−s1)p
tAn−1

⌋
+ gcd(p, q).

Note 6.4. There are di�erent ways to solve the problem in Property 6.2. If s2 > s1, then the
start time of actor An in the combined schedule of the two chains is equal to max(s2, s1) = s2.
Suppose that, compared to the linear schedule of the �rst chain A1

p1 q1−−−−→A2 → · · ·
pn−1 qn−1−−−−−−−−→

An, each actor Ai ∈ {A2, . . . , An−1} is delayed in the combined schedule by YAi
∈ R≥0 such that∑

YAi
≤ s2 − s1. In order that A1 does not wait for the extra delay YA2

of A2, the size of the

�rst bu�er could be increased by ζ1 =
⌈
YA2

tA1

⌉
p1 (i.e., the size is equal to θuA1,A2

+ ζ1). Similarly,

in order that A2 does not wait for the extra delay YA3
of A3, the size of the second bu�er could

be increased by ζ2 =
⌈
YA3

tA2

⌉
p2. Finally, in order that An−1 does not wait for the extra delay

(s1 − s1)−
∑
YAi

, the size of the last bu�er could be increased by ζn−1 =
⌈
(s1−s1)−

∑
YAi

tAn−1

⌉
pn−1.

So, assuming that all tokens have the same size, we need to solve the following optimization
program:

Min ζ1 + ζ2 + . . .+ ζn−1

Subject to YAi
≥ 0 ∧

∑
YAi
≤ s2 − s1

Inria

Symbolic Analysis of Data�ow Graphs 21

For graph Gc, we have s2 − s1 = 12, and hence, ζ1 =
⌈
YB
4

⌉
4 and ζ2 =

⌈
12−YB

3

⌉
3. So, the

optimization problem consists in �nding 0 ≤ YB ≤ 12 that minimizes
⌈
YB
4

⌉
4−

⌊
YB
3

⌋
3 + 12.

6.2 Improving the upper bounds

In this section, we improve the minimum bu�er sizes for chains, trees, and in-trees, starting with
chains. We say that a chain is monotone if each actor imposes a higher load than its successor
or if each actor imposes a lower load than its successor.

De�nition 6.1. The chain A1 → · · · → An is monotone if and only if (∀i. zAitAi ≥ zAi+1tAi+1)∨
(∀i. zAi

tAi
≤ zAi+1

tAi+1
)

Let θAi,Ai+1
be the size of the bu�er between Ai and Ai+1 as computed in Section 4.2. This

size allows the single edge graph Ai
pi qi−−−→Ai+1 to reach its maximal throughput.

Property 6.3. A monotone chain A1 → · · · → An where the size of each bu�er Ai → Ai+1 is
at least θAi,Ai+1 achieves its maximal throughput.

Note that Property 6.3 is only a su�cient condition simply because θAi,Ai+1
allows actor Ai to

�re consecutively. However, it is not a necessary condition to achieve the maximal throughput.
E.g., let Gd = A1

2 2−−−→ A2
4 3−−−→ A3 such that tA1

= 28, tA2
= 20 and tA3

= 15. We have
θA2,A3

= 12, but the minimum size of channel A2 → A3 is actually 9. Indeed, as illustrated in
Fig. 18, even if this size delays �rings of A2 (see the 4th �ring), the introduced delay does not
prohibit A1 from �ring consecutively.

Figure 18: ASAP execution of Gd.

Property 6.3 also holds for non monotone chains made of an ascending sub-chain followed by
a descending one. We say that those chains are of the form

d
. The computed bu�er sizes on

both sub-chains allow the actors at the �top" to run consecutively.
Unfortunately, Property 6.3 does not hold for an arbitrary chain (i.e., neither ascending,

descending nor of the form
d
) (see Example ?? in the appendix). Our solution is to put such an

arbitrary chain under the form
d

by using the same approach as in the proof of Property 6.3;
i.e., by increasing the execution times of some actors (without exceeding the maximum load PG),
then computing the bu�er sizes as in Property 6.3, and �nally restoring the original execution
times. Fig. 19 illustrates this solution.

Any chain on the form
d

obtained by increasing the load of the actors of the original chain
is a valid solution. For example, the chain A�B� . . .�K of Fig. 19 can be transformed into
the red chain which is of the form

d
. Actually, any chain of this form inside the gray area is a

valid solution. An interesting problem is to �nd one that minimizes the sum of the bu�er sizes.
In the experimental section, we will compare three possible solutions.

• MAX: All loads are raised up to the maximal load (i.e., the top boundary of the gray area).
This case is identical to Property 6.1, i.e., the size of each channel A

p q−−→ B will be equal to
θuA,B = 2(p+ q − gcd(p, q)).

RR n° 8742

22 Bouakaz & Fradet & Girault

lo
a
d

Figure 19: Transformation of a chain to a
d

form.

• MIN: All loads are raised up to the bottom boundary of the gray area. In Fig. 19, the load
of B will be increased to that of A, the load of E to that of D, and the load of H to that of G.

• OPT: The third solution is an optimization heuristic based on the following criteria. Let
PA = zAtA denote the load of actor A.

� According to Fig. 9, the computation of the minimum bu�er size θA,B of graph A
p q−−→B,

where A imposes a higher load than B, depends on the execution times of A and B. It

takes its minimum value θ`A,B = p+q−gcd(p, q)+
⌈
tB
tA

⌉
p when the execution times satis�es

case (I), and the worst case θuA,B when both actors impose the same load. It follows that
the di�erence between the loads of A and B that allows reaching the minimum value of
θ`A,B should be

PA
PB
≥ q

p

⌈
p

q

⌉
(29)

For instance, for the sub-chain A�B� . . .�G in Fig. 19, we have PA = 50 and PG = 168.
The new distribution of the loads should be a monotone distribution in the gray area and
hence in the interval [50, 168]. In order to achieve minimum bu�er sizes, the new loads of
each actor and its predecessor (using duality) have to satisfy Eq.(29). However, this is not
possible in all cases since the interval [PA, PG] could be very small. The next observation
handles this problem.

� The gain on bu�er size that comes from satisfying Eq.(29) is at most equal to ωA,B =
θuA,B − θ`A,B . So,

ωA,B = q − gcd(p, q)

This expected size gain is used to prioritize the treatment of channels.

The case of trees is solved in the same way. If the tree does not contain any sub-trees (i.e., it
consists of a set of chains originating from the same root node), then the load of the root node
is �rst increased to be equal to the maximum of all loads in the tree and then the previous
method can be applied on every chain composing the tree. This is correct because the computed
bu�er sizes will allow the root actor to run consecutively, thus guaranteeing that the execution
reaches the maximum throughput. If the tree contains sub-trees, the same process is �rst applied
recursively on sub-trees, and then we proceed by replacing each sub-tree by its root node. In-trees
are dealt with by using the duality theorem.

Inria

Symbolic Analysis of Data�ow Graphs 23

6.3 Exact numerical analysis

The SDF3 tool [23] proposes an exact algorithm [22] that starts by sizing each channel A
p q−−→B in

the graph as the lower bound p+q−gcd(p, q). If this bu�er sizes distribution (i.e., assignment of
all bu�er sizes in the graph) does not allow the desired throughput, a new distribution is created
by increasing the size of only one bu�er by gcd(p, q). This algorithm su�ers from combinatorial
state explosion. In our experimental analysis, we use a di�erent exact algorithm based on a
dichotomic search (Algorithm 2). It takes as an input a SDF graph G and an upper bound
bu�er sizes distribution Su that allows a maximal throughput, and which can be obtained by
the algorithms described in the previous section.

ALGORITHM 2: Exact algorithm for minimum bu�er sizes problem

Input: SDF graph G, upper bound solution Su.

Output: Minimum bu�er sizes distribution Sb.

Sb = Su;

B = {B(S)|B(S`) < B(S) ≤ B(Su)} in ascending order;

mingcd = min
A

p q−−→B∈E
(gcd(p, q));

begin = 1;
end = |B|;
while begin < end− 1 do

middle = b(begin+ end)/2c ;
k = middle;

found = false;

while True do

Dist = {S|B(S) = B[k]};
if ∃S ∈ Dist, TG(S) is maximal then

found = true;

Sb = S;
break;

else if k−1 > begin ∧ B[k − 1] +mingcd > B[middle] then k-- ;
else break ;

if found then end = k ;

else begin = middle;

return Sb;

Let B(S) denote the sum of bu�er sizes in a distribution S. Algorithm 2 looks for the
best distribution Sb with minimal B(Sb) that allows the maximal throughput. We know that
B(S`) < B(Sb) ≤ B(Su) such that S` is a lower bound bu�er sizes distribution where the size
of each channel A

p q−−→B is equal to p+ q− gcd(p, q). We also know that, for any minimal bu�er
sizes distribution, the size of each channel A

p q−−→ B should be a multiple of gcd(p, q). Thus,
Algorithm 2 checks only distributions that satisfy these two conditions.

Let mingcd=min{gcd(p, q)|A p q−−→ B ∈ E}. For a given bu�ering requirement k, if every
distribution S with B(S)=k does not allow the maximal throughput, then it may be possible
that there exists a smaller distribution S0 (i.e., B(S0)<k) that allows such throughput. However,
we must have B(S0) + mingcd > k. Otherwise, for instance, if B(S0) + mingcd = k, then there
exists a distribution S1 with B(S1) = k such that S1 dominates S0 (i.e., ∀e ∈ E,S1(e) ≥ S0(e)).
But, since S1 does not allow a maximal throughput, neither should S0.

The algorithm uses a dichotomic search that �rst checks whether there is a bu�er sizes

RR n° 8742

24 Bouakaz & Fradet & Girault

distribution, whose total size is at the middle between the lower bound B(S`) and the upper
bound solution B(Su) (i.e., total size equals B[middle]), which allows the graph to achieve
its maximal throughput. If there is no such distribution, we check every distribution S such
B(S)+mingcd > B[middle]. If there is no distribution (found = false), the algorithm proceeds to
the top of the search space (begin = middle), otherwise it proceeds to the bottom one (end = k).

Example 6.1. Consider graph G = A
8 14−−−−→B

15 9−−−−→C with tA = 7, tB = 12 and tC = 13. The
repetition vector of this graph is ~z = [21, 12, 20], and the minimal period is PG = zCtC = 260.
The upper bound bu�er sizes distribution is Su = [θuA,B = 40, θuB,C = 42] with B(Su) = 82. The

lower bound distribution is S` = [20, 21] with B(S`) = 41.
Algorithm 2, illustrated in Fig. 20, starts by checking distributions at the middle between

B(Su) and B(S`), i.e., distributions such that B(S) = 56 (solid blue line in Fig. 20). There are
three possible distributions: [20, 36], [26, 30] and [32, 40]. Neither of them allows to achieve the
maximal throughput. Distribution with B(S) < 56 and B(S) + mingcd > 56, i.e., distributions
[22, 33], [28, 27] and [34, 31] (dashed blue line), are not dominated by the already checked distri-
butions, and need to be checked. Neither of them allows to achieve the maximal throughput. This
implies that all distributions in the bottom part (dominated by the checked distributions) will not
allow a maximal throughput. Therefore, the dichotomic search moves to the upper part.

At the middle of the upper part (green line), there is a distribution S = [26, 36] (red dot the
green line) that allows a maximal throughput. The algorithm hence proceeds to the bottom part.
The process continues: magenta lines (miss), brown line (hit at [26, 33], red dot). The algorithm
stops and returns Sb = [26, 33].

Figure 20: Illustration of Algorithm 2.

7 Latency computation for acyclic graphs

Like Section 6, this section shows how we can use the results for a single edge graph A
p q−−→B to

obtain approximate analyses for the latency of general acyclic data�ow graphs. To achieve this,

Inria

Symbolic Analysis of Data�ow Graphs 25

we make use of the linearization techniques (Section 5.1).

7.1 Multi-iteration latency of acyclic graphs

In this section, we compute an upper bound of the multi-iteration latency of the �rst n iterations,
denoted LG(n). A similar approach can be used to compute a lower bound. However, upper
bounds are more useful in practice since they ensure important safety properties (e.g., a deadline,
a minimal quality of service, etc.). In this paper, the computed upper bound is used to under-
approximate the maximal achievable throughput.

An acyclic SDF graph can be represented as a set of maximal chains G(G), that is, chains
from a source actor to a sink actor. By considering each chain g ∈ G(G) as an SDF graph with
the same repetition vector as G, we have the following property.

Property 7.1. For any acyclic SDF graph G,

∀i. LG(i) = max
g∈G(G)

{Lg(i)}

According to Property 7.1, the problem reduces to computing the multi-iteration latency of
each chain in the graph. Each chain spreads from a source actor to a sink actor.

For each chain A
p1 q1−−−−→B

p2 q2−−−−→C → · · · → Z, we compute an upper bound of its multi-
iteration latency for n iterations, denoted by L̂A→Z (we omit n for the sake of conciseness).
We can compute exactly LA→B as described in Section 4.3. However, since the technique as-
sumes that the producer can run consecutively, it cannot be applied between B and C. We
compute an upper bound linearization of the �rings of B such that they are consecutive and
∀j ≤ nzB . fBu(j) ≥ fB(j).

As illustrated in Fig. 21, the exact multi-iteration latency of chain A → B → C is LG(n) =
L̂A→B + δ where δ is the remaining execution time of C after the end of B.

Upper bound

linearization

Figure 21: Computation of L̂A→C of a chain A 2 5−−−→B
3 1−−−→C.

If η = fBu(nzB) − L̂A→B (i.e., the approximation introduced by the upper bound lineariza-
tion), then δ ≤ ∆Bu,C+η. Indeed, ∆Bu,C (computed by Equations of Fig. 11) gives the remaining
time for C after the end of Bu (recall that �rings of Bu are consecutive and hence the method
described in Section 4.3 can be used).

RR n° 8742

26 Bouakaz & Fradet & Girault

The critical part of this method is to �nd the best upper bound linearization that minimizes
the di�erence between the exact value δ and the approximate one (∆Bu,C + η). We propose two
upper bound linearization methods, Push and Stretch (Section 5.1.1). It can be shown that the
two methods are incomparable even if we distinguish the cases when B imposes a higher load
than C and vice-versa. In both cases, there are graphs for which either Push or Stretch is better.
Since the two methods are not costly to try, we apply both and take the minimum.
In case of Push (Fig. 22), we have

L̂A→C ≤ L̂A→B + η + ∆Bp,C = L̂A→B + 0 + ∆B,C

In case of Stretch (Fig. 21), we have

L̂A→C ≤ L̂A→B + η + ∆Bs,C

= L̂A→B + (fBs(nzB)− L̂A→B) + ∆Bs,C = fBs(nzB) + ∆Bs,C

Therefore, we have

L̂A→C ≤ min{L̂A→B + ∆B,C , fBs(nzB) + ∆Bs,C} (30)

Figure 22: Computation of L̂A→C of a chain A 2 5−−−→B
3 1−−−→C using Push method.

The same process can be repeated to treat an arbitrary long chain. For instance, to compute
the latency of the sub-chain A→ B → C → D, we have L̂A→D = min{L̂A→C +∆C,D, fCs(nzC)+

∆Cs,D} such that L̂A→C is the latency computed in the previous step (i.e., for sub-chain A →
B → C), and Cs is the linearization of C using the method Stretch applied transitively on actors
of the sub-chain A→ B → C.

Example 7.1. Let us consider the graph G = A
p1 1−−−→B

p2 1−−−→C which has �ve parameters:
the production rates p1, p2 and the execution times tA, tB and tC . Suppose that, at a given design
stage, the only known information is that pi ∈ [1, 102] and that execution times are in [103, 104].
In parametric data�ow models, it is possible that parameters change before the execution enters
the steady state. Therefore, a safe over-approximation of the minimal period PG of the graph
is L̂G(1). For this example, we want to check the following property Pm : `G(1) ≤ mPG where
m ∈ N+; i.e., the multi-iteration latency of the �rst iteration does not over-approximate the
minimal period by more than m times. A naive approach would be to check this property for all
con�gurations of rates and execution times parameters i.e., for more than 7×1015 con�gurations.
With our approach, we can solve this problem analytically. First, we generate a symbolic program

Inria

Symbolic Analysis of Data�ow Graphs 27

Prog (i.e., a set of equations) that computes L̂G(1). This step is polynomial in the number of
channels of the graph and depends neither on the parameters nor on the number of iterations.
Then, we check if Prog ∧Pm is satis�ed for all con�gurations. The repetition vector of this graph
is ~z = [1, p1, p1p2]. The generated program Prog , after simpli�cation of the equations, is

L̂G(1) =

{
tA + p1tB + p2tC if tB ≥ p2tC
tA + tB + p1p2tC otherwise

Since PG = max(tA, p1tB , p1p2tC), it is easy to check for all three possible maximal values (tA,
p1tB or p1p2tC) that Pm holds for m ≥ 3 but not for m < 3.

Note 7.1. Instead of analyzing separately all the chains of a DAG, it is more e�cient to use
the compositionality of our approach to prevent some recomputations. For instance, if we have
two chains A → B → D → E and A → C → D → E (i.e., actor D is a join), then we merge
the information that comes from both paths: L̂A→D is taken as the maximum of L̂A→B→D and
L̂A→C→D.

Note 7.2. According to the duality theorem, the multi-iteration latencies of a chain A →
· · · → Z and its dual are equal. However, our method may give di�erent approximate values,
i.e., L̂A→Z 6= L̂Z→A. Therefore, for a given chain, we analyze both the chain and its dual and
return min{L̂A→Z , L̂Z→A}. Again, since both computations have a linear complexity, this is not
costly.

7.2 Input-output latency of chains

We now compute the maximum input-output latency `G (or an upper bound ˆ̀
G) of a chain

G. The input-output latency of the nth iteration, `G(n) is equal to the di�erence between the
multi-iteration latency LG(n) and the start time of the �rst �ring of the source actor in the nth

iteration.
If the source actor A imposes the highest load among all actors of the graph or if all the chan-

nels are unbounded, then the source actor never gets idle and achieves the maximal throughput.
Hence, we can put

`G(n) = LG(n)− (n− 1)zAtA (31)

However, if the source actor does not impose the highest load, then `G(n) as given by Eq. (31)
is unbounded unless the channels are bounded. Therefore, as in the case of the graph A

p q−−→B,
we need to consider the bu�er sizes when computing the input-output latency.

Consider for instance the chain A 8 5−−−→B
3 4−−−→C with tA = 5, tB = 4 and tC = 8. The size of

channel A → B is 24 and the size of channel B → C is 12. Actor C imposes the highest load.
Fig. 23(a) shows the ASAP schedule for two iterations. We have ˆ̀

G = `G(2) = 83. Note that
the sink actor C runs consecutively but not the source actor A, which prevents us from using
Eq. (31) to compute the input-output latency.

As illustrated in Fig. 23(b), our solution consists in using a lower bound backward linearization
(Section 5.2). Starting by the end of the chain (i.e., channel B → C), actor B is �rst transformed
into a �ctive actor B` that runs consecutively such that ∀i.fB`(i) ≤ fB(i). This constraint also
implies that the start times of the �rings of Bs are advanced compared to start times of B
(because tB` ≥ tB), which leads to an over-approximation of the input-output latency.

Since B` runs consecutively and imposes a higher load than A, the same process can be
repeated to backward linearize A. It follows that the start times of the �rings of A` in the �nal
schedule are an under-approximation of the actual start times. The computation of the input-
output latency is now straightforward (using Eq. (31)) since the input actor A` runs consecutively.

RR n° 8742

28 Bouakaz & Fradet & Girault

So, we have ˆ̀
G = 89.8, which is only an 8.2% over-approximation compared to the actual input-

output latency (83).

(a) Actual schedule

(b) Linearized schedule

Figure 23: Input-output latency computation.

The previous approach can be applied to any arbitrary chain where the sink actor imposes
the highest load. If the actor with highest load1, denoted H, is in the middle of a chain A→
. . .→H→ . . .→Z, then the lower bound linearization of A (i.e., A`) is computed using the above
described backward linearization starting from actor H, while the upper bound linearization of
Z (i.e., Zu) is computed using the forward linearization (Section 7.1) starting from actor H. An
over-approximation of the input-output latency can be then computed between A` and Zu.

8 Experiments

8.1 Bu�er sizing

In this section, we compare the results of the three algorithms (MAX, MIN and OPT) presented
in Section 6.2 with each other and with the exact minimum bu�er sizes (Algorithm 2) using
many randomly generated SDF graphs and some real benchmarks.

First, we compare2 the results of MIN with those of MAX (i.e., safe upper bounds 2(p +
q − gcd(p, q))) using two million randomly generated chains of 10 actors where the production
and consumption rates (resp. execution times) are uniformly distributed over the interval [1, 20]
(resp. [1, 200]). The number of �rings per iteration,

∑
X zX , of every generated chain has been

bounded by 6×103. For each graph, we compute the ratio of the sum of the bu�ers sizes obtained
by algorithm MAX to those obtained by algorithm MIN. Each black dot in Fig.24 represents the
obtained ratio for one graph, while the red line represents the average of ratios. Fig. 24 shows
that, in average, algorithm MIN reduces the total bu�er sizes by 8% compared to the upper
bounds.

1If there are many, then we take any of them.
2Without lost of generality, tokens are assumed to have the same size.

Inria

Symbolic Analysis of Data�ow Graphs 29

Figure 24: MAX vs. MIN.

Fig.25 shows a comparison between the OPT and MIN algorithms with the same settings as
for Fig. 24. For instance, the blue curve (avg MAX/OPT) represents the average ratio of the
results obtained by MAX to those of OPT. This �gure shows that, in average, OPT improves
over MAX by almost 11.1% and improves over MIN by almost 3.5%. This is a signi�cant
improvement knowing that transferred tokens in streaming applications could be blocks of video
frames. However, if one is looking for time e�ciency (which could be important for an online
computation for instance), then MIN is less expensive than OPT.

Figure 25: MAX vs. MIN.

We also compare the results of the heuristic with the exact minimum bu�er sizes computed
by Algorithm 2 (which we denote by EXACT). Due to the exponential complexity of the min-
imum bu�er sizes problem, we evaluate our approach on only 104 randomly generated chains
of 4 actors where the production and consumption rates (resp. execution times) are uniformly
distributed over the interval [1, 10] (resp. [1, 100]). The blue (resp. red) line in Fig. 25 represents
the average of the ratios of the exact (EXACT) (resp. approximate (OPT)) solution to the

RR n° 8742

30 Bouakaz & Fradet & Girault

upper bounds (MAX). In average, the OPT heuristic over-approximates the exact solution by
25%. Furthermore, Fig. 25 also shows that MAX over-approximates EXACT by 55% in aver-
age. Hence, by extrapolating this result, our OPT heuristic would over-approximate the exact
solutions of Fig. 24 by 37% in average.

Figure 26: OPT vs. exact solution.

Finally, we evaluate the heuristic using �ve real applications: the H.263 decoder, the data
modem and sample rate converter from the SDF3 benchmarks [23], the fast fourier transformer
(FFT), and the time delay equalizer (TDE) from the StreamIt benchmarks [24]. All these graphs
have a chain structure. Table 1 shows some characteristics of these applications together with
the obtained results. Our approach improves better the upper bounds in case of chains with a

d

form (H.263 decoder and FFT). It comes close to the upper bound for the sample rate converter
since the two actors with the highest loads are the right and left ends of the chain; increasing the
loads of the other actors to get a monotone chain results in a size of almost 2(p+ q − gcd(p, q))
for every channel.

Table 1: Experimental results for real benchmarks.
graph # actors

∑
A zA load shape Upper bound Optimal size Heuristic

modem 6 37 32 20 30

sample con. 6 612 60 34 57

H.263 dec. 4 1190 2378 1257 1257

FFT 11 94 992 504 808

TDE 27 2867 7328 3680 5272

8.2 Latency computation

We �rst evaluate our approach for computing the multi-iteration latency using randomly gener-
ated chains of 10 actors. Five million chains have been generated such that the production and
consumption rates are uniformly distributed over the interval [1, 10] while the execution times are

Inria

Symbolic Analysis of Data�ow Graphs 31

uniformly distributed over then interval [1, 100]. The number of �rings per iteration (i.e.,
∑
A zA)

of every generated chain has been bounded by 2× 103. The exact multi-iteration latency of the
�rst iteration (i.e., LG(1)) is compared with the latency computed using our approach (denoted

by L̂A1→A10
); and we report the ratio L̂A1→A10

LG(1) (i.e., the over-approximation). Each black dot
in the upper part of Fig. 27 represents the ratio for one graph, while the red line represents the
average of ratios. The average over-approximation is negligible when the number of �rings per
iteration is small. Indeed, if there are many harmonious rates (recall that, when p divides q or q
divides p, the computed latency for A

p q−−→B is exact), then the computed latency remains close
to the exact value. Then, the average over-approximation increases to reach its peak (approx-
imately 2.5%) around �fty �rings per iteration. This is because the exact values of latency at
these points are small and hence the over-approximation is more noticeable. Then, the average
over-approximation decreases and tends to zero for graphs with large latencies. These observa-
tions were con�rmed by many other experiments (e.g., with longer chains, larger rates, etc.) not
reported in this paper.

The bottom part of Fig. 27 shows that using only the Stretch linearization method is better
(in average) than using only the Push method. It also shows that using both methods on all
channels of the chain (line Push+Stretch) is better than taking the minimum of their separate
results (line min{Push, Stretch}). The results are further improved by using the duality theorem
(line Push+Stretch+Dual) as explained in note 7.2.

Figure 27: Multi-iteration Latency computation.

Table 2 presents the obtained results for the real benchmarks. It shows that our approach
gives exact results for most of these benchmarks. Production and consumption rates of channels
of these graphs are quite harmonious (p divides q or q divides p), for which our approach performs
very well, as noticed in the previous experiment.

Finally, we evaluate our approach for computing the input-output latency using 105 randomly
generated chains of 9 actors. Chains are generated such that the production and consumption
rates are in the interval [1, 10] while the execution times are in the interval [1, 100]. The number
of �rings per iteration of every generated chain has been bounded by 2 × 103. The last actor
in each chain imposes the highest load, and the size of each channel A

p q−−→ B is equal to

RR n° 8742

32 Bouakaz & Fradet & Girault

Table 2: Multi-iteration latency computation for real benchmarks.
graph PG LG(1) L̂G(1)/LG(1) L̂G(2)/LG(2)

(a) modem 32 62 1 1
(b) sample con. 960 1000 1.022 1.011
(c) H.263 dec. 332046 369508 1 1

(d) FFT 78844 94229 1 1
(e) TDE 17740800 19314069 1 1

2(p + q − gcd(p, q)). Each black dot in Fig. 28 represents the obtained ratio
ˆ̀
G

`G
for one graph,

while the red line represents the average of ratios. Note that the exact computation of `G is
very time-consuming since it requires a simulation of the schedule until reaching the steady state
(hundreds of iterations for some chains). Therefore, we have limited our experiment to only 105

chains of 9 actors. Fig. 28 shows that our analysis over-approximates the exact computation,
in average, by at most 13%. The over-approximation is less noticeable for graphs with large
input-output latencies.

Figure 28: Input-output latency computation.

9 Related work

Few symbolic results about SDF graphs can be found in the literature. In this section, we present
the most relevant ones.

Consistency can easily be checked analytically. The repetition vector can be computed sym-
bolically as is it done in most dynamic parametric SDF models (e.g., [2, 9]).

There is no exact analytical solution to check the liveness of a graph with bu�ers with
�xed bounds. In [2] and [3], the authors apply Eq. (4) transitively (which leads to nested
ceilings) on edges of each cycle in the graph. Then, the obtained equations are linearized by

Inria

Symbolic Analysis of Data�ow Graphs 33

over-approximating the ceiling function (i.e., dxe < x+ 1). However, this is a very conservative
liveness analysis. As proved in [1], the minimum bu�er size for which the simple graph A

p q−−→B
is live is equal to p+ q− gcd(p, q)3. This however does not imply that any graph whose channels
are sized this way is live. Still, this analytical equation is used in many algorithms of bu�er
sizing to compute a lower bound on bu�er sizes as a starting solution ([3, 22]).

Let ~si denotes the token timestamp vector, where each entry corresponds to the production
time of tokens in the ith iteration of the graph. Then, as shown in [10], the max-plus algebra can
be used to express the evolution of the token timestamp vector: ~si = M~si−1. It has been proved
that the eigenvalue of matrix M is equal to the period of the graph. In case of parametric rates,
it is sometimes possible to extract a max-plus characterization of the graph with a parametric
matrix [18, 19]. However, this works only in cases where Eq. (4) can be somehow simpli�ed to
get rid of the ceiling function (e.g., when p = 1).

[11] presents a parametric throughput analysis for SDF graphs with bounded parametric
execution times of actors but constant rates. Since rates and delays are non-parametric, the
SDF-to-HSDF transformation is possible and the throughput analysis is based on the MCM
of the resulting HSDF graph. Therefore, all cycle means are linear functions in terms of the
parametric execution times. By using these linear functions, the parameter space is thus divided
into a set of convex polyhedra called �throughput regions�, each with a throughput expression.
This approach has been extended in [6] to the case of scenario-aware data�ow (SADF) graphs.

A di�erent analytic approach to estimate lower bounds of the maximum throughput is to
compute strictly periodic schedules instead of ASAP schedules (e.g., [5]). This approach is
similar to our Stretch linearization method used in Section 7 to compute the latency of the
graph. We have however shown that using both Push and Stretch methods usually gives better
results.

The advantage of the strictly periodic scheduling approach is its capability to handle cyclic
graphs. However, not all cyclic graphs have strictly periodic schedules (it depends on the number
of initial tokens). Furthermore, experiments on real-life benchmarks show that these approaches
result in huge over-approximations (sometimes 7 times the exact value) [5]. In theory, the over-
approximation is not even bounded.

10 Conclusion

We have studied analytically the di�erent cases of the execution of a completely parametric
single edge data�ow graph A

p q−−→B. Enabling patterns are introduced to better characterize
the data-dependency between the producer and the consumer. Then, we have presented the
exact symbolic solutions for the minimum bu�er size needed by a single edge graph to achieve
its maximal throughput. We also presented exact symbolic analyses for computing the latencies
of such a graph.

Using these results and forward linearization techniques, we have provided safe upper bounds
of bu�er sizes of acyclic graphs for maximal throughput. Furthermore, we have proposed a heuris-
tic to improve these bounds for graphs with a chain or a tree structure. Experimental results
show that our heuristic improves the upper bounds by 11.1% in average, over-approximates the
exact solutions by 25% in average, and can give the optimal solution for some real applications.
The exact solutions was computed using our numerical analysis which is based on a dichotomic
search.

We also used forward and backward linearization techniques to compute over-approximations
of the multi-iteration latency of general acyclic graphs and the input-output latency of chains.

3The equation is slightly di�erent when there are initial tokens.

RR n° 8742

34 Bouakaz & Fradet & Girault

Experimental results show that our symbolic analyses over-approximate the exact solutions by
only 2.5% in case of the multi-iteration latency and 13% in case of the input-output latency.

Future work will concern the extension of these analysis to deal with general (i.e., possibly
cyclic) data�ow graphs.

References

[1] S. S. Battacharyya, E. A. Lee, and P. K. Murthy. Software synthesis from data�ow graphs.
Kluwer Academic Publishers, Norwell, MA, USA, 1996.

[2] V. Bebelis, P. Fradet, A. Girault, and B. Lavigueur. BPDF: a statically analyzable data�ow
model with integer and boolean parameters. In Proceedings of the 11th ACM International
Conference on Embedded Software, pages 3:1�3:10, 2013.

[3] E. Bempelis. Boolean Parametric Data Flow: Modeling - Analysis - Implementation. PhD
thesis, Université Grenoble Alpes, 2015.

[4] B. Bhattacharya and S. S. Bhattacharyya. Parameterized data�ow modeling of DSP systems.
Trans. Sig. Proc., 49(10):2408�2421, 2001.

[5] B. Bodin, A. Munier-Kordon, and B. de Dinechin. Periodic schedules for cyclo-static
data�ow. In Proceedings of the 11th Symposium on Embedded Systems for Real-time Multi-
media, pages 105�114, 2013.

[6] M. Damavandpeyma, S. Stuijk, M. Geilen, T. Basten, and H. Corporaal. Parametric
throughput analysis of scenario-aware data�ow graphs. In Proceedings of the 30th Inter-
national Conference on Computer Design, pages 219�226, 2012.

[7] J. B. Dennis. First version of a data �ow procedure language. In Programming Symposium,
Proceedings Colloque sur la programmation, pages 362�376, 1974.

[8] K. Desnos, M. Pelcat, J. Nezan, S. S. Bhattacharyya, and S. Aridhi. PiMM: parametrized
and interfaced data�ow meta-model for MPSoCs runtime recon�guration . In Proceedings
of the 2013 International Conference on Embedded Computer Systems: Architectures, Mod-
eling, and Simulation, pages 41�48, 2013.

[9] P. Fradet, A. Girault, and P. Poplavko. SPDF: a schedulable parametric data-�ow MoC. In
Design, Automation and Test in Europe Conference and Exhibition, pages 769�774, 2012.

[10] M. Geilen. Synchronous data�ow scenarios. ACM Trans. Embed. Comput. Syst., 10(2):16:1�
16:31, 2011.

[11] A. H. Ghamarian, M. C. W. Geilen, T. Basten, and S. Stuikj. Parametric throughput
analysis of synchronous data �ow graphs. In Proceedings of the Conference on Design,
Automation and Test in Europe, pages 116�121, 2008.

[12] A. H. Ghamarian, S. Stuijk, T. Basten, M. C. W. Geilen, and B. D. Theelen. Latency mini-
mization for synchronous data �ow graphs. In Proceedings of the 10th Euromicro Conference
on Digital System Design Architectures, Methods and Tools, pages 189�196, 2007.

[13] G. Kahn. The semantics of a simple language for parallel programming. In IFIP Congress,
pages 471�475, 1974.

Inria

Symbolic Analysis of Data�ow Graphs 35

[14] A. Kumar, H. Corporaal, B. Mesman, and Y. Ha. Multimedia Multiprocessor Systems:
Analysis, Design and Management. Springer Science+Business Media B.V., New York, NY,
USA, 2011.

[15] E. A. Lee and D. G. Messerschmitt. Synchronous data �ow. In Proceedings of the IEEE,
pages 1235�1245, 1987.

[16] O. Moreira, T. Basten, M. Geilen, and S. Stuijk. Bu�er sizing for rate-optimal single-rate
data-�ow scheduling revisited. pages 188�201, 2010.

[17] E. Nogues, R. Berrada, M. Pelcat, D. Menard, and E. Ra�n. A DVFS based HEVC
decoder for energy-e�cient software implementation on embedded processors. In 2015 IEEE
International Conference on Multimedia and Expo, pages 1�6, 2015.

[18] M. Skelin, M. Geilen, F. Catthoor, and S. Hendseth. Worst-cas throughput analysis for
parametric rate and parametric actor execution time scenario-aware data�ow graphs. In
Proceedings of the 1st International Workshop on Synthesis of Continuous Parameters, pages
65�79, 2014.

[19] M. Skelin, M. Geilen, F. Catthoor, and S. Hendseth. Parametrized data�ow scenarios. In
Proceedings of the 12th International Conference on Embedded Software, pages 95�104, 2015.

[20] S. Sriram and S. S. Bhattacharyya. Embedded multiprocessors: scheduling and synchroniza-
tion. Marcel Dekker, Inc., New York, NY, USA, 2000.

[21] S. Stuijk, T. Basten, M. Geilen, H. Corporaal, and M. Damavandpeyma. Throughput-
constrained DVFS for scenario-aware data�ow graphs. In Proceedings of the 2013 IEEE
19th Real-Time and Embedded Technology and Applications Symposium, pages 175�184,
2013.

[22] S. Stuijk, M. Geilen, and T. Basten. Exploring trade-o�s in bu�er requirements and through-
put constraints for synchronous data�ow graphs. In Proceedings of the 43rd Annual Design
Automation Conference, pages 899�904, 2006.

[23] S. Stuijk, M. Geilen, and T. Basten. SDF3: SDF for free. In Proceedings of the 6th In-
ternational Conference on Application of Concurrency to System Design, pages 276�278,
2006.

[24] W. Thies and S. Amarasinghe. An empirical characterization of stream programs and its
implications for languages and compiler design. In Proceedings of the 19th International
Conference on Parallel Architectures and Compilation Techniques, pages 365�376, 2010.

RR n° 8742

36 Bouakaz & Fradet & Girault

A Throughput and duality

Proof. (Property 3.1) This is easily shown by considering the corresponding HSDF graph. As
illustrated in Fig. 29(a), the SDF-to-HSDF transformation algorithm [20] replicates each actor A
in the original graph zA times (recall that ~z is the repetition vector), each instance represents a
�ring of A in one iteration. Then, each edge A

p q−−−→ B in the original graph is transformed into
p zA edges, each one representing a data dependency between a �ring of A and a �ring of B. Let
HSDF(G) denote the HSDF graph equivalent to the acyclic graph G. The only cycles that appear
in HSDF(G) are the results of the transformation of self-edges used to disable auto-concurrency.

(a) HSDF graph equivalent to

2 3

(b) HSDF graph equivalent to

23

Figure 29: SDF-to-HSDF transformation of a graph and its dual.

For each actor A, its corresponding cycle contains one delay and zA instances of A. Thus,
the cycle mean is equal to zAtA, and the MCM is hence equal to maxA∈V {zAtA}.

�

Proof. (Theorem 3.1) We �rst prove that the graph HSDF(G) is the dual of HSDF(G−1). As
described in the previous proof, the SDF-to-HSDF transformation is compositional in the sense
that each channel is transformed independently of the rest of the graph. Hence, it is su�cient to
prove that HSDF(A

p q−−→B) and HSDF(B
q p−−→A) are dual to each other as illustrated in Fig. 29

(see Property A.1). It follows that each cycle in HSDF(G) has a dual in HSDF(G−1). Therefore,
both graphs have the same MCM and the same throughput i.e., TG = TG−1 .

The second step in this proof is to show that ∀i. LHSDF(G)(i) = LHSDF(G−1)(i). The multi-
iteration latency of the �rst i iterations of an HSDF graph can be obtained by searching the
longest path in a directed acyclic graph (DAG) obtained by unfolding the HSDF graph for
i iterations and deleting any edge with an initial token (since this edge does not impose a
precedence constraint between �rings).

Thus, by unfolding HSDF(G) and HSDF(G−1) for i iterations, we obtain two DAGs that
are dual to each other since the unfolding transformation preserves duality. Therefore, for each
maximal path in the �rst DAG (i.e., a path from a source node to a sink node), there is a dual
maximal path in the second DAG. Both such paths have the same length hence LHSDF(G)(i) =
LHSDF(G−1)(i).

�

Property A.1. Let G = A
p q−−→B. Graphs HSDF(G) and HSDF(G−1) are dual to each other.

Inria

Symbolic Analysis of Data�ow Graphs 37

Proof. (Property A.1) The SDF-to-HSDF transformation of A
p q−−→B duplicates actor A zA

times and actor B zB times. Furthermore, it creates pzA (or equivalently qzB) dependencies
between instances of A and instances of B. These dependencies are named as illustrated in
Fig. 30.

The ith token produced by A in G creates a dependency Aj −→ Bk in the graph HSDF(G)
with j = (i− 1) mod pzA and k = (i+ d− 1) mod pzA where d is the number of initial tokens in
channel A→ B. We then prove that ∃i′ such that the i′th token produced in graph G−1 creates
a dependency BpzA−1−k −→ ApzA−1−j in the graph HSDF(G−1). For instance, in Fig.30.(a) we
have the dependency A5 → B0 in HSDF(G). Its counterpart in Fig. 30.(b) is the data-dependency
B6−1−0=5 → A6−1−5=0.

(a) HSDF graph equivalent to

2 3

(b) HSDF graph equivalent to

23

Figure 30: Duality of HSDF(A
p q−−→B) and HSDF(B

q p−−→A).

Therefore, we need to prove that

∀i∃i′.
{

(i′ − 1) mod pzA = pzA − k − 1
(i′ + d− 1) mod pzA = pzA − j − 1

Hence, by simpli�cation, ∀i∃i′. (i+ i′+d− 2) mod pzA = pzA− 1. This equation is satis�able
independently of d, p and zA. This process goes both ways; i.e., there is a bijection between edges
in HSDF(G) and edges in HSDF(G−1). Therefore, if we rename actors in HSDF(G−1) in the
reverse order, then each edge in HSDF(G) has a reversed counterpart in HSDF(G−1). Note that
renaming actors (i.e., AzA+1−i instead of Ai) does not alter the ASAP execution since instances
of an actor has the same execution time.

Now, we prove that the numbers of initial tokens in edges Aj −→ Bk and BpzA−1−k −→
ApzA−1−j are the same. The number of initial tokens in Aj −→ Bk is equal to

⌊
d
pzA

⌋
if d mod

pzA ≤ k; and
⌊

d
pzA

⌋
+ 1 otherwise. While the number of initial tokens in edge BpzA−1−k −→

ApzA−1−j is equal to
⌊

d
pzA

⌋
if d mod pzA ≤ (pzA − 1 − j); and

⌊
d
pzA

⌋
+ 1 otherwise. But since

(d mod pzA ≤ k)⇔ (d mod pzA ≤ (pzA − 1− j)), the property is satis�ed.

�

B The parametric graph A
p q−−→B

B.1 Enabling patterns

Proof. (Property 4.1)

RR n° 8742

38 Bouakaz & Fradet & Girault

• Case (A.1): (p = kq) The repetition vector is ~z = [1, k]. Each �ring of A enables k �rings
of B and the enabling pattern is A Bk.

• Case (A.2): (p = kq+r and q ≤ 2r) The �rst �ring of A enables only k �rings of B, yielding
the pattern A Bk. The number of remaining tokens in the channel after sequence ABk is equal
to r. Since 2r ≥ q, the second �ring of A enables k + 1 �rings of B, yielding the aggregated
pattern A Bk;A Bk+1. It follows that pattern A Bk+1 can be repeated a number of times
denoted α1, after which there will be r+ α1(r− q) tokens left. So, α1 is the largest integer such
that r + α1(r − q) ≥ 0. Hence, α1 = b r

q−r c.
The next �ring of A will only enable k �rings of B (A Bk). By the same reasoning as

above, this will be followed by [A Bk+1]α2 where α2 is the largest integer such that r+α1(r−
q) + r + α2(r − q) ≥ 0. Hence, α2 = b 2r

q−r c − b
r
q−r c. This process is repeated until all �rings of

A and B of the iteration take place, yielding the complete pattern[
A Bk; [A Bk+1]αj

]j=1··m

for some m that remains to compute. The number of �rings of A in this pattern is equal to

cA =
m∑
j=1

1 + αj , while the number of �rings of B is equal to cB =
m∑
j=1

k + (k + 1)αj . Note that

since
m∑
j=1

αj =
⌊
mr
q−r

⌋
, we have cA = m+

⌊
mr
q−r

⌋
and cB = mk+ (k+ 1)

⌊
mr
q−r

⌋
. A correct pattern

covers the entire iteration, that is cA = zA and cB = zB . We have zA = q
gcd(p,q) and zB = p

gcd(p,q) ,

thus mk + (k + 1)(q
gcd(p,q) −m) = p

gcd(p,q) This implies that m = q−r
gcd(p,q) .

• Case (A.3): (p = kq + r and q > 2r) Similarly to case (A.2), the �rst �ring of A enables k
�rings of B. However, since q > 2r, the second �ring of A enables only k �rings. The sequence
of numbers of remaining tokens will be

0
ABk

−→ r
ABk

−→ 2r
ABk

−→ · · · AB
k

−→ β1r
ABk+1

−→ β1r + (r − q) (32)

So, β1 is the smallest number for which β1r + (r − q) is non-negative. Hence, β1 = d q−rr e. At
this point, the next �ring of A enables k + 1 instances of B. This process will repeat in�nitely
with βj = d j(q−r)r e − d (j−1)(q−r)r e. Sequence (βj) is periodic with a period of length r

gcd(p,q) . At
the end of each period, the number of remaining tokens returns to zero.

• Case (B.1): (q = kp) The repetition vector is ~z = [k, 1]. Each k �rings of A enable one
�ring of B and the enabling pattern is Ak B .

• Case (B.2): (q = kp + r and p ≥ 2r) (k + 1) �rings of A are needed to enable the �rst B.
Hence, after (Ak+1B), the number of remaining tokens in the bu�er is (p − r). If p ≥ 2r, then
only k �rings of A are needed to enable the second �ring of B; and the number of remaining
tokens will be (p− r)− r. As in the previous cases, we will have a sequence

0
Ak+1B−→ (p− r) A

kB−→ (p− r)− r A
kB−→ · · · A

kB−→ (p− r)− γ1r (33)

So, γ1 is the largest number for which (p − r) − γ1r is non-negative; thus γ1 = bp−rr c. At this
point, k + 1 �rings of A are required to enable another �ring of B. This process will repeat
in�nitely with γj = b j(p−r)r c − b (j−1)(p−r)r c. Note that sequence (γj) is periodic with a period of
length r

gcd(p,q) . At the end of each period, the number of remaining tokens returns to zero.

Inria

Symbolic Analysis of Data�ow Graphs 39

• Case (B.3): (q = kp+ r and p < 2r) Similarly to case (B.2), (k+ 1) �rings of A are needed
to enable the �rst B. However, since p < 2r, (k+1) �rings of A are required to enable the second
�ring of B. The sequence of numbers of remaining tokens is then

0
Ak+1B−→ (p− r) A

k+1B−→ 2(p− r) A
k+1B−→ · · · A

k+1B−→ λ1(p− r) A
kB−→ (34)

So, λ1 is the smallest number for which λ1(p − r) − r is non-negative. Hence, λ1 = d r
p−r e. At

this point, only k �rings of A are required to enable the next �ring of B. This process will repeat
in�nitely with λj = d jrp−r e − d

(j−1)r
p−r e. Sequence (λj) is periodic with a period of length p−r

gcd(p,q) .
At the end of each period, the number of remaining tokens returns to zero.

�

B.2 Minimum bu�er size for maximum throughput

Proof. (Property 4.2)
The three cases of Fig. 9 should be read as (I) else (II) otherwise (III).

Case (I): At any given enabling point (i.e., any in the enabling pattern), all newly enabled
�rings of B complete their execution before the next enabling point.

In terms of the enabling pattern cases identi�ed in Fig. 8, case (I) must be split into two
exclusive subcases, (I.1) when p ≥ q and (I.2) otherwise. The conjunction of the condition for
case (I.1) yields the condition A.1∨ ((A.2∨A.3)∧ (tA ≥ (k+ 1)tB)) where (A.1), (A.2) and (A.3)
refer to the exclusive patterns of Fig. 8. The other conditions are obtained similarly.

Case (I), pattern (A.1):
In case p ≥ q and r = 0, the parallel schedule is A; [A||Bk]∗, which means that each k �rings

of B run in parallel with a �ring of A. We have, δ1 = p, δ2 = 2p, δ3 = δ2 + p− kq = 2p, So,
θA,B = max

i
δi = 2p.

Case (I), pattern (A.2):
Let us prove the result for case (I.1) and pattern (A.2), i.e., p = kq+r with q ≤ 2r. According

to the enabling pattern (A.2), at most (k+ 1) �rings of B can be enabled at a given point. They
all run in parallel with one �ring of A. Therefore, case (I.1) requires that tA ≥ (k + 1)tB .

We �rst expand the enabling pattern of (A.2) into an in�nite pattern in order to compute
the minimum bu�er size θA,B over the in�nite execution of the graph:[

A Bk;
[
A Bk+1

]αj
]j∈N+

(35)

For the sake of the proof, since αj ≥ 1, we can rewrite Eq. (35) into the equivalent in�nite
pattern:

A Bk;A Bk+1︸ ︷︷ ︸
prologue

;
[
[A Bk+1]αj−1;A Bk;A Bk+1

]︸ ︷︷ ︸
block j

j∈N+

(36)

Recall that δj denotes the minimum number of tokens in the backward edge such that the
jth �ring of A can occur immediately after the (j − 1)th �ring of A. The minimum number
of tokens to enable the �rst �ring of A must be δ1 = p. Then, δ2 = δ1 + p = 2p because no
B has �nished before the second A starts. Then, δ3 = δ2 + (p − kq) = 2p + r. Subsequently,
δ4 =δ3 + (p− (k + 1)q)=δ3 + (r − q), and all α1 subsequent values of δi are obtained from δi−1
by adding (r − q) which is negative. The value of αj is de�ned in Fig. 8. Hence, δ1+(α1+1)+1 =

RR n° 8742

40 Bouakaz & Fradet & Girault

δ3 + α1(r − q) = 2p + r + α1(r − q). This ends at the last of the α1 patterns A Bk+1, so the
next value δ1+(α1+1)+2 is obtained by adding p − kq = r because of pattern A Bk, yielding
2p+ r + α1(r − q) + r.

prologue block 1

Figure 31: Illustration of sequence (δj) in case (I.1) and pattern (A.2).

The computation of the in�nite sequence (δj) is illustrated in Fig. 31. Within each block j,
the subsequence (δh) is strictly decreasing because (r − q) is negative, so its maximum value is
the value of the entry point, which we denote by `j = 1 +

∑j
i=1(αi + 1) + 2. We thus have:

δ`j = 2p+ r +

j∑
i=1

(αi(r − q) + r) = 2p+ r + jr + (r − q)
⌊

jr

q − r

⌋
It follows that the maximum value of the in�nite sequence (δj) is:

θA,B = max
j∈N

δ`j

= max
j∈N

(2p+ r + jr + (r − q)
⌊

jr

q − r

⌋
)

= 2p+ r + (q − r) max
j∈N

(
jr

q − r
−
⌊

jr

q − r

⌋
)

As a conclusion, θA,B = 2p+ r + (q − r − gcd(p, q)) = 2p+ q − gcd(p, q).

Case (I), pattern (A.3):
We write the parallel schedule as A; [[A||Bk]βj ;A||Bk+1]∗. Again, we have δ3 = δ2 + p− q =

δ2 + r, δ4 = δ3 + p− q = δ2 + 2r, . . . (see Fig. 32)

Figure 32: Case (I) pattern (A.3).

Hence, we will have a sequence similar to that of Eq. (32). If S2 denotes that sequence,
then θA,B = max

i
δi = δ2 + maxS2. Since (r − q) is negative, we have that maxS2 = (q − r) +

Inria

Symbolic Analysis of Data�ow Graphs 41

max
j

(
j(r − q) + r

j∑
i=1

βi

)
= (q − r) + max

j

(
r
⌈
jq
r

⌉
− jq

)
= (q − r) + rmax

j

(⌈
jq
r

⌉
− jq

r

)
. But,

max
j

(⌈
jq
r

⌉
− jq

r

)
= r−gcd(q,r)

r [Using Bézout identity]. Thus, maxS2 = (q − r) + r − gcd(q, r).

Hence, θA,B = 2p+ q − gcd(p, q).

Case (I), pattern (B.1):

The �rst �ring of B will not �nish before the start of the (
⌈
tB
tA

⌉
)th �ring of A. Let us put

x = k +
⌈
tB
tA

⌉
. Hence, δx = xp, δx+1 = δx + p − q, . . . , δx+k = δx + xp − q = δx, . . . So,

θA,B = xp = q +
⌈
tB
tA

⌉
p.

Case (I), pattern (B.2):

The �rst �ring of B will not �nish before the start of the (k+ 1 +
⌈
tB
tA

⌉
)th �ring of A. Let us

put x = k + 1 +
⌈
tB
tA

⌉
. Hence, δx = xp. We have that δx+k = δx + kp− q = δx − r, . . . , δx+γ1k =

xp− γ1r, . . . (See Fig. 33)

Figure 33: Case (I) pattern (B.2).

This sequence is similar to the sequence in Eq . 33. So, θA,B = max
i
δi = xp+max

j

(
j(p− r)− r

j∑
i=1

γi

)
=

xp+ rmax
j

(
jp
r −

⌊
jp
r

⌋)
= xp+ max

j
(jp mod r). But, max

j
(jp mod r) = r − gcd(p, r). Therefore,

θA,B = p+ q − gcd(p, q) +
⌈
tB
tA

⌉
p.

Case (I), pattern (B.3):
Similarly to case (B.2), we have that δx = xp, δx+k+1 = δx + (k + 1)p − q = δx + (p −

r), . . . , δx+(k+1)(γ1−1)+k = δx + (γ1 − 1)(p− r)− r, . . . (See Fig. 34)

Figure 34: Case (I) pattern (B.3).

This sequence is similar to that of Eq. (34). So, θA,B = xp+(r−p)+max
j

(
−rj + (p− r)

j∑
i=1

λj

)
+

r = xp + 2r − p + (p − r) max
j

(⌈
jr
p−r

⌉
− jr

p−r

)
= xp + 2r − p + (p − r − gcd(p, r)). Thus,

θA,B = p+ q − gcd(p, q) +
⌈
tB
tA

⌉
p.

RR n° 8742

42 Bouakaz & Fradet & Girault

Case (II): Case (I) is not satis�ed, but, for any block (e.g., [[A Bk+1]αj ;A Bk] in case
(A.2)), all �rings of B during this block complete their execution before the �rst enabling point
in the next block.

This case is illustrated in Fig. 35. Each block is of the form [A B2]αj ;A B , where the
maximum value of αj is 2. Therefore, �ve �rings of B have to run in parallel with three �rings
of A. So, we must have 5tB ≤ 3tA. The computed sequence (δj) in case (II) is similar to that of
case (I) but with small increments.

blockblockprologue

Figure 35: An ASAP execution of A 8 5−−→B with tA=13 and tB=7.

Patterns (A.1) and (B.1) are not possible in case (II).

Case (II), pattern (A.2):
Since ktB+ r

q tB ≤ tA < (k+1)tB (i.e., case (I) is not satis�ed), we can put tA = ktB+r′. If k+1

�rings of B are enabled, then there execution will be larger than tA by e = (k+1)tB−tA = tB−r′.
According to the enabling pattern, a block is of the form [A Bk+1]αj ;A Bk. Hence, the
�rings of B brim over the block by αje+ ktB − tA = αj(tB − r′)− r′. Thus, to satisfy case (II),

we must have ∀j. αj(tB − r′)− r′ ≤ 0. But, the maximum value of αj is
⌈

r
q−r

⌉
. Therefore,

tA ≥ ktB +

⌈
r
q−r

⌉
⌈

r
q−r

⌉
+ 1

tB

Similarly to case (I.A.1), we compute sequence (δi) (see Fig. 36). Compared to case (I.A.2), the
sequence is incremented by a (+r). Hence, θA,B = max

i
δi = 2p+ q − gcd(p, q) + r.

Figure 36: Case (II) pattern (A.2).

Case (II), pattern (A.3):
According to the enabling pattern, one block is of the form A Bk+1; [A Bk]βj . Hence,

�rings of B will brim over the block by e+ (ktB − tA)βj . Thus, to satisfy case (II), we must have
∀j. e+ (ktB − tA)βj ≤ 0. But, the minimum value of βj is

⌊
q−r
r

⌋
. Therefore,

tA ≥ ktB +
1⌊
q
r

⌋ tB
Inria

Symbolic Analysis of Data�ow Graphs 43

Figure 37: Case (II) pattern (A.3).

The sequence (δi) is illustrated in Fig. 37. Compared to case I.(A.3), it is incremented by
(+Xr) where X is the smallest integer such that e+(ktB− tA)X ≤ 0 (i.e., the over�ow is caught

up). So, X =
⌈

tB
tA−ktB

⌉
− 1. Therefore, θA,B = 2p+ q − gcd(p, q) +Xr.

Case (II), pattern (B.2):
Since ktA < tB ≤ ktA + r

p tA (i.e., case (I) is not satis�ed), we can put tB = ktA + r′.
So, the execution time of one �ring of B is larger than the execution time of k �rings of A by
e = tB−ktA = r′. According to the enabling pattern, a block is of the form [Ak B]γj ;Ak+1 B .
Hence, the �rings of B brim over the block by γjr′ + tB − (k + 1)tA. Thus, to satisfy case (II),
we must have ∀j. γjr′ + r′ − tA ≤ 0. But, the maximum value of γj is

⌈
p−r
r

⌉
. Therefore,

tB ≤ ktA +
1⌈
p
r

⌉ tA
Similarly to case I.(B.2), we compute sequence (δi) (see Fig. 38). So, θA,B = 2(k + 1)p +

max
j

(
j(p− r)− r

j∑
i=1

γi

)
= 2(k + 1)p + rmax

j

(
jp
r −

⌊
jp
r

⌋)
= 2(k + 1)p + (r − gcd(p, q)) =

2p+ 2q − r − gcd(p, q).

Figure 38: Case (II) pattern (B.2).

Case (II), pattern (B.3):
According to the enabling pattern, one block is of the form Ak B ; [Ak+1 B]λj . Hence,

�rings of B will brim over the block by tB +λjtB − ktA−λj(k+ 1)tA = r′+λj(r
′− tA). Thus, to

satisfy case (II), we must have ∀j. r′ + λj(r
′ − tA) ≤ 0. But, the minimum value of λj is

⌊
r
p−r

⌋
.

Therefore, we must have

tB ≤ ktA +

⌊
r
p−r

⌋
⌊

r
p−r

⌋
+ 1

tA

The sequence (δi) is illustrated in Fig. 39. Compared to case I.(B.3), the sequence is incre-
mented by (+X(p − r)) where X is the largest integer such that r′ + X(r′ − tA) > 0 (i.e., the

over�ow is not caught up). Hence, θA,B = p+q−gcd(p, q)+
⌈
tB
tA

⌉
p+X(p−r). But,

⌈
tB
tA

⌉
= k+1.

Therefore, θA,B = 2p+ 2q − r − gcd(p, q) +X(p− r). We have that X =
⌈

r′

tA−r′

⌉
− 1.

RR n° 8742

44 Bouakaz & Fradet & Girault

Figure 39: Case (II) pattern (B.3).

Case (III): Otherwise.
This is the most complicated case to solve since the sequence (xj), which denotes the number

of �rings of B that have �nished by the start of the jth �ring of A, does not follow the enabling
patterns. Our solution is based on the following observations. We de�ne a catch-up sequence as
a sequence of consecutive �rings of B (i.e., without gaps) that may spread over several blocks.
Fig. 40 illustrates a catch-up sequence over two blocks.

The key observation is the following. For the �rings of A inside a catch-up sequence, the
number of �rings of B that �nish before �rings of A actually follows the enabling pattern of
graph A

tA tB−−−−→B, i.e., as if time was produced and consumed instead of tokens. Furthermore,
the maximum of sequence (δj) occurs inside the maximal (in terms of blocks) catch-up sequence.
For instance, n in Eq. (37) represents the length of the maximal catch-up sequence.

catch-up sequence

Enable:

Finish before:

Figure 40: An ASAP execution of A 8 5−−→B with tA=23 and tB=14.

The obtained formulas are the following (patterns A.1 and A.2 are not possible):

Case III.
Case III.1. A.2

θA,B = 2p+ q + r − gcd(p, q) +
n−1
max
j=1

(jr mod (q − r)) (37)

where n is the smallest positive integer such that
⌊

nr′

tB−r′

⌋
≥
⌈
nr
q−r

⌉
and r′ = tA − ktB .

Case III.2. A.3

θA,B = 2p+ 2q − gcd(p, q)−
n−1
min
j=1

(jq mod r) (38)

where n is the smallest positive integer such that
⌈
ntB
r′

⌉
≤
⌊
nq
r

⌋
and r′ = tA − ktB .

Case III.3. B.2

θA,B = 2p+ 2q − r − gcd(p, q) +
n−1
max
j=1

(jp mod r) (39)

Inria

Symbolic Analysis of Data�ow Graphs 45

where n is the smallest positive integer such that
⌊
ntA
r′

⌋
≥
⌈
np
r

⌉
and r′ = tB − ktA.

Case III.4. B.3

θA,B = 2p+ 2q − gcd(p, q)−
n−1
min
j=1

(jr mod (p− r)) (40)

where n is the smallest positive integer such that
⌈

nr′

tA−r′

⌉
≤
⌊
nr
p−r

⌋
and r′ = tB − ktA.

Case (III), pattern (A.2):

Sequence (αj) takes two values4; ∀j. αj ∈
{⌊

r
q−r

⌋
,
⌈

r
q−r

⌉}
. Once αj =

⌈
r
q−r

⌉
, an over�ow

will propagate from this block to the subsequent blocks. Thus, all �rings of B till the catch-up
point are consecutive. We call this sequence a catch-up sequence. The value of δi for the �ring
of A at the catch-up point will be equal to that computed in case II.(A.2). See Fig. 41.

a catch up point a catch up point

Case III.

Case II.

a catch up point

Figure 41: Case (III) pattern (A.2).

To know how many �rings of B in the catch-up sequence �nish before the start of any �ring
of A, we may look at the enabling pattern of the graph A

tA tB−−−−→B. Since tA ≥ tB and tB ≤ 2r′

(because A imposes a higher load than B), this enabling pattern is
[
A Bk;

[
A Bk+1

]α′j] with
α′j =

⌊
jr′

tB−r′

⌋
−
⌊
(j−1)r′
tB−r′

⌋
.

If a catch-up sequence starts at the jth block, then it will end at some block (j + n − 1) if

and only if
n∑
i=1

α′i ≥
j+n−1∑
i=j

αi; i.e., n is the smallest integer that satis�es

bnx2c ≥ b(j − 1)x1 + nx1c − b(j − 1)x1c (41)

where x1 = r
q−r and x2 = r′

tB−r′ . One important catch-up sequence is the longest one (called
the maximal catch-up sequence). If we put (j − 1)r = a(q − r) + b, then the previous equation

can be rewritten as bnx2c ≥
⌊
nx1 + b

q−r

⌋
. This implies that n is maximal when b is maximal;

i.e., b = q − r − gcd(q, r). However, this does not imply that the (j − 1)th block such that
(j − 1)r mod (q − r) = q − r − gcd(p, q) is actually a catch-up point. To prove that we need to

show that 6 ∃m ≤ (j − 1).
m∑
i=1

α′i <
j−1∑

i=j−m
αi; i.e., bmx2c < b(j − 1)x1c − b(j − 1)x1 − mx1c;

4Note that if (αj) ((βj), (γj) or (λj)) takes only one value, then case (III) is impossible.

RR n° 8742

46 Bouakaz & Fradet & Girault

which can be rewritten as bmx2c < −
⌊

b
q−r −mx1

⌋
= bmx1c. Inequality bmx2c < bmx1c has

no solution because x2 ≥ x1 (since A imposes a higher load than B).
This means that among all catch-up points, the maximum value of (δi) occurs at the catch-up

point before the maximal catch-up sequence; and it is equal to 2p + q − gcd(p, q) (see Fig. 36).
Furthermore, since any catch-up sequence is a pre�x of the maximal catch-up sequence, the
worst-case occurs inside this maximal sequence. Therefore, θA,B = 2p + q − gcd(p, q) + (r +

n−1
max
j=1

(rj + (r − q)
j∑
i=1

α′i) where n is the length of the maximal catch-up sequence. So, θA,B =

2p+ q + r − gcd(p, q) +
n−1
max
j=1

(rj + (r − q)bjx2c).

But, according to Eq. (41), the maximal n is the smallest integer such that bnx2c ≥ dnx1e
(recall that (j − 1)r mod (q − r) = q − r − gcd(p, q)). Hence, ∀j < n. bjx2c < djx1e. But,
we know that ∀j. jx2 ≥ jx1 (because x2 ≥ x1). Thus, ∀j < n. bjx1c ≤ bjx2c < djx1e; thus
bjx2c = bjx1c. Therefore,

θA,B = 2p+ q + r − gcd(p, q) +
n−1
max
j=1

(jr mod (q − r)) (42)

Case II.(A.2) is a special case of this one where all catch-up sequences are of length one. In the
worst-case scenario, the catch-up sequence consists of an entire iteration. This occurs when qtA =
ptB ; thus x2 = x1. So, n is the smallest integer that satis�es bnx1c ≥ dnx1e; thus n = q−r

gcd(p,q)

(i.e., an entire iteration). In this case, θA,B = 2p+ q+ r−gcd(p, q) +
q−r

gcd(p,q)
−1

max
j=1

(jr mod (q− r)) =

2(p+ q − gcd(p, q)).

Case (III), pattern (A.3):
The proof follows the same scheme as that of case III.(A.2). Sequence (βj) takes two value;

∀j. βj ∈
{⌊

q−r
r

⌋
,
⌈
q−r
r

⌉}
. Once βj =

⌊
q−r
r

⌋
, an over�ow will propagate from this block to the

subsequent blocks.

a catch up point a catch up point

Figure 42: Case (III) pattern (A.3).

To know how many �rings of B in the catch-up sequence �nish before the start of any �ring of
A, we may look at the enabling pattern of the graph A

tA tB−−−−→B. Since tA ≥ tB and tB > 2r′, this

enabling pattern is
[[
A Bk

]β′j ;A Bk+1
]
where β′j = djx2e − d(j − 1)x2e − 1 with x2 = tB

r′ .

We also put x1 = q
r .

If a catch-up sequence starts at the jth block, then it will end at some block (j + n − 1) if

and only if
n∑
i=1

β′i ≤
j+n−1∑
i=j

βi; i.e., n is the smallest integer that satis�es

dnx2e ≤ d(j − 1)x1 + nx1e − d(j − 1)x1e (43)

If (j− 1)q = ar+ b, then the previous equation can be rewritten as dnx2e+
⌈
b
r

⌉
≤ dnx1 + b

r e.
This implies that n is maximal when b is minimal and not null; i.e., b = gcd(p, q). However, this

Inria

Symbolic Analysis of Data�ow Graphs 47

does not imply that the (j − 1)th block such that (j − 1)r mod r = gcd(p, q) is actually a catch-

up point. To prove that we need to show that 6 ∃m ≤ (j − 1).
m∑
i=1

β′i >
j−1∑

i=j−m
βi; i.e., dmx2e >

d(j−1)x1e−d(j−1)x1−mx1e; which can be rewritten as dmx2e >
⌊
mx1 − gcd(p,q)

r

⌋
+1 = dmx1e.

But, this is impossible because x2 ≤ x1.

If a catch-up point occurs at the jth block, then the value of δi is equal to 2p+β1r+
j∑
i=2

(β1r+

(r−q)) = 2p+(q−r)+
j∑
i=1

(βir+(r−q)) = 2p+(q−r)+r(djx1e−jx1). Its maximum occurs when

jq mod r = gcd(p, q); hence at the catch-up point before the maximal catch-up point; and it is
equal to 2p+ q− gcd(p, q). Furthermore, since any catch-up sequence is a pre�x of the maximal
catch-up sequence, the worst-case occurs inside this maximal sequence. Therefore, θA,B = 2p +

q−gcd(p, q)+(
n

max
j=1

(
j(r − q) + r

j∑
i=1

β′i) + (q − r)
)

= 2p+2q−r−gcd(p, q)+r
n

max
j=1

(djx2e−jx1).

According to Eq. (43), the maximal n is the smallest integer such that dnx2e ≤ bnx1c.
Hence, ∀j < n. djx2e > bjx1c. but, we know that ∀j. jx2 ≤ jx1 (because x2 ≤ x1). Therefore,
∀j < n. djx2e = djx1e. When j = n, we have that djx2e − jx1 ≤ 0; hence it can be excluded
from the equation. So,

θA,B = 2p+ 2q − gcd(p, q)−
n−1
min
j=1

(jq mod r) (44)

In the worst-case scenario, the maximal catch-up sequence consists of an entire iteration.
This occurs when qtA = ptB . Indeed, in this case, we have that x2 = x1. So, n is the smallest
integer that satis�es dnx1e ≤ bnx1c; thus n = r

gcd(p,q) . Therefore, θA,B = 2p + 2q − gcd(p, q) −
r

gcd(p,q)
−1

min
j=1

(jq mod r) = 2(p+ q − gcd(p, q)).

Case (III), pattern (B.2):
Sequence (γj) takes two values; ∀j. γj ∈

{⌊
p−r
r

⌋
,
⌈
p−r
r

⌉}
. Once γj =

⌈
p−r
r

⌉
, an over�ow

will propagate from this block to the subsequent ones. If a catch-up sequence starts at the

jth block, then it will end at some block (j + n − 1) if and only if
n∑
i=1

γ′i ≥
j+n−1∑
i=j

γi with

γ′j =
⌊
jtA
r′

⌋
−
⌊
(j−1)tA
r′

⌋
− 1 where r′ = tB − ktA. So, n is the smallest integer that satis�es

bnx2c ≥ b(j − 1)x1 + nx1c − b(j − 1)x1c (45)

where x1 = p
r and x2 = tA

r′ . If we put (j−1)p = ar+b, then the previous equation can be rewritten
as bnx2c ≥

⌊
nx1 + b

r

⌋
. This implies that n is maximal when b is maximal; i.e., b = r− gcd(p, q).

a catch up point

Figure 43: Case (III) pattern (B.2).

RR n° 8742

48 Bouakaz & Fradet & Girault

We need to prove that the (j− 1)th block such that (j− 1)p mod p = r− gcd(p, q) is actually

a catch-up point. To prove that, we need to show that 6 ∃m ≤ (j − 1).
m∑
i=1

γ′i <
j−1∑

i=j−m
γi;

i.e., bmx2c < dmx1 + gcd(p,q)
r e − 1 = bmx1c. But, this is impossible because x2 ≥ x1.

If a catch-up point occurs at the jth block, then the value of δi is equal to 2(k+1)p+
j∑
i=1

((p−

r)−γir)+(r−p) = p+2q−r+r(jx1−bjx1c). Its maximum occurs when jp mod r = r−gcd(p, q)
(i.e., at the block before the maximal catch-up sequence) and it is equal to p + 2q − gcd(p, q).
Since any catch-up sequence is a pre�x of the maximal catch-up sequence, we have that θA,B =

p+2q−gcd(p, q)+(p−r)+
n−1
max
j=1

(
j(p− r)− r

j∑
i=1

γ′i

)
= 2p+2q−r−gcd(p, q)+r

n−1
max
j=1

(jx1−bjx2c).

According to Eq. (45), the maximal n is the smallest integer such that bnx2c ≥ dnx1e.
Hence, ∀j < n. bjx2c < djx1e. But, we know that ∀j. jx2 ≥ jx1 (because x2 ≥ x1). Thus,
∀j < n. bjx2c < bjx1c. Therefore,

θA,B = 2p+ 2q − r − gcd(p, q) +
n−1
max
j=1

(jp mod r) (46)

In the worst-case scenario (i.e., x2 = x1), n is the smallest integer such that bnx1c ≥ dnx1e.

Thus, n = r
gcd(p,q) . Therefore, θA,B = 2p+ 2q − r − gcd(p, q) +

r
gcd(p,q)

−1
max
j=1

(jp mod r) = 2(p+ q −

gcd(p, q)).

Case (III), pattern (B.3):

Sequence (λj) takes two values; ∀j. λj ∈
{
b r
p−r c, d

r
p−r e

}
. Once λj =

⌊
r
p−r

⌋
, an over�ow

will propagate from this block to the subsequent ones. If a catch-up sequence starts at the

jth block, then it will end at some block (j + n − 1) if and only if
n∑
i=1

λ′i ≤
j+n−1∑
i=j

λi with

λ′j =
⌈

jr′

tA−r′

⌉
−
⌈
(j−1)r′
tA−r′

⌉
. So, n is the smallest integer that satis�es

dnx2e ≤ d(j − 1)x1 + nx1e − d(j − 1)x1e (47)

where x1 = r
p−r and x2 = r′

tA−r′ . If we put (j − 1)r = a(p − r) + b, then the previous equation

can be rewritten as dnx2e +
⌈

b
p−r

⌉
≤
⌈
nx1 + b

p−r

⌉
. This implies that n is maximal when b is

minimal but not null; i.e., b = gcd(p, r). However, this does not imply that the (j − 1)th block
such that (j− 1)r mod (p− r) = gcd(p, q) is actually a catch-up point. To prove that we need to

show that 6 ∃m ≤ (j − 1).
m∑
i=1

λ′i >
j−1∑

i=j−m
λi; i.e., dmx2e > 1 +

⌊
mx1 − gcd(p,q)

p−r

⌋
= dmx1e. But,

this is impossible because x2 ≤ x1.

Figure 44: Case (III) pattern (B.3).

Inria

Symbolic Analysis of Data�ow Graphs 49

If a catch-up point occurs at the jth block, then the value of δi is equal to 2(k + 1)p +

(λ1 − 2)(p− r) +
j∑
i=2

(λi(p− t)− r) = 2q + r + (p− r)(djx1e − jx1). Its maximum occurs when

jr mod (p − r) = gcd(p, q) (i.e., just before the maximal catch-up sequence) and it is equal to
2q+ p− gcd(p, q). Since any catch-up sequence is a pre�x of the maximal catch-up sequence, we

have that θA,B = 2q + p− gcd(p, q) + (r +
n

max
j=1

(
j∑
i=1

(λ′i(p− r)− r)
)

) = 2q + p+ r − gcd(p, q) +

(p− r) n
max
j=1

(djx2e − jx1).

According to Eq. (46), n is the smallest integer such that dnx2e ≤ bnx1c. Hence, ∀j <
n. djx2e > bjx1c. But, we know that ∀j. jx2 ≤ jx1 (because x2 ≤ x1). Thus, ∀j < n. djx1e =
djx1e. When j = n, we have that djx2e − jx1 ≤ 0; hence it can be excluded from the equation.
So,

θA,B = 2p+ 2q − gcd(p, q)−
n−1
min
j=1

(jr mod (p− r)) (48)

�

Proof. (Property 4.3) The minimal bu�er size of G−1 for maximal throughput is θB,A. That is,
the graph B

q p−−→A with a backward edge A
p q−−→B with θB,A initial tokens, achieves the maximal

throughput. Prop. 3.1 ensures that the dual graph (and therefore G) have the same throughput.
This throughput is also maximal since if there exists another number of tokens allowing a better
throughput for G, by duality it would also represent a better throughput for G−1: a contradiction.
Similarly, this number of tokens is minimal since if there exists θA,B < θB,A allowing the same
maximal throughput, by duality θA,B would also achieve a maximal throughput for G−1 which
contradicts the minimality of θB,A. Therefore, the minimal bu�er size for G needed to achieve
maximal throughput is equal to θB,A.

�

Proof. (Property 4.4)

The initial bu�er state of the graph is s0 =

(
d

θ′A,B

)
. Firstly, we prove that there is a live

schedule (which consists of x �rings of A and y �rings of B) that transforms the initial state s0

to state s1 =

(
d mod gcd(p, q)

θ′A,B + d− d mod gcd(p, q)

)
.

Though equation d+xp−yq = d mod gcd(p, q) is a feasible equation [Using Bézout identity],
this does not imply the existence of a live schedule. The schedule is constructed as follows.
Initially, there are σ0 = d tokens in the channel A → B. After �ring B as much as possible,
the number of remaining tokens is σ1 = d mod q. Since the graph is live, A can �re at least
once. Then, actor B is �red as much as possible; and the number of remaining tokens is σ2 =
(σ1 +p) mod q. The process can be repeated in�nitely; and the sequence of number of remaining
tokens is σn = (σn−1 + p) mod q. Since (a mod b + c) mod b = (a + c) mod b, we can put σn =
(d+(n−1)p) mod q. The question now is whether there exists n such that σn = d mod gcd(p, q).
The answer is yes [using BÃ©zout identity]. So, state s1 is reachable from state s0. Therefore, if
the ASAP execution does not achieve the maximum throughput starting from s1, then it cannot
do that starting from s0.

RR n° 8742

50 Bouakaz & Fradet & Girault

Secondly, for a graph with d mod gcd(p, q) on the forward edge, θA,B tokens on the back-
ward edge are still needed to achieve the maximum throughput. This follows immediately from
property B.1. The normalized channel will contain zero token since d mod gcd(p, q) < gcd(p, q).

Hence, we must have θ′A,B + d− d mod gcd(p, q) ≥ θA,B .

�

Property B.1 (Canonical form). Let p′ = p
gcd(p,q) and q′ = q

gcd(p,q) . Replacing any channel

A
p q−−→B with d initial tokens in the graph by a channel A

p′ q′−−−→B with
⌊

d
gcd(p,q)

⌋
initial tokens,

does not alter the ASAP execution of the graph.

Proof. (Property B.1)
The case when gcd(p, q) divides d is trivial. The other case is less evident. Firstly, we know

that the new rates need to have a ratio equal to p′

q′ (since i tends to in�nity, any variation from
this ratio will give eventually di�erent results). So, we take the new rates as np′ and nq′ and we
have to �nd the minimum values of n, x ∈ N such that

∀i.
⌈
iq − d
p

⌉
=

⌈
inq′ − x
np′

⌉
(49)

Eq. 49 means that the data-dependencies created by both channels are the same. But, we have⌈
inq′−x
np′

⌉
=
⌈
iq−d
p + nd−x gcd(p,q)

np

⌉
. Let ri = (iq − d) mod p. We have that ∀i. ri 6= 0 since

gcd(p, q) does not divide d. Thus, Eq. 49 can be rewritten as ∀i. 1 =
⌈
ri
p + nd−x gcd(p,q)

np

⌉
; and

hence ∀i. 0 < ri
p + nd−x gcd(p,q)

np ≤ 1. So, we have
max

i
ri+d−p

gcd(p,q) ≤ x
n <

min
i
ri+d

gcd(p,q) .
But, ∀i. gcd(p, q) divides ri + d [Using Bézout identity]. Furthermore, we have that max

i
ri−

min
i
ri = p− gcd(p, q) [Using Bézout identity]. So,

d+min
i
ri

gcd(p,q) − 1 ≤ x
n <

d+min
i
ri

gcd(p,q) . Therefore,
x
n lies

between two successive integers. Hence, the minimum value of n is 1, while x takes the value
d+min

i
ri

gcd(p,q) − 1.
Since min

i
ri is the smallest integer that makes gcd(p, q) divides d + min

i
ri, we put x =⌊

d
gcd(p,q)

⌋
.

B.3 Multi-iteration latency

Proof. (Property 4.5) The three cases (I), (II) and (III) are those described in the previous
section (see the proof of Property 4.2).

• Case (I): All the �rings of B that have been enabled before the last enabling point in the
iteration (i.e., the end of the last �ring of A) will �nish by that point. According to the enabling
patterns (Fig. 8), the last �ring of A enables dp/qe �rings of B. Hence, ∆A,B = dp/qe tB .

• Case (II): All the �rings of B that have been enabled during one block will �nish by the
beginning of the next block. Hence, we have to consider the last block in each enabling pattern.
There are four cases (A.2), (A.3), (B.2), and (B.3).

In case (A.2), the last block is of the form A Bk;
[
A Bk+1

]d r
q−r e. Therefore, ∆A,B =⌈

r
q−r

⌉
(k + 1)tB −

(⌈
r
q−r

⌉
− 1
)
tA.

Inria

Symbolic Analysis of Data�ow Graphs 51

In case (A.3), the last block is of the form
[
A Bk

]b q−r
r c ;A Bk+1. Thus, ∆A,B = (k+1)tB .

Both cases (A.2) and (A.3) can be uni�ed in Eq. (17).

In case (B.2), the last block is of the form Ak+1 B ;
[
Ak B

]d p−r
r e. Hence, ∆A,B =(⌈

p−r
r

⌉
+ 1
)
tB −

⌈
p−r
r

⌉
ktA.

In case (B.3), the last block is of the form
[
Ak+1 B

]b r
p−r c ;Ak B . Therefore, ∆A,B =

2tB − ktA. Both cases (B.2) and (B.3) can be uni�ed in Eq. (18).

• Case (III): The obtained formulas are:

Case III.

Case III.1. Let r′ = tA − ktB and n = q−r
gcd(p,q)

∆A,B = tA + r′ +
tBr − qr′

gcd(p, q)
+ (tB − r′)

n−1
max
j=0

(
jr′

tB − r′
−
⌊

jr

q − r

⌋)
(50)

Case III.2. Let r′ = tA − ktB and n = r
gcd(p,q)

∆A,B = (k + 1)tB +
tBr − qr′

gcd(p, q)
+ r′

n−1
max
j=0

(⌈
jq

r

⌉
− jtB

r′

)
(51)

Case III.3. Let r′ = tB − ktA and n = r
gcd(p,q)

∆A,B = (k + 1)tA +
pr′ − tAr
gcd(p, q)

+ r′
n−1
max
j=0

(
jtA
r′
−
⌊
jp

r

⌋)
(52)

Case III.4. Let r′ = tB − ktA and n = p−r
gcd(p,q)

∆A,B = tB + r′ +
pr′ − tAr
gcd(p, q)

+ (tA − r′)
n−1
max
j=0

(⌈
jr

p− r

⌉
− jr′

tA − r′

)
(53)

Case (III), pattern (A.2):
Suppose that the last catch-up sequence in the iteration starts at the jth block. Thus, all

the remaining �rings of B are consecutive. Let us put N = q−r
gcd(p,q) . The number of remaining

�rings of A is equal to N − j − 1 +
N∑
i=j

αi, while the number of remaining �rings of B is equal to

k(N − j) + (k + 1)
N∑
i=j

αi. Therefore, ∆A,B = tA − r′(N − j) + (tB − r′)
N∑
i=j

αi. If x1 = r
q−r and

x2 = r′

tB−r′ , then ∆A,B = tA + r′ + tBr−qr′
gcd(p,q) + (tB − r′)((j − 1)x2 − b(j − 1)x1c).

We can rewrite (tB − r′)((j − 1)x2 − b(j − 1)x1c) as
j−1∑
i=1

(tA + αitA)−
j−1∑
i=1

(ktB + αi(k + 1)tB);

i.e., as the di�erence between the sum of execution times of A over the �rst (j− 1) blocks minus
the sum of execution times of B over the same blocks. The maximum of this di�erence occurs
at the last catch-up point before the end of the iteration. Therefore, we can put

∆A,B = tA + r′ +
tBr − qr′

gcd(p, q)
+ (tB − r′)

N−1
max
i=0

(ix2 − bix1c)

RR n° 8742

52 Bouakaz & Fradet & Girault

So, ∆A,B can be upper bounded by tA+r′+ tBr−qr′
gcd(p,q)+(tB−r′)

N−1
max
i=0

(ix2−ix1)+(tB−r′)
N−1
max
i=0

(ix1−

bix1c) = tA+r′+ tBr−qr′
gcd(p,q) +(tB−r′)(N−1)(x2−x1)+(tB−r′) q−r−gcd(p,q)q−r = tA+ (tB−r′)(q−gcd(p,q))

q−r .
Therefore,

∆A,B ≤ tA +
(tB − r′)(q − gcd(p, q))

q − r

In the worst-case scenario (i.e., when qtA = ptB), we have that tB−r′
q−r = tB

q and hence ∆A,B =
tB
q (p+ q − gcd(p, q)).

Case (III), pattern (A.3):
Similarly to case (A.2), we suppose that the last catch-up sequence in the iteration starts

at the jth block and we put N = r
gcd(p,q) . The number of remaining �rings of A is equal to

(N−j+1)+
N∑
i=j

βi, while the number of remaining �rings of B is equal to (k+1)+
N∑
i=j

(kβi+(k+1)).

Therefore, ∆A,B = (k + 1)tB + (N − j + 1)(tB − r′)− r′
N∑
i=j

βi.

If x1 = q
r and x2 = tB

r′ , then ∆A,B = (k+ 1)tB + tBr−qr′
gcd(p,q) + r′(d(j − 1)x1e − (j − 1)x2). Hence,

∆A,B = (k + 1)tB +
tBr − qr′

gcd(p, q)
+ r′

N−1
max
i=0

(dix1e − ix2)

Hence, ∆A,B ≤ (k + 1)tB + tBr−qr′
gcd(p,q) + r′

N−1
max
i=0

(dix1e − ix1) + r′
N−1
max
i=0

(ix1 − ix2). So,

∆A,B ≤ tA + 2tB −
r′

r
(q + gcd(p, q))

Case (III), pattern (B.2):
Suppose that the last catch-up sequence in the iteration starts at the jth block. Let us

put N = r
gcd(p,q) . The number of remaining �rings of A is equal to (N − j)(k + 1) +

N∑
i=j

kγj ,

while the number of remaining �rings of B is equal to (N − j + 1) +
N∑
i=j

γj . Therefore, ∆A,B =

tB − (N − j)(tA − r′) + r′
N∑
i=j

γj . If x2 = tA
r′ and x2 = p

r , then

∆A,B = (k + 1)tA +
pr′ − tAr
gcd(p, q)

+ r′
N−1
max
i=0

(ix2 − bix1c)

So, ∆A,B can be upper bounded by (k+1)tA+ pr′−tAr
gcd(p,q) +r′

N−1
max
i=0

(ix1−bix1c)+r′
N−1
max
i=0

(ix2−ix1).

Hence,

∆A,B ≤ tB +
r′

r
(p− gcd(p, q))

Case (III), pattern (B.3):
Again, we suppose that the last catch-up sequence in the iteration starts at the jth block and

we put N = p−r
gcd(p,q) . The number of remaining �rings of A is equal to (N−j+2)k+

N∑
i=j

λi(k+1),

Inria

Symbolic Analysis of Data�ow Graphs 53

while the number of remaining �rings of B is equal to (N − j + 3) +
N∑
i=j

λi. Therefore, ∆A,B =

tB + (N − j + 2)r′ − (tA − r′)
N∑
i=j

λi. If x2 = r′

tA−r′ and x2 = r
p−r , then

∆A,B = tB + r′ +
pr′ − tAr
gcd(p, q)

+ (tA − r′)
N−1
max
i=0

(dix1e − ix2)

Hence,

∆A,B ≤ tA + tB + r′ − tA − r′

p− r
(r + gcd(p, q))

C Linearization of A
p q−−→B

C.1 Forward linearization

Proof. (Forward lower and upper bound linearizations) We will show only one case, namely
case (I) with pattern (A.2). In this case, since zAtA ≥ zBtB , we have tBs = tB` = qtA

p , t0Bs =

max
i

(fB(i) − itBs), and t0B` = min
i

(fB(i) − itB`). So, to compute the upper bound and the

lower bound linearizations, we need to compute the maximum and the minimum of sequence
(fB(i)− i qtAp) respectively.

Case (I):

Case (I), pattern (A.1):
We have that fB(ik + j) = (i + 1)tA + jtB where 1 ≤ j ≤ k. Hence, t0Bs = max

1≤j≤k
((i + 1)tA +

jtB − (ik + j)tBs) = max
1≤j≤k

(
tA + j(tB − tA

k)
)
. Since tB − tA

k ≤ 0, we have t0Bs = tA + tB − 1
k tA.

We also have t0B` = min
1≤j≤k

(
tA + j(tB − tA

k)
)

= ktB .

Case (I), pattern (A.2):
For a batch of consecutive �rings of B, the maximum of function fB(i) − itBs occurs at the

�rst �ring. The sequence of values that takes this function (for the �rst �ring of each batch) is
illustrated in Fig. 45 where x = tA + tB − tBs , σ1 = tA − ktBs , and σ2 = tA − (k+ 1)tBs . We have
that σ1 = rtA

p > 0 and σ2 = (r−q)tA
p < 0.

Figure 45: Case (I) pattern (A.2): values of fB(i)− itBs .

So, t0Bs = x+ σ1 + max
j

(
jσ1 + σ2

j∑
i=1

αi

)
= x+ σ1 + (q−r)tA

p max
j

(
jr
q−r −

⌊
jr
q−r

⌋)
= x+ σ1 +

tA
p (q − r − gcd(p, q)). Therefore, t0Bs = tA + tB − tA

p gcd(p, q).

RR n° 8742

54 Bouakaz & Fradet & Girault

Similarly, to compute t0B` we need to consider the last �ring in each batch of consecutive �rings

of B. The minimum of the constructed sequence is tB+min{ktB+σ1+min
j

(
jσ1 + σ2

j∑
i=1

αi

)
, (k+

1)tB +min
j

(
jσ1 + σ2

j∑
i=1

αi

)
} = tB +min{ktB +σ1, (k+1)tB}. Hence, t0B` = ktB +min

{
rtA
p , tB

}
.

Case (I), pattern (A.3):
Similarly to case (I) pattern (A.2), we construct the sequence fB(i)− itBs . See Fig. 46 where

x = tA + tB − tBs , σ1 = tA − ktBs = rtA
p > 0, and σ2 = tA − (k + 1)tBs = (r−q)tA

p < 0.

Figure 46: Case (I) pattern (A.3): values of fB(i)− itBs .

Thus, t0Bs = x−σ2 +max
j

(
jσ2 + σ1

j∑
i=1

βi

)
= x−σ2 + rtA

p max
j

(⌈
jq
r

⌉
− jq

r

)
= x−σ2 + tA

p (r−

gcd(p, q)). Thus, t0Bs = tA + tB − tA
p gcd(p, q).

To compute t0B` we need to consider the last �ring in each batch of consecutive �rings of B. So,

t0B` = min

{
ktB + σ1 + min

j

(
jσ2 + σ1

j∑
i=1

βi

)
, (k + 1)tB + min

j

(
jσ2 + σ1

j∑
i=1

βi

)}
= min{ktB +

σ1, (k + 1)tB}. Hence, t0B` = ktB + min
{
rtA
p , tB

}
.

Case (I), pattern (B.1):
We have that fB(i) = iktA + tB . Therefore, t0Bs = max

i
(iktA + tB − itBs) = tB ; while t0B` =

tB + min
i

(iktA − itBs) = tB .

Case (I), pattern (B.2):
The sequence of values of fB(i) − itBs is illustrated in Fig. 47 where σ1 = ktA − tBs and

σ2 = (k + 1)tA − tBs .

Figure 47: Case (I) pattern (B.2): values of fB(i)− itBs .

We have that σ1 = −rtA
p < 0 and σ2 = (p−r)

p tA > 0. Thus, t0Bs = tB+σ2+max
j

(
jσ2 + σ1

j∑
i=1

γi

)
=

tB + σ2 + rtA
p max

j

(
jp
r −

⌊
jp
r

⌋)
= tB + σ2 + tA

p (r − gcd(p, q)). Thus, t0Bs = tA + tB − tA
p gcd(p, q).

Inria

Symbolic Analysis of Data�ow Graphs 55

We also have t0B` = tB + min
j

(
jσ2 + σ1

j∑
i=1

γi

)
= tB .

Case (I), pattern (B.3):
Similarly to case (B.2), the constructed sequence is illustrated in Fig. 48 where σ1 = ktA− tBs

and σ2 = (k + 1)tA − tBs .

Figure 48: Case (I) pattern (B.3): values of fB(i)− itBs .

Therefore, t0Bs = tB − σ1 + max
j

(
jσ1 + σ2

j∑
i=1

λi

)
= tB − σ1 + (p−r)tA

p max
j

(⌈
jr
p−r

⌉
− jr

p−r

)
=

tB − σ1 + tA
p (p− r − gcd(p, q)). Hence, t0Bs = tA + tB − tA

p gcd(p, q).

We also have t0B` = tB + min
j

(
jσ1 + σ2

j∑
i=1

λi

)
= tB .

Case (II)+(III):

pattern (A.2):
As illustrated in Fig. 49, �rings of B in a catch-up sequence are consecutive and the maximum

of fB(i)− itBs occurs at the �rst �ring (since both σ′1 = ktB−ktBs and σ′2 = (k+1)tB−(k+1)tBs

are non-positive). Thus, it is su�cient to look only at the �rst �ring after each catch-up point.
At these points, the value of fB(i) − itBs is equal to that of case (I) pattern (A.2) in which the
maximum occurs when jr mod (q−r) = q−r−gcd(p, q); hence at the beginning of the maximal
catch-up sequence. Hence, Eq. (21) is also valid in this case.

Figure 49: Case (III) pattern (A.2): values of fB(i)− itBs .

Since both σ′1 and σ′2 are non-positive, the minimum of fB(i)− itBs occurs at the last �ring
in a batch of consecutive �rings. Therefore, it is su�cient to look only at the last �ring of each
catch-up sequence. But, as the start of the last Bk of the catch-up sequence is not synchronous
with the start of a �ring of A (unlike in case (I) pattern (A.2)), fB(i) − itBs computed in this
case is larger than or equal to what is computed by the formula of case (I) pattern (A.2);

i.e., ktB + σ1 +
(
jσ1 +

⌊
jr
q−r

⌋
σ2

)
. So, this equation can be taken as a lower bound. However,

since its minimum (ktB +σ1) occurs also in case III.A.2 (see the �rst Bk in Fig. 49), the solution
of case (I) pattern (A.2) is also exact in this case.

pattern (A.3):

RR n° 8742

56 Bouakaz & Fradet & Girault

In case (I) pattern (A.3), the maximum occurs when jq mod r = gcd(p, q); i.e., at the
beginning of the maximal catch-up sequence. Therefore, Eq. (21) is also valid in this case.

Furthermore, the minimum of ktB + σ1 + min
j

(
jσ2 + σ1

j∑
i=1

βi

)
(Case (I) pattern (A.3)) also

occurs in this case (for the �rst Bk). Hence, the solution of case (I) (A.3) is also exact in this
case.

pattern (B.2):
For a batch of consecutive �rings of B, the maximum of fB(i)− itBs occurs at the �rst �ring

while its minimum occurs at the last �ring. This is illustrated in Fig. 50 where σ′1 = tB − tBs =
ptB−qtA

p ≤ 0.

Figure 50: Case (III) pattern (B.2): values of fB(i)− itBs .

In case (I) pattern (B.2), the maximum of fB(i)− itBs occurs when jp mod r = r−gcd(p, q);
i.e., at the beginning of the maximal catch-up sequence. Therefore, Eq. (21) is also valid in this
case.

To compute the minimum, we look only at the last �ring of each batch of consecutive �rings
of B. As a lower bound, we assume that each sub-iteration is a catch-up sequence. Hence,

t0B` = min
j

(
tB + σ2 + γjσ

′
1 +

j−1∑
i=1

(σ2 + γiσ1)

)
.

So, t0B` = tB + min
j

(
σ2 + γjσ

′
1 + (j − 1)tA +

⌊
(j−1)p
r

⌋
σ1

)
. If (j − 1)p = ar + b, then we have

that γj =
⌊
p+b−r
r

⌋
and (j−1)tA+

⌊
(j−1)p
r

⌋
σ1 = btA

p . Therefore, we rewrite the previous equation

as t0B` = tB + σ2 − σ′1 + min
(⌊

p+b
r

⌋
σ′1 + btA

p

)
. Since

⌊
p+b
r

⌋
can take only two values (either

⌊
p
r

⌋
or
⌈
p
r

⌉
) and σ′1 is negative, the minimum occurs either when b = 0 or for the minimum value of

b (denoted b0) that satis�es
⌊
p+b
r

⌋
=
⌈
p
r

⌉
.

So, t0B` = tB + σ2 − σ′1 + min
{⌊

p
r

⌋
σ′1,
⌈
p
r

⌉
σ′1 + b0tA

p

}
. But, b0 = r − (p mod r). Therefore,

fB`(i) =
qtA
p
i+ tB +

p− r
p

tA+
⌊p
r

⌋
(
ptB − qtA

p
)+min

{
qtA − ptB

p
,
r − (p mod r)

p
tA

}
(54)

Actually, simulation shows that this lower bound is precise even when the lengths of catch-up
sequences are longer than one.

pattern (B.3):
In case (I) pattern (B.3), the maximum of fB(i)−itBs occurs when jr mod (p−r) = gcd(p, q);

hence at the beginning of the maximal catch-up sequence. Therefore, Eq. (21) is also valid in
this case.

To compute the minimum, we look only at the last �ring of each batch of consecutive �rings
of B. Let us �rst consider case (II), illustrated in Fig. 51 where σ′1 = tB − tBs < 0 and X is the

smallest integer such that r′+X(r′− tA) ≤ 0 (i.e., the over�ow is caught up). So, X =
⌈

r′

tA−r′

⌉
.

Inria

Symbolic Analysis of Data�ow Graphs 57

Figure 51: Case (II) pattern (B.3): values of fB(i)− itBs .

Since σ′1 is negative, we have that t0B` = min{tB + Xσ′1 − σ1 + min
j

(
jσ1 + σ2

j∑
i=1

λi

)
, tB +

min
j

(
jσ1 + σ2

j∑
i=1

λi

)
+ σ2} = tB + min{Xσ′1 − σ1, σ2}. Therefore,

fB`(i) =
qtA
p
i+ tB + min

{
p− r
r

tA,

⌈
r′

tA − r′

⌉(
ptB − qtA

p

)
+
r

p
tA

}
(55)

Actually, it is possible to show that this equation is equivalent to Eq. (54). According to
that equation and after substituting

⌊
p
r

⌋
by one and p mod r by (p − r) (since p < 2r in case

B.3), we have that t0B` = tB + min{σ2, σ′1 − σ1}. So, we need to prove that min{σ2, Xσ′1 −
σ1} = min{σ2, σ′1 − σ1}. Hence, we have to prove that σ2 ≤ Xσ′1 − σ1 ⇒ σ2 ≤ σ′1 − σ1 and
σ2 > Xσ′1 − σ1 ⇒ X = 1. The �rst one is trivial since σ′1 is negative and X ≥ 1. The second
one is less evident. Suppose that σ2 > Xσ′1− σ1 when X = 2. So, σ2 > 2σ′1− σ1 will imply that

tA > 2r′, and hence X =
⌈

r′

tA−r′

⌉
= 1; i.e., contradiction.

Let us now consider case (III). As a lower bound, we assume that each sub-iteration is a
catch-up sequence. Therefore, the previous equation is a valid lower bound. Actually, simulation
shows that this is a precise bound.

C.2 Backward linearization

Proof. (Property 5.1) The key element to compute the backward lower bound linearization
lies in the following observation, which relates backward linearization to forward linearization.
Fig. 52(a) shows the ASAP schedule of graph G = A

8 5−−→B such that tA = 5, tB = 6 and the
bu�er size is equal to 22. Actor B imposes the highest load. Fig. 52(b) shows the ASAP schedule

of the dual graph G−1 = B
5 8−−→A with the same bu�er size. The producer B in G−1 imposes

the highest load.
As illustrated in Fig. 52(a), there is a prologue phase in the schedule of G, composed of i0

�rings of A and j0 �rings of B, after which the schedule of G is similar to that of G−1. In some
cases, the �rings of A after the prologue can be a little bit delayed compared to those of A in the
dual graph. However, assuming an exact similarity will be an under-approximation of the start
times of A, and hence an over-approximation of the input-output latency.

Recall that a bu�er of size equal to d is modeled by adding a backward edge with d initial
tokens. At the boundary of the prologue phase, the forward edge will contain d tokens while the
backward edge will be empty; and this is exactly the dual graph G−1. The fact that all initial
tokens on the backward edge (i.e., d tokens) are transferred to the forward edge is modeled by
the following equation

i0p− j0q = d (56)

This Diophantine equation is always solvable since the bu�er size must be a multiple of gcd(p, q)5.
5If the bu�er size is not a multiple of gcd(p, q), then it can be diminished without a�ecting the ASAP schedule.

RR n° 8742

58 Bouakaz & Fradet & Girault

cut

same schedule as

(a) Schedule of G

(b) Schedule of G−1

Figure 52: Relation between forward and backward linearizations for G = A
8 5−−→B with tA = 5,

tB = 6 and θA,B = 22.

Let f̃A(i) denote the �nish time of the ith �ring of A in the ASAP schedule of the dual graph
G−1. Hence, we have

∀i ≥ 1. f̃A(i) + sB(j0 + 1) ≤ fA(i+ i0) (57)

which means that the �nish time of the (i+ i0)th �ring of A in G can be under-approximated by
the �nish time of the corresponding �ring of A in the dual graph, i.e., f̃A(i), plus the shift due
to the prologue phase, i.e., sB(j0 + 1).

As described in Section 5.1.2, it is possible to compute a forward lower bound linearization of
the �rings of A in the dual graph G−1 since A is the consumer. We can then put f̃A(i) ≥ itA` + t̃0A` .
Eq. (58) is hence a valid lower bound linearization.

∀i > i0. fA(i) ≥ itA` + t0A` (58)

where t0A` = t̃0A` + sB(j0 + 1)− i0tA` .

Note that Eq. (58) is also a valid lower bound for all i ≤ i0.

D Bu�er Sizing for Acyclic graphs

D.1 Safe upper bounds

Proof. (Property 6.1) For a better understanding, we �rst present the proof for chains. Let G
be the chain {A1

p1 q1−−−−→A2
p2 q2−−−−→A3 → · · · → An}, according to Eq. (5), the minimal period

of G is PG = max
i=1..n

{zAitAi}. The period and therefore the throughput remain the same if the

execution time of each actor Ai is considered to be PG

zAi
. Let G= be the version of G where all

actors have the same load as the maximum load in G. Then G and G= have the same period
and throughput.

If the size of each bu�er Ai
pi qi−−−→Ai+1 in G= is θuAi,Ai+1

= 2(pi + qi − gcd(pi, qi)), then G=

still achieves the maximal throughput. Indeed, size 2(p1 + q1 − gcd(p1, q1)) for the �rst channel
allows both A1 and A2 to run consecutively in the steady state (see Eq. (13)). Similarly, size
2(p2 + q2 − gcd(p2, q2)) for the second channel allows both A2 and A3 to run consecutively, and
so on.

Inria

Symbolic Analysis of Data�ow Graphs 59

Since graph G= with these bu�er sizes achieves the maximal throughput, reducing the exe-
cution times of actors in G= to their original values will never decrease the throughput of the
graph thanks to the monotonicity of the self-timed execution. Hence, graph G with these bu�er
sizes achieves the maximal throughput.

To prove the general case of graphs without undirected cycles, it is su�cient to prove that
there exists a schedule (not necessarily an ASAP schedule) of G= with period equals PG and
where the size of each bu�er A

p q−−→B is equal to θuA,B . In the computed schedule, each actor
never gets idle once it starts.

The proof is based on the Stretch linearization method. For a graph A
p q−−→ B such that

zAtA = zBtB , the upper bound linearization of B gives ∀i. fBu(i) = tBi + tB
q (p + q − gcd(p, q))

(see Eq.(21)). If B starts at sB = tB
q (p + q − gcd(p, q)), then a bu�er with size equal to θuA,B

still allows the graph to achieve the maximal throughput. Indeed, the required bu�er size is
equal to (see Eq. (7)) max

j
(jp− qxj) such that xj is the number of �rings of B that �nish before

the start of the jth �ring of A. Hence xj is equal to the largest non-negative integer such that

(j − 1)tA ≥ fBu(xj). Therefore, xi =
⌊
(j−1)tA−sB

tB

⌋
0
where bxc0 = max(bxc, 0). Hence, the

required size is

max
j

(
jp− q

⌊
jp− (2p+ q − gcd(p, q))

q

⌋
0

)
= θuA,B (59)

Using Eq. (21) transitively, we can compute sAn , the start time of actor An in a chain
A1

p1 q1−−−−→A2 → · · ·
pn−1 qn−1−−−−−−−−→An (all actors impose the same load) after delaying each actor

in the chain as indicated by the linearization method. It follows that

fAu
n
(i) = tAn

i+ zAn
tAn

n−1∑
i=1

pi + qi − gcd(pi, qi)

pizAi

(60)

Note that a size θuAi,Ai+1
for each channel in the chain will allow each actor to �re consecutively

once it started. Hence, the execution will achieve the maximal throughput.
Suppose that there are two chains that start form the same root: chain A1�A2� . . .�An

and chain A1�A′2� . . .�A′n. Delaying each actor as described above still allow to construct the
desired schedule. This solves the problem of trees.

Suppose that there are two channels that enter a join node E: channel C
p q−−→E and channel

D
p′ q′−−−→E. We have sE = max(s1, s2) with s1 = sC + tE

q (p+ q− gcd(p, q)) and s2 = sD + tE
q′ (p

′+

q′ − gcd(p′, q′)). Since the original graph G does not contain any undirected cycle, graphs ↓C
(obtained by restricting G to actor C and all its predecessors) and ↓D are disjoint graphs.

If s2 > s1, then the schedule of graph ↓D imposes a larger delay on the start time of actor
E than graph ↓C. Since we want to compute a schedule where each actor never gets idle once it
starts, we have to delay the start time of the schedule of the �rst graph ↓C by s2−s1 unit of time
in order to synchronize it with the schedule of the second graph. This will prevent the actors
of the �rst graph from being blocked during the extra delay s2 − s1. By using this technique at
each join node, we can compute the desired schedule.

�

Proof. (Property 6.2) As in the proof of Property 6.1, we will construct a schedule of graph
G= such that an actor never gets idle once it starts. Initially, the size of each channel A

p q−−→B
is equal to θuA,B . For both chains, we construct a linear schedule as in the proof of Property 6.1.

RR n° 8742

60 Bouakaz & Fradet & Girault

So, s1 (resp. s2) denotes the start time of the last actor An in the schedule of the �rst (resp.
second) chain.

Since both schedules have the same source A1 and same sink An, we have to synchronize
both schedules such that the �rings of A1 and An in both schedules coincide. Hence, A1 must
start at time zero while An needs to start at time max(s1, s2).

If s2 > s1, the extra delay (s2 − s1) imposed by the second chain will force actors of the �rst
chain to block (if bu�er sizes are not increased), which will �nally decrease the throughput of
the graph.

Let An−1
p q−−→An be the last channel in the �rst chain. Increasing the size of this channel by⌈

s2−s1
tAn−1

⌉
p will allow actor An−1 to �re consecutively during the extra delay (s2 − s1). That is,

the impact of the second chain on the �rst one is avoided.

D.2 Improving the upper bounds

Proof. (Property 6.3) Suppose that the chain follows the descending order: ∀i. zAi
tAi
≥

zAi+1
tAi+1

. The size θA1,A2
allows actor A1 to run consecutively, which is the same behavior

as when there is no constraint on bu�er sizes. Then, the size θA2,A3 allows actor A2 to �re as
soon as it is enabled by actor A1. Actually, if there were no dependence from A1 to A2, the
size θA2,A3

would allow actor A2 to run consecutively. The same reasoning shows that all actors
are �red as it there were no bu�er size constraints. Therefore, the chain achieves its maximal
throughput. The case of ascending order can be easily dealt with using the duality theorem.

E Latency computation for acyclic graphs

E.1 Multi-iteration latency of acyclic graphs

Proof. (Property 7.1) This property follows immediately form the compositionality of the SDF-
to-HSDF transformation, i.e., HSDF(G) =

⋃
g∈G(G)

HSDF(g). Therefore, any maximal path in

the DAG obtained by unfolding HSDF(G) for i iterations will be found in the DAG obtained
by unfolding some graph g ∈ G(G) for i iterations. Indeed, since G does not contain any cycle
(except self-edges), there will be no path from actor A to B in HSDF(G) unless both actors
belong to the same chain.

Inria

RESEARCH CENTRE
GRENOBLE – RHÔNE-ALPES

Inovallée
655 avenue de l’Europe Montbonnot
38334 Saint Ismier Cedex

Publisher
Inria
Domaine de Voluceau - Rocquencourt
BP 105 - 78153 Le Chesnay Cedex
inria.fr

ISSN 0249-6399

	Introduction
	Background
	Application model
	Scheduling policy
	Definitions

	Throughput and Duality
	The parametric graph Ap qB
	Enabling patterns
	Minimum buffer size for maximum throughput of Ap qB
	Multi-iteration latency of Ap qB
	Input-output latency of Ap qB

	Linearization of Ap qB
	Forward linearization of graph Ap qB
	Upper bound linearization
	Lower bound linearization

	Backward linearization of graph Ap qB

	Buffer Sizing for Acyclic graphs
	Safe upper bounds
	Improving the upper bounds
	Exact numerical analysis

	Latency computation for acyclic graphs
	Multi-iteration latency of acyclic graphs
	Input-output latency of chains

	Experiments
	Buffer sizing
	Latency computation

	Related work
	Conclusion
	Throughput and duality
	The parametric graph Ap qB
	Enabling patterns
	Minimum buffer size for maximum throughput
	Multi-iteration latency

	Linearization of Ap qB
	Forward linearization
	Backward linearization

	Buffer Sizing for Acyclic graphs
	Safe upper bounds
	Improving the upper bounds

	Latency computation for acyclic graphs
	Multi-iteration latency of acyclic graphs

