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Abstract: Dataflow Models of Computation (MoCs) are widely used in embedded systems,
including multimedia processing, digital signal processing, telecommunications, and automatic
control. In a dataflow MoC, an application is specified as a graph of actors connected by FIFO
channels. One of the first and most popular dataflow MoCs, Synchronous Dataflow (SDF), provides
static analyses to guarantee boundedness and liveness, which are key properties for embedded
systems. However, SDF and most of its variants lacks the capability to express the dynamism
needed by modern streaming applications. In particular, the applications mentioned above have a
strong need for reconfigurability to accommodate changes in the input data, the control objectives,
or the environment.
We address this need by proposing a new MoC called Reconfigurable Dataflow (RDF). RDF extends
SDF with transformation rules that specify how and when the topology and actors of the graph
may be reconfigured. Starting from an initial RDF graph and a set of transformation rules, an
arbitrary number of new RDF graphs can be generated at runtime. A key feature of RDF is
that it can be statically analyzed to guarantee that all possible graphs generated at runtime will
be consistent and live. We introduce the RDF MoC, describe its associated static analyses, and
present its implementation and some experimental results.
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RDF: Un modèle de calcul flot de données reconfigurable
Résumé :

Les modèles de calcul (MoCs) flot de données synchrones sont très utilisés dans les systèmes
embarqués et les applications multimédia, de traitement du signal, de télécommunication et de
contrôle automatique. Dans ce style de modèle, une application est spécifiée par un graphe
d’acteurs connectés par des liens FIFO de communication. Un des MoCs les plus connus, SDF
(pour Synchronous Dataflow), permet des analyses statiques qui garantissent l’exécution en
mémoire bornée et l’absence d’interblocage, propriétés clés pour les systèmes embarqués. Néan-
moins, SDF (et la plupart de ses variantes) ne permet pas d’exprimer la dynamicité requise par
les applications embarquées modernes. En particulier, ces applications ont souvent besoin de se
reconfigurer pour s’adapter aux changements (par ex., de débit ou de qualité) du flot d’entrée,
des objectifs de contrôle ou de l’environnement.

Afin de répondre à ce besoin, nous proposons RDF (pour Reconfigurable DataFlow) un MoC
qui étend SDF avec des règles de transformations spécifiant comment la topologie du graphe flot
de données peut être reconfiguré dynamiquement. En considérant un graphe SDF initial et un
ensemble de règles de transformation, un nombre arbitraire de nouveaux graphes peuvent être
produits. La principale qualité de RDF est qu’il peut être analysé statiquement pour garantir que
tous les graphes générés dynamiquement s’exécuteront en mémoire bornée et sans interblocage.
Nous présentons le modèle RDF, les analyses statiques associées, sa mise en œuvre et quelques
expérimentations.

Mots-clés : Modèles de calcul; SDF; systèmes reconfigurables; réécriture de graphes; analyses
statiques; exécution en mémoire bornée; vivacité



RDF: A Reconfigurable Dataflow Model of Computation 3

1 Introduction
Dataflow Models of Computation (MoCs) are convenient for multimedia processing and digital
signal processing since they model the application as a network of processing units, which is
very natural for applications in these domains [1]. One of the first and most popular dataflow
MoCs is Synchronous Dataflow (SDF) [2]. In a nutshell, an SDF graph consists of so-called
actors connected by FIFO channels. When it is executed (or fired in SDF terminology), an SDF
actor consumes a fixed number of data (referred as tokens) on each of its input edges, performs
some computation and produces a fixed number of tokens on each of its output edges. These
numbers of consumed and produced tokens are fixed integers, which allows static analyses to
check boundedness and liveness of SDF graphs.

Being able to check statically these properties is a strong advantage of SDF, but it comes at
the price of forbidding dynamic changes of the graph. For this reason, several extensions of SDF
have been explored, such as the parametric production and consumption rates (e.g., PSDF [3],
BPDF [4], PiSDF [5]), allowing limited changes of the topology using scenarios (e.g., SADF [6]) or
the possibility to dynamically enable and disable the edges of the graph (BPDF [4]). The common
points of these variants is to remain statically analyzable [7], a crucial feature for embedded
systems. Other MoCs have gone further along the road towards dynamicity (e.g., BDF [8] or
DDF [9]), but properties such as boundedness or liveness become undecidable.

One aspect of dataflow MoCs that has not been explored is the dynamic changes to the
graph topology. For example, this would be very useful for telecommunication applications (to
allocate more pipelines when the number of IP packets to be handled increases), embedded video
processing (to add filters as the light conditions change), automatic control (to change the control
law depending on stability criteria).

We propose in this paper a variant of SDF called Reconfigurable Dataflow (RDF). RDF
allows dynamic changes to the graph topology thanks to transformation rules (expressed as
graph rewrite rules) and to a controller that applies these rules depending on runtime conditions.
In RDF, the number of graphs that can be produced using transformation rules is potentially
unbounded. This contrasts with SADF where the number of scenarios is fixed and, in practice,
rather small. We show that RDF remains statically analyzable and we describe conditions on
transformations to ensure connectivity, boundedness, and liveness of RDF graphs.

The paper is organized as follows. We start by recalling the basic notions of SDF in Sec. 2
before presenting the RDF MoC in Sec. 3. Sec. 4 describes the conditions on transformations
and static analyses ensuring that RDF reconfigurations preserve connectivity, consistency, and
liveness. We present in Sec. 5 the main features of the implementation of RDF and provide some
experimental results in Sec. 6. Finally, Sec. 7 presents related work and Sec. 8 concludes. The
appendix gathers the proofs of the theorems stated in Sec. 4.

This article extends and revises the work presented in [10]. Since then, RDF has been
equipped with variable arity actors, an implementation has been developed and experiments
have been conducted. Sections 3.3, 5 and 6 are novel and other sections have been extended or
rewritten. Explanations and examples have been added throughout. Additional details can be
found in a PhD thesis [11].

2 Synchronous Dataflow
An SDF graph [2] is a directed graph, where vertices – called actors – are functional units. Actors
are connected by edges, which represent FIFO communication channels. The atomic execution
of a given actor – referred to as actor firing – consumes data tokens from all its incoming edges
(its inputs) and produces data tokens to all its outgoing edges (its outputs). The number of
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4 Pascal Fradet, Alain Girault, Ruby Krishnaswamy, Xavier Nicollin, Arash Shafiei

tokens consumed (resp. produced) on a given edge at each firing is called the consumption (resp.
production) rate. An actor can fire only when all its input edges contain enough tokens (i.e., at
least the number specified by the consumption rate of the corresponding edge). In SDF, all rates
are non-null integers known at compile time.

Formally, an SDF graph is defined by a 4-tuple G = (V,E, ρ, ι) where:

• V is a finite set of actors; among those, we distinguish source actors that have no incoming
edges, and sink actors that have no outgoing edges;

• E is a finite set of directed edges: E ⊆ V × V ;

• ρ : E → N∗ × N∗ is a function that returns for each edge a pair (x, y), where x is the
production rate of its origin actor (producer) and y is the consumption rate of its destination
actor (consumer);

• ι : E → N is a function that returns for each edge the number of its initial tokens (possi-
bly 0).

When necessary, we will use VG instead of V to refer to the set of vertices of graph G (and
similarly for the other constituents).

Fig. 1 shows a simple SDF graph G1 with 5 actors. The edge between A and B has a
production rate of 2 and a consumption rate of 3.

I1 A1 B1 C1 D1
1 1 2 3 1 1 2 1

Figure 1: The SDF graph G1.

Each edge carries zero or more tokens at any moment. The state of a dataflow graph is the
vector of the number of tokens present on each edge. The initial state of a graph is the vector
of the number of initial tokens on its edges. For instance, the initial state of G1 is the vector
[0; 0; 0; 0].

The minimal iteration of an SDF graph is a smallest set of firings of its actors such that
(1) all actors fire at least once, and (2) the graph is returned to its initial state. For instance,
the minimal iteration of G1 is (I3, A3, B2, C2, D4), where Xi means that X is fired i times. We
note solG(X) the number of firings of X in the iteration of the graph G, or sol(X) when no
ambiguity can arise. The basic repetition vector ~Z indicates the number of firings of actors per
minimal iteration. For G1, it is ~ZG1

= [3, 3, 2, 2, 4] assuming the actor ordering [I, A,B,C,D]).
An SDF graph is said to be consistent if it admits a repetition vector. The repetition vector

is obtained by solving a system of balance equations. Each balance equation of that system
corresponds to an edge of the graph. The edge X p q−→ Y is associated with the balance equation
sol(X).p = sol(Y ).q, which states that all produced tokens during an iteration must be consumed
within the same iteration. The graph is consistent if and only if its system of balance equations
admits a non-null solution [2], which is easy to check statically. An important advantage is that
a consistent graph can be executed infinitely with bounded memory: all produced tokens are
eventually consumed.

The next step is to determine a static order of the actors’ firings, a schedule, in which the
firings in the repetition vector can be executed without deadlock. It is obtained by an abstract
computation where an actor is fired only when it has enough input tokens. Such a schedule
ensures that the graph returns to its initial state and that each actor is eventually fired. A
consistent SDF graph is said to be live if it admits a schedule [2].

Inria



RDF: A Reconfigurable Dataflow Model of Computation 5

Among all admissible schedules, we distinguish single appearance schedules (SAS)1 where,
once factorized2, each actor appears exactly once. For instance, G1 admits exactly one SAS:
{I3;A3;B2;C2;D4}.

An acyclic SDF graph always admits an SAS, while a cyclic SDF graph admits an SAS if and
only if each cycle includes at least one saturated edge, that is, an edge (X,Y ) containing enough
initial tokens to fire Y at least sol(Y ) times. In the context of this paper, we only consider SAS,
but RDF can also operate with general schedules.

An SAS can be executed on a single-core chip or on a multi-core chip. On a single-core, it
suffices to fire the actors sequentially as specified in the SAS. On a multi-core, each actor is first
allocated to a core, and then on each core an ordering is chosen among all the actors allocated
to it. In this paper, we consider As Soon As Possible (ASAP) scheduling, where each actor X is
embedded in a private thread act_X consisting of the periodic execution loop presented in Fig. 2.

thread act_X {
while (true) {

consume_input_tokens();
fire();
produce_output_tokens();

}
}

Figure 2: Periodic execution loop for actor X.

The consume_input_tokens instruction blocks when (at least) one of the input buffers of X
does not contain enough tokens, while the produce_output_tokens instruction blocks when (at
least) one of the output buffers of X is full. On each core, one such thread actor_X is started
for each actor X allocated to it.

This multi-threaded ASAP execution guarantees that the graph can be executed in bounded
memory and without deadlock, provided that each buffer has at least the minimal size required for
liveness (which is easy to compute statically [13]). The dataflow semantics guarantees functional
determinism whatever the order in which the actors are fired [1]. Moreover, provided enough
cores and sufficiently large buffers, ASAP scheduling permits to achieve the maximal throughput.

3 RDF: A Reconfigurable Dataflow MoC

The RDF MoC extends SDF with transformation rules, actor types, and explicit ports. A trans-
formation rule describes how the current dataflow graph is modified. Actors and communication
links can be moved, removed, and/or added. Adding new actors motivates the introduction of
actor types. A type can be seen as a class of actors having the same functionality. Types allow
transformation rules to add new actors in the graph as new type instances. For instance, a video
application may require the dynamic introduction of several noise filter actors at different places
in the graph. This may be done by introducing new actors in the graph, instances of the noise
filter type. Transformation rules and type instances allow the number of actors and possible
RDF graphs to be unbounded. RDF also introduces explicit actor ports to allow transformation
rules to select specific edges more easily. For instance, ports allow two outgoing edges of the
same actor and bearing the same producing rate to be discriminated.

An RDF application is specified as a pair (G,C) where:

1Also called flat SASs in [12].
2Any sequence X; ...;X of n consecutive firings of X is replaced by Xn.

RR n° 9439



6 Pascal Fradet, Alain Girault, Ruby Krishnaswamy, Xavier Nicollin, Arash Shafiei

• G is a dataflow graph, basically an SDF graph where each actor is equipped with a type;

• C is a reconfiguration controller, which consists of a set of transformation rules that specifies
how an RDF graph may be transformed, and of a reconfiguration program using conditions
to specify when the transformation rules should be applied.

An RDF application starts by executing its initial graph, until a condition is true and some
transformation rules are applied, resulting in a new graph that is executed, and so on and so
forth. The transformation rules allow a potentially infinite number of graphs to be produced
dynamically from the initial graph.

3.1 RDF graph

RDF graphs extend SDF graphs with a set of actor types T and a notion of ports. Formally, an
RDF graph is defined as a tuple G = (T, V,E, ι) where

• T ⊆ IdT ×N : ki ×N : ko × ([1, ki]→ N∗)× ([1, ko]→ N∗) is a finite set of types consisting
of a unique identifier, a number of input and output ports, and two functions returning
the rate associated with input and outpout ports respectively. A type t = (i, ki, ko, fi, fo)
is composed of

– an identifier i (a capital letter in this article);

– two integers ki and ko denoting its numbers of input and output ports respectively;

– two functions fi and fo returning the rate associated with their input and output port
argument respectively.

The auxilary functions idof , nbin, nbout , finr , and foutr return respectively the identifier,
number of input ports, number of output ports, input rate function, and output rate
function of their type argument. For instance, finr(T )(nbin(T )) returns the rate of the last
input port of type T ;

• V ⊆ T × N∗ is a finite set of actors, each one consisting of a type (τ ∈ T ) and an index
(i ∈ N∗). In the following, we use capital letters for type identifiers and we denote an actor
of type X and index i by Xi. The functions typeof and indof return the type and index of
their actor argument. Among actors, we distinguish source actors that have no incoming
ports, and sink actors that have no outgoing ports;

• E ⊆ (V ×N∗)× (V ×N∗) is a finite set of directed edges. The edge ((a, i), (b, j)) connects
the ith output port of actor a to the jth input port of actor b. We will also denote an edge
between a and b in the graph G by a −→

G
b and the fact that actors a and b are connected

in G (i.e., a −→
G

b or b −→
G

a ) by a←→
G

b ;

• ι : E → N is a function that returns, for each edge, the number of its initial tokens
(possibly 0).

We consider only well-formed graphs, that is, graphs properly connected and typed. In RDF,
we check that initial graphs are well-formed and that transformations preserve well-formedness.
Formally,

Definition 1 (Well-formedness). An RDF graph is well formed if it is (weakly) connected, all
its actors are fully linked, and all its edges are valid.

Inria



RDF: A Reconfigurable Dataflow Model of Computation 7

An RDF graph G is (weakly) connected if there exists an undirected path between any two
actors a and a′, which we write a ∗←→

G
a′. Formally,

Definition 2 (Graph connectivity). An RDF graph G = (T, V,E, ι) is (weakly) connected
if ∀(a, a′) ∈ V × V, a

∗←→
G

a′

Actors are fully linked if all their ports belong to a unique edge. Formally,

Definition 3 (Actors fully linked). An RDF graph G = (T, V,E, ι) has its actors fully linked if

∀b ∈ V, ∀ 1 ≤ i ≤ nbin(typeof (b)), ∀ 1 ≤ o ≤ nbout(typeof (b)),
∃!(a, o′) ∈ V × N∗, ((a, o′), (b, i)) ∈ E ∧ ∃!(c, i′) ∈ V × N∗, ((b, o), (c, i′)) ∈ E

Edges are valid if they connect actors only through ports permitted by the actors’ type.
Formally,

Definition 4 (Edge validity). An RDF graph G = (T, V,E, ι) has valid edges if

∀((a, o), (b, i)) ∈ E, 1 ≤ o ≤ nbout(typeof (a)) ∧ 1 ≤ i ≤ nbin(typeof (b))

To facilitate the reading, RDF graphs are often represented as in SDF with implicit ports
and explicit rates. The graph of Fig. 1, can be seen as an RDF graph where S1, A1, B1, C1, and
D1 are actors with index 1 and types S, A, B, C, and D respectively. It has the same repetition
vector and schedules as its SDF counterpart.

Another representation closer to the formal definition, with explicit ports, is given in Fig. 3.

I1 A1 B1 C1 D1

1○ 1○ 1○ 1○ 1○ 1○ 1○ 1○

with foutr(I)(1) = 1,finr(A)(1) = 1, foutr(A)(1) = 2,finr(B)(1) = 3, foutr(B)(1) = 1, . . .

Figure 3: The RDF graph corresponding to G1 with explicit ports.

3.2 Reconfiguration Controller
The RDF controller specifies when and how the dataflow graph is modified. The basic operations
are transformation rules which are specified as graph rewrite rules. The reconfiguration program
combines these transformation and specifies the conditions for their application. We present
these two components in turn.

3.2.1 Transformation rules

An RDF transformation rule is a graph rewrite rule of the form

tr : lhs V rhs,

which selects a sub-graph matching the pattern lhs, and replaces it by the graph specified by
rhs. We use the set-theoretic approach of [14] to graph rewriting: the terms lhs and rhs are seen
as non empty sets of edges possibly with pattern variables matching either types, actor indices,
or ports.

Pattern variables require us to introduce the set Vt of type variables, the set Vi of actor index
variables, and the set Vp of port variables. With these sets, we define:

RR n° 9439



8 Pascal Fradet, Alain Girault, Ruby Krishnaswamy, Xavier Nicollin, Arash Shafiei

• the set of pattern nodes as Ṽ ⊆ (T ∪ Vt)× (N∗ ∪ Vi), and

• the set of pattern edges as Ẽ ⊆ (Ṽ × (N∗ ∪ Vp))× (Ṽ × (N∗ ∪ Vp)).

As it is standard in programming languages, pattern matching amounts to finding a variable
substitution identifying the pattern with a sub-term. In RDF, a pattern lhs matches a sub-graph
of G if there is a substitution σ mapping types (resp. indices, ports) variables to actual types
(resp. indices, ports) such that the set of edges σ(lhs) belongs to G: i.e., σ(lhs) ⊆ G. The rule
removes the matched sub-graph and replaces it by rhs after substituting its variables by their
matches, i.e., σ(rhs).

In all examples, we note α, β, . . . the pattern variables matching types, x, y, . . . the pattern
variables matching indices, and r1, r2, . . . the pattern variables matching rates. For instance,
Ax matches any actor of type A and αx matches any actor.

For the same reasons as we represent graphs with rates instead of explicit ports, we use
patterns matching rates instead of ports. In the case of ambiguity, we may use explicit port
index (such as 1○ in Fig. 3) or port variables p1, p2, . . . in transformation rules.

As an example, consider the transformation rule tr1 depicted in Fig. 4.

αx By βz
r1 3 1 r2

tr1
V αx Et βz

r1 3 1 r2

Figure 4: The transformation rule tr1.

The terms αx and βx matches any actor of any type, whereas the term By matches any actor
of type B.

When applied to the graph of Fig. 1 (seen as an RDF graph), the lhs of the rule matches the
sub-graph

A1
2−→3 B1

1−→1 C1,

and yields the substitution

σ = {α 7→ A, x 7→ 1, r1 7→ 2, y 7→ 1, r2 7→ 1, β 7→ C, z 7→ 1}.

The rule tr1 replaces the actorB1 by a new actor of type E. When a transformation introduces
a new actor, its index is chosen so that the actor’s name is fresh. Since no E actor occurs in G1,
the variable t in tr1 can be instantiated with index 1. As a result, tr1 transforms the RDF graph
G1 of Fig. 1 into the RDF graph G2 of Fig. 5.

I1 A1 E1 C1 D1
1 1 2 3 1 1 2 1

Figure 5: The resulting graph G2 = tr1(G1).

The numbers of incoming and outgoing ports must be consistent with types. Actors occurring
in the lhs and rhs must have the same number of edges in both parts (Cond. (C1)). Actors
occurring only in lhs or rhs must be fully linked: they must have explicit types and all their
ports connected (Conds (C2) and (C3)). The following conditions must be respected by each
transformation rule:

• (C1) Actors occurring in both sides must have the same edges and ports connected in the
rhs and in the lhs. For an actor with an unknown type (i.e., denoted by a pattern variable),
since it was fully linked before the transformation, it remains so afterwards.
In tr1, both αx and βz keep the same edges and rates in lhs and rhs.

Inria



RDF: A Reconfigurable Dataflow Model of Computation 9

• (C2) An actor occurring in the lhs but not in the rhs is suppressed. To be valid, all incoming
and outgoing edges of that actor should appear in the lhs. Otherwise, suppressing an actor
would create dangling edges. To verify this point, we request the type of removed actors
to appear explicitly in the rule. Indeed, when the type is known, the numbers of incoming
and outgoing edges are also known and the rule can be checked statically.

In tr1, the actor that is suppressed has type B and has only one ingoing and outgoing edge.
It must be checked that actors of type B have only one ingoing and outgoing edges.

• (C3) When an actor index variable occurs in the rhs but not in the lhs, it represents a new
actor (instance of the given type) that must therefore be created. We enforce the type of
such actors to be explicit and check that it is fully linked.

In tr1, Et represents a new actor with an explicit type E. It must be checked that actors
of type E have only one ingoing and outgoing edges.

These conditions are easily checked syntactically on each transformation. Additional con-
straints are required to guarantee that transformations preserve connectivity, consistency, and
liveness. They are presented in Sec. 4.

RDF transformations can be formalized by representing a dataflow graph G as set of edges,
and the rule tr : lhs V rhs applied to G as the set rewrite rule

X ∪ σ(lhs)︸ ︷︷ ︸
G

V X ∪ σ(rhs)︸ ︷︷ ︸
G′ = tr(G)

. (1)

The graph G is the set of edges X∪σ(lhs) where σ is the substitution returned by the pattern
matching. The resulting graph G′ = tr(G) is G where the sub-graph σ(lhs) has been replaced by
σ(rhs). The context X (i.e., the graph or set of edges “surrounding” the matched part) remains
unchanged.

Initial tokens raise semantic issues. For instance, if the rhs of a transformation rule contains
initial tokens, we would need a way to specify the origin or values of these tokens. To keep
things simple, we allow the initial RDF graph to have edges with initial tokens but impose that
transformations do not manipulate them. In other words, an edge with initial tokens cannot be
matched nor created.

3.2.2 Reconfiguration programs

RDF transformation rules may be composed freely. The controller describes how to compose
transformations into reconfiguration programs and when to apply these programs. A controller is
specified by a sequence of pairs “(condition : reconfiguration program)” separated by semicolons:

[cond1 : P1; . . . ; condn : Pn].

If a condition condi is satisfied, then the controller stops the execution of the RDF graph
at the end of the iteration, applies the transformations specified by Pi, and finally resumes the
execution. Only one pair (condi, Pi) is selected. If the conditions are not mutually exclusive,
the first true condition in the sequence is chosen. Typically, the conditions depend on dynamic
non-functional properties (e.g., buffer size, throughput, quality of the input signal, etc.). The
language for describing these non-functional properties is not part of the MoC nor is it in the
scope of this paper.

The simplest option for specifying reconfiguration programs is to consider them made of a
single transformation. This is the language we used to perform our experiments (see Sec. 6).

RR n° 9439
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Many other, more expressive, options are possible. We describe in the following one such option.
A reconfiguration program can be a combination of transformation rules with the following
syntax:

P ::= tr Transformation rule
| P1 B P2 : P3 Choice
| P ∗ Iteration

The application of a transformation rule on a given RDF graph G is said to be successful
if it has matched a sub-graph of G. By extension, an application of a program is considered
successful if at least one of the transformation rules it tries to apply has been successful. The
choice construction P1 B P2 : P3 tries to apply P1; if P1 was successful, then P2 is applied next,
otherwise P3 is applied. The iteration P ∗ applies P as long as it is successful. We can also write
P1;P2 for the program P1 B P2 : P2, which try to apply P1 then P2 in sequence regardless of the
success or not of P1.

To ensure that a controller always preserves connectivity, consistency, and liveness of the
dataflow graphs it transforms, it is sufficient to verify that the initial graph satisfies these prop-
erties and that each individual transformation rule preserves them. This will be the topic of
Sec. 4.

This expressive language raises another issue, however: an iteration P ∗ may loop infinitely.
To guarantee the termination of such iterations, a solution could be to enforce that P decreases
some measure (e.g., the number of actors of type T in the graph).

3.3 Variable arity actors
An important application of RDF is to permit dataflow programs whose parallelism level can
vary dynamically when needed by the environment (for instance according to some performance
measure). Consider the dataflow graph G3 of Fig. 6 that applies a filter F1 on a flow of image
macroblocks.

I1 F1 O1
1 1 1 1

Figure 6: The RDF graph G3 with a single computing line.

When the resolution of the images in the video flow increases, it might be needed to increase
the computational power and change the graph G3 into the new graph G4 of Fig. 7.

I1 S1

F1

F2

J1 O1
1 2

1
1

1
1

1
1

1
1

2 1

Figure 7: The RDF graph G4 with two computing lines.

In Fig. 7, the split actor S1 reads two image blocks and distributes them towards the two
filters F1 and F2, while the join actor J1 reads the two resulting blocks and passes them to
actor O1. Provided enough hardware computing resources, the actors F1 and F2 can be fired in
parallel and the throughput is thus improved compared to the initial RDF program.

Should a third computation line be needed, one would have to introduce new split and join
actors so as to distribute and read the three blocks, as shown in Fig. 8. The split actor S′1
now reads three image blocks and distributes them to its outputs, so its type differs from that

Inria



RDF: A Reconfigurable Dataflow Model of Computation 11

I1 S′1

F1

F2

F3

J ′1 O1
1 3

1

1

1 1

1

1

1

1
1 1

1

1

3 1

Figure 8: The RDF graph G5 with three computing lines. The split actor S′1 differs from the
split actor S1 from Fig. 7.

of S1. Similarly, the type of the join actor J ′1 differs from that of J1. The graphs G4 and G5

illustrate the complexity of modifying the graph topology to increase (and reduce) dynamically
the number of computing lines:

• It requires an arbitrary number of split actor types like that of S1 in Fig. 7 and S′1 in Fig. 8
to distribute an arbitrary number of tokens read from its single input to all its outputs
(and similarly for the join actor types like that of J1 and J ′1).

• It requires an arbitrary number of transformation rules, because the rule used to increase
the number of computing lines from 1 to 2 differs from the rule used to increase the
number of computing lines from 2 to 3 (and similarly for the rules decreasing the number
of computing lines).

To solve these issues, RDF provides a specific type named V for variable arity actors, shown
in Fig. 9. To the best of our knowledge, RDF is the first dataflow MoC to offer such a variable
arity actor.

V

o
...
o

i
...

i

i times o times

Figure 9: The variable arity actor type V (most general form).

When an actor of type V has i incoming edges and o outgoing edges, the consumption rate on
each of its incoming edges is o and the production rate on each of its outgoing edges is i. At each
firing, such an actor consumes and produces i · o tokens. It does not perform any computation;
it just reads tokens from its input ports and distributes them evenly on its output ports.

The variable arity actor Vk is associated with two unique parameters: ik representing both the
input rates and the number of output ports, and ok representing both the output rates and the
number of input ports. Solving the system of balance equations is performed symbolically with
those parameters, as in parametric variants of SDF [7]; the resulting iteration is also parametric.
In this way, consistency is checked for all possible values of parameters.

Whenever a transformation adds or removes one or more edges of a variable arity actor Vk,
the following modifications must occur:

• the number of ports nbin(Vk) and nbout(Vk) are updated;

• the value of the two parametric rates ik and ok are updated such that ik = nbout(Vk) and
ok = nbin(Vk);
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• ports are implemented as lists and adding a new edge involves adding a new port at the
end of the list, while removing the edge of the `th port makes the `+1th port become the
`th and so on; finally, the functions finr and foutr are updated such that:

– ∀1 ≤ ` ≤ ik,finr(Vk)(`) = ok,

– ∀1 ≤ ` ≤ ok, foutr(Vk)(`) = ik.

To allow this updating, the functions nbin, nbout , finr , and foutr must now take as their
first argument an actor instead of a type. Indeed, before introducing variable arity actors,
all the actors of a given type T had exactly the same number of input and output ports.
This is not the case anymore with variable arity actors.

Variable arity actors entail additional conditions on transformation rules. Indeed, suppressing
a variable arity actor would require to select all its edges, the number of which cannot be
statically known. Creating a new variable arity actor is also difficult since it involves introducing
new parameters that play a role in the solutions of connected actors. We therefore enforce the
following new condition on rules:

• (C4) Variable arity actors cannot be suppressed nor be created by transformation rules.
All variable arity actors must appear in the initial graph.

Furthermore, a variable arity actor Vk is fully linked if (i) the value of its parameter ik
(resp. ok) is equal to the number of its outgoing (resp. incoming) edges, and (ii) it has at least
one incoming and one outgoing edge. Condition (i) is enforced by construction, as explained
above. To enforce Condition (ii) for all possible RDF graphs generated dynamically, we add the
following new condition:

• (C5) If a transformation rule removes an incoming (resp. outgoing) edge from a variable
arity actor, then this actor must occur in the rhs with still at least one incoming (resp.
outgoing) edge.

The rule tdec in Fig. 11 removes a line of treatment and an outgoing and incoming egde of
two variable arity actors (S1 and J1) while respecting that constraint.

Two special cases of this generic type V are particularly useful: the split actor type S and
the join actor type J , depicted in Fig. 10 (and already seen in Fig. 11). The split actor type
S has a single input with rate q, which is also the number of its outputs whose rates are 1. In
other words, S is a special case of V where p = 1. The join actor type J has p inputs with rates
1 and a single output whose rate is p. In other words, J is a special case of V where q = 1. For
an actor Sk (resp. Jk), we note its corresponding parameter sk (resp. jk). We only use splits and
joins as variable arity actors in our examples and experiments.

S
s

1
...

1

s times

(a)

J

1
...

1

j
j times

(b)

Figure 10: Variable arity actor types: (a) split S and (b) join J .

Other form of variable arity actors might be considered. Consider for example an actor Sum
whose functionality consists in summing a collection of integer inputs. Such an actor could
be represented as a variable arity actor returning the sum of of its inputs on its single output
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whereas its number of inputs could be changed freely by transformations. Actually, any actor
the functionality of which is defined on a list of inputs and/or outputs could be implemented as
this form of variable arity actor. This generalization is presented in details in [11].

3.3.1 A complete RDF application

Fig. 11 shows an RDF application, with its initial graph G6, two transformation rules trinc and
trdec, and a controller using two conditions for reconfigurations. This RDF application uses
two variable arity actors, namely the split actor S1 and the join actor J1. The reconfiguration
controller applies the transformation rule trinc as soon as the throughput of the last actor P1

drops below a threshold value equal to 20, and the transformation rule trdec as soon as the
number of tokens present in the buffer from V1 to S1 drops below a threshold value equal to 10
and there are few data to process.

Initial dataflow graph G6

Controller

Transformation rules

Reconfigurations

V1 S1 C1 J1 O1
1 s1 1 1 1 1 j1 1

S1 Cx J1
1 1 1 1 trinc

V S1

Cx

Cw
J1

1 1

1 1

1 1

1 1

S1

Cx

Cw
J1

1 1

1 1

1 1

1 1

trdec
V S1 Cx J1

1 1 1 1

[ throughput(O1) < 20 : trinc;

occupancy(V1, S1) < 10 : trdec ]

Figure 11: An adaptive video processing application.

Applying trinc twice to G6 yields the graph G7 shown in Fig. 12, with j1 = 3 and s1 = 3,
to be compared with the previous graph G5 from Fig. 8. Rule trinc creates a new output port
for actor S1 (and similarly for J1). This is only allowed for variable arity actors of course. As
explained above, the ports are implemented as lists and the functions nbin, nbout , finr , and foutr
must be updated each time an input or output port is created or suppressed by a transformation
rule. The parametric iteration for the initial dataflow graph of Fig. 11 is (Is11 S1F1F2J1O

j1
1 ).

When the transformation trinc is applied, the values of the parameters are updated and are
propagated to all the actors with a number of firings per iteration depending on them (here, I1
and O1).

This RDF application implements an adaptive video processing application performing edge
detection on a video stream with variable image quality. It will be used as a case study in Sec. 6.

Note that the following initial graph
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I1 S1

F1

F2

F3

J1 O1
1 s1

1

1

1 1

1

1

1

1
1 1

1

1

j1 1

Figure 12: The RDF graph G7 = trinc(trinc(G6)); we have j1 = 3 and s1 = 3.

I1 S1 F1 J1 O1
1 s1 1 1 1 1 j1 1

1 1

would be inconsistent since the new edge between I1 and O1 requires that the parameters j1 and
s1 to be equal. Event if that condition is satisfied in the initial graph, it might be invalidated by
some transformation (e.g., adding an edge between S1 and a new sink actor). A simple extension
would be to allow consistency checking (see Sec. 4.2) to produce such additional constraints and
to statically check that all the transformations respect these constraints. In the following, we
do not consider this extension and ensure consistency by checking that transformations do not
change the solutions of existing actors.

4 RDF static analyses
The ability to guarantee statically consistency and liveness is of paramount importance for em-
bedded systems. For this reason, improving the expressivity and dynamicity of SDF should
not come at the price of losing these static analyses. This is the main technical issue of RDF.
We present in this section how well-formedness, consistency, and liveness can be analyzed and
guaranteed for RDF applications.

Of course, we want to guarantee that these three properties hold for all possible RDF graphs
a given RDF application can generate at run-time. Our key contribution here is to show that it
is sufficient:

• to check these three properties on the initial graph. SDF static analyses can be reused for
that matter;

• to check that each individual transformation rule preserves these properties, that is to say,
assuming that the considered property holds on the (unknown) source graph, it still holds
on the transformed graph.

An RDF application is said to be valid if all its transformation rules satisfy these checks.
Therefore, a valid RDF application transforms, produces, and runs only well-formed, consistent,
and live graphs. We present in turn the conditions that a transformation rule must satisfy to
preserve these three properties.

4.1 Well-formedness
We show that a well-formed graph (see Def. 1) remains so after a transformation respecting the
previous conditions (Ci). We have to show that all actors remain fully linked, all edges remain
valid, and the graph remains weakly-connected.
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All actors in the transformed graph remain fully linked since:

• Cond. (C1) ensures that all the other actors of the rhs keep the same ports connected, so
they remain fully linked.

• Cond. (C3) ensures that newly introduced actors are fully linked.

• By construction, all the ports of a variable arity actor remain connected after a transfor-
mation (see Sec. 3.3).

• Finally, all the actors not present in the transformation rule remain untouched in the graph.

All edges in the rhs (new and remaining) can be checked to connect valid ports. Cond. (C2)
ensures that removing an actor cannot create dangling edges. Therefore, all edges occurring in
the graph remain valid.

SDF graphs are always connected, that is, there always exist an undirected path between
every pair of vertices. In contrast, an RDF transformation rule removing edges could easily
transform a connected graph into several disconnected ones. Theorem 1 states that, in order to
guarantee that connectivity is preserved by the transformation rule tr : lhs V rhs, it is sufficient
to ensure that rhs is a connected (pattern) graph (x ∗←→

rhs
y states that there is an undirected

path between x and y in rhs). Note that, in contrast to rhs, lhs may be disconnected, and
therefore match disconnected subgraphs.

Theorem 1. Let G be a weakly connected graph and tr : lhs V rhs be a transformation rule
such that

∀x 6= y ∈ rhs, x
+←→
rhs

y (Cconn)

then tr(G) is a weakly connected graph.

The proof of Theorem 1, as well as the proofs of Theorems 2 and 3, can be found in the
appendix.

Well-formedness follows from the preservation of complete linkage, validity, and connectivity.

Corollary 1. Let G be a well-formed graph and tr : lhs V rhs be a transformation rule satisfying
the syntactic constraints of Sec.3.2.1 and (Cconn), then tr(G) is a well-formed graph.

Clearly, the transformation tr1 in Fig. 4 on page 8 preserves connectivity, but the rule tr2
shown in Fig. 13 is invalid because its rhs is not a connected graph.

Ax By
r1 r2

tr2
V Ax Mz Nw By

r1 1 1 r2

Figure 13: The invalid transformation rule tr2.

Applying this transformation to G1 of Fig. 1 would produce two disconnected graphs.

4.2 Consistency
The graph resulting from a transformation rule must remain consistent, meaning that its system
of balance equations should have non-null solutions. Our condition for consistency, stated in
Theorem 2, enforces a stronger property: all actors remaining in the transformed graph must
keep their original solution.
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For each transformation rule tr : lhs V rhs, we check that both pattern graphs lhs and rhs are
consistent and we compute the (possibly symbolic) solutions of their actors. Actors occurring
both in lhs and rhs should have exactly the same solution. New actors (i.e., occurring only
in rhs) only need to have a non-null solution, which is ensured by the fact that rhs must be
consistent.

Theorem 2. Let G be a consistent graph and let tr : lhs V rhs be a transformation rule such
that lhs and rhs are consistent and

∀x ∈ lhs ∩ rhs, sol lhs(x) = solrhs(x) (Csol)

then tr(G) is consistent.

Note that solpat(x) denotes the minimal symbolic solution (see [15]) of x in the system of
equations corresponding to the pattern graph pat. If pat is a pure SDF graph, then this solution
is an integer. If pat has pattern variables matching rates, then the solution can also be computed
and is, in general, symbolic. If pat has variable arity actors, then it also contains actors with
parametric solutions. It is quite simple to deal with symbolic systems of equations and to define
their minimal symbolic solutions [15].

Example: The transformation rule tr1 of Fig. 4 (p. 8) preserves consistency. Indeed, both
the lhs and rhs are consistent pattern graphs, and their common actors have the same symbolic
solutions. Moreover, the solutions of the lhs actors are:

sollhs(x) sollhs(y) =
r1 sollhs(x)

3
sollhs(z) =

r1 sollhs(x)

3 r2

while those the rhs actors are:

solrhs(x) solrhs(t) =
r1 solrhs(x)

3
solrhs(z) =

r1 solrhs(x)

3 r2

The actors common to the lhs and rhs (x and z) keep their solutions, while the fresh actor t
has a non-null solution. Besides, since solrhs(t) = sollhs(y) it is an integer solution.

Applied to the graph G1 from Fig. 1, it yields the consistent graph G2 = tr1(G1) shown in
Fig. 5. The actors I1, A1, C1, and D1 keep their solutions (3, 3, 2, and 4, respectively), while
the solution of the new actor E1 is 2.

On the contrary, the transformation rule tr3 of Fig. 14 is invalid. The reason is that, even
though rhs is consistent, the actor y with solution r1 sol(x)

3 is replaced by actor u with solution
r1 sol(x)

5 , so we cannot be sure that this new solution is an integer.

αx By βz
r1 3 1 r2

tr3
V αx Fu βz

r1 5 1 r2

Figure 14: The invalid transformation rule tr3.

For instance, the graph tr3(G1) is consistent but some of the solutions change, with sol(I1)
and sol(A1) becoming 5.

Rules such as tr3 can produce inconsistent graphs. For instance, when applied to the graph
G8 of Fig. 15a, tr3 would produce the inconsistent graph G9 of Fig. 15b.The reason is that the edge (E1, H1) enforces a constraint on the system of balance equations
that does not appear in the transformation rule alone.
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E1

B1

H1

1
3 1

1

1 3

(a)

E1

F1

H1

1
5 1

1

1 3

(b)

Figure 15: (a) Consistent graph G8. (b) Inconsistent graph G9 = tr3(G8).

Note that we could have chosen a weaker condition for Theorem 2, namely

∀x ∈ lhs ∩ rhs, ∃k, sol lhs(x) = ksolrhs(x)

This would allow a transformation to weaken some constraints (e.g., by removing edges) so that
the minimal solutions of the rhs are possibly smaller than the solutions of lhs. In that case,
consistency would be still preserved, the solutions of all actors could remain the same although
they would not be minimal anymore.

4.3 Liveness
A consistent graph is live if it can be scheduled. We present here conditions on transformation
rules so that they preserve liveness for graphs with single appearance schedules (SAS). The
general case (i.e., a schedule exists, but is not an SAS) can also be dealt with, but it is more
involved and would require more space to present. Recall also that, as stated in Sec. 3.2.1,
transformation rules do not match nor create edges with initial tokens.

For each transformation rule tr : lhs V rhs, it suffices to check that rhs is live (i.e., acyclic)
and that tr does not add a path between common actors of lhs and rhs that did not exist before.
These two conditions ensures that tr cannot introduce new cycles in the graph.

Theorem 3. Let G be a live graph with an SAS and tr : lhs V rhs be a transformation rule
such that rhs is live and

∀x, y ∈ lhs ∩ rhs, x
+−→
rhs

y ⇒ x
+−→
lhs

y (Clive)

then tr(G) is live and admits an SAS.

The transformation rule tr1 of Fig. 4 (p. 8) preserves liveness. Indeed, its rhs is live (it admits
the schedule [α3r2

x ;Er1r2t ;βr1z ]) and it does not introduce new paths between actors occurring both
in lhs and rhs (namely between αx and βz).

On the other hand, the transformation tr4 in Fig. 16 is invalid.

Xx Yy Zz

Tt

tr4
V Xx Yy Zz

Tt

Figure 16: The transformation rule tr4. All rates are 1.

Indeed, actor Yy is connected to Zz in the rhs but not in the lhs. If the only schedule in
the initial graph is one where Zz needs to be fired before Yy, then rule tr4 would produce a
deadlocked (i.e., non live) graph. Such a case is shown in Fig. 17.
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X1 Y1 W1 Z1

T1

(a)

X1 Y1 W1 Z1

T1

(b)

Figure 17: (a) Live graph G10. (b) Deadlock graph G11 = tr4(G10). All rates are 1.

The rule tr4 transforms the live graph G10 of Fig. 17a into the deadlocked graph G11 of
Fig. 17b, where the new (and blocking) directed cycle created by tr4 is highlighted in red.

5 Implementation

We have implemented a prototype of RDF to perform experiments, to evaluate the reconfigura-
tion costs, and to explore its practicability. In this section, we present the main characteristics
of our prototype. In particular, we describe (i) how an RDF application is executed in normal
mode, i.e., between reconfigurations; (ii) the steps needed to perform a reconfiguration; (iii) the
kinds of conditions the controller may use; (iv) how the pattern matching of a transformation is
implemented efficiently, and finally (v) how to deal with the placement of actors on a multi-core
architecture when actors can be added or removed dynamically.

5.1 Standard execution

The initial graph is implemented by creating each actor as an instance of its type, and by
allocating a circular buffer for each of its output ports. For an actor A and an output port with
rate p, the size of the allocated buffer is p · sol(A) · sizeof (token). This is enough to achieve
maximal throughput [13], but smaller bounds are known for special classes of graphs [16, 17].
The types of tokens as well as the values of the initial tokens, which are not part of the MoC,
must be specified in the application. The types of the tokens allow to compute their size. The
initial tokens are pushed in the circular buffer they belong to. Then, the communication links
(the edges of the RDF graph) are created by providing to each input port a reference to the
buffer it reads from.

Depending on the architecture (e.g., single or multiple servers), actors can communicate
(i.e., read and write buffers) through shared memory or message passing. Our prototype runs on
a single multi-core processor and uses only buffers in shared memory to communicate. Finally,
one thread is created for each actor as well as for the controller.

Actors are executed according to an as soon as possible (ASAP) policy, meaning that each
actor fires as soon as it has enough tokens on all its incoming edges. When it does so, it extracts
from each of its input buffers a number of tokens equal to the input rate of this buffer, it processes
them according to its functionality, and finally it writes output tokens into its output buffers.
Note that at this step it may have to wait to have enough room in its output buffers.

Provided enough resources, all actors can run in parallel independently of each other. Syn-
chronization is ensured by communication buffers. Using the ASAP schedule and properly sized
buffers, the maximal throughput is reached.
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5.2 Reconfigurations

Reconfigurations cannot be performed at any moment. Indeed, transforming the dataflow graph
in the middle of an iteration, or when all actors are not in the same iteration, would raise many
semantic issues. Therefore, a reconfiguration should only occur when the RDF graph is in a
coherent state, that is, after an iteration has completed and the graph has returned to its initial
state (meaning implicitly that all actors have completed the same iteration).

Our prototype uses reconfiguration programs (see Sec. 3.2) made of a single transformation
rule. The controller (which runs inside its own thread) is thus of the form

[cond1 : lhs1 V rhs1; . . . ; condn : lhsn V rhsn]

It periodically watches whether one of its reconfiguration condition condi is satisfied. In our pro-
totype and experiments, the reconfiguration conditions are mainly performance metrics (through-
put, latency, buffer occupancy) measured at runtime. Many others criteria (e.g., arity of split
actors, internal variables of an actor, absolute time or delays) could be considered as well. When-
ever a condition is true, the controller retrieves the rule corresponding to this condition and checks
whether the lhs matches the current graph. If so, the transformation can be applied and the
reconfiguration starts. Whenever several conditions are true, only the first matching rule in the
controller list is selected.

As explained above, before applying a transformation, the graph must return to its initial
state, and all actors must have completed the same iteration. To implement this, all actors keep
track of their iteration number and of their number of firings within the current iteration. Since
actors run in separate threads, at a given time they may not necessarily belong to the same
iteration. Here are the main steps of a reconfiguration:

• When the controller has decided to apply a transformation rule, it prompts all actors for
their iteration number; it then computes the maximum iteration number received and asks
the actors to proceed until the end of this maximum iteration.

• On their side, all the actors stop at the end of their current iteration when they are
prompted for their iteration number, i.e., they finish all their firings but not not start a
new iteration; when they receive from the controller the maximum iteration number, they
either do nothing (if that number was indeed their own last iteration number) or they
resume firing until they reach the end of the maximum iteration (otherwise). Then, they
all send an acknowledgment to the controller.

• When all actors have stopped and sent their acknowledgment to the controller, the graph
is its initial state and the transformation can be applied. The subgraph matching the lhs
is replaced by the instantiated rhs. This may involve removing actors and deallocating
the buffers suppressed by the rule, and creating new actors with fresh names and threads,
allocating new buffers for the created actors, and connecting them.

• Finally, the controller asks all actors to resume their execution. The computation proceeds
as before, each actor firing as soon as its incoming edges have enough tokens.

Other, more local, options for reconfiguration could be implemented as well. For instance,
stopping only the matched actors while ensuring that the matched edges are empty seems feasible
and more efficient.
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5.3 Pattern matching

Graph pattern matching is, in general, a NP-complete problem [18] that involves costly graph
traversals with potentially many backtrackings. However, in our context of dynamic graph recon-
figuration, this operation should be performed as fast as possible, ideally with a time complexity
linear in the size of the lhs of the rule under consideration and without any backtracking.

To achieve this, we enforce that a lhs has at least one fully named actor i.e., neither an actor
variable such as αx nor an actor type with an index variable such as Bx which can serve as a
root. Further, we enforce that all edges of the lhs can be traversed starting from such roots by
following explicit ports. Informally, each edge of the lhs must be reachable from a root actor via
a non-ambiguous (undirected) path. That path is non unambiguous, because either the outgoing
or incoming port of each edge is a fully identified one, i.e., not a port variable.

Consider, for instance, the following pattern which may appear as the lhs of a transformation
rule:

αx A5 βy γz B3

p1 1○ 2○ p2 p3 1○ p4 3○

This pattern has two explicitly named actors than can be directly selected in the graph:
A5 and B3. From these roots, αx, βy, and γz and the four edges of the lhs can be selected
unambiguously. Indeed, the edges (αx, A5) and (A5, βy) can be selected from A5 by following
the input port 1 and output port 2 of A5 respectively. The edge (γz, B3) can be selected (and
actor γz determined) by following the input port 3 of B3, and then the edge (βz, γz) from the
input port 1 of γz.

If the actor A5 was not named (e.g., Ax), then the pattern matching would have to consider
all typed A actors of the graph. Similarly, if the output port of A5 was a variable, then the
pattern matching would have to consider all possible ports. In both cases, this may involve
failure and backtracking.

Note that our constraints can be relaxed. For instance, if the actor type A had a single
input port, then the pattern would not need to make it explicit. Similarly, if the second output
port of type A was the only one to have the rate 4, then the pattern could make use that rate
instead. The key idea here is that the pattern matching should always be able to proceed without
performing choices.

Our approach guarantees that pattern matching can be achieved by traversing the pattern
without backtracking, i.e., with a time complexity linear in the size of the lhs. In practice, we
have not noticed a loss of expressive power while observing these constraints. It is always possible
to make patterns precise enough by introducing dummy named actors to act as pointers on the
graph and as roots in patterns.

5.4 Placement strategy

Actors should be placed to maximize parallelism and minimize communication costs (which may
ne high on distributed architectures). With more actors than resources, one should also take
care of load balancing. A simple heuristics is to place actors created by transformations on the
core that minimize the load and communication cost. These can be expressed in terms of the
execution and production costs of the actor during an iteration, values given by the type and
solution of the actor.

Our experiments were conducted on a multi-core, single socket server, where communication
costs remain small. Preliminary experimental results showed that the previous heuristics was not
significantly better than Linux’s Completely Fair Scheduler (CFS), even with transformations
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drastically changing the initial graph. We then relied on CFS, by running each actor in a separate
thread with equal priority. When a transformation creates new actors, the Linux scheduler
appears to place these new threads to optimize load balancing.

6 Experimental results

We experimented our prototype on an Intel(R) Core(TM) i7-8700 CPU @ 3.20GHz with 12 cores
and Linux. We present an experimental evaluation of reconfiguration costs, show typical RDF
transformations that change the throughput, and describe a small case study. All experiments
consider graphs with a single source and sink actors.

Instead of measuring the throughput (number of iterations per time unit) TG of a graph G,
we consider a closely related measure: the number of tokens produced by the graph per time unit
denoted by HG. For a graph with a single sink actor O1, this measure is equal to the number of
tokens consumed by O1 per time unit.

The maximal throughput of an SDF graph is determined by the actor whose execution takes
the most time in an iteration. For an acyclic graph with a set of actors V it is equal to:

TG =
1

maxv∈V sol(v) · t(v)

For a graph with a single sink actor consuming n tokens per iteration, the number of tokens per
time unit is

HG = n · TG
This measure is more informative than the throughput since the graph and the computation
performed during an iteration may change dynamically. Consider, for instance, the initial graph
and transformation trinc of Fig. 11. That transformation does not change the throughput of the
initial graph since a fully parallel ASAP iteration takes the same time. However, the number of
tokens produced (and consumed) double.

In the following, we often use the term throughput to refer to the number of tokens produced.

6.1 Reconfiguration costs

An important point to evaluate is the cost of applying a transformation and the global reconfigu-
ration cost. Indeed, RDF would lose part of its interest for streaming applications if reconfiguring
takes too long. This cost can be decomposed in two parts:

• the cost of the transformation itself, i.e., matching the lhs and replacing it by the rhs,
possibily creating/removing actors and communication links.

• the cost of pausing the graph execution and restarting it until it reaches again its steady
state and maximal throughput.

In order to measure the transformation costs, we considered the following dual transformation
rules:

I → O V I → Ax1
→ ...→ Axn

→ O

I → Ax1 → ...→ Axn → O V I → O

for various values of n. Experiments show that the matching and transformation costs are linear
in the size of the rule. This was expected since there is no backtracking while matching and
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(de)allocating actors and buffers is main part of the costs. The transformation costs range from
around 1ms for n = 10 to 4ms for n = 40.

To evaluate the total reconfiguration costs we used initial graphs of the form

I → Ax1
→ ...→ Axn

→ O

and the dummy simple transformation I → A1 V I → A1 The difference of duration between
execution of the graph with that single transformation and the duration without reveals the cost
of pausing and restarting the graph. For that setting it is around 100ms.

In conclusion, the cost of a reconfiguration remains low enough to be used in a video streaming
application, as shown in the case study later. If it was higher, a solution to make the recon-
figuration seamless would be to introduce output buffers to continue the streaming and prevent
glitches during reconfigurations.

6.2 Synthetic transformations

A standard use of the RDF model is to increase the throughput of an application when needed.
For instance, a change of resolution could suggest to add or remove parallel levels of computation
in a video streaming application.

We use the initial graph G10 of Fig. 18 (all unspecified rates are 1) with a split and join
actors. The execution times of I1 and O1 are 10ms each, S1 and J1 take 2ms each, and A1 takes
50ms.

I1 S1 A1 J1 O1

p q

Figure 18: The dataflow graph G10.

Two transformation rules tr5 and tr6 are used (see Fig. 19). At time instances 5s and 10s,
the transformation rule tr5 is applied and whereas tr6 is applied at time 20s and 25s.

S1 A1 J1 V
tr5

S1

A1

Ax

J1

S1

A1

Ax

J1 V
tr6

S1 A1 J1

Figure 19: Transformation rules tr5 and tr6

The throughput of the graph is shown in Fig. 20. As it was expected, after the first and second
transformation, the throughput increases from 20 to nearly 40 and 60 tokens/second. By applying
the second transformation twice, the throughput returns to its initial value. If the throughput is
not exactly multiplied by 2 and then 3 it is of course due to the light overhead of the split and
join actors which have to distribute and gather tokens. Provided sufficient resources, These two
rules are sufficient to adapt the application to any throughput demand. Other dynamic MoC
like SADF would have to plan for a fixed number of configurations beforehand.

We use this kind of transformation in our case study presented next.
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Figure 20: Throughput of G10 applying successively tr5 and tr6 transformations

6.3 Case study

We have used RDF to implement Canny edge detection, an application which captures a video
stream from a source, decodes it, detects the edges in the decoded images, and finally displays
images reduced to edges with a constant frame rate. The input video quality can change dynam-
ically. When the quality increases, the processing (decoding & edge detection) takes more time
and a static application may fail to maintain the same frame rate. We show that using trans-
formation rules triggered by conditions on throughput, our RDF application can accommodate
dynamic changes of video quality. This application has already been introduced in Fig. 11 in
Sec. 3.3.1 .

We have implemented this example only partially. Our application reads the video stream
from a file and we simulate the increase of processing time using a dummy actor whose execution
time artificially increases. The RDF dataflow graph contains 6 actors (see Fig. 21): V1 captures
and decodes the input video stream, the decoded images are send to S1 a split actor that
dispatches p images to its p output ports. The actor C1 receives an image and extracts its edges
using a canny edge detector, D1 is the dummy actor with a dynamically increasing execution
time, J1 is a join actor, and P1 displays the output edge image.

V1 S1 C1 D1 J1 P1

p q

Figure 21: The initial RDF graph Gc of the case study (Canny edge detection)
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The transformation in Fig. 22 adds one line of treatment and increases the arity (and pa-
rameters) of S1 and J1. The controller applies this transformation when the throughput goes
below 20fps.

Ss Cx Dy Jj V Ss

Cx Dy

Cz Dt

Jj

Figure 22: Transformation trc

In our experiment, the execution time of actor D1 increases from 30ms to 60ms at the 100th
iteration and then to 120ms at the 200th iteration. Without any transformation (e.g., using
SDF), the throughput decreases from 25fps to 17fps and then to 8fps.

In Fig. 23, we see the throughput measured at the sink actor. At the beginning, the actor
V1, whose execution time is 42ms, is the most costly actor in an iteration and determines the
throughput HG = 1

0.042 = 24fps. When the execution time of actor D1 increases to 60ms, it
becomes the most costly actor; the throughput tends to HG = 1

0.06 = 16.6fps. Around iteration
110, the throughput goes below the threshold and the transformation trc is applied. Actor V1
becomes again the most costly actor since its solution after reconfiguration is 2 and its cost
becomes 84 per iteration. Therefore, HG = 2 · 1

2·0.042 = 24fps tokens/second.
At iteration 200, the execution time of actors D1 and D2 increases to 120ms. Again the

throughput starts to decrease to HG = 2 · 1
0.12 = 16.6fps. The transformation rule is applied for

the second time and throughput returns to HG = 3 · 1
3·0.042 = 24fps tokens/second.

The reconfiguration costs are small enough so that the two reconfigurations are hardly visible
in the video. This case study shows that RDF can be used to design easily adaptive image
processing that can maintain the throughput at a desired value even with dynamic resolution
changes.

7 Related work

Many different dataflow MoCs have been proposed in the few last decades. More recently, several
parametric dataflow MoCs have been presented as an interesting trade-off between expressiveness
and analyzability. Among the existing parametric MoCs let us cite PSDF [19], VRDF [20],
SPDF [21], BPDF [4], PiSDF [22], and PFSM-SADF [23]. They all offer a controlled form of
dynamism under the form of parameters (e.g., parametric rates) along with run-time parameter
configuration.

Among those, BPDF [4] can model dynamic topology changes by adding Boolean conditions
to FIFO channels. When a condition switches to false (resp. true) the channel is disabled
(resp. enabled). Boundedness and liveness remain statically analyzable, and static or quasi-
static schedules can be produced [24].

An different approach is taken by SADF [6] and its parametric version PFSM-SADF [23].
They model reconfigurability as a set of pre-defined configurations (called scenarios), coupled
with a non-deterministic finite-state machine that specifies the transitions between scenarios.
The number of available topologies is statically fixed and specified in the source model. Analyzing
a (PFSM-)SADF model consists in applying the standard analyses of SDF to each scenario.

Both BPDF and SADF only allow a fixed, and usually small, number of graph topologies.
Imagine a video application that may need to apply a collection of n filters depending on the
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Figure 23: Throughput of the edge detection with transformation trc

characteristics of the video stream. Since there are 2n combinations of such filters, describing so
many graph configurations would be cumbersome in such MoCs.

To the best of our knowledge, RDF is the only dataflow MoC allowing both the dynamic
reconfiguration (in the general sense) of the graph topology and static analyses for boundedness
and liveness. It permits to generate an unbounded number of consistent and live graphs which
do not have to be planned nor declared in advance.

Reconfigurability using rewriting rules has also been studied for Petri nets (see [25] for an
overview). In the general case, reconfigurable Petri nets do not preserve properties such as
liveness, boundedness, or reversibility. In [26], a restricted class of transformations (called INRS)
is proposed that preserves these properties. It has been applied to design Petri net controllers
for the supervision of reconfigurable manufacturing systems. Model checking of reconfigurable
Petri nets has been considered by converting the net and the set of rewriting rules into a Maude
specification [27]. This approach allows the absence of deadlocks to be verified.

8 Conclusion
We addressed the question of dynamic reconfigurations of SDF graphs. To this aim, we intro-
duced the RDF MoC consisting in a dataflow graph (an SDF graph with typed actors) and a
controller (a sequence of reconfiguration programs triggered by conditions). The transformation
rules determine how the RDF graph is reconfigured and the conditions specify when these recon-
figurations take place. A key feature and advantage of RDF is that it retains static analyses to
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guarantee boundedness and liveness properties of all possible graphs produced by dynamic recon-
figurations. Finally, we outlined the main characteristics of our RDF prototype implementation
and presented some experiments.

Several extensions of RDF come to mind. First, RDF rates could be generalized to accept
parameters. Such rates are different from the parametric rates of variable arity actors which
denote their number of edges. In parametric MoCs, a rate parameter may be changed, usu-
ally between iterations, to an arbitrary value. We expect this generalization to be relatively
straightforward. Indeed, in such models, static analyses become parametric but remain similar
to those of SDF. Second, it is likely that some constraints we enforced to guarantee boundedness
and liveness could be relaxed. A clear candidate is the condition prohibiting transformations to
manipulate edges with initial tokens. Finally, the pattern and transformation language might
be enhanced. Consider the problem of duplicating a line of actors between a split and a join
whereas this line may change overtime (by adding/removing actors). This would require to have
as many transformation rules as there are versions of the line. Allowing to match and duplicate
(unambiguously) some part of the graph without enumerating all its actors would come handy.
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A Appendix
We first recall the following facts and notations:

• A graph is seen as a set of edges and a transformation rule as a set rewriting. A transfor-
mation tr : lhs V rhs applied to a graph G consists in finding a substitution σ such that
G = X ∪ σ(lhs). The graph is then rewritten into tr(G) = X ∪ σ(rhs).

• In any transformation tr : lhs V rhs, both lhs and rhs are non empty.

• The set of edges of G is partitioned into X and lhs, meaning that G = X ∪ lhs and
X ∩ lhs = ∅. Note that X and lhs may have some actors in common because any node
connected to one or more edges of X and to one of more edges of lhs appears both in X
and in lhs.

• We write x −→
A

y for a directed edge from x to y belonging to graph A (set of edges) and

use the corresponding transitive closure x +−→
A

y (resp. reflexive transitive closure x ∗−→
A

y)
to denote paths in A. We write x←→

A
y to denote that there is an edge from x to y or from

y to x in graph A. We use the corresponding transitive closure x +←→
A

y (resp. reflexive

transitive closure x ∗←→
A

y) to denote an undirected path between x and y in A.

• We say that an actor x belongs to graph A (and write x ∈ A) if there is an edge in A
having x as initial or terminal vertex.

Theorem 1. Let G be a weakly connected graph and tr : lhs V rhs be a transformation rule
such that

∀x 6= y ∈ rhs, x
+←→
rhs

y (Cconn)

then tr(G) is a weakly connected graph.

Proof. Let x and y be two distinct actors in tr(G); we must prove that x +←→
tr(G)

y. As said

above, we consider tr as the set rewriting G = X ∪ σ(lhs) V X ∪ σ(rhs) = tr(G). Note that
Cond. (Cconn) implies that forall x, y in σ(rhs), we have x +←→

σ(rhs)
y.

We distinguish the following exclusive cases: (A) x and y are in σ(rhs); (B) neither x nor y
are in σ(rhs); (C) x is in σ(rhs) whereas y is not. The last case (y ∈ σ(rhs) and x 6∈ σ(rhs)) is
identical to case (C).

Case (A): x ∈ σ(rhs) and y ∈ σ(rhs).
We have already stated x +←→

σ(rhs)
y for any two distinct actors x and y of rhs. Since σ(rhs) ⊆

tr(G), we therefore conclude that x +←→
tr(G)

y.

Case (B): x 6∈ σ(rhs) and y 6∈ σ(rhs).
Recall that an actor belonging to lhs but not to rhs is removed from the graph. Since neither

x nor y are removed by tr (by assumption they are in tr(G)), necessarily none of them belong to
σ(lhs). It follows that they both belong to X, and therefore to G. Since G is weakly connected,
we thus have x +←→

G
y.

Since both x and y belong to X, this undirected path between x and y in G must start
and finish with an edge in X, meaning that it consists of an alternation of subpaths in X and
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subpaths in σ(lhs), starting and ending with a subpath in X. Formally, this path must have one
of the two following forms:

• x
+←→
X

x1
+←→

σ(lhs)
x2

+←→
X

x3
+←→

σ(lhs)
· · · +←→

σ(lhs)
xn

+←→
X

y with n ≥ 1;

• or x +←→
X

y.

The second case trivially implies x +←→
tr(G)

y since X ⊆ tr(G). We therefore focus on the first

case. For each 1 ≤ i ≤ n, xi belongs to two edges, one in X and one in σ(lhs), hence xi belongs
to X and cannot be suppressed by tr (thanks to Cond. (C2)). It follows that, for each 1 ≤ i ≤ n,
xi belongs to σ(rhs).

Now, by Cond. (Cconn), σ(rhs) is weakly connected, hence we have x1
+←→

σ(rhs)
xn. Furthermore,

edges in X being untouched by tr, we thus have x +←→
X

x1
+←→

σ(rhs)
xn

+←→
X

y. Since GX ∪ σ(rhs),

we therefore conclude that x +←→
tr(G)

y.

Case (C): x ∈ σ(rhs) and y 6∈ σ(rhs).
As in Case (B), y belongs to X hence to G and does not belong to σ(lhs). However, x does

not necessarily belong to σ(lhs). We consider both cases in turn.
Sub-Case (C1): x ∈ σ(lhs).
Since y belongs to the weakly connected graph G, we have x +←→

G
y. Similarly to Case (B),

this path consists of an alternation of subpaths in X and subpaths in σ(lhs), starting with a
subpath in σ(lhs) and ending with a subpath in X:

• x
+←→

σ(lhs)
x1

+←→
X

x2
+←→

σ(lhs)
· · · +←→

σ(lhs)
xn

+←→
X

y with n ≥ 1

On the one hand, since xn belongs to X and to σ(lhs), it also belongs to σ(rhs) (same
reasonning as in Case (B)). Furthermore, by hypothesis x also belongs to σ(rhs). Therefore, by
Cond. (Cconn), x +←→

σ(rhs)
xn, hence x

+←→
tr(G)

xn.

On the other hand, edges in X such as xn
+←→
X

y being untouched by tr, we have xn
+←→

tr(G)
y.

Putting both facts together, we conclude that x +←→
tr(G)

y.

Sub-Case (C2): x 6∈ σ(lhs).
In that case, x is a fresh actor created by tr.
By definition, lhs 6= ∅ (see Section 3.2.1), so let z ∈ lhs. G = X ∪ σ(lhs) begin weakly

connected, we have z
+←→
G

y. This path is an alternation of subpaths in X and subpaths

in σ(lhs), starting with a subpath in σ(lhs) and ending with a subpath in X:

• z
+←→

σ(lhs)
x1

+←→
X

x2
+←→

σ(lhs)
· · · +←→

σ(lhs)
xn

+←→
X

y with n ≥ 1

Necessarily xn is not touched by tr (because it belongs to X and lhs in G), hence xn belongs
both to X and to rhs in tr(G). This implies two things. On the one hand we have xn

+←→
X

y,

implying xn
+←→

tr(G)
y. On the other hand, rhs being connected, thanks to Cond. (Cconn), we thus

have x +←→
σ(rhs)

xn, implying x +←→
tr(G)

xn.
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By transitivity, we therefore conclude that x +←→
tr(G)

y.

Theorem 2. Let G be a consistent graph and let tr : lhs V rhs be a transformation rule such
that lhs and rhs are consistent and

∀x ∈ lhs ∩ rhs, sol lhs(x) = solrhs(x) (Csol)

then tr(G) is consistent.

Proof. First, consider a graph G (a set of edges) that can be partitioned into two disjoint subsets
of edges (two subgraphs) G1 and G2, i.e., G = G1 ∪ G2 and G1 ∩ G2 = ∅. As far as balance
equations are concerned, the system of equations of G is the union of the systems of equations
of G1 and G2. If G is consistent (i.e., its system of balance equation has a solution) then clearly
G1 and G2 are also consistent. For any actor x such that x ∈ G1 or x ∈ G2, solG(x) is also a
solution of x in G1 or G2. This solution may be not minimal for the system of balance equations
of G1 or G2 because G may enforce additional constraints, but we have:

∃k ∈ N∗,∀x ∈ Gi, solG(x) = k solGi
(x), i ∈ {1, 2}

Dually, if G1 and G2 are consistent and if there exist two integers k1 and k2 such that, for any
common actor x, k1solG1(x) = k2solG2(x), then G is also consistent. The solutions k1solG1(x)
and k2solG2(x) are also solutions for the system of equations of G. The minimal (i.e., coprime)
pair of integers k1 and k2 gives the minimal solutions for G.

Lemma 1 formalizes this fact.

Lemma 1. Let G be an SDF graph partitioned into G1 and G2. We have:

G is consistent ⇔


G1 is consistent

∧ G2 is consistent
∧ ∃(k1, k2) ∈ N× N,∀x ∈ G1 ∩G2

k1solG1
(x) = k2solG2

(x)

Now, let G be a consistent graph, let tr be a transformation rule satisfying Cond. (Csol)
described as:

X ∪ σ(lhs)︸ ︷︷ ︸
G

V X ∪ σ(rhs)︸ ︷︷ ︸
tr(G)

The condition sol lhs(x) = solrhs(x) means that the common minimal symbolic solutions of
the balance of the graphs lhs and rhs are syntactically equal. It follows that any graph matching
the lhs (resp. rhs) using a substitution σ accepts the solutions σ(sol lhs(x)) (resp. σ(solrhs(x)).
These concrete solutions may not be minimal though.

Since G is consistent, by Lemma 1, X and σ(lhs) are also consistent and there exist k1 and
k2 such that, for any actor x in X ∩ σ(lhs), we have:

k1solX(x) = k2solσ(lhs)(x)

Furthermore, let (km1 , km2 ) be the minimal (coprime) pair of (k1, k2). We thus have:

∀x ∈ X, solG(x) = km1 solX(x) and ∀x ∈ σ(lhs), solG(x) = km2 solσ(lhs)(x)

Cond. (Csol) ensures that the solutions of common actors in σ(lhs) and σ(rhs) are the same.
The common actors between X and σ(rhs) belong also to σ(lhs) (the others are fresh actors),
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therefore km1 and km2 can be used to equalize the solutions. As a result, for any shared actor
between X and σ(rhs), we have:

km1 solX(x) = km2 solσ(rhs)(x)

and, by Lemma 1, the graph tr(G) is consistent. Furthermore, since km1 and km2 are coprime,
they correspond to the minimal solutions of tr(G):

∀x ∈ X, soltr(G)(x) = km1 solX(x) and ∀x ∈ σ(rhs), soltr(G)(x) = km2 solσ(rhs)(x)

The proof holds for variable arity actors. The condition and reasoning deal with symbolic
solutions which can accommodate parameters of X actors.

Theorem 3. Let G be a live graph with an SAS and tr : lhs V rhs a transformation rule such
that

rhs is live and ∀x, y ∈ lhs ∩ rhs, x
+−→
rhs

y ⇒ x
+−→
lhs

y (Clive)

then tr(G) is live and admits an SAS.

Proof. It is well known that any consistent acyclic SDF graph has a single appearance sched-
ule [12]. We therefore focus on cycles and first prove the following lemma which states that a
transformation respecting Cond. (Clive) cannot create new cycles.

Lemma 2. Let tr : lhs V rhs a transformation rule satisfying Cond. (Clive) then

∀G, x +−→
tr(G)

x⇒ x
+−→
G

x

Proof. Consider the rewriting G = X ∪ σ(lhs) V X ∪ σ(rhs) = tr(G), there are two cases:

1. x ∈ X
The path x +−→

tr(G)
x is made of alternating subpaths from X and σ(rhs). It can take one of

the following forms depending on whether the path starts and terminates with a subpath
in X or in σ(rhs):

x
+−→
X

x1
+−→

σ(rhs)
x2

+−→
X

. . .
+−→

σ(rhs)
xn

+−→
X

x

x
+−→
X

x1
+−→

σ(rhs)
x2

+−→
X

. . .
+−→
X

xn
+−→

σ(rhs)
x

x
+−→

σ(rhs)
x1

+−→
X

x2
+−→

σ(rhs)
. . .

+−→
σ(rhs)

xn
+−→
X

x

x
+−→

σ(rhs)
x1

+−→
X

x2
+−→

σ(rhs)
. . .

+−→
X

xn
+−→

σ(rhs)
x

Actors x, x1, . . . , xn belong to X: x ∈ X by hypothesis and each xi is either the initial
or terminal vertex of an edge in X. Subpaths in X, xi

+−→
X

xj , are unchanged by tr and

therefore occur also in G. For subpaths in σ(rhs), xi
+−→

σ(rhs)
xj , we know that xi ∈ X and

xj ∈ X. Note that an actor in σ(rhs) is either a fresh actor created by tr, or belongs also
to σ(lhs). Since xi ∈ X and xj ∈ X, then xi and xj must also belong σ(lhs). In that case,
Cond. (Clive) enforces that the path xi

+−→
σ(lhs)

xj exists. Therefore, in each of the above

cases, we have x +−→
G

x.
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2. x 6∈ X

The path x +−→
tr(G)

x can take one of the two following forms:

x
+−→

σ(rhs)
x1

+−→
X

x2
+−→

σ(rhs)
. . .

+−→
X

xn
+−→

σ(rhs)
x

x
+−→

σ(rhs)
x

In the first case, we apply the same reasoning as before. All xis (except x) belong to X
and x1

+−→
G

xn. We also have xn
+−→

σ(rhs)
x1 with x1 ∈ X and xn ∈ X. Since x1 and xn also

belong to σ(lhs), Cond. (Clive) ensures that xn
+−→

σ(lhs)
x1. Hence we have x +−→

G
x.

The second case is impossible. Indeed, Cond. (Clive) enforces rhs to be live and since tr
can only manipulate edges without initial tokens, σ(rhs) must be acyclic.

We now return to the proof of Theorem 3. A consistent SDF graph admits an SAS (or a
flat SAS following the terminology of [12]) iff all cycles have a saturated edge, that is, an edge
with enough initial tokens to permit its destination actor to complete all its firings in this SAS
for one iteration. Indeed, consider a cycle x0 −→ x1 −→ . . . xn −→ x0 in a graph G with an
SAS. Then, the first actor of that cycle occurring in the SAS, say xi, must perform all its firings
consecutively before any other (in particular xi−1) can fire. The edge xi−1 −→ xi must therefore
be saturated with initial tokens.

Since transformation tr does not introduce new cycles (Lemma 2), nor removes (matches) any
edge with initial tokens, nor changes the solution of actors (Theorem 2), all cycles remain with
a saturated edge in tr(G). We can therefore conclude that tr(G) is live and admits an SAS.
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