
Symbolic Buffer Sizing for Throughput-Optimal
Scheduling of Dataflow Graphs

Adnan Bouakaz Pascal Fradet Alain Girault

INRIA; Univ. Grenoble Alpes
first.last@inria.fr

Abstract—The synchronous dataflow model is widely used
to design real-time streaming applications which must assure a
minimum quality-of-service. A benefit of that model is to allow
static analyses to predict and guarantee timing (e.g., through-
put) and buffering requirements of an application. Performance
analyses can either be performed at compile time (for design
space exploration) or at run-time (for resource management and
reconfigurable systems). However, these algorithms, which often
have an exponential time complexity, may cause a huge run-
time overhead or make design space exploration unacceptably
slow. In this paper, we argue that symbolic analyses are more
appropriate since they express the system performance as a
function of parameters (i.e., input and output rates, execution
times). Such functions can be quickly evaluated for each different
configuration or checked w.r.t. many different non-functional
requirements. We first provide a symbolic expression of the
maximal throughput of acyclic synchronous dataflow graphs. We
then perform an analytic and exact study of the minimum buffer
sizes needed to achieve this maximal throughput for a single
parametric edge graph. Based on these investigations, we define
symbolic analyses that approximate the minimum buffer sizes
needed to achieve maximal throughput for acyclic graphs. We
assess the proposed analyses experimentally on both synthetic
and real benchmarks.

I. INTRODUCTION

Synchronous dataflow (SDF) graphs [11] are widely used
to design digital signal processing and concurrent real-time
streaming applications. This model comes with static analyses
that guarantee the boundedness and liveness of an application
as well as predictable performances (e.g. throughput, latency,
memory requirements).

Performance analyses of SDF graphs check whether non-
functional requirements are met. They can be performed both
at design time and at run-time. At design time, it is a crucial
step in the development of embedded applications. Many
decisions and settings of the system need to be explored (e.g.
hardware/software partitioning, memory allocation, granularity
and different implementations of tasks, processor speeds, etc.)
and the best options that satisfy the non-functional require-
ments can be chosen. At run-time, performance analysis is
performed either for resource management or to cope with the
dynamic behavior of parametric versions of SDF. Indeed, in
response to the increasing complexity of systems, many para-
metric dataflow models have been proposed (e.g., PSDF [4],
SPDF [9], BPDF [2], πSDF [8], SADF [7], etc.) in which the
graph (e.g., its rates or channels) may change at run-time.

Throughput is one important timing constraint of real-
time systems. For example, a video decoder should decode a
minimum number of frames per second. Using a throughput-
optimal scheduling policy, such as self-timed scheduling, al-
lows the designer to guarantee such timing requirements, but

also to use dynamic voltage and frequency scaling (DVFS)
techniques to reduce energy consumption in case the maximum
throughput is larger than the desired quality-of-service [15].
Furthermore, for embedded systems, it is primordial to deter-
mine the minimum buffer sizes that allow such scheduling.

In this paper, we propose symbolic analyses of dataflow
graphs. Our analyses consider the rates and execution times
of actors as parameters. Most non-functional properties of the
application can be described as a function of these parameters.
By evaluating these functions for specific values of parameters,
the properties/performances of specific configurations can be
obtained. We propose two symbolic analyses of acyclic graphs
under self-timed scheduling to answer the following questions:

Q1. What is the maximum throughput of the application?
Q2. What are the minimum buffer sizes that allow the appli-

cation to achieve its maximum throughput?

partially specified

 SDF graph
 SDF graphparametric

dataflow graph

 result
(throughput, latency, buffer sizes, ...)

numerical

 analysis

symbolic

analysis

Symbolic

formulas

Numerical

evaluation

numerical analysis

symbolic analysis

Instantiation

SDF graph

Symbolic

evaluation

Fig. 1: Symbolic and numerical analyses.

Although our symbolic analyses may give only approxi-
mate (but safe) results, they are quite useful in many cases
(see Fig. 1) :

1. At early design stages, the SDF model of the application
is usually partially specified and many system settings remain
to be explored. For instance, the execution time of an actor
depends on whether it is implemented in software or in
hardware, or which algorithm will be used to implement its
functionality, etc. Therefore, design space exploration may re-
quire analyzing of a potentially huge number of configurations
(path 3). Symbolic analyses are a big advantage in this case.
Formulas are generated only once and simply evaluated for
each possible configuration (i.e., set of parameters) (path 4).

2. Similarly, non-functional requirements of parametric
dataflow models at compile time can be expressed symbolically

1

as parametric formulas. Then, the requirements can be either
checked by evaluating formulas for all potential configurations
(path 6b) or, better, by an analytic proof (path 6a) to ensure,
for instance, that the buffering requirements are less than some
threshold whatever the configuration of the application.

3. For dynamic models and runtime resource management,
appropriate settings have sometimes to be chosen dynamically.
Consider, for instance, a parametric application where fre-
quency scaling is used to guarantee a specific throughput and
minimize power consumption. In such case, frequency must
be adjusted at each parameter change. Instantiating the graph
(path 5) and performing a numerical analysis is far too costly
at run time. Consequently, fast analyses, like the evaluation of
symbolic formulas, are required (path 6b).

4. Finally, even for completely static SDF models, many
analyses have an exponential complexity. In practice, the
exact computation of throughput and latency is acceptable
at compile time (path 1). However, exact algorithms for
minimal buffer sizes are too expensive even for small graphs.
Moreira et al. [12] shows that this problem is NP-complete for
homogeneous SDF (HSDF) graphs. Moreover, SDF-to-HSDF
conversion may lead to an exponential growth of the size
of the graph. Our symbolic analysis (path 2) is much more
efficient and its approximate solution can also be considered
as a starting point to prune the parameter space and hence
improve the performance of the exact algorithm.

Contributions. The contributions of our paper are threefold:

a. We present and prove a duality theorem and show how it
can be used to prune many cases.

b. We give a new analytic characterization of the parametric
data-dependency A

p q−−→ B, called enabling patterns, which
can be used to build symbolic analyses, e.g., for buffer sizing.

c. We describe exact and approximate polynomial-time sym-
bolic analyses to answer the above questions (Q1 and Q2).

The article is organized as follows. Section II introduces
synchronous dataflow graphs and the needed definitions. Sec-
tion III presents throughput analysis and a new generic result
required to solve the second question. We present in Section IV
an exact analysis of the minimum buffer size for a single
edge SDF graph A

p q−−→ B. These results are extended to
acyclic graphs using approximate analyses in Section V. We
evaluate our technique on both synthetic and real benchmarks
in Section VI. Finally, we review related work in Section VII
and conclude in Section VIII. The interested reader will find
proofs and additional details in a companion paper [6].

II. BACKGROUND

In this section, we first introduce the application model and
the scheduling policy. Then, we review some useful properties.

Application model: An SDF graph G = (V,E) consists of
a finite set of actors V and a finite set of edges E which can
be seen as FIFO channels. The atomic execution of a given
actor (called firing) consumes data tokens from all its incoming
edges (its inputs) and produces data tokens to all its outgoing
edges (its outputs).

The number of tokens consumed (resp. produced) at a
given port at each firing is called the consumption (resp.
production) rate. An actor can fire only when all its input

edges have enough tokens (i.e., at least the number specified
by the corresponding rate). An edge may contain some initial
tokens (also called delays). The execution time of an actor X
is denoted by tX . For instance, Fig. 2(a) shows an SDF graph
with two actors A and B, with execution times tA = 20 and
tB = 7 respectively. The production and consumption rates are
8 and 5 respectively. The top edge in Fig. 2(b) has 15 initial
tokens (represented by the black dot).

(a) (b)

Fig. 2: (a) An SDF graph; (b) The same graph with channel
size constraint and auto-concurrency disabled.

The state of a dataflow graph is the vector of number
of tokens present at each edge (i.e., buffered in each FIFO
channel). Each edge carries zero or more tokens at any
moment. The initial state of the graph is specified by the
number of initial tokens. The initial state of the graph of
Fig. 2(b) is [iAA=1, iAB=0, iBB=1, iBA=15]. An iteration of
an SDF graph is a non empty sequence of firings that returns
the graph to its initial state. For the graph in Fig. 2(a), firing
actor A five times and actor B eight times forms an iteration.
The repetition vector ~z = [zA=5, zB=8] indicates the number
of firings of actors per iteration. If such vector exists the graph
is said to be consistent [11]. We denote by zX the number of
firings of actor X in the iteration.

Homogeneous SDF (HSDF) is a restriction of SDF where
all the production and consumption rates are equal to 1. HSDF
graphs are particularly useful because (i) their throughput can
be computed as the inverse of the maximal cycle mean (MCM);
and, (ii) any SDF graph can be converted into an equivalent
HSDF graph. The cycle mean of a cycle is equal to the sum
of execution times of the actors in the cycle divided by the
number of delays (i.e., initial tokens) in the channels of this
cycle. This provides a way to compute the throughput of any
SDF graph. Unfortunately, the translation from SDF to HSDF
may lead to an exponential increase of the number of nodes.

Scheduling policy: In this paper, we focus on as soon as
possible (ASAP) scheduling of consistent graphs without auto-
concurrency (i.e., two firings of the same actor cannot overlap).
In such self-timed executions [14], an actor fires as soon as
if it is idle (no auto-concurrency) and has enough tokens on
its input channels. We assume there are sufficient processing
units, e.g., there are as many processors as actors or actors
are implemented in hardware. ASAP scheduling allows to
reach the maximal throughput. Such schedules are naturally
pipelined and composed of a prologue followed by a steady
state that repeats infinitely. Fig. 6 shows the ASAP schedule
of the graph in Fig. 2(a).

The multi-iteration latency of the first n iterations of the
execution of a graph G, written LG(n), is equal to the finish
time of the last firing in all firings composing the first n
iterations (assuming timing starts at the very first firing). The
period of the execution (denoted by PG) is the average length
of an iteration and formally defined as

PG = lim
n→∞

LG(n)

n

The throughput of the execution, TG, is the number of itera-
tions per unit of time, and hence equals 1

PG
.

2

The FIFO channel A
p q−−→B with bounded size d can be

modeled by adding a backward channel B
q p−−→A with d initial

tokens, as shown in Fig. 2(b). This conservative modeling,
assumed in most works, enforces that an actor can start firing
only if there is enough space on its output channels. Fig. 2(b)
also shows how to make the prevention of auto-concurrency
explicit by adding self-edges with rates equal to 1 and one
initial token.

For a channel A
p q−−→B with d initial tokens, the ith firing

of B (denoted Bi) is enabled if and only if the number of
produced tokens is larger than iq. Hence, B has to wait for
the jth firing of A (denoted Aj) such that jp + d ≥ iq. We
thus have:

Bi ≥ Aj with j =

⌈
iq − d
p

⌉
(1)

This equation characterizes the data-dependency between A
and B. However, because of the ceiling function, this equa-
tion is not suited to symbolic manipulations. We propose in
Section IV a new characterization that is more intuitive and
suitable to reason about buffer sizes.

III. THROUGHPUT AND DUALITY

In this section, we first determine the exact maximal
throughput for acyclic SDF graphs. Then, we present a new
property that will be used to answer the minimum buffer sizes
question.

Property 1 (Throughput). The maximal throughput of an
acyclic SDF graph G = (V,E) is equal to

TG =
1

max
A∈V
{zAtA}

(2)

Hence, the minimal period is PG = max
A∈V
{zAtA}.

Proof: This is easily shown by considering the MCM
analysis of the corresponding HSDF graph. The only cycles
in HSDF(G), the HSDF graph equivalent to an acyclic graph
G, are those used to represent the infinite firings of the same
actor (see Fig. 3(a)). For each actor A, its corresponding cycle
contains one delay and zA instances of A. Thus, the cycle mean
is equal to zAtA, the MCM is equal to max

A∈V
zAtA and denotes

the inverse of the maximal throughput of HSDF(G) and G.

We say that actor A imposes a higher load than actor B
when zAtA > zBtB . The throughput and period of an acyclic
graph is defined by the actor which has the highest load. This
implies that this actor never gets idle once the execution enters
the steady state.

(a) HSDF graph equivalent to

2 3

(b) HSDF graph equivalent to

23

Fig. 3: SDF-to-HSDF transformation of a graph and its
dual.

Fig. 4: Illustration of the duality theorem.

The dual of an SDF graph G, denoted G−1, is obtained by
reversing all edges of G.

Theorem 1 (Duality theorem). Let G be any (cyclic or not)
live graph and G−1 be its dual, then TG = TG−1 and
∀i. LG(i) = LG−1(i).

Proof: The detailed proof can be found in [6]. We first
prove that the graph HSDF(G) is the dual (after renaming
actors) of HSDF(G−1) (see Fig. 3). Therefore, both HSDF
graphs have the same MCM and, by Eq. (2) TG = TG−1 . We
prove that ∀i. LHSDF(G)(i) = LHSDF(G−1)(i) by unfolding both
HSDF graphs for i iterations.

Fig. 4 illustrates the duality theorem with the SDF graph
Ga of Fig. 2(b). The latency of the first iteration of the ASAP
execution of that graph is equal to the latency of the first
iteration of its dual i.e., LGa

(1) = LGa
−1(1).

We use the transformation of a graph to its dual as well as
the associated theorem at several occasions during the analysis
of minimal buffer sizes.

IV. THE PARAMETRIC GRAPH A
p q−−→B

This section focuses on the simplest SDF graph made of
a single edge: G = {A p q−−→B}. It provides exact answers for
the minimum buffer sizes needed to achieve maximal through-
put. Graph G is parametrized by production and consumption
rates1 p, q ∈ N+ as well as execution times tA, tB ∈ R+. This
section shows that the symbolic analysis, even for such simple
graphs, is quite involved.

The balance equation zAp = zBq entails that the repetition
vector of this graph is:

[zA=q/ gcd(p, q), zB=p/ gcd(p, q)]

and, according to Property 1, its period is:

PG = max(zAtA, zBtB) (3)

A. Enabling patterns

We introduce enabling patterns which characterize the
data-dependency between a producer and a consumer. Com-
pared to Eq. (1), they are more intuitive and suitable to reason
about buffer sizes.

Enabling patterns between the producer A and consumer
B are defined by the following grammar:

P ::= Ai Bj | [P]x=1..k | P1;P2

where i, j, k evaluate to a positive integer.

An enabling pattern P is either a basic pattern (Ai Bj),
a repetition for k times ([P]x=1..k), or a sequence of enabling
patterns P1;P2, The expressions i, j or k are arithmetic

1Mathematically speaking, the results of this section can be generalized to
rates defined as positive real numbers.

3

Case A. p ≥ q
Let p = kq + r with 0 ≤ r < q

Case A.1. r = 0
A Bk (4)

Case A.2. q ≤ 2r[
A Bk;

[
A Bk+1

]αj
]j=1·· q−r

gcd(p,q)

(5)

Case A.3. q > 2r[[
A Bk

]βj
;A Bk+1

]j=1·· r
gcd(p,q)

(6)

where αj =
⌊

jr
q−r

⌋
−
⌊

(j−1)r
q−r

⌋
and βj =

⌈
jq
r

⌉
−
⌈

(j−1)q
r

⌉
−1.

Case B. p < q
Let q = kp+ r with 0 ≤ r < p

Case B.1. r = 0
Ak B (7)

Case B.2. p ≥ 2r[
Ak+1 B ;

[
Ak B

]γj]j=1·· r
gcd(p,q)

(8)

Case B.3. p < 2r[[
Ak+1 B

]λj
;Ak B

]j=1·· p−r
gcd(p,q)

(9)

where γj =
⌊

jp
r

⌋
−
⌊

(j−1)p
r

⌋
−1 and λj =

⌈
jr

p−r

⌉
−
⌈

(j−1)r
p−r

⌉
.

Fig. 5: Enabling patterns.

expressions made of integers, parameters or pattern variables
defined by enclosing repetition patterns.

The semantics of an enabling pattern is defined w.r.t. two
counters cA and cB representing the number of completed
firings of A and B (initially 0). The pattern Ai Bj ;P
w.r.t. (cA, cB) means that:

• cA firings of A have produced enough tokens to fire actor
B exactly cB times;

• then, if A is not fired at least i times more then B cannot
be fired; otherwise B can be fired j times;

• the subsequent pattern P is considered with the new
values (cA + i, cB + j).

A repetition [P]x=1..k is a sequence of k patterns P . The
pattern [P]x=1..k is also written [P]k if the pattern variable
x is not used in P .

A correct enabling pattern must cover an entire iteration:
at the end of the pattern, we should have cA = zA and cB =

zB . For instance, the enabling pattern of A 3 6−−→B is A2
B ; i.e., after every two firings of actor A, one firing of B is
enabled. The enabling pattern of A 8 5−−→B is:

A B ;A B2;A B ; [A B2]2

which is illustrated in Fig. 6. It can also be written as:[
A B ; [A B2]i

]i=1··2

This representation is very useful when the length and shape
of enabling patterns depend on the parameters of the graph.

Fig. 6: An ASAP execution (p = 8, q = 5, tA = 20, tB = 7).

B. Enabling patterns of A
p q−−→B

Depending on the production and consumption rates p
and q, there are six possible enabling patterns.

Property 2. Fig. 5 gathers all possible enabling patterns of a
channel A

p q−−→B.

Proof: We show here the proof of cases (A.1) and (A.2).
The remaining cases can be found in [6].

• Case (A.1) If r = 0 then p = kq and the repetition vector
is ~z = [1, k]. Each firing of A enables k firings of B and the
enabling pattern is A Bk.

• Case (A.2)(p = kq + r and q ≤ 2r) The first firing of
A enables only k firings of B, yielding the pattern A Bk.
The number of remaining tokens in the channel after sequence
ABk is equal to r. Since 2r ≥ q, the second firing of A
enables k + 1 firings of B, yielding the aggregated pattern
A Bk;A Bk+1. It follows that pattern A Bk+1 can be
repeated a number of times denoted α1, after which there will
be r+α1(r− q) tokens left. So, α1 is the largest integer such
that r + α1(r − q) ≥ 0. Hence, α1 = b r

q−r c.

The next firing of A will only enable k firings of B (A
Bk). By the same reasoning as above, this will be followed
by [A Bk+1]α2 where α2 is the largest integer such that
r+α1(r−q)+r+α2(r−q) ≥ 0. Hence, α2 = b 2r

q−r c−b
r
q−r c.

This process is repeated until all firings of A and B of the
iteration take place, yielding the complete pattern[

A Bk; [A Bk+1]αj
]j=1··m

for some m that remains to compute. The number of firings
of A in this pattern is equal to cA =

∑m
j=1 1 + αj , while the

number of firings of B is equal to cB =
∑m
j=1 k+(k+1)αj . A

correct pattern should cover the entire iteration, i.e., cA = zA
and cB = zB , which implies (details omitted, see [6]) m =
q−r

gcd(p,q) .

The enabling patterns of Fig.5 can be used to derive a
quasi-static schedule for the parametric graph A

p q−−→B.

C. Minimum buffer size of A
p q−−→B

We now use enabling patterns to compute the minimum
size of the buffer A

p q−−→B (denoted θA,B) such that the ASAP
execution achieves the maximal throughput or, equivalently,
the minimal period given by Eq. (3). The buffer size is modeled
by adding a backward edge with θA,B initial tokens. We
distinguish two cases:

• Case zAtA ≥ zBtB (i.e., qtA ≥ ptB): Actor A has the highest
load and should fire consecutively for maximal throughput.
Enabling patterns are the key to find the minimum number of
tokens that allows this behavior. A trivial case is (A.1) where
p = kq and the enabling pattern is A Bk. In order to
perform the first two firings of A consecutively, the backward
edge should have at least 2p tokens. Since qtA ≥ kqtB (hence
tA ≥ ktB), the k firings of B complete before the third firing

4

of A which still needs 2p initial tokens in order to fire again
immediately. Hence, the minimum buffer size is 2p.

• Case zAtA < zBtB (i.e., qtA < ptB): Actor B has the highest
load and should fire consecutively for maximal throughput.
However, in general all firings of B cannot be consecutive
since initially, there is no token on the edge. The previous
approach can still be followed using the duality theorem. Since
the graph G and its dual G−1 have the same throughput,
we can apply the former reasoning on G−1 where B is the
producer and has the highest load.

Property 3. If zAtA ≥ zBtB , the minimum buffer sizes of
A

p q−−→B for maximal throughput are given by the symbolic
formulas of Fig. 7.

Case I.
Case I.1. A.1 ∨ ((A.2 ∨ A.3) ∧ tA ≥ (k + 1)tB)

θA,B = 2p+ q − gcd(p, q) (10)

Case I.2. B.1 ∨ ((B.2 ∨ B.3) ∧ tB ≤ ktA)

θA,B = p+ q − gcd(p, q) +

⌈
tB
tA

⌉
p (11)

Case II.

Case II.1. (A.2∧r′ ≥ d r
q−r e

d r
q−r e+1 tB)∨(A.3∧r′ ≥ 1

b qr c
tB)

where r′ = tA − ktB

θA,B = 2p+ q − gcd(p, q) +

⌈
tB − r′

r′

⌉
r (12)

Case II.2. (B.2∧r′ ≤ 1
d pr e

tA)∨ (B.3∧r′ ≤ b r
p−r c

b r
p−r c+1 tA)

where r′ = tB − ktA

θA,B = p+ 2q − gcd(p, q) +

⌈
r′

tA − r′

⌉
(p− r) (13)

Case III.
Case III.1. A.2

θA,B = 2p+q+r−gcd(p, q)+
n−1
max
j=1

(jr mod (q−r)) (14)

where n is the smallest positive integer such that⌊
nr′

tB−r′

⌋
≥
⌈
nr
q−r

⌉
and r′ = tA − ktB .

Cases III.(A.3), III.(B.2), III.(B.3) see [6].

Fig. 7: Minimum buffer size θA,B when zAtA ≥ zBtB .

Proof: Here, we only outline the proof and focus on one
case ((I.1) with (A.2)). A detailed proof can be found in [6].

Let δj be the minimum number of tokens in the backward
edge (representing the buffer) such that the jth firing of A can
occur immediately after the (j−1)th firing of A. By definition
of θA,B , we have θA,B = max

j
δj . Let xj denote the number

of firings of B that have finished by the start of the jth firing
of A. Hence, δj = jp− xjq.

The three cases of Fig. 7 should be read as (I) else (II)
otherwise (III).

CASE (I): At any given enabling point (i.e., any in the

enabling pattern), all newly enabled firings of B complete their
execution before the next enabling point.

In terms of the enabling pattern cases identified in Fig. 5,
case (I) must be split into two exclusive subcases, (I.1) when
p ≥ q and (I.2) otherwise. The conjunction of the condition
for case (I) with p ≥ q yields the condition A.1 ∨ ((A.2 ∨
A.3) ∧ tA ≥ (k + 1)tB), which is shown in Fig. 7. The other
conditions are obtained similarly.

Let us prove the result for case (I.1) and pattern (A.2),
i.e., p = kq + r ∧ q ≤ 2r. According to the enabling pattern
(Eq. (5)), at most (k+1) firings of B can be enabled at a given
point. They all run in parallel with one firing of A. Case (I)
requires that tA ≥ (k + 1)tB .

We first expand the enabling pattern of Eq. (5) into an
infinite pattern in order to compute the minimum buffer
size θA,B over the infinite execution of the graph:[

A Bk;
[
A Bk+1

]αj
]j∈N+

(15)

For the sake of the proof, since αj ≥ 1, we can rewrite Eq. (15)
into the equivalent infinite pattern:

A Bk;A Bk+1︸ ︷︷ ︸
prologue

;
[
[A Bk+1]αj−1;A Bk;A Bk+1

]︸ ︷︷ ︸
block j

j∈N+

(16)

The minimum of tokens to enable the first firing of A must
be δ1 = p. Then, δ2 = δ1 + p= 2p because no B has finished
before the second A starts. Then, δ3 =δ2 + (p− kq)=2p+ r.
Subsequently, δ4 =δ3 + (p− (k + 1)q)=δ3 + (r − q), and all
α1 subsequent values of δi are obtained from δi−1 by adding
(r − q) which is negative. The sequence (αj) is defined in
Fig. 5. Hence, δ1+(α1+1)+1 =δ3+α1(r−q)=2p+r+α1(r−q).
This ends at the last of the α1 patterns A Bk+1, so the next
value δ1+(α1+1)+2 is obtained by adding p− kq = r because
of pattern A Bk, yielding 2p+ r + α1(r − q) + r.

prologue block 1

Fig. 8: Sequence (δj) in case (I.1) and pattern (A.2).

The computation of the infinite sequence (δj) is illustrated
in Fig. 8. Within each block j, the subsequence (δh) is strictly
decreasing because (r− q) is negative, so its maximum value
is the value of the entry point, which we denote by `j =

1 +
∑j
i=1(αi + 1) + 2. We thus have:

δ`j = 2p+r+

j∑
i=1

(αi(r−q)+r) = 2p+r+jr+(r−q)
⌊

jr

q − r

⌋

It follows that the maximum value of the infinite sequence
(δj) is:

5

θA,B = max
j∈N

δ`j

= max
j∈N

(2p+ r + jr + (r − q)b jr

q − r
c)

= 2p+ r + (q − r) max
j∈N

(
jr

q − r
− b jr

q − r
c)

As a conclusion, θA,B = 2p + r + (q − r − gcd(p, q)) =
2p+ q − gcd(p, q).

CASE (II): Case (I) is not satisfied, but, for any block
(e.g., [[A Bk+1]αj ;A Bk] in case (A.2)), all firings of
B during this block complete their execution before the first
enabling point in the next block.

This case is illustrated in Fig. 9. A block is of the form
[A B2]αj ;A B . The maximum value of αj is 2.
Therefore, five firings of B have to run in parallel with three
firings of A. So, we must have 5tB ≤ 3tA. The computed
sequence (δj) in case (II) is similar to that of case (I) but with
small shifts.

blockblock

Fig. 9: An ASAP execution (p=8, q=5, tA=13, tB=7).

CASE (III): Otherwise.

This is the most complicated case to solve since the
sequence (xj) does not follow the enabling patterns. Our
solution is based on the following observations. We define a
catch-up sequence as a sequence of consecutive firings of B
(i.e., without gaps) that may spread over many blocks. Fig. 10
illustrates a catch-up sequence over two blocks.

catch-up sequence

Enable:

Finish before:

Fig. 10: An ASAP execution (p=8, q=5, tA=23, tB=14).

The key observation is the following. For the firings of
A inside a catch-up sequence, the number of firings of B
that finish before firings of A actually follows the enabling
pattern of graph A tA tB−−−−→B, i.e., as if time was produced and
consumed instead of tokens. Furthermore, the maximum of
sequence (δj) occurs inside the maximal (in terms of blocks)
catch-up sequence. For instance, n in Eq. (14) represents the
length of the maximal catch-up sequence.

In Case (III), when actors A and B impose the same load
(i.e., zAtA = zBtB), the catch-up sequence spreads all over the
iteration. In this worst-case scenario, all four cases (III.A.2,
III.A.3, III.B.2 and III.B.3) give the same upper bound:

θuA,B = 2(p+ q − gcd(p, q)) (17)

This bound is also tight, in the sense that for all p, q, there
exist tA and tB such that θA,B given in Eq. (14) is equal to

θuA,B . This upper bound does not depend on the execution times
of the actors. Therefore, it can be used as a safe buffer size if
the execution times of actors are unknown.

Our last result concerns the minimum buffer size of the
graph A

p q−−→B when there are d initial tokens.

Property 4. If If zAtA ≥ zBtB and the channel A
p q−−→ B

contains d initial tokens, then the minimum buffer size θ′A,B
that allows the maximum throughput is

θ′A,B = max{0, θA,B − d+ d mod gcd(p, q)} (18)

with θA,B as defined in Fig. 7

Proof: See [6].

If zAtA < zBtB the minimum buffer sizes are computed
identically but on the dual graph.

V. ACYCLIC GRAPHS

Exact symbolic analyses for a single edge are already so
complex that they seem to be out of reach for arbitrary (even
acyclic) graphs. This section shows how to use the previous
results to obtain approximate analyses for the minimum buffer
sizes of general acyclic dataflow graphs. To achieve this, we
make use of a technique that linearizes the firings of actors.

A. Linearization of graph A
p q−−→B

Consider the graph G = {A p q−−→B}, where, as illustrated
in Fig. 6, the firings of A are consecutive while those of B
are neither consecutive nor uniformly distributed. Let fB(i)
denote the finish time of the ith firing of actor B. In order to
derive formulas that can be composed (e.g., when dealing with
a chain of actors), we want to transform B into a fictive actor
Bu that fires consecutively as many times as B and such that

∀i. fB(i) ≤ fBu(i)

Actor Bu has a starting time t0Bu and an execution time tBu ,
and since it fires consecutively fBu(i) = itBu + t0Bu .

We present one linearization method, called Stretch , illus-
trated in Fig. 11. Method Stretch determines Bu by increasing
the execution time of B in order to fill the gaps. We distinguish
two cases:

• Case qtA ≥ ptB : We take tBu = qtA
p . The starting time can

be shown (see the proof in [6]) to be t0Bu = tA+tB− gcd(p,q)
p tA.

So,

∀i. fBu(i) =
qtA
p
i+

(
tA + tB −

gcd(p, q)

p
tA

)
(19)

Method Stretch may advance the starting of some firings,
but always postpone their endings.

Fig. 11: Linearization of B for the graph A
p q−−→B (p = 8,

q = 5, tA = 20, tB = 7). Case qtA ≥ ptB .

6

• Case qtA < ptB : Firings of B are consecutive in the steady
state. Therefore, we can take tBu = tB and using the duality
theorem, we have LG(n) = LG−1(n) = nzBtB + ∆B,A and
we can take t0Bu = ∆B,A, where ∆B,A is computed on the
schedule of the first iteration of the dual graph B

q p−−→A as
the difference between the end of the last firing of A and the
end of the last firing of B (see [6] for details).

In both cases, it can be shown that this linearization is tight
in the sense that ∃i. fB(i) = fBu(i). We can see in Fig. 11
that both 5th firings of B and Bu finish at the same time.

Thanks to this linearization, the chain A
p q−−−→B

p′ q′−−−−→C
can be treated by first scheduling the subgraph A

p q−−→B, then
linearizing the firings of B if they are not consecutive, then

scheduling the subgraph Bu
p′ q′−−−→C, and finally combining

the two schedules.

B. Minimum buffer sizes for maximal throughput

We give approximate minimum buffer sizes that allow
general acyclic graphs to reach their maximal throughput. We
first present formulas to compute safe upper bounds for general
acyclic graphs, then we present a heuristic that improves this
bound for chains, trees, and in-trees (DAGs with only joins).
These special kinds of graphs, especially chains, are common
in streaming applications.

1) Safe upper bounds:
We first present a negative result. Let G be an acyclic graph

and let the size of each channel A
p q−−→B be equal to θA,B

as defined in Section IV-C. These buffer sizes do not always
permit maximal throughput2. A simple counterexample is the
graph Gb = {A 3 4−−→ B

4 2−−→ C} with tA = 16, tB = 11
and tC = 12. The repetition vector is ~z = [4, 3, 6]. Actor
C imposes the higher load, hence the minimal period of this
graph is PGb

= zCtC = 72. We have θA,B = 9 and θB,C = 6.
Locally, these buffer sizes allow the producers to run freely
without any constraint from the consumers. However, when
they are put together, the maximal throughput, where actor
C fires consecutively, cannot be achieved (see Fig. 12). The
computation of θB,C assumes that the execution time of actor
B is tB = 11. However, as illustrated in Fig. 12, there are gaps
between the firings of B due to the data-dependency A→ B.
The global execution proceeds as if the execution times of B
were sometimes longer than 11.

Fig. 12: ASAP execution of Gb

Property 5. Let G be a graph without any undirected cycle,
if the buffer of every channel A

p q−−→B in G is at least 2(p+
q− gcd(p, q)), then the ASAP execution of the graph achieves
the maximal throughput.

Proof: We first present the proof for chains. Let G be the
chain {A1

p1 q1−−−−→ A2
p2 q2−−−−→ A3 → · · · → An}, according

to Eq. (2), the minimal period of G is PG = max
i=1..n

{zAitAi}.

2They do however allow maximal throughput in some specific cases
described in the next section

The period and therefore the throughput remain the same if
the execution time of each actor Ai is considered to be PG

zAi
.

Let G= be the version of G where all actors have the same
load as the maximum load in G. Then G and G= have the
same period and throughput.

If the size of each buffer Ai
pi qi−−−→ Ai+1 in G= is

θuAi,Ai+1
= 2(pi + qi − gcd(pi, qi)), then G= still achieves

the maximal throughput. Indeed, size 2(p1 + q1− gcd(p1, q1))
for the first channel allows both A1 and A2 to run con-
secutively in the steady state (see Eq. (17)). Similarly, size
2(p2 + q2 − gcd(p2, q2)) for the second channel allows both
A2 and A3 to run consecutively, and so on.

Since graph G= with these buffer sizes achieves the maxi-
mal throughput, reducing the execution times of actors in G= to
their original values will never decrease the throughput of the
graph thanks to the monotonicity of the self-timed execution.
Hence, graph G with these buffer sizes achieves the maximal
throughput.

The proof for general graphs with no undirected cycle can
be found in [6].

Note 1: Since the minimum buffer sizes below which the graph
is definitely not live are equal to p+q−gcd(p, q) [1], Property
5 provides a first solution which is less than twice the exact
one. For parametric dataflow models, the upper bound θuA,B
can actually be reached for some configurations. However, if
the system supports dynamic reallocation of memory, it is still
useful to evaluate the minimal buffer sizes to adjust buffers
after each configuration change.

Unfortunately, Property 5 does not hold for general acyclic
graphs that contain undirected cycles. A counterexample is
the graph Gc = {A 4 3−−−→ B

3 8−−−→ D, A 1 3−−−→ C
3 2−−−→ D}

with tA = 4, tB = 3, tC = 12 and tD = 8. The repetition
vector is ~z = [6, 8, 2, 3] and all actors impose the same load
(i.e., ∀X. zXtX = 24). The ASAP execution when all buffer
sizes are equal to their upper bound 2(p + q − gcd(p, q)) is
shown in Fig. 13. Actor A does not fire consecutively so
the throughput is not maximal. The reason is that the chain
A�C �D imposes an earliest start time for D that is after
the earliest start time imposed by the chain A � B � D.
More precisely, the first firing of actor D is delayed by
actor C (i.e., by the second chain), which delays the 7th

firing of B which in turn delays the 8th firing of A. Let
fuD,1 (resp. fuD,2) denote the linear upper bound on finish
times of actor D following the first (resp. second) chain.
We have fuD,1(i) = 8i + 16 and fuD,2(i) = 8i + 28, hence
fuD,2(i) > fuD,1(i). In order to prevent the second chain from
impacting the schedule of the first chain, we must increase the
size of buffer B�D so that B may fire during 28− 16 time
units. Since B produces 3 tokens and tB = 3 the size of the
B�D buffer must be increased by d 28−163 e3 = 12.

Fig. 13: ASAP execution of Gc

In the general case, for a chain A1
p1 q1−−−−→ A2 →

· · · pn−1 qn−1−−−−−−−−→An where all actors have the same load, we
have

7

fuAn
(i) = tAn

i+ zAn
tAn

n−1∑
i=1

pi + qi − gcd(pi, qi)

pizAi

(20)

If the actors do not have the same load, we consider, as in the
proof of Property 5, the chain where all actors have the same
load i.e., the maximum load of the original chain.

Property 6. Let two different chains from A1 to An such that
fuAn,1

(i) = tAn
i + x1, fuAn,2

(i) = tAn
i + x2 and x1 < x2.

To prevent the second chain from disturbing the schedule of
the first one, it suffices to increase the size of the last channel
An−1

p q−−→An of the first chain by ζ with

ζ =

⌈
x2 − x1
tAn−1

⌉
p (21)

Proof: The proof is based on the following observation.
Let A

p q−−→ B be a graph with two actors such that zAtA =
zBtB . Hence, θA,B = 2(p + q − gcd(p, q)). Even if the first
firing of B starts only at time tA

p (p+ q − gcd(p, q)), actor A
can still fire consecutively provided that the buffer size is θuA,B
(the proof uses Eq. (19), details omitted). Hence, if all actors
in the first chain are delayed as indicated by Eq. (20), then
the sizes 2(pi + qi − gcd(pi, qi)) still allow the first actor to
fire consecutively. Note that after introducing these delays, no
actor gets idle once it starts executing.

Let x1 and x2 denote the start time of the last actor in the
two different chains from A1 to An. If x2 > x1, the extra
delay (x2 − x1) imposed by the second chain will hinder the
previous property. Let An−1

p q−−→An be the last channel in the
first chain. Increasing the size of this channel by dx2−x1

tAn−1
ep will

allow actor An−1 to fire consecutively during the extra delay
(x2 − x1). That is, the impact of the second chain on the first
one is avoided.

Note 2: The value of ζ, like the value of θuA,B , does not
actually depend on execution times. Indeed, Eq. (20) shows
that x1 and x2 can be expressed as zAn

tAn
k1 and zAn

tAn
k2.

Since zAntAn = zAn−1tAn−1 , term x2−x1

tAn−1
can be expressed as

zAn−1
(k2 − k1) which does not depend on execution times.

This approach can be extended to deal with any acyclic
graph. The final property should be that for any two different
chains from A1 to An in the graph such that

fuAn,1(i) = tAn
i+ x1, fuAn,2(i) = tAn

i+ x2 and x1 < x2

the size of the last channel An−1
p q−−→ An of the “fastest”

chain is at least equal to 2(p + q − gcd(p, q)) + dx2−x1

tAn−1
ep.

This property can be enforced by computing, for each node
X and each chain from a source actor to X , the function
fuX,j(i) = tX i + xj . Then, as in Property 6, we add to each
final edge of these chains the value ζ computed w.r.t. the
maximum computed xj . Such an approach is safe but not
always needed (e.g., when the predecessors of a node do not
have common ancestors). We do not describe the refined and
optimized algorithm here.

2) Improving the upper bounds:

In this section, we improve the minimum buffer sizes for
chains, trees, and in-trees, starting with chains. We say that a
chain is monotone if each actor imposes a higher load than

its successor or if each actor imposes a lower load than its
successor.

Definition 1. The chain A1 → · · · → An is monotone if and
only if (∀i. zAi

tAi
≥ zAi+1

tAi+1
) ∨ (∀i. zAi

tAi
≤ zAi+1

tAi+1
)

Let θAi,Ai+1
be the size of the buffer between Ai and Ai+1

as computed in Section IV-C. This size allows the single edge
graph Ai

pi qi−−−→Ai+1 to reach its maximal throughput.

Property 7. A monotone chain A1 → · · · → An where the
size of each buffer Ai → Ai+1 is at least θAi,Ai+1

achieves its
maximal throughput.

Proof: Suppose that the chain has the descending order
∀i. zAitAi ≥ zAi+1tAi+1 . The size θA1,A2 allows actor A1

to run consecutively, which is the same behavior as when
there is no constraint on buffer sizes. Then, the size θA2,A3

allows actor A2 to fire as soon as it is enabled by actor A1.
Actually, if there were no dependence from A1 to A2, the
size θA2,A3

would allow actor A2 to run consecutively. The
same reasoning shows that all actors are fired as it there were
no buffer size constraints. Therefore, the chain achieves its
maximal throughput. The case of ascending order can be easily
dealt with using the duality theorem.

Note that Property 7 is only a sufficient condition simply
because θAi,Ai+1

allows actor Ai to fire consecutively. How-
ever, as soon as when i > 1, it is not always necessary in order
to achieve the maximal throughput. E.g., let Gd = {A1

2 2−−−→
A2

4 3−−−→ A3} such that tA1 = 28, tA2 = 20 and tA3 = 15.
Though θA2,A3 = 12, the minimum size of channel A2 → A3

is actually 9. Indeed, as illustrated in Fig. 14, even if this size
delays firings of A2 (see the 4th firing), the introduced delay
does not prohibit A1 from firing consecutively.

Fig. 14: ASAP execution of Gd.

Property 7 also holds for non monotone chains made of
an ascending sub-chain followed by a descending one. We say
that those chains are of the form

d
. The computed buffer sizes

on both wings allow the actors at the top to run consecutively.

Unfortunately, as illustrated in Fig. 12 in the previous
section, Property 7 does not hold for any chain. Our solution
is hence to put any chain on the form

d
by using the

same approach as proof of Property 7; i.e., by increasing
the execution times of some actors (without exceeding the
maximum load PG), then computing the buffer sizes as in
Property 7, and finally restoring the original execution times.
Fig. 15 illustrates this solution.

Any chain on the form
d

obtained by increasing the load of
the actors of the original chain is a valid solution. For example,
the chain A�B� . . .�K can be transformed in the red chain
which is of the form

d
. Actually, any chain of this form inside

the gray area is a valid solution. However, we can choose one
that minimizes the buffer sizes. According to Section IV-C,
the channel I → J is in case (I.1) (Fig. 7) and the size of the
channel is 4 whatever the chosen load. The channel J → K
is in case (III) and increasing the load of J may put it in case
(I.1) where the buffer size is smaller. Increasing loads serve to

8

lo
a
d

Fig. 15: Transformation of a chain to a
d

form.

put the channel in a less expensive case as described in Fig. 7.
Furthermore, as long as the load remains in the gray area,
several choices can be made e.g., to facilitate the treatment of
subsequent channels. There are many heuristics using this idea
to minimize buffer sizes. They involve other criteria such as the
expected size gain that can be used to prioritize the treatment
of channels. We do not describe them here but one of them is
evaluated in the experiments section (see Section VI).

The case of trees is solved in the same way. If the tree does
not contain any sub-trees (i.e., it consists of a set of chains
originating from the same root node), then the load of the root
node is first increased to be equal the maximum of all loads in
the tree and then the previous method can be applied on every
chain composing the tree. This is correct because the computed
buffer sizes will allow the root actor to run consecutively. If
the tree contains sub-trees, the same process is first applied
recursively on sub-trees and then it proceeds with each sub-
tree replaced by its root node.

VI. EXPERIMENTS

In this section, we compare the results of our heuristic
presented in Section V-B2, with the safe upper bounds (Sec-
tion V-B1) and the exact minimum buffer sizes using many
randomly generated SDF graphs and some real benchmarks.

Fig. 16: Heuristic vs. upper bounds.

First, we compare the results of the heuristic with the
safe upper bounds 2(p + q − gcd(p, q)) using two million
randomly generated chains of 10 actors where production
and consumption rates (resp. execution times) are uniformly
distributed over the interval [1, 20] (resp. [1, 200]). The number
of firings per iteration,

∑
X zX , of every generated chain has

been bounded by 6 × 103. For each graph, we compute the
ratio of the total buffers sizes obtained by our approach to the
sum of the lower bounds, p+q−gcd(p, q)3. Each black dot in
Fig.16 represents the obtained ratio for one graph, while the

3Without lost of generality, tokens are assumed to have the same size.

red line represents the average of ratios. Fig. 16 shows that,
in average, our heuristic reduces the total buffer sizes by 20%
compared to the upper bounds.

Secondly, we compare the results of the heuristic with the
exact minimum buffer sizes. The exact solution is obtained
using a dichotomic search that first checks (using symbolic
simulation) whether there is a channel capacities distribution,
whose total size is at the middle between the lower bound and
the already obtained solution by the heuristic, which allows
the graph to achieve its maximal throughput. Depending on
the answer of this request, the algorithm proceeds to either the
top or bottom part of the search space, and so on. Due to the
exponential complexity of the minimum buffer sizes problem,
we evaluate our approach on only 104 randomly generated
chains of four actors where production and consumption rates
(resp. execution times) are uniformly distributed over the
interval [1, 10] (resp. [1, 100]). The blue (resp. red) line in
Fig. 17 represents the average of the ratios of the exact (resp.
approximate) solution to the lower bound. So, in average,
our heuristic over-approximates the exact solution by 25%.
Furthermore, Fig. 17 also shows that the exact solution is 30%
above the lower bound. Hence, by extrapolating this result, our
heuristic would over-approximate the exact solutions of Fig. 16
by 35%.

Fig. 17: Heuristic vs. exact solution.

Finally, we evaluate the heuristic using five real applica-
tions: the H.263 decoder, the data modem and sample rate
converter from the SDF3 benchmarks [17], the fast fourier
transformer (FFT), and the time delay equalizer (TDE) from
the StreamIt benchmarks [18]. All these graphs have a chain
structure. Table I shows some characteristics of these applica-
tions together with the obtained results. Our approach improves
better the upper bounds in case of chains with a

d
form (H.263

decoder and FFT). It comes close to the upper bound for the
sample rate converter since the two actors with the highest
loads are the right and left ends of the chain; increasing the
loads of the other actors to get a monotone chain results in a
size of almost 2(p+ q − gcd(p, q)) for every channel.

TABLE I: Experimental results for real benchmarks.
graph # actors

∑
A zA Upper bound Optimal size Heuristic

(a) modem 6 37 32 20 31
(b) sample con. 6 612 60 34 57
(c) H.263 dec. 4 1190 2378 1257 1257

(d) FFT 11 94 992 504 808
(e) TDE 27 2867 7328 3680 5384

Load:
(a) (b) (c) (d) (e)

9

VII. RELATED WORK

Few symbolic results about SDF graphs can be found in the
literature. In this section, we present the most relevant ones.

Consistency can easily be checked analytically. The rep-
etition vector can be computed symbolically as is it done in
most dynamic parametric SDF models (e.g., [2], [9]).

There is no exact analytical solution to check the liveness of
a graph with buffers with fixed bounds. In [2], [3], the authors
apply Eq. (1) transitively (which leads to nested ceilings)
on edges of each cycle in the graph. Then, the obtained
equations are linearized by over-approximating the ceiling
function (i.e., dxe < x+1). Yet, this is a conservative liveness
analysis. As proved in [1], the minimum buffer size for which
the simple graph A

p q−−→B is live is equal to p+q−gcd(p, q)4.
This however does not imply that any graph whose channels
are sized this way is live. Still, this analytical equation is used
in many buffer sizing algorithms to compute a lower bound as
a starting solution [3], [16].

Let ~si denotes the token timestamp vector, where each entry
corresponds to the production time of tokens in the ith iteration
of the graph. Then, the max-plus algebra can be used to express
the evolution of the token timestamp vector: ~si = M~si−1. It
has been proved that the eigenvalue of matrix M is equal
to the period of the graph. In case of parametric rates, it is
sometimes possible to extract a max-plus characterization of
the graph with a parametric matrix [13]. However, this works
only in cases where Eq. (1) can be somehow simplified to get
rid of the ceiling function (e.g., when p=1).

[10] presents a parametric throughput analysis for SDF
graphs with bounded parametric execution times of actors but
constant rates. Since rates and delays are non-parametric, the
SDF-to-HSDF transformation is possible and the throughput
analysis is based on the MCM. Therefore, all cycle means are
linear functions in terms of parametric execution times. By
using these linear functions, the parameter space is thus divided
into a set of convex polyhedra called “throughput regions”,
each with a throughput expression. This approach has been
extended in [7] to the case of scenario-aware dataflow (SADF)
graphs.

A different analytic approach to estimate lower bounds
of the maximum throughput is to compute strictly periodic
schedules instead of ASAP schedules (e.g., [5]). This approach
is similar to our Stretch linearization method. The advantage
of the strictly periodic scheduling approach is its capability
to handle cyclic graphs. However, not all cyclic graphs have
strictly periodic schedules (it depends on the number of initial
tokens). Furthermore, experiments on real-life benchmarks
show that these approaches result in huge over-approximations
(sometimes 7 times the exact value) [5]. In theory, the over-
approximation is not even bounded.

VIII. CONCLUSION

We have studied analytically the different cases of the
execution of a completely parametric single edge dataflow
graph. Then, we have presented the exact symbolic solutions
for the minimum buffer size needed by a single edge to achieve
its maximal throughput. Using these results and a linearization
technique, we have provided safe upper bounds of buffer sizes
of acyclic graphs for maximal throughput. Furthermore, we

4The equation is slightly different when there are initial tokens.

have proposed a heuristic to improve these bounds for graphs
with a chain or a tree structure. Experimental results show that
our heuristic improves the upper bound by 20% in average and
can give the optimal solution for some real applications. We
are following the same approach for exact and approximate
symbolic evaluations of the latency of parametric graphs.
Future work will concern the extension of these analysis to
deal with general (i.e., possibly cyclic) dataflow graphs.

REFERENCES

[1] S. S. Battacharyya, E. A. Lee, and P. K. Murthy. Software synthesis
from dataflow graphs. Kluwer Academic Publishers, 1996.

[2] V. Bebelis, P. Fradet, A. Girault, and B. Lavigueur. BPDF: a statically
analyzable dataflow model with integer and boolean parameters. In
Proceedings of the 11th ACM International Conference on Embedded
Software, pages 3:1–3:10, 2013.

[3] E. Bempelis. Boolean Parametric Data Flow: Modeling - Analysis -
Implementation. PhD thesis, Université Grenoble Alpes, 2015.

[4] B. Bhattacharya and S. S. Bhattacharyya. Parameterized dataflow
modeling of DSP systems. Trans. Sig. Proc., 49(10):2408–2421, 2001.

[5] B. Bodin, A. Munier-Kordon, and B. de Dinechin. Periodic schedules
for cyclo-static dataflow. In Proceedings of the 11th Symposium on
Embedded Systems for Real-time Multimedia, pages 105–114, 2013.

[6] A. Bouakaz, P. Fradet, and A. Girault. Symbolic analysis of dataflow
graphs (extended version). Technical Report 8742, INRIA, 2016.

[7] M. Damavandpeyma, S. Stuijk, M. Geilen, T. Basten, and H. Corporaal.
Parametric throughput analysis of scenario-aware dataflow graphs. In
Proceedings of the 30th International Conference on Computer Design,
pages 219–226, 2012.

[8] K. Desnos, M. Pelcat, J. Nezan, S. S. Bhattacharyya, and S. Aridhi.
PiMM: parametrized and interfaced dataflow meta-model for MPSoCs
runtime reconfiguration . In Proceedings of the 2013 International
Conference on Embedded Computer Systems: Architectures, Modeling,
and Simulation, pages 41–48, 2013.

[9] P. Fradet, A. Girault, and P. Poplavko. SPDF: a schedulable parametric
data-flow MoC. In Design, Automation and Test in Europe Conference
and Exhibition, pages 769–774, 2012.

[10] A. H. Ghamarian, M. C. W. Geilen, T. Basten, and S. Stuikj. Parametric
throughput analysis of synchronous data flow graphs. In Proceedings
of the Conference on Design, Automation and Test in Europe, pages
116–121, 2008.

[11] E. A. Lee and D. G. Messerschmitt. Synchronous data flow. In
Proceedings of the IEEE, pages 1235–1245, 1987.

[12] O. Moreira, T. Basten, M. Geilen, and S. Stuijk. Buffer sizing for
rate-optimal single-rate data-flow scheduling revisited. IEEE Trans.
Comput., pages 188–201, 2010.

[13] M. Skelin, M. Geilen, F. Catthoor, and S. Hendseth. Worst-cas through-
put analysis for parametric rate and parametric actor execution time
scenario-aware dataflow graphs. In Proceedings of the 1st International
Workshop on Synthesis of Continuous Parameters, pages 65–79, 2014.

[14] S. Sriram and S. S. Bhattacharyya. Embedded multiprocessors: schedul-
ing and synchronization. Marcel Dekker, Inc., 2000.

[15] S. Stuijk, T. Basten, M. Geilen, H. Corporaal, and M. Damavandpeyma.
Throughput-constrained DVFS for scenario-aware dataflow graphs. In
Proceedings of the 2013 IEEE 19th Real-Time and Embedded Technol-
ogy and Applications Symposium, pages 175–184, 2013.

[16] S. Stuijk, M. Geilen, and T. Basten. Exploring trade-offs in buffer re-
quirements and throughput constraints for synchronous dataflow graphs.
In Proceedings of the 43rd Annual Design Automation Conference,
pages 899–904, 2006.

[17] S. Stuijk, M. Geilen, and T. Basten. SDF3: SDF for free. In Proceedings
of the 6th International Conference on Application of Concurrency to
System Design, pages 276–278, 2006.

[18] W. Thies and S. Amarasinghe. An empirical characterization of stream
programs and its implications for languages and compiler design. In
Proceedings of the 19th International Conference on Parallel Architec-
tures and Compilation Techniques, pages 365–376, 2010.

10

