
IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
95

23
--

FR
+E

N
G

RESEARCH
REPORT
N° 9523
Oct. 2023

Project-Team Spades

A formally verified circuit
transformation to tolerate
SEMTs
Vincent Bonczak, Pascal Fradet





RESEARCH CENTRE
GRENOBLE – RHÔNE-ALPES

Inovallée
655 avenue de l’Europe Montbonnot
38334 Saint Ismier Cedex

A formally veri�ed circuit transformation to

tolerate SEMTs

Vincent Bonczak*, Pascal Fradet�

Project-Team Spades

Research Report n° 9523 � Oct. 2023 � 25 pages

Abstract: Digital circuits are subject to transient faults caused by high-energy particles. A
particle hit may produce a voltage pulse that propagates through the circuit and upsets its logical
state and output. Most fault-tolerance techniques consider this kind of single event transients
(Sets). However, as technology scales down, a single particle becomes likely to induce transients
faults in several adjacent components. These single-event multiple transients (Semts) are becoming
a major issue for modern digital circuits.
In this paper, we follow a formal approach to study fault-tolerance w.r.t. Semts. We �rst show how
to formalize Semts provided that the layout of the circuit is known. We show that the standard
triple modular redundancy (Tmr) technique can be modi�ed so that, along with some placement
constraints, it completely masks Semts. In order to prove such a fault-tolerance property for all
circuits with unknown layouts, we de�ne a fault-model representing all possible Semts for all Tmr
circuits.
Circuits are expressed in lddl, our gate-level hardware description language. The modi�ed Tmr
technique is described as a circuit transformation in lddl, and the fault models for Semts are
speci�ed as particular semantics of lddl. We show that for any circuit its transformed version
masks all faults of the considered Semt fault model. All this development is formalized in the Coq
proof assistant where fault-tolerance properties are expressed and formally proved.

Key-words: Fault-tolerance, triple modular redundancy, single-event mutiple-transients, circuit
transformation, certi�cation, Coq.

* ENS Paris-Saclay
� Univ. Grenoble Alpes, Inria, CNRS, Grenoble INP, LIG



Une transformation de circuits véri�ée formellement pour

tolérer les SEMT

Résumé :

Les circuits numériques sont sujets à des fautes transitoires causées par des particules à haute
énergie. L'impact d'une particule peut produire une impulsion de tension qui, se propageant dans
le circuit, corrompt sa mémoire et sa sortie. La plupart des techniques de tolérance aux fautes
prennent en compte ce type de fautes (Sets). Cependant, à mesure de la miniaturisation des
semi-conducteurs, une seule particule est susceptible d'impacter plusieurs éléments adjacents.
Ces fautes multiples (Semt) deviennent un problème majeur pour les circuits modernes.

Dans cet article, nous suivons une approche formelle pour étudier la tolérance aux fautes de
type Semt. Nous montrons comment formaliser les Semt en supposant connu l'agencement du
circuit. Nous montrons ensuite que la technique standard de triple redondance modulaire (Tmr)
peut être modi�ée pour, avec quelques contraintes de placement, qu'elle tolère les Semt. A�n de
prouver cette propriété de tolérance aux fautes pour tout circuit (dont l'agencement précis est
inconnu), nous dé�nissons un modèle de fautes incluant tous les Semt possibles pour tous les
circuits Tmr.

Les circuits sont exprimés dans notre langage de description de matériel lddl. La technique
Tmr modi�ée est décrite comme une transformation de circuit dans lddl et les modèles de
fautes pour Semt sont spéci�és en tant que sémantique dédiée de lddl. Nous montrons que
pour tout circuit, sa version transformée tolère le modèle de fautes Semt considéré. Tous ces
développements sont formalisés dans l'assistant de preuve Coq. Les propriétés de tolérance aux
fautes y sont exprimées et prouvées formellement.

Mots-clés : Tolérance aux fautes, redondance modulaire triple, défauts transitoires multiples,
transformation de circuit, certi�cation, Coq.



A formally veri�ed circuit transformation to tolerate SEMTs 3

1 Introduction

In digital circuits, transient faults occur when a high-energy particle, such as a cosmic ray or
a radioactive decay product, strikes the circuit, leading to temporary electrical charges. These
charges can upset the logical state of the circuit, causing soft (non-destructive, non-permanent)
errors.

The fault-tolerance of soft errors has become a design characteristic of circuits as important
as performance and power consumption [24]. This is especially true in critical domains such as
aerospace and nuclear power plants where digital devices are typically exposed to high energy
particles such as neutrons and protons. Fault-tolerance techniques must be used to prevent
critical failure of such systems.

A particle strike may cause several types of transient faults. A Single-Event Upset (Seu)
changes the value of a single �ip-�op. A more general type of faults is Single-Event Transients
(Sets). In that case, the particle causes a voltage pulse or glitch that propagates through
the combinational circuit and eventually corrupts one or several �ip-�ops or memory cells. As
technology scales down in terms of transistor size and spacing, the susceptibility to Sets grows.
Moreover, it is estimated that below 90nm1 a single particle becomes likely to induce transient
faults in several adjacent components [22]. These faults, called Single-Event Multiple Transients
(Semts), subsumes Seus and Sets and are becoming a major issue for modern digital circuits.

The most widely-used methods to make circuits fault-tolerant rely on hardware redundancy.
Triple Modular Redundancy (Tmr) [30] remains the most popular technique along with Finite
State Machine (FSM) encoding (one hot, hamming, etc.). A Tmr circuit is triplicated and makes
use of majority voters to mask errors. There are several versions of Tmr ranging from a single
voter at the primary outputs to triplicated voters after each memory cell. This last version,
called full Tmr tolerates any Set provided that they do not occur more than once every two
cycles.

Contrary to most works, which are based on experiments (fault injection) and evaluate relia-
bility properties in terms of probabilities, our approach is to prove that a fault-tolerance technique
masks all faults of a speci�c fault model.

In this article, we study how full Tmr can be adapted to tolerate Semts. We follow the
formal approach that we have proposed to prove several fault-tolerance techniques for Sets [8]:

� circuits are speci�ed using lddl, a gate-level functional description language;

� fault models, which specify the kind and occurrences of faults to be masked, are formalized
as an lddl semantics;

� the fault-tolerance technique is described as an automatic circuit transformation de�ned
on the syntax of lddl;

� the proof that any transformed circuit tolerates the fault model is conducted in the Coq
proof assistant [21].

Compared to Sets, Semts pose speci�c problems. They cause transients only on adjacent
elements and their e�ects depend on the layout of the circuit. This makes the speci�cation of
the fault model more di�cult. It also complicates the de�nition and proof of fault-tolerance
properties. Indeed, we must prove that all possible transformed circuits tolerate Semts. The
properties should not rely on speci�c layout but rather on generic constraints about all layouts.
This implies that we must consider that, apart from these constraints, all other elements can be

1This measure refers to the size of transistors that can be etched in a circuit (each logic gate is composed of
several of these transistors).

RR n° 9523



4 Vincent Bonczak, Pascal Fradet

impacted by an Semt. An obvious constraint for Tmr is that the redundant copies are distant
from each other. Indeed, an Semt could otherwise corrupt two copies and that would make
majority voting unable to mask errors. But the three copies of Tmr have also interconnections
that must be taken care of as well.

The article is organized as follows. We introduce the background useful for our work in Sec. 2.
We describe in particular the syntax and semantics of lddl, our circuit description language.
Sec. 3 explains how faults and fault models can be formalized. In Sec. 4, we present Semts, their
formal speci�cation taking into account the layout of the circuit and the fault models we consider.
In Sec. 5, we describe the standard full Tmr as a circuit transformation. We then describe the
adjustments and layout constraints needed so that it tolerates Semts. Sec. 6 presents the general
fault-tolerance property of the modi�ed Tmr satis�ed. We outline its formal proof by describing
its structure and the main lemmas. Finally, Sec. 7 presents related work and Sec. 8 concludes.

Throughout this article, we use standard mathematical and semantic notations. The corre-
sponding Coq speci�cations and proofs are available online [1].

2 lddl: A Low-level Dependent Description Language

Our approach consists in describing circuits at the gate level using a purely functional language
called lddl (Low-level Dependent Description Language) inspired from Sheeran's combinator-
based languages such as muFP [29] and Ruby [17]. The operational semantics of lddl describes
the stream of outputs that a circuit returns for a given stream of inputs under normal operation.
The fault model is expressed as a fault semantics describing the streams of outputs that a circuit
may return for a given stream of inputs under all possible faults in the model. Fault-tolerance
techniques are described as circuits transformations expressed on lddl syntax. Fault-tolerance
properties can then be expressed by relating the behavior of the source circuit under normal
operation with the behavior of the transformed circuit under the fault model.

The types of lddl along with the language syntax ensure that circuits are well-formed by
construction: gates are correctly plugged, there are no dangling wires nor combinational loops.

Contrary to muFP or Ruby, our primary goal is not to make the description of circuits easy
but to keep the language as simple and minimal as possible to facilitate formal proofs. Our
language contains only 3 logical gates, 5 plugs and 3 combining forms. It is best seen as a
low-level core language used as the object code of a synthesis tool. The following sections are
devoted to present its syntax and semantics.

2.1 Syntax

Digital circuits operate on discrete signals whose value is either 0 or 1. A circuit takes as input
and returns as output buses of signals. A bus of signals is described by the following type

B := ω | (B1 ∗B2)

A bus is either a single signal (ω) or a pair of buses. In other terms, buses are de�ned as nested
pairs.

A circuit is either a logic gate, a plug, or a composition of circuits. The constructors of lddl
annotated with their types are gathered in Fig. 1.

The sets of logical gates and plugs are minimal but expressive enough to specify any combi-
national circuit. Actually, extending those sets would have a marginal impact on the proofs.

The gate not is a unary operator taking and returning a single signal as indicated by its type
ω → ω. Gates and and or, with type (ω ∗ ω) → ω, are binary gates taking a bus made of two
signals and returning one signal.

Inria



A formally veri�ed circuit transformation to tolerate SEMTs 5

Gates Plugs

G ::= not : ω → ω P ::= id : α→ α
| and : (ω ∗ ω)→ ω | fork : α→ (α ∗ α)
| or : (ω ∗ ω)→ ω | swap : (α ∗ β)→ (β ∗ α)

| lsh : ((α ∗ β) ∗ γ)→ (α ∗ (β ∗ γ))
| rsh : (α ∗ (β ∗ γ))→ ((α ∗ β) ∗ γ)

Circuits

C ::= G : α→ β
| P : α→ β
| C1 -◦- C2 : α→ γ if C1 : α→ β and C2 : β → γ
| []C1, C2[] : (α ∗ β)→ (γ ∗ δ) if C1 : α→ γ and C2 : β → δ
| x−C : α→ β if x : bool and C : (α ∗ ω)→ (β ∗ ω)

Figure 1 � lddl syntax and types

Plugs, used to express (re)wiring, are polymorphic functions that duplicate or reorder buses
of signals: id leaves its input bus unchanged, fork duplicates its input bus, swap inverts the
order of its two input buses, lsh and rsh modify the grouping of their three input buses. Their
polymorphic types describe precisely their semantics. Note that plugs formalize inter-connections
but do not appear concretly in circuits.

A circuit is either a gate, a plug, a sequential composition of two circuits (· -◦- ·), a parallel
composition of two circuits ([]., .[]), or a composition of a circuit with a cell (�ip-�op) within a
feedback loop ( . − ·). The typing of the sequential operator ensures that the output bus of the
�rst circuit has the same type as the input bus of the second one. The typing of the parallel
operator expresses the fact that the inputs (resp. outputs) of the resulting circuit is made of the
inputs (resp. outputs) of the two sub-circuits. The last operator is the only way to introduce
feedback loops in the circuit. x−C is better seen graphically as the following circuit

C

x

The circuit C can have an arbitrary input/output bus but it also takes and returns a single wire
connected to a memory cell set to the Boolean value x (tt or ff). This operator ensures that
any loop contains a cell. It prevents combinational loops by construction. Note that it does not
impose all cells to be within loops. A simple cell without feedback can be expressed as x−swap:

SWAP

=x

x

To illustrate the language, a multiplexer

RR n° 9523



6 Vincent Bonczak, Pascal Fradet

0

1

c

can be expressed in lddl as the following expression of type (ω ∗ (ω ∗ ω))→ ω.

[]fork, swap[] -◦- lsh -◦- []not, rsh -◦- swap[] -◦- rsh -◦- []and,and[] -◦- or

This lddl expression takes three signals (a1, (a2, a3)) and returns a2 if a1 = 0 and a3 otherwise.
In logical form it computes (¬a1 ∧ a2) ∨ (a1 ∧ a3). Its evaluation proceeds as follows:

[]fork, swap[] -◦- lsh -◦- []not, rsh -◦- swap[] -◦- rsh -◦- []and,and[] -◦- or (a1, (a2, a3))
= lsh -◦- []not, rsh -◦- swap[] -◦- rsh -◦- []and,and[] -◦- or ((a1, a1), (a3, a2))
= []not, rsh -◦- swap[] -◦- rsh -◦- []and,and[] -◦- or (a1, (a1, (a3, a2)))
= rsh -◦- []and,and[] -◦- or (¬a1, (a2, (a1, a3)))
= []and,and[] -◦- or ((¬a1, a2), (a1, a3)))
= (¬a1 ∧ a2) ∨ (a1 ∧ a3)

lddl is best seen as a back-end language produced by synthesis tools. It is simple and
expressive enough. Its types make inputs and outputs of each sub-circuit explicit and ensure
that all circuits are well-formed.

In the following, we often use the term components to denote the gates and cells of the circuit
and elements to denote its gates, cells and wires.

2.2 Semantics

The values of signals are either 0 or 1 which are latched in memory cells as ff and tt respectively.
The semantics of gates and plugs is as expected. It is given by functions denoted by J.K:

JnotK 0 = 1 JnotK 1 = 0 JandK(1, 1) = 1 JandK(0, 1) = 0 . . .
JidKx = x JforkKx = (x, x) JswapK(x, y) = (y, x) JlshK((x, y), z) = (x, (y, z)) . . .

The semantics of circuits is described by the inductive predicate step relating a source circuit C
(of type α → β) and an input a (of type α) to an ouput b (of type β) and a resulting circuit
C ′ (of type α→ β). The circuits C and C ′ are structurally identical and can di�er only by the
values of their cells. The expression step C a b C ′ can be read as �after one clock cycle, the
circuit C applied to the inputs a may produce the outputs b and the new circuit (state) C ′ �.

The semantics rules are gathered in Fig. 2.

Gate
JGK a = b

step G a b G
Plug

JP K a = b

step P a b P

Seq
step C1 a b C

′
1 step C2 b c C

′
2

step (C1 -◦- C2) a c (C
′
1 -◦- C ′

2)
Par

step C1 a c C
′
1 step C2 b d C

′
2

step []C1, C2[] (a, b) (c, d) []C
′
1, C

′
2[]

Cell
step C (a, b2s x) (b, s) C ′ s2b s y

step x−C a b y −C ′

Figure 2 � lddl semantics for a clock cycle

Inria



A formally veri�ed circuit transformation to tolerate SEMTs 7

Gates and plugs are stateless: they always return an unchanged circuit. The rules for se-
quential and parallel compositions are the expected recursive de�nitions. The rule for x −C is
more peculiar as it may change the state of the circuit (i.e., the values of its memory cells). It
makes use of:

� the function b2s which converts a Boolean into a signal (b2s(ff) = 0 and b2s(tt) = 1);

� the predicate s2b which relates a signal to a Boolean (s2b(0) = ff and s2b(1) = tt) and
models the latching of a signal by a cell. We de�ne it as a predicate and not a function
because, as we see in the following section, we also use it for faulty signals which are latched
non deterministically as tt or ff.

The reduction of C applied to the inputs a and the signal corresponding to x returns (b, s)
(s being a signal) and a new circuit C ′. The output of x−C applied to a is b and the resulting
circuit is y −C ′ where the boolean y represent the latching of s.

The predicate step describes the behavior of a circuit during one normal cycle. It is deter-
ministic and could be described by a function as well. In the presence of faults, the semantics
must be formalized using non-deterministic predicates.

The circuit behavior for any in�nite stream of inputs is given by the co-inductive predicate
eval : (α→ β)→ Stream α→ Stream β with

Eval
step C i o C ′ eval C ′ is os

eval C (i : is) (o : os)

The rule Eval states that if C applied to the inputs i returns after one clock cycle the outputs o
and the circuit C ′ and if C ′ applied to the in�nite stream of inputs is returns the output stream
os then the evaluation of C with the input stream (i : is) returns the output stream (o : os).

lddl has several clear bene�ts. As already pointed out, a key feature is that any lddl

expression is a valid circuit. Furthermore, its combinator (variable-less) nature prevents the
semantics to have to deal with bindings and environments. It avoids many administrative matters
(reads, updates, well-formedness of environments) and simpli�es enormously formal proofs as
already pointed out in [8].

3 Formalisation of Sets and Fault Models

There are two main types of soft errors caused by particle strikes: Seu (i.e., bit-�ips in �ip-�ops)
and Set (i.e., glitches propagating in the combinational circuit). An Seu can be modeled by
changing the value of an arbitrary memory cell during a clock cycle. An Set in a combinational
circuit can lead to the non-deterministic corruption of any memory cell connected (by a purely
combinational path) to the place where the Set occurred. Since an Set may potentially lead to
several bit-�ips, Sets subsumes Seus. We focus here on this more general kind of fault.

3.1 Modeling Sets

In [25, 26], experiments show that a glitch propagates in the forward logic cone only, i.e., logic
gates located downstream of the signal. We may consider that an Set occurs only when a particle
strikes a component (gate or cell): it then produces a glitch at its output that propagates forward
where it may be latched and corrupt several cells. A second, more general view, is to consider
that a strike on a connection may induce a glitch at the output of the source (gate or cell) of that
connection which then propagates forward. For instance, a strike on the connection in Fig. 3

RR n° 9523



8 Vincent Bonczak, Pascal Fradet

may corrupt the cells c1 and c2 by propagating backward up to the not gate and then forward.
In both views, all possible Sets can be modeled by introducing a glitch at the output of a gate
or a cell. All possible Sets on the small circuit of Fig. 3 are modeled by introducing a glitch at
the output of either the not gate, the c1 or c2 cells. We see in Sec. 4 that these two views give
rise to di�erent fault models for Semts.

Glitch propagationImpact point A�ected area

...

...

...

c1

c2

Figure 3 � An Set on a connection

In a well-formed circuit, any connection comes from a single source being either a gate, a cell
or a primary input. To simplify the presentation and to model all possible Sets in the same way,
we introduce a yes gate, represented as −�−, as a source of all primary inputs (see Fig. 10 or
Fig. 11) This gate, often called bu�er gate, can be expressed in lddl as not -◦- not. It does not
change the functionality of the circuit. All connections have now a source components and any
Set can be modeled by introducing a glitch at the output of a gate or cell. Without yes gates,
Sets on primary inputs would have to be modeled speci�cally.

We use signals that can take 3 values: 0, 1, or a glitch written �. Glitches propagate
through plugs and gates (e.g., not (�) = �, and(1, �) = �). Glitches can be also logically masked
(e.g., and(0, �) = 0, or(1, �) = 1). The majority voter Voter31 depicted in Fig. 4 can be de�ned
as the following lddl expression of type ((ω ∗ ω) ∗ ω)→ ω:

[]fork, fork[] -◦- lsh -◦- []id, lsh -◦- []id, rsh -◦- swap[] -◦- rsh[]
-◦- []and, []and,and[][] -◦- []id,or[] -◦- or

c1

c2

c3

Figure 4 � Voter31: A majority voter

It is easy to check that Voter31 masks a glitch on one of its inputs provided the two other
inputs are identical. For instance, Voter31((�, 0), 0) = 0 (the �rst and gate masks the glitch) and
Voter31((�, 1), 1) = 1 (the last or gate masks the glitch).

If a corrupted signal is not logically masked and reaches a cell, it is latched non-deterministically
as tt or ff. This is speci�ed by the predicate s2b such that

s2b 0 ff ∧ s2b 1 tt ∧ s2b � ff ∧ s2b � tt

The propagation of Sets and the associated fault models are speci�ed by semantics relations
presented next.

Inria



A formally veri�ed circuit transformation to tolerate SEMTs 9

3.2 Fault semantics for Sets

A cycle with an Set is represented as the inductive predicate stepg C a b C ′ that can be read as
�after one cycle with an Set occurrence, the circuit C applied to the inputs a may produce the
outputs b and the new circuit/state C ′�. The predicate stepg introduces non-deterministically
a glitch after a single cell or gate and represents all possible Sets in the circuit. Its rules are
gathered in Fig. 5.

Gate
stepg G a � G

Plug
JGKa = b

stepg G a b G

SeqL
stepg C1 a b C

′
1 step C2 b c C

′
2

stepg (C1 -◦- C2) a c (C
′
1 -◦- C ′

2)
SeqR

step C1 a b C
′
1 stepg C2 b c C

′
2

stepg (C1 -◦- C2) a c (C
′
1 -◦- C ′

2)

ParL
stepg C1 a c C

′
1 step C2 b d C

′
2

stepg []C1, C2[] (a, b) (c, d) []C
′
1, C

′
2[]

ParR
step C1 a c C

′
1 stepg C2 b d C

′
2

stepg []C1, C2[] (a, b) (c, d) []C
′
1, C

′
2[]

CellC
stepg C (a, b2s x) (b, s) C ′ s2b s y

stepg x−C a b y −C ′ CellM
step C (a, �) (b, s) C ′ s2b s y

stepg x−C a b y −C ′

Figure 5 � lddl semantics with Set

The rule (Gate) describes the introduction of a glitch after a logical gate. Each composition
operator (sequential, parallel and memory cell) is associated with two rules which specify non-
deterministic choices. The two rules for sequential composition represents two mutually exclusive
cases where the Set occurs in the left sub-circuit (SeqL) or in the right one (SeqR). In both
cases, the other sub-circuit is evaluated using the standard evaluation predicate step (i.e., without
introducing additional Set). The two rules for the parallel operator are similar. The rule (CellC)
represents the case where an Set occurs inside C. The rule (CellM) represents the case where
an Set occurs at the output of the memory cell x that is fed to C. If a circuit has n gates and
m cells, stepg speci�es n+m possible Sets. When a glitch reaches a cell, it may introduce a bit
upset or not as speci�ed by the non deterministic predicate s2b. Therefore, stepg speci�es also
all possible cases of cell upsets after an Set.

Note that an Seu could be described along the same lines: no glitch would be introduced
after gates and the rule (CellM) would be changed not to introduce a glitch but instead to non
deterministically replace y by tt or ff.

3.3 Fault-models for Sets

Fault-models specify the kind and number of faults considered. For instance, SET (n, k) is a fault
model where at most n Sets can occur within k clock cycles. Most fault-tolerant techniques are
designed to mask fault models of the form SET (1 , k). Masking more simultaneous Sets involves
unrealistic levels of redundancy (e.g., two Sets within the same cycle require 5 redundant copies
to mask them by majority voting). Even in environments with high levels of ionizing radiations
(e.g., space, particle accelerators), k is considered to be larger than 1010 [3].

RR n° 9523



10 Vincent Bonczak, Pascal Fradet

Fault models SET (1, k) are expressed by the predicate setk eval : Nat → (α → β) →
Stream α→ Stream β formally de�ned by the two following rules:

SetN
step C i o C ′ setk eval (n− 1) C ′ is os

setk eval n C (i : is) (o : os)

SetG
stepg C i o C ′ setk eval (k − 1) C ′ is os

setk eval 0 C (i : is) (o : os)

The �rst argument of setk eval plays the role of a clock counter; it is initialized to k. The rule
(SetN) describes a normal cycle without Set regardless of the value of the counter (we assume
here a substraction de�ned on natural numbers such that 0− 1 = 0). A glitch can occur only if
the counter is 0 (rule (SetG)). This glitch is introduced in C by stepg and the counter is reset to
enforce at least k − 1 normal execution steps (SetN) before (SetG) can be considered again.

4 Characterization and formalisation of Semts

A Single Event Multiple Transient (Semt) is a single event that a�ects several nearby elements
and produces several transients. A �rst point of view is to consider these elements to be nearby
gates or cells the outputs of which would then produce a glitch. As already discussed for Sets, a
second, more general, point of view is to consider also nearby connections and their corresponding
source components (which may not be close).

Consider Fig. 6 and assume that all logic gates and memory cells are remote. With the �rst
viewpoint, a strike may only produce an Set at the output of a single component (c1, c2, c3, c4
or one of the two not gates). At the worst case, an Set can corrupt only two cells when it hits
a not gate (c1 and c2 or c3 and c4). With the second viewpoint, if a particle strikes two nearby
connections (as illustrated in Fig. 6) then two glitches propagate from their source components
(the two not gates) and possibly corrupt the four cells.

c1

c2

c3

c4

Figure 6 � Possible e�ects of Semts

In the following, we adopt the second point of view and take into account all nearby gates,
cells and wires. This model clearly subsumes the �rst viewpoint. Furthermore, it also takes
into account some crosstalk e�ects (capacitive or inductive coupling) where a glitch may a�ect
unrelated but close connections [2].

We assume that a particle hitting a circuit has an in�uence over all the elements (gates,
cells, wires) within a �xed radius from the point of impact. Experiments have shown that for
neutrons the radius of the zone is between 500nm and 1000nm for circuits etched in 15nm and
45nm [16, 12].

Inria



A formally veri�ed circuit transformation to tolerate SEMTs 11

4.1 Neighbor sets

To model a disturbance a�ecting several components, the layout of the circuit must be known
and taken into account. We assume a 2D circuit with coordinates of the form (x, y). The layout
is represented by a function taking the coordinates of a strike (a, b) and returning the set of
components (gates and cells) that can be a�ected assuming a radius of in�uence r.

We refer to these sets as neighbor sets. An Semt is described by a neighbor set and is modeled
by introducing a glitch at the output of each of the gates and cells of that set.

Computing neighbor sets of a circuit implies knowing not only the position of the components
but the complete layout of the circuit with the position of all its connections. This knowledge is
formalized by the function Sr(P ) which returns the set of connections close to the coordinates
P i.e., within a radius r. Let XY be the connection from component X to component Y then
XY ∈ Sr(a, b) if XY goes through a point (x, y) within the radius r around the point (a, b)
i.e., such that

(x− a)2 + (y − b)2 ≤ r2

The function Ir(P ) returning the neighbor set associated to the coordinate P is de�ned as

Ir(P ) = {X | XY ∈ Sr(P )}

The neighbor set Ir(P ) is made of the gates or cells having an outgoing connection going
close to the coordinate P . If the impact occurs right on a component X at position P we assume
that Sr(P ) returns its output wire and that X ∈ Ir(P ).

x

A
B

C
D

E

(a)

(b)
r

Figure 7 � Circuit with distant components and close connections

The circuit in Fig. 7 has four connections AB, DB, DC and EC. All individual components
are distant from each other. The connections AB andDB come close to each other when reaching
the B gate. Both can be impacted by the same Semt and their source gates A and D are in the
same neighbor set. Similarly DC and EC are close to each other when reaching the C gate so
they belong to the same neighbor set. Of course, each component (gate or cell) belong also to a
singleton neighbor set.

A neighbor set describes all possible Semts corrupting the outputs of some of its components.
So, we only need to consider maximum neighbor sets i.e., those that are not included in another
one. A circuit whose layout is de�ned by a function Sr(P ) has as set of neighbor sets Ir(P ) for
all coordinates P . The set of its maximum neighbor sets is de�ned as

E = {Ir(P ) | @P ′, Ir(P ) ⊂ Ir(P ′)}

For instance, the set of possible Semts of the circuit of Fig. 7 is described by the following set
of maximum neighbor sets:

E = {{A,D}, {C}, {B}, {D,E}}

RR n° 9523



12 Vincent Bonczak, Pascal Fradet

4.2 Semantics and fault models for Semts

In Sec 3.2, we presented the predicate stepg that models all possible Sets by introducing a glitch
at the output of a non deterministically chosen component. The semantics of circuits with an
Semt is described by the predicate stepmgH (Fig. 8) which may introduce a glitch at the outputs
of the components of a neighbor set H non deterministically chosen in the set of the maximum
neighbor sets.

Let E be the set of the maximum neighbor sets of C. The predicate StepmgE describes the
evaluation of C for all possible Semts described by E . Such an evaluation starts by a non-
deterministic choice of one of the neighbor sets of E (i.e., a possible Semt).

StepM
H ∈ E stepmgH C a b C ′

StepmgE C a b C ′

The predicate stepmgH C a b C ′ can be read as �after one cycle with an Semt impacting some
(possibly all or none) of the gates and cells of H, the circuit C applied to the inputs a may
produce the outputs b and the new circuit/state C ′�. Its rules are gathered in Fig. 8.

GateIn
G ∈ H

stepmgHG a � G
Gate

JGKa = b

stepmgHG a b G
Plug

JP Ka = b

stepmgH P a b P

Seq
stepmgH C1 a b C

′
1 stepmgH C2 b c C

′
2

stepmgH (C1 -◦- C2) a c (C
′
1 -◦- C ′

2)
Par

stepmgH C1 a c C
′
1 stepmgH C2 b d C

′
2

stepmgH []C1, C2[] (a, b) (c, d) []C
′
1, C

′
2[]

CellIn
stepmgH C (a, �) (b, s) C ′ s2b s y · −C ∈ H

stepmgH x−C a b y −C ′

Cell
stepmgH C (a, b2s x) (b, s) C ′ s2b s y

stepmgH x−C a b y −C ′

Figure 8 � lddl semantics with Semts

The rules (GateIn) and (CellIn) introduce a glitch at the output of any gate or cell belonging
to H. The rules (Gate) and (Cell) can also be applied regardless of whether the component
belongs to H or not. This models the non deterministic introduction of glitches.

The other rules as similar to the rules of step. Compared to the rules (Seq) and (Par) of stepg,
stepmgH is applied recursively to both sub-circuits since the whole circuit must be traversed to
introduce a glitch after all gates and cells belonging to H.

The fault model SEMT (1 , k) describing at most one Semt each k cycles is formalized by the
predicate semtk eval : Set NS→ Nat→ (α→ β)→ Stream α→ Stream β in Fig. 9.

Compared to setk eval (see Sec. 3), the predicate semtk eval takes in addition the set of
maximum neighbor sets E depending on the layout of C. The rule (SemtN) describing a normal
cycle is similar to (SetN). Compared to (SetG), the rule (SemtG) chooses non deterministically
a neighbor set H within E . It is then used by the predicate stepmg to insert glitches.

This formalization can be used to prove fault-tolerance properties of speci�c circuits w.r.t.
Semts. In that case, the �rst step should be to analyze the layout of the circuit in order to
compute its set of maximum neighbor sets. However, our aim is to propose circuit transformations

Inria



A formally veri�ed circuit transformation to tolerate SEMTs 13

SemtN
step C i o C ′ semtk evalE (n− 1) C ′ is os

semtk evalE n C (i : is) (o : os)

SemtG
H ∈ E stepmgH C i o C ′ semtk evalE (k − 1) C ′ is os

semtk evalE 0 C (i : is) (o : os)

Figure 9 � The SEMT (1 , k) fault model

to ensure fault-tolerance properties for all transformed circuits. To prove such properties, we
will have to de�ne generic layout constraints.

5 A modi�ed Tmr to tolerate Semts

Before describing su�cient and general constraints, we �rst present intuitively the standard full
Tmr and formalize it as a program transformation expressed on the lddl syntax. We then exam-
ine the consequences of Semts on Tmr circuits and discuss why they may not tolerate Semts.
We �nally propose a modi�ed Tmr transformation that, along with some layout constraints,
masks the fault model SEMT (1 , 2 ) i.e., one Semt every other cycle.

5.1 The standard full Tmr transformation

The simplest form of triple modular redundancy amounts to triplicating the circuit and inserting
a single majority voter at each primary output. It masks most Sets occurring in a combinational
circuit. To remove the single point of failure, the �nal voter is sometimes also triplicated. For
a sequential circuit this scheme is not su�cient since an Set can upset the memory of one copy
which may stay corrupted until another Set corrupts a di�erent copy. In such case, a triplicated
voter would be able to mask two incorrected signals out of three.

D1
c1

v1

ϕ1

PO1 PI1

D2
c2

v2

ϕ2

PO2 PI2

D3 c3

v3

PO3

ϕ3

PI3

Figure 10 � Full Tmr to mask all Sets

To provide full guarantees against Sets the circuit must be triplicated and a voter placed

RR n° 9523



14 Vincent Bonczak, Pascal Fradet

after each memory cell in each copy/domain. This architecture, called full Tmr, ensures that an
Set can corrupt only a single domain and will be corrected by voting in the next cycle. Even
with an Set every other cycle at least two primary outputs out of three are correct at any time.
Fig. 10 represents full Tmr where the ϕi's represent the combinational parts of the circuit; the
ci's and vi's denote single memory cells and voters but can also be seen as memory and voter
banks.

Note that interconnections between copies go directly to a voter. Hence, an Set in, say, D1

may propagate to D2 and/or D3 but that glitch will be immediately masked by the voter v2
and/or v3. Nevertheless, such an Set may corrupt (possibly all) cells in D1 as well as PO1 but
PO2 and PO3 remain correct. In the following cycle, the voters will restore correct values to the
cells in D1 and all primary outputs will be correct. The circuit is back in a sound state and able
to mask another Set.

Full Tmr cannot mask an Set every cycle. Take, for example, the case where an Set in ϕ1

(see Fig. 10) corrupts c1. In the next cycle, a second Set occurring at the output of c2 will make
all voters unable to mask the fault: their inputs from c1 and c2 may be incorrect (a wrong value
from c1 and a glitch from c2). The three domains may become and stay corrupted forever.

The fullTmr technique can be formalized by a program transformation on the syntax of lddl.
It takes a circuit of type α → β and returns a circuit of type (((α ∗ α) ∗ α)) → (((β ∗ β) ∗ β)).
Inputs/outputs are triplicated to play the role of the inputs/outputs of each copy.

Tmr(X) = [][]X,X[], X[] with X a gate or a plug
Tmr(C1 -◦- C2) = Tmr(C1) -◦- Tmr(C2)
Tmr([]C1, C2[]) = s1 -◦- []Tmr(C1),Tmr(C2)[] -◦- s2
Tmr( x−C) = x− x− x−(vot -◦- Tmr(C) -◦- s3)

where s1, s2, s3 are reshu�ing plugs. Their are de�ned in lddl so that:

s1 (((s, t)(s, t)), (s, t)) = (((s, s), s), ((t, t), t))
s2(((s, s), s), ((t, t), t)) = (((s, t)(s, t)), (s, t))
s3 (((s, t)(s, t)), (s, t)) = (((((s, s), s), t), t), t)

� A gate or plug X of type α → β is simply triplicated in [][]X,X[], X[] which has type
(((α ∗ α) ∗ α))→ (((β ∗ β) ∗ β)) .

� The sequential composition amounts to triplicating the two sub circuits and composing
them. Assuming that its two sub-circuits have types C1 : α → γ and C2 : γ → β,
then C1 -◦- C2 has type α → β and the triplicated input has type ((α ∗ α) ∗ α) which
is the input type expected by Tmr(C1). It returns ((γ ∗ γ) ∗ γ) which is the input type
expected by Tmr(C2). The triplicated sequential composition has therefore the required
type ((α ∗ α) ∗ α)→ ((β ∗ β) ∗ β)

� The parallel composition needs some reshu�ing. Assuming that its two sub-circuits have
types C1 : α1 → β1 and C2 : α2 → β2, then []C1, C2[] has type (α1 ∗ α2) → (β1 ∗ β2). Its
triplicated inputs (((α1 ∗ α2) ∗ (α1 ∗ α2)) ∗ (α1 ∗ α2)) are �rst reordered by s1 to pass the
correct expected triplicated inputs to Tmr(C1) (i.e., ((α1 ∗ α1) ∗ α1)) and to Tmr(C2)
(i.e., ((α2 ∗α2)∗α2)). Likewise, the outputs (((β1 ∗β1)∗β1)∗ ((β2 ∗β2)∗β2)) are reordered
by s2 so that the triplicated parallel composition has the required type

(((α1 ∗ α2) ∗ (α1 ∗ α2)) ∗ (α1 ∗ α2))→ (((β1 ∗ β2) ∗ (β1 ∗ β2)) ∗ (β1 ∗ β2))

� Each x −C is replaced by three cells followed by a triplicated voter vot, the triplicated
circuit Tmr(C) and some reshu�ing. Assuming that x −C has type α → β then C has

Inria



A formally veri�ed circuit transformation to tolerate SEMTs 15

type (α ∗ ω) → (β ∗ ω). After the triplication of the input and cell, vot takes an input of
type (((((α ∗ α) ∗ α) ∗ ω) ∗ ω) ∗ ω). It is de�ned as

vot = lsh -◦- lsh -◦- []id, rsh -◦- fork -◦- []fork -◦- []Voter31,Voter31[],Voter31[][] -◦- s2

It starts by reshu�ing its input so that ((ω ∗ ω) ∗ ω) can be sent to the three majority
voters Voter31 (see Fig.4). The �nal plug s2 reshu�es the result to provide Tmr(C)
with an input of type (((α ∗ ω) ∗ (α ∗ ω)) ∗ (α ∗ ω)). Tmr(C) returns a result of type
(((β ∗ ω) ∗ (β ∗ ω)) ∗ (β ∗ ω)) which is then reshu�ed by s3 to feed back the three signals
to the cells and to give Tmr( x−C) the expected output type ((β ∗ β) ∗ β).

5.2 Layout constraints for Tmr and Semts

The key property of full Tmr is that each Set can only corrupt one copy that can be corrected by
majority voting during the next cycle (supposed to be fault-free). In contrast, without additional
layout constraints, an Semt may corrupt several copies of a full Tmr circuit at once by impacting
several gates or cells belonging to di�erent copies.

In the following, we say that two elements (gate, cell, wire) or domains are distant (resp.
close) if they are more (resp. less) than 2r apart, r being the considered radius of a particle
impact. The layout of the full Tmr circuit must satisfy some layout constraints:

Any two domains Di and Dj (i 6= j) should be distant from each other, otherwise both
could be corrupted by the same Semt. We view primary inputs and outputs as sockets of their
respective domains and constraints on them are already taken into account by constraints on
domains. Assuming that the distance d between any two domains is greater than 2r, these
constraints are ful�lled by the circuit of Fig. 11. They are however not completely su�cient to
prevent an Semt from corrupting several domains.

Since we consider Semt on wires, we should pay attention to the interconnections between
di�erent domains. The three inputs of a voter, say, v1 which belong to D1, are considered close
from each other. They can therefore be striked by a single Semt modeled by a glitch at the
outputs of their source components i.e., c1, c2 and c3. These glitches would propagate back to
the three inputs of the three voters, making the three domains potentially corrupted.

It is not reasonable to impose that the inputs of a basic circuit such as a voter be separated
by more than 2r. Therefore, Tmr must be adapted to prevent such source of corruption. A
simple solution is to protect each interconnecting wire by a yes gate preventing an Semt on a
voter from propagating to other domains. In Fig. 11, the wires going to voters are protected by a
yes gate inserted before leaving their source domain. Now, if an Semt corrupts the three inputs
of v1 it will be modeled as a glitch at the outputs of c1 and the two corresponding yes gates of
D2 and D3. The glitch from c1 propagates to v1, v2 and v3 while the two glitches from the yes
gates in D2 and D3 can only propagate to v1. The voter v1 has its three inputs corrupted and so
might be D1. On the other hand, at most one input of v2 and v3 is corrupted; hence the glitch
is masked and both D2 and D3 remain correct.

Interconnecting wires between two domains can be close to each other. An Semt on such
wires, e.g., between D1 and D2 (D1 ↔ D2), is equivalent to introducing a glitch at the output
of each corresponding yes gate. These two glitches will be masked by v1 and v2. However,
interconnections D1 ↔ D2, D1 ↔ D3 and D2 ↔ D3 should not all three close to each other.
Indeed, an Semt introducing a glitch at the output of all yes gates could corrupt the three
domains during the same cycle.

To summarize, the required adjustments and layout constraints on Tmr to tolerate the fault
model SEMT (1 , 2 ) of Sec. 4.2 are:

� each interconnection between two domains leaves its domain by crossing a yes gate;

RR n° 9523



16 Vincent Bonczak, Pascal Fradet

D1
c1

v1

ϕ1

PO1 PI1

D2
c2

v2

ϕ2

PO2 PI2 PO3

D3 c3

v3

ϕ3

PI3

dd

Figure 11 � A Tmr circuit masking all Semts (d > 2r)

� the three copies/domains D1, D2 and D3 are distant from each other;

� the interconnections between Di and Dj are distant from Dk, from the interconnections
between Di and Dk and from the interconnections between Dj and Dk (with i, j and k
distinct from each other).

Fig 11 shows a triplicated circuit with a layout respecting these constraints. The last con-
straint implies that any Semt on interconnections outside a domain will be represented by a
neighbor set made only of the yes gates of two domains. This kind of fault is subsumed by an
Semt on the voters of one of these two domains.

5.3 A Tmr transformation to tolerate Semts

The adaptation of Tmr for Semts relies on a new version of the triplicated voter inserted after
each triplicated cell. The new triplicated voter vot+ is similar to the one used in Sec. 5.1 but
includes the aforementioned yes gates. It is de�ned as

vot+ = lsh -◦- lsh -◦- fork -◦- []fork -◦- [][][]id, 2→1
yes[],

3→1
yes[] -◦- Voter31, [][]

1→2
yes, id[],

3→2
yes[] -◦- Voter31[],

[][]
1→3
yes,

2→3
yes[], id[] -◦- Voter31[] -◦- s2

Fig 12 provides a graphical representation of vot+. Note that a gate
i→j
yes is located in domain Di

as depicted in Fig. 11.

v1

v2

v3

Copy 2

Copy 1

Copy 3

vi : Voter31

Figure 12 � Triplicated voter vot+

Inria



A formally veri�ed circuit transformation to tolerate SEMTs 17

Apart from the new voter, the modi�ed Tmr is speci�ed by the same transformation as Tmr.

Tmr
+(X) = [][]X,X[], X[] with X a gate or plug

Tmr
+(C1 -◦- C2) = Tmr

+(C1) -◦- Tmr+(C2)
Tmr

+([]C1, C2[]) = s1 -◦- []Tmr+(C1),Tmr
+(C2)[] -◦- s2

Tmr
+( x−C) = x− x− x−(vot+ -◦- Tmr+(C) -◦- s3)

Of course, in addition, the layout of the triplicated circuit must respect the layout constraints
of Sec. 5.2.

6 Correctness Properties and Proofs

Before stating correctness properties we must address two technical problems. First, since we
want to prove that for any circuit C, Tmr+(C) tolerates the fault model SEMT (1 , 2 ) (see
Sec. 4.2). We cannot rely on precise layouts and must consider generic neighbor sets valid for
any circuit satisfying the generic constraints listed above. Second, the lddl language does not
provide any easy way to distinguish between components of di�erent copies of a Tmr circuit. We
must therefore rede�ne the fault semantics speci�cally for Tmr circuits. We can then present
the general property we want to prove. Describing the proof in details is out of the scope of this
paper and would be tiresome. Instead, we describe its structure and the main lemmas.

The Tmr+ transformation, its fault-tolerance properties, and their proofs have all been spec-
i�ed and completed within the Coq proof assistant; they are available online [1].

6.1 Generic neighbor sets

We consider the largest neighbor sets based on the generic constraints of Sec. 5.2. This guarantees
that any Semt on any circuit will be represented by a neighbor set that is included in one of
these sets. In other words, our fault model subsumes any possible Semt of any triplicated circuit
respecting the generic constraints.

Largest neighbor sets are de�ned only based on constraints expressed in terms of domains
and interconnections between them. Two gates or cells belonging to the same domain Di of a
circuit Tmr+(C) belong to the same neighbor set since there is no constraint preventing them
from being close. So, all components of Di belong to the same neighbor set Hi. On the other
hand, gates, cells, primary inputs and primary outputs of a domain must be distant from the
components of the other two domains. They must belong to a di�erent neighbor set. This
leads us to de�ne three neighbor sets H1, H2 and H3 representing/including of possible Semts
corrupting one of the three domains D1, D2 and D3 of a circuit Tmr+(C). An Semt on a
circuit Tmr+(C) respecting the layout constraints of Sec.5.2 is represented by a neighbor set H
included in either H1, H2, or H3. Any Semt impacting either D1 (i.e., potentially all gates of
D1) or the interconnections between D1 and D2 (i.e., potentially all yes gates from D1 to D2

and all yes gates from D2 to D1) or the interconnections between D1 and D3 (i.e., potentially
all yes gates from D1 to D3 and all yes gates from D3 to D1) will have its neighbor set included
in H1 with

H1 = {cells or gates of D1} ∪ {yes gates from D2 to D1} ∪ {yes gates from D3 to D1}

The two other sets H2 and H3 that include all possible Semts impacting D2 or D3 are de�ned
similarly.

RR n° 9523



18 Vincent Bonczak, Pascal Fradet

6.2 A fault model for all Tmr+(C)

A generic fault model can be de�ned by �rst selecting non deterministically one of the three
above sets Hi and non deterministically inserting a glitch at the output of members of that set.
Those glitches propagate and corrupt the primary outputs of Di and possibly all its memory
cells. Since glitches are introduced non deterministically the predicate stepmgHi

describes the
corruptions of all possible subsets of Hi and therefore all Semts within Hi.

This approach also describes impossible Semts (e.g., on distant components within a domain)
for speci�c circuits. The important point is that it ensures that the fault-tolerance properties
hold for all possible Semts that may occur for any speci�c layout respecting the constraints.

As stated above, the lddl language does not provide any easy way to distinguish between
distinct components of a circuit such as two and gates or two cells. For this reason, we de�ne the
fault model speci�cally for circuits triplicated by Tmr+. By doing so, it is possible to distinguish
between gates or cells belonging to or connecting speci�c domains.

The fault model SEMT (1 , 2 ) is expressed by the predicate semtk eval applied to the set of
neighbor sets previously de�ned E = {H1,H2,H3} and a triplicated circuit Tmr+(C).

SemtN
step Tmr

+(C) i o Tmr+(C ′) semt12 evalE (n− 1) Tmr+(C ′) is os

semt12 evalE n Tmr
+(C) (i : is) (o : os)

SemtG
stepmgHi

Tmr
+(C) i o CT semt12 evalE 1 CT is os Hi ∈ E

semt12 evalE 0 Tmr+(C) (i : is) (o : os)

The rule (SemtN) describes a normal cycle without Semt regardless of the value of the
counter. It returns a triplicated circuit Tmr+(C ′). The semantics of a faulty execution step
(SemtG) of a circuit Tmr+(C) is allowed if the counter is 0. It starts with a non-deterministic
choice of one neighbor set Hi within E = {H1,H2,H3}. The predicate stepmgHi

may insert a
glitch after all components belonging to Hi. The resulting circuit CT is a triplicated one but
might not be strictly on the form Tmr

+(C ′) since some cells of Di might have been corrupted
and therefore may di�er from their corresponding cells of the two other domains. The in�nite
execution continues with a counter sets at 1, which only prevents the next cycle to be a faulty
one.

In the following, we specify stepmg when the domain D1 has been chosen i.e., stepmgH1
.

The two other cases stepmgH2
and stepmgH3

are similar and we do not describe them here. The
predicate stepmgH1

is de�ned by instantiating the de�nitions given in Sec. 4.2 to circuits of the

form Tmr
+(C).

Triplicated gates are evaluated according to their logic but the output of the �rst one (be-
longing to D1 therefore to H1) is possibly replaced by a glitch. To model the non deterministic
introduction of a glitch at the output of the components in H1 we use the predicate introglitch
such that

introglitch x x ∧ introglitch x �

The rule for evaluating triplicated gates is

TGate
JGKai = bi for i = 1, 2, 3 introglitch b1 b

′
1

stepmgH1
Tmr

+(G) ((a1, a2), a3) ((b
′
1, b2), b3) Tmr

+(G)

where b′1 can either be b1 or �. The evaluation of triplicated plugs is

TPlug
JP Kai = bi for i = 1, 2, 3

stepmgH1
Tmr

+(P ) ((a1, a2), a3) ((b1, b2), b3) Tmr
+(P )

Inria



A formally veri�ed circuit transformation to tolerate SEMTs 19

The rules for triplicated sequential and parallel compositions are

TSeq
stepmgH1

Tmr
+(C1) a b C

T
1 stepmgH1

Tmr
+(C2) b c C

T
2

stepmgH1
Tmr

+(C1 -◦- C2) a c (C
T
1 -◦- CT

2 )

TPar
stepmgH1

Tmr
+(C1) a c C

T
1 stepmgH1

Tmr
+(C2) b d C

T
2

stepmgH1
Tmr

+([]C1, C2[]) (a, b) (c, d) (s1 -◦- []CT
1 , C

T
2 [] -◦- s2

)

Note that the evaluation of Tmr+(C1) or Tmr
+(C2) does not result in a circuit of the form

Tmr
+(C). If the initial circuit contains cells, then stepmgH1

will introduce glitches that may
corrupt cells of D1. The resulting circuit may have triplicated cells where the cell of D1 is
di�erent from the two others and therefore cannot be de�ned as a circuit triplicated by Tmr+.

The rule for cells may introduce a glitch at the output of the �rst cell and of the gates of the
voter of D1 (all belonging to D1 therefore to H1). It may also introduce a glitch after the yes

gates of D2 and D3 fed to the voter of D1. The rule (TCell) specify these faults is an equivalent
way as follows:

� as with the rule for gates, we make use of the predicate introglitch to model the non
deterministic introduction of glitches;

� the triplicated circuit is in a consistent state; the content of each triplicated cell is the same
value x which is turned into a signal s (b2s x s);

� this signal may be replaced by a glitch for the �rst input of the voters of D2((s
′, s), s) and

D3 ((s′′, s), s) ; note that this is equivalent to inserting a glitch after the two yes gates
belonging to D1;

� the voter of D1 is not executed but its output may be replaced by a glitch (this is equivalent
to inserting a glitch after all its gates, the corresponding yes gates of D2 and D3 and
executing it). This glitch may appear in the �rst input (a1, v

′
1) fed to the triplicated circuit

Tmr
+(C);

� after the execution ofTmr+(C) the feedback signals are transformed into booleans (s2b wi yi)
to be latched. The correctness proof will establish that y2 = y3 whereas y1 is non deter-
ministically either 0 or 1.

TCell

b2s x s introglitch s s′ introglitch s s′′ introglitch v1 v
′
1

step [][]yes, id[],yes[] -◦- Voter31 ((s′, s), s) v2 [][]yes, id[],yes[] -◦- Voter31
step [][]yes,yes[], id[] -◦- Voter31 ((s′′, s), s) v3 [][]yes,yes[], id[] -◦- Voter31

stepmgH1
Tmr

+(C) (((a1, v
′
1), (a2, v2)), (a3, v3)) (((b1, w1), (b2, w2)), (b3, w3)) C

T

s2b wi yi for i = 1..3

stepmgH1
Tmr

+( x−C) ((a1, a2), a3) ((b1, b2), b3) y1 − y2 − y3 −(vot -◦- CT -◦- s3)

6.3 Correctness properties

We outline the proof structure by presenting the main lemmas needed to prove the main property
relating the execution of the source circuit without fault to the execution of the transformed
circuit under the fault model SEMT (1 , 2 ). The main theorem states that Tmr+ tolerates 1
Semt every 2 cycles. More precisely, a circuit Tmr+(C) always produces at least 2 correct
outputs during faulty cycles (modeled by stepmgHi

) and 3 during normal cycles (modeled by
step).

Most of the lemmas relate the states and executions of the source and transformed circuits.
These relations are expressed as inductive predicates.

RR n° 9523



20 Vincent Bonczak, Pascal Fradet

Normal execution

We say that a circuit CT is a consistent triplicated circuit if there is a circuit C such that
Tmr

+(C) = CT . This implies in particular that all triplicated cells share the same value.
A �rst property is that on normal operation (step) a circuit and its triplicated version with re-

lated inputs produces related outputs and related circuits. Furthermore, under normal operation,
a consistent triplicated circuit evolves into another consistent triplicated circuit. Formally,

Lemma 1. For all circuits C1, C2 and signals a, b

step C1 a b C2 ⇒ step Tmr
+(C1) ((a, a), a) ((b, b), b) Tmr

+(C2)

Corruption con�nement

A �rst key property is that an Semt can corrupt only a single redundant copy and that such
corruption stays con�ned in this copy/domain.

To express corruption con�nement, we use a predicate relating source and transformed pro-
grams expressed on the syntax of lddl. The corruption of a single copy of a transformed circuit

CT w.r.t. to its source circuit C is expressed by predicates
1∼, 2∼, and 3∼. The relation C i∼ CT

can be read as �CT is a triplicated version of C where only the values cells of Di may di�er from

their corresponding cells in C�. The predicate
i∼ is de�ned inductively by the rules

X
i∼ [][]X,X[], X[] with X a plug or gate

C1 -◦- C2
i∼ CT

1 -◦- CT
2 iff C1

i∼ CT
1 ∧ C2

i∼ CT
2

[]C1, C2[]
i∼ s1 -◦- []CT

1 , C
T
2 [] -◦- s2 iff C1

i∼ CT
1 ∧ C2

i∼ CT
2

( x−C) i∼ ( x1 − x2 − x2 −(vot+ -◦- CT -◦- s3)) iff C
i∼ CT ∧ (j 6= i⇒ xj = x)

The last rule states that x−C is in relation
i∼ with its transformed version if and only if C

i∼ CT

and the value of cells of domains other than Di are equal to x. The other rules just check
recursively the relationship.

In the following, we write ∼ for the relation
1∼ ∨ 2∼ ∨ 3∼.

Assuming a consistent triplicated circuit, it must be shown that the cells and primary outputs
that can be corrupted during a cycle modeled by stepmg belong to a single domain. If the Semt
occurs in Di then the cells and outputs of the two other domains are correct.

Lemma 2. For all circuits C,C ′, C ′T , signals a, b, o1, o2, o3 and i ∈ {1, 2, 3}

step C a b C ′ ∧ stepmgHi
Tmr

+(C) ((a, a), a) ((o1, o2), o3) C
′T

⇒ C ′ i∼ C ′T ∧ (∀j ∈ {1, 2, 3}, j 6= i⇒ oj = b)

Recovery after corruption

The second key property states that a corrupted circuit always recovers after a non-faulty execu-
tion step. If the triplicated circuit has only one domain corrupted then it returns to a consistent
triplicated circuit after a single normal cycle (step).

Lemma 3. For all circuits C,C ′, CT and signals a, b

C ∼ CT ∧ step C a b C ′ ⇒ step CT ((a, a), a) ((b, b), b) Tmr+(C ′)

Inria



A formally veri�ed circuit transformation to tolerate SEMTs 21

Main fault-tolerance theorem

Just as full Tmr cannot tolerate two Sets in a row, Tmr+ cannot tolerate two Semts in a row.
Indeed, a �rst Semt might corrupt a cell in D1 whereas an Semt in the following cycle might
corrupt the output signal of the corresponding cell in D2. The corresponding voters would have
two incorrect inputs and produce incorrect values, therefore corrupting cells and/or outputs in
the three domains.

The fault-tolerance property relates in�nite execution over streams. The input stream of the
triplicated circuit is the input stream of the source circuit where each element is triplicated. We
write tripl(i1 :: i2 :: . . . :: in :: . . .) for the stream

((i1, i1), i1) :: (i2, i2), i2) :: . . . :: (in, in), in) :: . . .)

The output streams of the source and transformed circuits are related by the following pred-
icate

(o1 :: o2 :: . . . :: on :: . . .)
s∼ ((x1, x

′
1), x

′′
1) :: (x2, x

′
2), x

′′
2) :: . . . :: (xn, x

′
n), x

′′
n) :: . . .)

which holds is if each triplet ((xi, x
′
i), x

′′
i ) has at least two members equal to oi.

The main correctness theorem states thatTmr+(C) circuits tolerate the fault model SEMT (1 , 2 ).
For related input streams, the normal execution (eval) of the source circuit and the execution
under the considered fault model (semt12 eval) of the transformed circuit give related output
streams. It is expressed as follows.

Theorem 4. For all circuit C, integer n, streams of signals i, o and oT

eval C i o ∧ semt12 eval n Tmr
+(C) (tripl i) oT ⇒ o

s∼ oT

7 Related work

Due to the downscaling of transistor size, most Sets are expected to evolve into Semts. The �rst
studies were concerned by modeling multiple transient faults and analyzing their e�ect on circuits
depending on the particle energy and circuit technology (e.g., [23, 15]). A few techniques have
been considered to mitigate Semts: layout-aware placement and hardening techniques. Kiddie
and Robinson [18] investigate di�erent placement strategies and �nd that some improve Semt
resilience with minimal area and timing penalties compared to the standard placement. Harden-
ing techniques include the use of well contacts [9] or guard rings [11] on selected sensitive areas
to mitigate Semts. Georgakidis et al. [13] compare two techniques to mitigate Semts: spacing
all logical components so that a particle can a�ect only one and the use of Tmr. Spacing among
all components is found to produce worse area and performance results than Tmr. However,
only combinational circuits are considered, triplication is used only on critical subparts of the
circuit and a single voter is used (making the design vulnerable to an Semt on that component).
Most of these works are pragmatic and aim at decreasing probabilities of faults with small costs.
E�ectiveness of these solutions are always estimated as soft error rates or probabilities using
simulation and/or fault injection. These approaches radically di�er from our approach since our
objective is to provide formal guarantees w.r.t. a fault model.

Most uses of formal methods on digital circuits have been devoted to the functional veri�cation
of circuits [14]. It is usually performed for speci�c circuits using model-checking or SAT solving
techniques. However, such an approach is inappropriate to prove the correctness of a synthesis
or transformation tool for all possible circuits; theorem proving must be used instead. Still,
proof-assistants have been �rst used for the functional veri�cation of speci�c circuits. Let us

RR n° 9523



22 Vincent Bonczak, Pascal Fradet

cite, among many others, the application of ACL2 to prove the out-of-order microprocessor
architecture FM9801 [28], HOL for the Uinta pipelined microprocessor [31], and Coq for an
ATM Switch Fabric [10]. The language proposed by Braibant [5], somewhat close to our lddl
language, has been used to prove the correctness of parametric combinational circuits (e.g., n
bits adders).

Proof-assistants have also been used to certify tools used in circuit synthesis or hardware
compilers. An old survey of formal circuit synthesis is given in [19]. More recently, S. Ray et
al. proved circuit transformations used in high-level synthesis with ACL2 [27]. Several formally
veri�ed hardware compilers have been proposed. Braibant and Chlipala certi�ed a compiler
from a simpli�ed version of BlueSpec to RTL in Coq [6]. Bourgeat et al. present a hardware
compiler implemented in Coq for Kôika, an experimental hardware design language inspired by
BlueSpec [4]. Lööw introduces Lutsig, a Verilog-to-netlist compiler veri�ed in HOL [20].

This article is based on our previous work [8] which presented the lddl language and its use
to certify several circuit transformations for fault-tolerance of Sets. Contrary to most works
that specify circuits within the logic of the prover, we use a hardware description language.
This approach, known as deep-embedding, allows us to reason on circuits (gates and wires), to
model Single-Event Transient (SET) as glitches occurring at speci�c places and to express fault-
tolerance techniques as syntactic program transformations. To the best of our knowledge, our
work remains the only one using formal methods to verify fault-tolerance properties of digital
circuits.

8 Conclusions

Most evaluation of fault-tolerance techniques are based on experiments (e.g., fault injection,
irradiation, etc.) measuring the probabilities of speci�c circuits to mask faults. The relevance
of these probabilities depends on the probabilities of the experiments themselves and their level
of test coverage. We follow a di�erent approach which consists in formally proving that a given
fault-tolerance technique masks all possible faults of a given fault model. This formal proof is
conducted using a proof-assistant and guarantees fault-tolerance properties. Of course, it does
not ensure that the circuit tolerate any kind of faults but the probabilities of fault-tolerance
depends only on the coverage of the fault model.

This work is an extension of the approach described in [8] to Semts. Here, we proposed
adjustments and layout constraints to full Tmr so that it can mask any Semt every other cycle.

We �rst showed how to formalize Semts knowing the circuit layout. From the layout, we
can deduce neighbor sets, which are the possible sets of components than can be impacted by an
Semt. A faulty cycle of a given circuit is formalized by selecting non deterministically a neighbor
set and introducing a glitch at the output of all the members of that set. We then showed that
the standard full Tmr must be adapted and comply to some placement constraints in order to
mask Semts. Our fault-tolerance properties proofs for Sets [8] were quite straightforward since
a faulty cycle for any circuit was modeled by introducing a glitch non- deterministically after a
single gate or cell. It was therefore described in the same way for all possible circuits. For Semts,
the event depends on the layout of the circuit. We had to �rst describe maximum neighbor sets
that describe any possible Semts for all circuits. Second, we had to describe a faulty cycle on
Tmr

+ circuits in order to introduce glitches only on the members of one of these maximum sets.
We pointed out several possible fault models for Semts. The weaker model assumed that

an Semt can only disturb adjacent components. The model we chose is more general since
components with close outgoing connections are considered to be close as well and may be
impacted by the same Semt. With the �rst model full Tmr with distant triplicated domains is

Inria



A formally veri�ed circuit transformation to tolerate SEMTs 23

su�cient to mask Semts. The second fault model requires in addition to protect inter-domain
connections with yes gates. In both cases, full Tmr tolerates the total corruption of a domain
and does not put any restriction on technology scaling. The key property is domain isolation,
which is achieved by spacing out the three domains and protecting interconnections using yes

gates.
The proof that Tmr+ tolerates Semts is around 700 lines of Coq (excluding comments and

blank lines) and took only a few days to complete. It relied on the already developed library
for lddl (5000 lines describing its syntax, semantics, properties and taylor-made tactics) and a
previous proof of Tmr for Sets. The proofs themselves are, for the most part, straightforward
inductions. The approach makes an essential use of dependent types in Coq that provided an
elegant solution to ensure that all circuits were well-formed. The Coq �les of the formalization,
properties and proofs associated with this work (as well as formalization and proofs of three
other fault-tolerance transformations for Sets) are available online [1].

Our approach is general and applicable to many other circuit transformations and well-
known techniques used in circuit synthesis (e.g., FSM-encoding). For instance, the fault-tolerance
techniques based on time redundancy described in [7] could also be considered for an extension
to Semts. More generally, proof-assistants are now su�ciently mature to consider the formal
certi�cation of the whole circuit synthesis tool chain including transformations and optimizations.

References

[1] Coq proofs of circuit transformations for fault-tolerance. available at https://team.inria.
fr/spades/fthwproofs/, 2014-2023.

[2] A. Balasubramanian, O. A. Amusan, B. L. Bhuva, R. A. Reed, A. L. Sternberg, L. W.
Massengill, D. McMorrow, S. A. Nation, and J. S. Melinger. Measurement and analysis of
interconnect crosstalk due to single events in a 90 nm cmos technology. IEEE Transactions
on Nuclear Science, 55(4):2079�2084, 2008.

[3] A. Bogorad et al. On-orbit error rates of RHBD SRAMs: Comparison of calculation tech-
niques and space environmental models with observed performance. IEEE Trans. on Nuclear
Science, 58(6):2804�2806, 2011.

[4] T. Bourgeat, C. Pit-Claudel, A. Chlipala, and Arvind. The essence of bluespec: a core
language for rule-based hardware design. In A. F. Donaldson and E. Torlak, editors, Pro-
ceedings of the 41st ACM SIGPLAN International Conference on Programming Language
Design and Implementation, PLDI 2020, London, UK, June 15-20, 2020, pages 243�257.
ACM, 2020.

[5] T. Braibant. Coquet: A coq library for verifying hardware. In Proc. of Certi�ed Programs
and Proofs - CPP, pages 330�345, 2011.

[6] T. Braibant and A. Chlipala. Formal veri�cation of hardware synthesis. In Computer Aided
Veri�cation, volume 8044, pages 213�228. 2013.

[7] D. Burlyaev. Design, Optimization, and Formal Veri�cation of Circuit Fault-Tolerance
Techniques. Theses, Université Grenoble Alpes, Nov. 2015.

[8] D. Burlyaev and P. Fradet. Formal veri�cation of automatic circuit transformations for
fault-tolerance. In 2015 Formal Methods in Computer-Aided Design (FMCAD), pages 41�
48, 2015.

RR n° 9523

https://team.inria.fr/spades/fthwproofs/
https://team.inria.fr/spades/fthwproofs/


24 Vincent Bonczak, Pascal Fradet

[9] I. Chatterjee, S. Jagannathan, D. Loveless, B. L. Bhuva, S.-J. Wen, R. Wong, and
M. Sachdev. Impact of well contacts on the single event response of radiation-hardened
40-nm �ip-�ops. In 2012 IEEE International Reliability Physics Symposium (IRPS), pages
SE.4.1�SE.4.6, 2012.

[10] S. Coupet-Grimal and L. Jakubiec. Certifying circuits in type theory. Formal Asp. Comput.,
16(4):352�373, 2004.

[11] Y. Du, S. Chen, and J. Chen. A layout-level approach to evaluate and mitigate the sensitive
areas of multiple sets in combinational circuits. IEEE Transactions on Device and Materials
Reliability, 14(1):213�219, 2014.

[12] M. Ebrahimi, H. Asadi, R. Bishnoi, and M. B. Tahoori. Layout-based modeling and miti-
gation of multiple event transients. IEEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems, 35(3):367�379, 2016.

[13] C. Georgakidis, G. I. Paliaroutis, N. Sketopoulos, P. Tsoumanis, C. Sotiriou, N. Evmor-
fopoulos, and G. Stamoulis. A layout-based soft error rate estimation and mitigation in
the presence of multiple transient faults in combinational logic. In 2020 21st International
Symposium on Quality Electronic Design (ISQED), pages 231�236, 2020.

[14] A. Gupta. Formal hardware veri�cation methods: A survey. Form. Methods in System
Design, 1(2-3):151�238, Oct. 1992.

[15] R. Harada, Y. Mitsuyama, M. Hashimoto, and T. Onoye. Neutron induced single event
multiple transients with voltage scaling and body biasing. In 2011 International Reliability
Physics Symposium, pages 3C�4. IEEE, 2011.

[16] E. Ibe, H. Taniguchi, Y. Yahagi, K.-i. Shimbo, and T. Toba. Impact of scaling on neutron-
induced soft error in SRAMs from a 250 nm to a 22 nm design rule. IEEE Transactions on
Electron Devices, 57(7):1527�1538, 2010.

[17] G. Jones and M. Sheeran. Designing arithmetic circuits by re�nement in Ruby. Sci. Comput.
Program., 22(1-2):107�135, 1994.

[18] B. T. Kiddie and W. H. Robinson. Alternative standard cell placement strategies for single-
event multiple-transient mitigation. In 2014 IEEE Computer Society Annual Symposium on
VLSI, pages 589�594, 2014.

[19] R. Kumar, C. Blumenröhr, D. Eisenbiegler, and D. Schmid. Formal synthesis in circuit
design. A classi�cation and survey. In FMCAD, pages 294�309, 1996.

[20] A. Lööw. Lutsig: a veri�ed verilog compiler for veri�ed circuit development. In C. Hritcu and
A. Popescu, editors, CPP '21: 10th ACM SIGPLAN International Conference on Certi�ed
Programs and Proofs, Virtual Event, Denmark, January 17-19, 2021, pages 46�60. ACM,
2021.

[21] Coq development team. The coq proof assistant, software and documentation available at
http://coq.inria.fr/, 1989-2023.

[22] N. Miskov-Zivanov and D. Marculescu. Multiple transient faults in combinational and se-
quential circuits: A systematic approach. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 29(10):1614�1627, 2010.

Inria



A formally veri�ed circuit transformation to tolerate SEMTs 25

[23] N. Miskov-Zivanov and D. Marculescu. Multiple transient faults in combinational and se-
quential circuits: A systematic approach. IEEE Trans. Comput. Aided Des. Integr. Circuits
Syst., 29(10):1614�1627, 2010.

[24] S. Mitra, N. Seifert, M. Zhang, Q. Shi, and K. S. Kim. Robust system design with built-in
soft-error resilience. IEEE Computer, 38(2):43�52, Feb. 2005.

[25] G. I. Paliaroutis, P. Tsoumanis, N. Evmorfopoulos, G. Dimitriou, and G. I. Stamoulis. SET
Pulse Characterization and SER Estimation in Combinational Logic with Placement and
Multiple Transient Faults Considerations. Technologies, 8(1):5, 2020.

[26] N. P. Rao and M. P. Desai. Quanti�cation of the likelihood of single event multiple transients
in logic circuits in bulk CMOS technology. Microelectronics Journal, 72:86�99, 2018.

[27] S. Ray, K. Hao, Y. Chen, F. Xie, and J. Yang. Formal veri�cation for high-assurance
behavioral synthesis. In Int. Symposium on Automated Technology for Veri�cation and
Analysis, pages 337�351, 2009.

[28] J. Sawada and W. A. Hunt Jr. Veri�cation of FM9801: An out-of-order microprocessor
model with speculative execution, exceptions, and program-modifying capability. Formal
Methods in System Design, pages 187�222, 2002.

[29] M. Sheeran. muFP, A language for VLSI design. In LISP and Functional Programming,
pages 104�112, 1984.

[30] J. von Neumann. Probabilistic logic and the synthesis of reliable organisms from unreliable
components. Automata Studies, pages 43�98, 1956.

[31] P. J. Windley and M. L. Coe. A correctness model for pipelined multiprocessors. In Theor.
Provers in Circuit Design, pages 33�51, 1994.

RR n° 9523



RESEARCH CENTRE
GRENOBLE – RHÔNE-ALPES

Inovallée
655 avenue de l’Europe Montbonnot
38334 Saint Ismier Cedex

Publisher
Inria
Domaine de Voluceau - Rocquencourt
BP 105 - 78153 Le Chesnay Cedex
inria.fr

ISSN 0249-6399


