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ABSTRACT
In the context of computer assisted verification of schedu-
lability analyses, very expressive task models are useful to
factorize the correctness proofs of as many analyses as pos-
sible. The digraph task model seems a good candidate due
to its powerful expressivity. Alas, its ability to capture de-
pendencies between arrival and execution times of jobs of
different tasks is very limited.

We propose here a task model that generalizes the di-
graph model and its corresponding analysis for fixed-priority
scheduling with limited preemption. A task may generate
several types of jobs, each with its own worst-case execution
time, priority, non-preemptable segments and maximum jit-
ter. We present the correctness proof of the analysis in a way
amenable to its formalization in the Coq proof assistant.

Our objective (still in progress) is to formally certify the
analysis for that general model such that the correctness
proof of a more specific (standard or novel) analysis boils
down to specifying and proving its translation into our model.
Furthermore, expressing many different analyses in a common
framework paves the way for formal comparisons.

1 INTRODUCTION
The need for computer assisted verification of analysis tech-
niques in the area of real-time systems has been recognized
by the research community. The work presented here is part
of an effort to contribute to Prosa [1], a library of defini-
tions and proofs for real-time schedulability analyses using
the Coq proof assistant [2]. Formal verification requires an
important human effort, so making proofs general, generic,
and/or reusable is of great importance.

Our goal is to factorize the formal certification of existing
Response Time Analyses (RTAs) for fixed-priority policies.
There exists a wide variety of task models and analyses for
such policies. However, most of these models are incompara-
ble and very few can describe dependencies between arrival
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and/or execution time of different jobs. The Digraph Real-
Time Task (DRT) model [21] seems a good candidate for
modeling intra-task dependencies, but its ability to capture
dependencies between different tasks is very limited. It can-
not, for example, capture Tindell’s offset model [25].

In this paper, we propose a task model that generalizes the
DRT model and its corresponding RTA, with the restriction
that we consider discrete time while some results about DRT
apply to dense time. A task may generate several types of
jobs, each with its own worse-case execution time (WCET),
priority, non-preemptable segments and jitter. Our model
can capture dependencies between jobs of the same task as
well as jobs of different tasks. We focus on fixed-priority
scheduling policies and our model can encompass preemptive
and nonpreemptive models, as well as limited preemption.
Despite being much more general, the RTA for our model is
not significantly more complex than the original one. Also, it
underlines similarities between existing analyses, in particular
the analysis for the DRT model and Tindell’s offset model.

For the time being, the proof of the RTA of the general
model within the Coq proof assistant is not yet complete.
When it is certified, the design and proof of a more specific
(standard or novel) RTA will boil down to specifying and
proving its translation into our model. Furthermore, express-
ing many different RTAs in a common framework paves the
way for formal comparisons and generalizations (e.g., design
of novel RTAs).

To summarize, the main contributions of this paper are:
(1) A general task model which encompasses complex de-

pendencies between jobs and tasks;
(2) A RTA for that model;
(3) A correctness proof of that RTA amenable to its for-

malization in Coq and applicable to other task models.
The paper is structured as follows. Section 2 introduces the

systems we consider and provides basic definitions to describe
their runtime behavior. Section 3 presents the syntax and
semantics of our task model and Section 4 provides intuition
about its expressivity. Section 5 presents the associated RTA
and Section 6 sketches its correctness proof. Section 7 puts
the contribution of this paper into the perspective of our
broader project of a Coq library of schedulability results. We
discuss related models in Section 8 and conclude in Section 9.

2 SYSTEM BEHAVIOR
We target concrete systems implemented as a set of tasks
executing on a uniprocessor. The execution proceeds accord-
ing to a job-level fixed-priority limited preemptive (JFPLP)
scheduling policy. A JFPLP scheduler arbitrates between
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jobs competing for processor time by choosing the highest
priority job, but it can only preempt a running job at some
predefined execution point. In other words, each job is decom-
posed into non-preemptable segments. This model subsumes
the Fixed Priority Preemptive (FPP) and Fixed Priority Non-
Preemptive (FPNP) policies, and permits mixed policies [3].
A task can generate different types of jobs. Jobs of the same
type have similar properties, in particular they have the same
priority.

2.1 Definition of system behavior
We assume a set T of type names (types, for short). Each
type entails a number of characteristics that are described in
Section 2.

Definition 1 (Job⋆1). A job 𝚥 is specified by:
∙ its type v(𝚥) ∈ T;
∙ its priority p(𝚥) ∈ N inherited from its type; A greater

number means a higher priority.
∙ its arrival time a(𝚥) ∈ N;
∙ its jitter j(𝚥) ∈ N (also called release delay);
∙ a vector c⃗(𝚥) = ⟨𝑐1, . . . , 𝑐𝑠⟩, 𝑐𝑖 ∈ N+, of durations cor-

responding to the cost (i.e., execution time) of each non-
preemptable segment.
The cost (or required service time) of a job 𝚥 as above is
c(𝚥) =

∑︀
1≤𝑖≤𝑠

𝑐𝑖. The release time of 𝚥 is r(𝚥) := a(𝚥) + j(𝚥).

We do not exclude different jobs from having the same
parameters, but we assume that they can be distinguished
(e.g., through an identifier). We also assume that the set of
jobs is partitioned into tasks. The behavior of a system is
described using a set of executions defined by a job arrival
sequence and a schedule.

Definition 2 (Job arrival sequence⋆). A job arrival se-
quence is a function 𝜌 mapping any time instant 𝑡 to a finite
(possibly empty) set of jobs 𝜌(𝑡) such that 𝚥 ∈ 𝜌(𝑡) iff a(𝚥) = 𝑡.

Note that once the set of jobs and the function a are
given, 𝜌 is uniquely determined. A job 𝚥 completes when
it has received as much service time as it required, which
is determined by the schedule. We denote its completion
time by end(𝚥). The response time of 𝚥 is defined as 𝑅𝑇𝚥 :=
end(𝚥) − a(𝚥). From its release time and until completion, a
job is said to be pending.

Definition 3 (Schedule, JFPLP schedule⋆). A schedule
is a partial function 𝜎 which maps any time instant 𝑡 to the
job (if any) that is scheduled (i.e., receives service) at 𝑡. A
job 𝚥 can be scheduled only when it is pending.

A JFPLP schedule is a schedule such that the job that is
scheduled is: either the job that is already executing one of
its non-preemptable segments, or a job that has the highest
priority ℎ among pending jobs. If there are several pending
jobs with priority ℎ, a task is arbitrarily selected among those
with such jobs; the chosen job is then the first released job
with priority ℎ in this task (FIFO policy).
1The definitions and lemmas decorated with a star have been formalized
in Coq/Prosa, see discussion in Section 7.

2.2 Additional definitions and notations
In the following, we will need additional definitions and
notations, which we introduce here.

Definition 4 (Job release sequence). Let 𝜌 be a job arrival
sequence. The corresponding job release sequence, written 𝜌,
is defined as 𝜌(𝑡) := {𝚥 | 𝚥 ∈ 𝜌(𝑡′) ∧ 𝑡 = 𝑡′ + j(𝚥)}. We have
𝚥 ∈ 𝜌(𝑡) iff r(𝚥) = 𝑡.

We will occasionally write arrival (or release) sequences as
lists of sets of jobs. For instance, [(𝑡1, {𝚥1, 𝚥2}), (𝑡2, {𝚥3}), . . .]
denotes a sequence 𝜌 such that 𝜌(𝑡1) = {𝚥1, 𝚥2}, 𝜌(𝑡2) = {𝚥3}
and 𝜌(𝑡) = ∅ for all 𝑡 absent from the list.

The restriction of a job arrival sequence 𝜌 to a time interval
[𝑡1, 𝑡2[ is denoted 𝜌/[𝑡1,𝑡2[. The same applies to job release
sequences.

Definition 5 (Workload⋆). Let 𝜌 be a job arrival sequence
and 𝑉 a set of job types. The workload wl𝑉,𝜌 of jobs with
type in 𝑉 in a time interval [𝑡1, 𝑡1 + Δ[ is the cumulative
cost (i.e., required service time) of such jobs released in that
interval. Formally,

wl𝑉,𝜌(𝑡1, Δ) :=
∑︁

𝚥:𝑣∈𝑉
𝑡1≤r(𝚥)<𝑡1+Δ

c(𝚥) (1)

Definition 6 (Service time⋆). Let 𝜎 be a schedule and 𝑉
a set of job types. The service time 𝑠𝑒𝑟𝑣𝑉,𝜎 received by jobs
with type in 𝑉 in a time interval [𝑡1, 𝑡1 + Δ[ is

𝑠𝑒𝑟𝑣𝑉,𝜎(𝑡1, Δ) :=
∑︁

𝑡∈[𝑡1,𝑡1+Δ[
v(𝜎(𝑡)) ∈ 𝑉

1 (2)

Our RTA analysis (Section 5) is based on the concept of
busy window which we formally introduce now. The follow-
ing definitions are implicitly parameterized by a job arrival
sequence 𝜌 and a schedule 𝜎.

Definition 7 (Level-𝑝 quiet time⋆). An instant 𝑡 is said
to be a level-𝑝 quiet time if all jobs of priority higher than or
equal to 𝑝 released strictly before 𝑡 have completed at 𝑡.

Definition 8 (Level-𝑝 busy window⋆). A time interval
[𝑡1, 𝑡2[ is said to be a level-𝑝 busy window if:

(1) 𝑡1 and 𝑡2 are level-𝑝 quiet times;
(2) there is no level-𝑝 quiet time in ]𝑡1, 𝑡2[; and
(3) at least one job with a priority higher than or equal to

𝑝 is released in [𝑡1, 𝑡2[.

The last condition excludes degenerate cases of busy win-
dows in which no job is scheduled. Since several jobs with
the same type may be released in the same busy window, we
introduce (again in a way similar to the state of the art) the
additional concept of queueing prefix.

Definition 9 (Queueing prefix⋆). The 𝑞-th queueing prefix
of jobs of type 𝑣 in a level-𝑝 busy window [𝑡1, 𝑡2[ is the time
interval [𝑡1, 𝑡𝑞] where 𝑡𝑞 is the instant at which the last non-
preemptable segment of the 𝑞-th job of type 𝑣 receives its
first service (i.e., is scheduled for the first time).
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Example 1. Figure 1 presents a job arrival sequence 𝜌
(split into 𝜌1 and 𝜌2) in a system made of two tasks. One task
produces jobs of type 𝑣, priority 1, jitter 0 and segments ⟨2, 2⟩
and two consecutive arrival times of its jobs are separated
by at least 9 time units. The other task produces jobs of
priority 2. The three first queueing prefixes of jobs of type 𝑣
in the level-1 busy window [0, 27[ are 𝑄𝑣,𝜌(1), 𝑄𝑣,𝜌(2) and
𝑄𝑣,𝜌(3).

𝑄𝑣,𝜌(1)

𝑄𝑣,𝜌(2)

𝑄𝑣,𝜌(3)

𝜌1

𝜌2

0 5 10 15 20 25

Figure 1: Queueing prefixes of jobs of type 𝑣.

3 GENERALIZED DIGRAPH TASK
MODEL

Our task model, called the generalized digraph (Gd) model, is
an extension of the digraph model [21] with job level priorities,
possibly null inter-arrival times, jitter and non-preemptable
segments.

3.1 Syntax
A system consists of a set of 𝑛 independent tasks Σ :=
{𝐺1, . . . , 𝐺𝑛}, each task being specified by a graph 𝐺𝑖 :=
(𝑉𝑖, 𝐸𝑖) where:

∙ 𝑉𝑖 is a set of vertices representing different job types;
∙ 𝐸𝑖 is a set of edges such that an edge connecting two

vertices 𝑣1 and 𝑣2 of 𝑉𝑖 is labeled with a duration 𝑑(𝑣1, 𝑣2) ∈ N
representing the minimum inter-arrival time between jobs of
types 𝑣1 and 𝑣2.
A job type 𝑣 is characterized by the following parameters2:

∙ P(𝑣) ∈ N defines the priority of jobs of type 𝑣;
∙ J(𝑣) ∈ N specifies the maximum jitter (i.e., delay be-

tween arrival and release time) for jobs of type 𝑣;
∙ C⃗(𝑣) = ⟨C1, . . . , C𝑠⟩ is a vector specifying the maximum

cost of each non-preemptable segment of jobs of type 𝑣;
C(𝑣) =

∑︀𝑠

𝑖=1 C𝑖 defines the maximum cost of jobs of type 𝑣.
The sets of vertices 𝑉𝑖 are assumed to be disjoint (i.e., tasks
activate jobs of different types). The set of vertices of the
complete system is denoted by 𝑉Σ =

⋃︀𝑛

𝑖=1 𝑉𝑖. For simplicity
and to improve readability, we assume in this paper that
the jitter is constrained3: the jitter of any vertex 𝑣 ∈ 𝑉Σ
is smaller than or equal to the minimum inter-arrival time
labeled on any edge going out of 𝑣.
2The RTA presented in this paper does not rely on deadlines and we
omit this parameter.
3The extension to arbitrary jitter is discussed in Section 4.3.

In contrast with the standard digraph task model, null
inter-arrival times are allowed. We however disallow tasks
(i.e., graphs) that contain null cycles (which would permit
an infinite nomber of job arrivals at the same instant). This
is easily verified statically.

In the following, we note hep(𝑝), hp(𝑝), ep(𝑝), lp(𝑝) the
sets of vertices of the system whose priorities are equal or
higher, higher, equal and lower than 𝑝, respectively.

Example 2. The graph 𝐺𝑒 represented in Figure 2 defines
a task with three vertices (i.e., three types of jobs). Vertex 𝑢 is
decorated with the triplet (⟨1, 1⟩, 0, 1) where ⟨1, 1⟩ indicates
that jobs of this type can be preempted at each instant
(segments of length 1) and their maximum cost is 2 = 1 + 1;
their maximum release jitter is 0 and their priority is 1.
Similarly, jobs of type 𝑣 have a maximum cost of 5 and
cannot be preempted, their maximum jitter and priority are
3 and 2, respectively. Jobs of type 𝑤 have a maximum cost
of 8 and can be preempted after at most 4 time units of
execution.

𝑢 𝑣

𝑤

(⟨1, 1⟩, 0, 1) (⟨5⟩, 3, 2)

(⟨4, 4⟩, 0, 1)

8

16

10
20

Figure 2: A graph 𝐺𝑒 specifying a task with 3 types
of jobs

3.2 Task-level and system paths
As a graph, a task 𝐺𝑖 = (𝑉𝑖, 𝐸𝑖) specifies a set of (possibly
infinite) paths, i.e., sequences of vertices of 𝐺𝑖 such that
(𝑣𝑗 , 𝑣𝑗+1) ∈ 𝐸𝑖. Note that a task will typically have cycles,
thus specifying an infinite set of paths, some of them infinite.
In the following, we sometimes refer to paths of tasks as
task-level paths for clarity.

Example 3. In Figure 2, [𝑢, 𝑣, 𝑢, 𝑤, 𝑣], [𝑤, 𝑣, 𝑢, 𝑣, 𝑢], and
the infinite sequence 𝑋 = [𝑢, 𝑣, 𝑋] are paths of 𝐺𝑒, but
[𝑢, 𝑣, 𝑤] is not.

Definition 10 (System path). A system path of system
Σ is a set 𝜋 := {𝜋1, . . . , 𝜋𝑛} such that for each 𝑖, 𝜋𝑖 is a
task-level path of task 𝐺𝑖 in Σ. The set of system paths of Σ
is denoted ΠΣ.

We will use later the following operations on task-level
paths.

∙ The function len returns the sum of all minimum inter-
arrival times on the edges of a finite path. Formally:

len([𝑣1, 𝑣2, . . . , 𝑣𝑘]) :=
∑︁

1≤𝑗<𝑘

𝑑(𝑣𝑗 , 𝑣𝑗+1)
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∙ The function preΔ(𝜋𝑖) returns the longest prefix 𝜋𝑝 of 𝜋𝑖

such that len(𝜋𝑝) < Δ. A variant, written pre𝑛
𝑣 (𝜋𝑖), returns

the prefix of 𝜋𝑖 up to the 𝑛-th occurrence of vertex 𝑣 in 𝜋𝑖.
∙ We write len𝑛

𝑣 (𝜋𝑖) for len(pre𝑛
𝑣 (𝜋𝑖)) which returns the

sum of all minimum inter-arrival times between the first
vertex and the 𝑛-th occurrence of vertex 𝑣 in 𝜋𝑖.

∙ The function cost(𝑠𝑒𝑞) returns the sum of the maximum
cost of all vertices in a vertex sequence 𝑠𝑒𝑞.

∙ The filter function |𝜋 |𝑉 returns the vertex sequence
obtained from 𝜋 where all vertices not belonging to 𝑉 have
been filtered out.

3.3 Semantics
The semantics of a system Σ := {𝐺1, . . . , 𝐺𝑛} is given by
the set of arrival sequences that are consistent with a system
path of Σ. Consistency between an arrival sequence and a
system path ensures that jobs in the sequence satisfy the
constraints imposed on them by their type and that the order
and timing of job arrivals is compatible with the constraints
specified on the edges of the graphs 𝐺𝑖.

Definition 11 (Consistency of an arrival sequence w.r.t. a
path). An arrival sequence 𝜌 is consistent with a task-level
path 𝜋𝑖 = [𝑣1, 𝑣2, . . .], which is denoted 𝜌 ∼ 𝜋, iff there exists
a flattening4 [(𝑡1, 𝚥1), (𝑡2, 𝚥2), . . .] of 𝜌 such that for all 𝑘:

∙ 𝚥𝑘 is consistent with 𝑣𝑘, i.e., :
– v(𝚥𝑘) = 𝑣𝑘;
– p(𝚥𝑘) = P(𝑣);
– j(𝚥𝑘) ≤ J(𝑣𝑘); and
– c⃗(𝚥𝑘) = ⟨𝑐1, . . . , 𝑐𝑠⟩ ∧ C⃗(𝑣𝑘) = ⟨C1, . . . , C𝑠⟩ ∧ 𝑐𝑖 ≤
C𝑖, 𝑖 = 1 . . . 𝑠.

∙ 𝑑(𝑣𝑘, 𝑣𝑘+1) ≤ 𝑡𝑘+1 − 𝑡𝑘

The definition naturally extends to system-level paths.

We write 𝜌 ∼ Σ to denote that an arrival sequence 𝜌 is
consistent with a system path in ΠΣ.

4 EXPRESSIVITY OF THE GD MODEL
In this section, we show how a variety of existing task mod-
els can be expressed using the Gd model. We also hint at
extended or new models that could be defined as Gd and
analyzed by our proposed RTA.

4.1 Models without task dependencies
The Gd model can easily emulate many kinds of arrival
models. Obviously, a simple sporadic task whose jobs are of
type 𝑣 and with a minimum inter-arrival time 𝑝 is represented
by a single vertex 𝑣 and self-loop labeled with 𝑝. A periodic
task of period 𝑝 can be represented by the same Gd task. Of
course, this Gd task represents many more consistent job
arrival sequences but the worst case analyzed by the RTA is
precisely the periodic sequence.

4For example, the arrival sequence [(𝑡1, {𝚥1, 𝚥2}), (𝑡3, {𝚥3})] can be flat-
tened into either [(𝑡1, 𝚥1), (𝑡1, 𝚥2), (𝑡3, 𝚥3)] or [(𝑡1, 𝚥2), (𝑡1, 𝚥1), (𝑡3, 𝚥3)].

Arrival curves [24] represent more expressive arrival mod-
els. For instance, the minimal distance function 𝑑

−

(𝑎) re-
turns the smallest time interval that may contain 𝑎 + 1 oc-
currences of a job. This function must be super-additive
i.e., 𝑑

−

(𝑎)+𝑑
−

(𝑏) ≤ 𝑑
−

(𝑎+𝑏). In general, an arrival curve may
have an infinite description in terms of Gd task (e.g., 𝑑

−

(𝑎) =
𝑎2 is super-additive and describes ever growing inter-arrival
times). However, such functions5 are usually given by a collec-
tion of values from 1 to some constant 𝑘. Then, the analysis
uses the minimal super-additive extension (e.g., the small-
est function compatible with 𝑑

−

(1), . . . , 𝑑
−

(𝑘)). Such super-
additive closures can be represented faithfully by a Gd task.
When 𝑑

−

is convex (i.e., 𝑑
−

(𝑥 + 1) + 𝑑
−

(𝑥 − 1) − 2𝑑
−

(𝑥) ≥ 0)
then the minimal super-additive extension is periodic and
∀𝑥 = 𝑞𝑘 + 𝑟, 𝑑

−

(𝑥) = 𝑞𝑑
−

(𝑘) + 𝑑
−

(𝑟). The corresponding
Gd task is then made of a cycle of 𝑘 vertices 𝑣0, . . . , 𝑣𝑘−1
where the minimum inter-arrival time decorating each edge
is 𝑑(𝑣𝑖, 𝑣(𝑖+1) mod 𝑘) = 𝑑

−

((𝑖 + 1) mod 𝑘) − 𝑑
−

(𝑖).

Example 4. Consider, for instance, the arrival curve spec-
ified by 𝑑

−

(1) = 2, 𝑑
−

(2) = 5, 𝑑
−

(3) = 10, 𝑑
−

(4) = 20 which
specifies that 2 (resp. 3, 4, and 5) jobs cannot arrive in less
than 2 (resp. 5, 10 and 20) time units. The corresponding
Gd task is given in Fig.3 (a).

For non convex functions, it has been shown that their
minimal super-additive extensions are pseudo-periodic func-
tions [10] which can also be represented by a finite Gd task.

𝑣

2𝑣3

𝑣

5 𝑣 10

𝑣1

10
𝑣2

10

𝑣1

20
𝑣1

0
𝑣2

20

(a) (b)

Figure 3: Gd representing (a) an arrival curve model
and (b) a transaction with offsets a la Tindell)

4.2 Models with job and task
dependencies

As a generalization of digraphs, the Gd model can of course
express all task models with intra-task dependencies that
standard digraphs can. Let us cite, the multiframe model [18]
and its generalized version [6], the recurring branching [7] or
recurring RT [8] models, the non cyclic RT [4] and digraph
model (DRT) [21].

Allowing job-level fixed priorities and null minimal inter-
arrival times allows the Gd model to model inter-task depen-
dencies (e.g., fixed timing relation among tasks), e.g., the
offset model of Tindell [25] (which cannot be represented in
the standard DRT model).

5By default 𝑑
−
(0) = 0
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In Tindell’s model, a system is made of a set of independent
transactions {Tr1, . . . , Tr𝑛}. Each transaction Tr 𝑖 consists of
a set of periodic tasks with offsets Tr 𝑖 := {. . . , 𝜏𝑖,𝑘, . . .} where
each task 𝜏𝑖,𝑘 has its own WCET, period, offset, priority, and
deadline. A transaction and its set of periodic tasks with
offsets can be represented within a single Gd task. It is
sufficient to compute the hyper-period of the transaction and
to build the circular Gd task representing the inter-arrival
time (which may be null) between arrivals of the different jobs
in the hyper-period. The periods and offsets are represented
by inter-arrival times. The WCET, priority and deadline of
tasks are represented by the corresponding vertices.

Example 5. Consider, for instance, a transaction Tr with
two periodic tasks with jobs of type 𝑣1 and 𝑣2, with periods
20 and 30 and with offsets 5 and 15. The hyper-period is 60
and taking the first arrival of 𝑣1 as the time origin, the arrival
times are [(𝑣1, 0), (𝑣2, 10), (𝑣1, 20), (𝑣1, 40), (𝑣2, 40), (𝑣1, 60)].
The transaction Tr is represented by the Gd task in Fig.3 (b).
Its worst job arrival sequence w.r.t. the RTA is exactly the
job arrival sequences of Tr .

Shared resources, which entail inter-tasks dependencies, is
a common issue in hard real-time systems. Abdullah et al. [3]
addressed this problem using DRT by allowing two kinds
of vertices : preemptable (tasks) and non-preemptable (re-
sources). They proposed an extension of the RTA to take into
account these two kinds of vertices. Using the Gd model, this
is directly modeled using segments with always preemptable
vertices for tasks and non-preemptable ones for resources.

Rendez-vous mechanisms, another kind of inter-task depen-
dencies, have been expressed using an extension of digraphs
(SDRT) [17]. We believe that the encoding of such inter-
task synchronization is possible in Gd tasks but the exact
encoding as well as its complexity remain to be investigated.

4.3 Beyond existing models
All these features, including jitter, can be combined to express
and analyse new task models. For instance, non-preemptable
segments and jitter have not been considered into intra-
task dependencies task models (e.g., MF, GMF, RB, RR,
DRT) nor do Tindell’s model consider intra-task dependen-
cies (e.g., if a transaction could be a set of MF tasks instead
of simple periodic tasks). Since all these models can be ex-
pressed as the Gd model, they can be analyzed using the
RTA described next.

Note that the following RTA targets the Gd model with
constrained jitters. Because any Gd task with arbitrary jitters
can be transformed into a Gd task with constrained jitters
remaining the same worst case analyzed by the RTA. For
instance, a sporadic task of the minimum inter-arrival time
10 and jitter 22 represented by 𝐺 can be transformed into 𝐺’
with jitter 0 in Fig. 4.

𝑣

10

(⟨3, 3⟩, 22, 1)
𝑣 𝑣 𝑣 𝑣

0

(⟨3, 3⟩, 0, 1)

0 8

10

(𝐺) (𝐺’)

Figure 4: Encoding of arbitrary jitter

5 RESPONSE TIME ANALYSIS OF GD
SYSTEMS

The objective of RTA is to bound, as tightly as possible,
the worst-case response time of each vertex (job type) 𝑣,
defined as the maximum response time among all jobs of
type 𝑣 occurring in all arrival sequences consistent with each
possible system path. Formally,

wcrt(𝑣) := max{𝑅𝑇𝚥 | 𝚥 : 𝑣 ∧ ∃𝜋 ∈ ΠΣ, ∃𝜌 ∼ 𝜋, 𝚥 ∈ 𝜌}

In this section, we present the overall structure of the analysis
that we propose for Gd systems. We suppose given a vertex
𝑣, with priority 𝑝, of a task 𝐺𝑖 ∈ Σ and focus on upper
bounding its worst-case response time.

Our analysis relies on a path-specific analysis of level-
𝑝 busy windows, hence the following definition (implicitly
parameterized as before by a job arrival sequence 𝜌).

Definition 12 (Busy window path). A level-𝑝 busy win-
dow [𝑡1, 𝑡2[ is said to be represented by the shortest system
path 𝜋 such that 𝜌/[𝑡1,𝑡2[ ∼ 𝜋, and any extension of it.

The shortest path representing a busy window [𝑡1, 𝑡2[ is
the path obtained after restricting the job release sequence to
[𝑡1, 𝑡2[. In other words, a busy window path is an abstraction
of a level-𝑝 busy window. Equipped with these notions, the
general principle of our RTA analysis can now be presented.

5.1 Overall structure of the RTA of Gd
systems

The RTA of a vertex 𝑣 with priority 𝑝, of task 𝐺𝑖, consists
in analyzing a set of paths such that all possible level-𝑝
busy windows are represented by one path in the set. The
methodology to bound the worst-case response time of jobs
of type 𝑣 is thus as follows.
Step 1: Derive a set of system paths Π𝑣

Σ such that any
possible level-𝑝 busy window (for any arrival sequence
and schedule consistent with any system path in ΠΣ)
is represented by one path in Π𝑣

Σ.
Step 2: For each system path 𝜋 ∈ Π𝑣

Σ:
a) Compute an upper bound 𝐵𝑊 +

𝑝,𝜋 on the length of
any level-𝑝 busy window represented by 𝜋;

b) Derive from 𝜋𝑖 (the task-level path of 𝐺𝑖 in 𝜋) and
𝐵𝑊 +

𝑝,𝜋 an upper bound 𝑞+
𝑣,𝜋𝑖,𝐵𝑊 +

𝑝,𝜋
on the number

of jobs of type 𝑣 released in any level-𝑝 busy window
represented by 𝜋;

c) Compute, for each 𝑞 ≤ 𝑞+
𝑣,𝜋𝑖,𝐵𝑊 +

𝑝,𝜋
, an upper bound

𝑄+
𝑣,𝜋(𝑞) on the length of the 𝑞-th queueing prefix of
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jobs of type 𝑣 in any level-𝑝 busy window represented
by 𝜋;

d) For each 𝑞 ≤ 𝑞+
𝑣,𝜋𝑖,𝐵𝑊 +

𝑝,𝜋
, compute a lower bound

𝜃−
𝑣,𝜋𝑖

(𝑞) on the (possibly negative) time difference
between the 𝑞-th arrival of a job of type 𝑣 in in any
level-𝑝 busy window represented by 𝜋 and the start
of that busy window;

e) Based on the above, compute an upper bound
𝑅𝑇 +

𝜋 (𝑣) on the worst-case response time of any job
of type 𝑣 in any level-𝑝 busy window represented by
𝜋.

Step 3: Finally, compute an upper bound 𝑅𝑇 +
Σ (𝑣) on

wcrt(𝑣).
In the following subsection, we provide the formulas used

for the computations associated with each step of the method-
ology that we just presented, along with some intuition of
where they come from. The proof of correctness of the com-
puted values is presented in Section 6.

5.2 Step-by-step RTA of Gd systems
Our RTA relies on an upper bound on the workload of a
set of jobs in any level-𝑝 busy window by the workload for
the path in Π𝑣

Σ that represents it, where the workload of a
given set of vertices 𝑉 ⊆ 𝑉Σ for a system-level path 𝜋 :=
{𝜋1, . . . , 𝜋𝑛} ∈ Π𝑣

Σ and a duration Δ is

wl+
𝑉,𝜋(Δ) :=

𝑛∑︁
𝑥=1

wl+
𝑉,𝜋𝑥

(Δ) (3)

with wl+
𝑉,𝜋𝑥

(Δ) := cost(|preΔ+J(fst(𝜋𝑥))(𝜋𝑥)|𝑉 )
We will show (see Lemma 2 in Sec. 6) that the workload

of a set of vertices 𝑉 ⊆ 𝑉Σ for any prefix of length Δ of a
level-𝑝 busy window represented by a system path 𝜋 is upper
bounded by wl+

𝑉,𝜋(Δ).

Step 1: Computing Π𝑣
Σ — see Theorem 1 in Sec. 6

Let Π𝑣
𝑥(Δ) denote the set of paths 𝜋𝑥 of task 𝐺𝑥 ∈ Σ

which
∙ are the longest paths fitting in Δ+J+

𝑥 , that is, such that
len(𝜋𝑥) ≤ Δ + J+

𝑥 and for all valid suffixes 𝑠, len(𝜋𝑥 · 𝑠) >
Δ+J+

𝑥 ; where J+
𝑥 representing the largest release jitter among

𝑉𝑥.
∙ if the vertex under study 𝑣 belongs to 𝐺𝑖 then we con-

sider only paths 𝜋𝑥 with occurrences of 𝑣.
With this notion of path, we compute a sufficiently large

duration which can bound the length of any level-𝑝 busy win-
dow. That duration is the least positive fixed point, written
W𝑘, of the following equation

Δ = 𝑁 +
𝑛∑︁

𝑥=1

max
𝜋𝑥∈Π𝑣

𝑥(Δ)
{wl+

hep(𝑝),𝜋𝑥
(Δ)} (4)

with 𝑁 denoting the greatest non-preemptable segment in the
system. At each iteration, the greatest workload among all
possible paths within Δ is selected. The obtained fixed point
is clearly an upper bound on the duration of any possible

busy window. Therefore, to bound wcrt(𝑣), it is sufficient to
examine all the following combinations,

Π𝑣
Σ :=

𝑛

×
𝑥=1

Π𝑣
𝑥(W𝑘) (5)

where ×𝑛
𝑥=1 denotes the Cartesian product of all paths of

length bounded by W𝑘 for the 𝑛 tasks. Thus, any level-𝑝
busy window can be represented by (possibly a prefix of) a
path in Π𝑣

Σ.

Step 2: Computing upper bounds for each path in
Π𝑣

Σ

We now show how to compute 𝐵𝑊 +
𝑝,𝜋, 𝑞+

𝑣,𝜋𝑖,𝐵𝑊 +
𝑝,𝜋

, 𝑄+
𝑣,𝜋(𝑞)

and 𝜃−
𝑣,𝜋𝑖

(𝑞) for a given system path 𝜋 := {𝜋1, . . . , 𝜋𝑛} ∈ Π𝑣
Σ.

a) Computing 𝐵𝑊 +
𝑝,𝜋 — see Theorem 2 in Sec. 6

Having non-preemptable segments implies that vertices in
lp(𝑝) may execute within a level-𝑝 busy window. Still, the
definition of a level-𝑝 busy window implies that:

∙ at most one non-preemptable segment of a vertex in
lp(𝑝) can execute in a level-𝑝 busy window; and

∙ such a segment (if it exists) must have started its execu-
tion before the beginning of the level-𝑝 busy window.
As a result, the maximum duration that vertices in lp(𝑝) can
execute in a level-𝑝 busy window is upper bounded by:

𝐵𝑝 := max
𝑣𝑥∈lp(𝑝)
C∈C⃗(𝑣𝑥)

(C − 1) (6)

with the convention that 𝐵𝑝 := 0 if lp(𝑝) = ∅. Now, let 𝐵𝑊 +
𝑝,𝜋

be the least positive fixed point of the following equation:

Δ = 𝐵𝑝 + wl+
hep(𝑝),𝜋(Δ) (7)

Then 𝐵𝑊 +
𝑝,𝜋 is an upper bound on the length of any possible

level-𝑝 busy window represented by 𝜋.
Note that it may be pessimistic to use 𝐵𝑝 to bound the

workload from lp(𝑝) because the largest non-preemptable
segment among lp(𝑝) may not contribute to any level-𝑝 busy
window represented by 𝜋. On the other hand, it reduces
the complexity of the analysis and simplifies its correctness
proof6.

b) Computing 𝑞+
𝑣,𝜋𝑖,𝐵𝑊 +

𝑝,𝜋

Definition 12 implies that the number of jobs of type 𝑣 in
a busy window is equal to the number of 𝑣 in its representing
path. In addition, since 𝐵𝑊 +

𝑝,𝜋 is an upper bound on the
length of any possible level-𝑝 busy window represented by
𝜋, let 𝑞+

𝑣,𝜋𝑖,𝐵𝑊 +
𝑝,𝜋

be the number of vertices 𝑣 in the prefix

pre𝐵𝑊 +
𝑝,𝜋+J(fst(𝜋𝑖))(𝜋𝑖) of path 𝜋𝑖, then 𝑞+

𝑣,𝜋𝑖,𝐵𝑊 +
𝑝,𝜋

is an up-
per bound on the number of jobs of type 𝑣 released in any
level-𝑝 busy window represented by 𝜋.

c) Computing 𝑄+
𝑣,𝜋(𝑞) — see Theorem 3 in Sec. 6

The 𝑞-th queueing prefix of jobs of type 𝑣 in a level-𝑝 busy
window represented by 𝜋 spans the execution of:
6An exact analysis would require considering up to 𝑛 + 1 different
critical instants for a system with 𝑛 tasks.
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∙ at most one non-preemptable segment from a vertex in
lp(𝑝) which started before that busy window;

∙ all jobs of task 𝐺𝑖 with the same priority as 𝑣 released
during the prefix, up to the 𝑞-th job of 𝑣 in 𝜋𝑖 (minus the
cost of its last segment);

∙ the jobs of vertices from 𝐺𝑖 in hp(𝑝) released during the
prefix; and

∙ the jobs of vertices in hep(𝑝) released during the prefix,
except those from 𝐺𝑖.
Let 𝑄+

𝑣,𝜋(𝑞) be the least positive fixed point of the following
equation:

Δ = 𝐵𝑝

+ wl+
ep(𝑝)∩𝑉𝑖,𝜋(len𝑞

𝑣(𝜋𝑖) + 1) − last(C⃗(𝑣)) + 1

+ wl+
hp(𝑝)∩𝑉𝑖,𝜋(Δ)

+ wl+
hep(𝑝)∖𝑉𝑖,𝜋(Δ)

(8)

where last(C⃗(𝑣)) is the maximum cost of the last segment of
𝑣. Then, 𝑄+

𝑣,𝜋(𝑞) is an upper bound on the length of the 𝑞-th
queueing prefix of jobs of type 𝑣 in any possible level-𝑝 busy
window represented by 𝜋.
d) Computing 𝜃−

𝑣,𝜋𝑖
(𝑞) — see Theorem 4 in Sec. 6

For each 𝑞 ≤ 𝑞+
𝑣,𝜋𝑖,𝐵𝑊 +

𝑝,𝜋
, a lower bound on the duration

between 𝑡1 and the 𝑞-th arrival of jobs of type 𝑣 in any
possible level-𝑝 busy window represented by 𝜋 is:

𝜃−
𝑣,𝜋𝑖

(𝑞) := len𝑞
𝑣(𝜋𝑖) − J(fst(𝜋𝑖)) (9)

e) Computing 𝑅𝑇 +
𝜋 (𝑣) — see Theorem 5 in Sec. 6

The worst-case response time 𝑅𝑇 +
𝜋 (𝑣) for path 𝜋 can

then be upper bounded based on the above upper and lower
bounds.
𝑅𝑇 +

𝜋 (𝑣) := max
𝑞≤𝑞+

𝑣,𝜋𝑖,𝐵𝑊
+
𝑝,𝜋

{𝑄+
𝑣,𝜋(𝑞)−𝜃−

𝑣,𝜋𝑖
(𝑞)+ last(C⃗(𝑣))−1}

(10)
Step 3: Computing 𝑅𝑇 +

Σ (𝑣)
Finally, performing the same computation for all paths in

Π𝑣
Σ yields the worst-case response time of jobs of type 𝑣.

𝑅𝑇 +
Σ (𝑣) := max

𝜋∈Π𝑣
Σ

(𝑅𝑇 +
𝜋 (𝑣)) (11)

Note that the max functions in Equation 10 and 11 play
different roles: The first one (Eq. 10) accounts for the fact
that there may be several jobs of the same type (vertex)
in a level-𝑝 busy window; the second one (Eq.11) allows a
fine-grained analysis of dependencies (which are captured by
the notion of path).

5.3 Improvements
For the sake of clarify, we have presented the analysis by
first computing a superset of possible paths and then fo-
cusing on a single vertex. Clearly, this approach is not the
most efficient. First, the paths considered are larger than
needed and the analysis is likely to consider many time the
same prefix common to many paths. Second, as presented,
a complete system analysis would need to iterate the same

process for each vertex. Both points entail costly and/or
useless recomputations.

A more reasonable approach is to analyse pertinent paths
only once. An analysis of the whole system would proceed
by considering all possible alignments between vertices of all
tasks. For each alignment {𝑣1, . . . , 𝑣𝑛}, we compute the level-
𝑝 busy window (with 𝑝 the minimal priority) for all possible
paths starting from the considered alignment. Paths are built
on demand; they end when a level-𝑝 quiet time is reached.
That busy window is the longest and includes all other busy
windows. The computation should keep enough information
to evaluate 𝑄+

𝑣,𝜋(𝑞), 𝜃−
𝑣,𝜋𝑖

(𝑞) and therefore 𝑅𝑇 +
𝜋 (𝑣) for each

vertex 𝑣 in the path. Finally, the maximum of 𝑅𝑇 +
𝜋 (𝑣) over

all alignments gives the worst-case response time for any
vertex 𝑣 (i.e., jobs of type 𝑣).

Further improvements can be made. Consider a vertex 𝑣𝑖

in an alignment {𝑣1, . . . , 𝑣𝑛}, then if there is some 𝑣𝑗 with
a lower priority that 𝑣𝑖 whereas task 𝐺𝑗 has another vertex
with a priority equal or higher than 𝑣𝑖, then this alignment
cannot be a worst case for 𝑣𝑖 and 𝑅𝑇 +

𝜋 (𝑣𝑖) does not need to
be computed in that alignment.

The analysis described so far is precise; the only source
of approximation lies in the blocking factor 𝐵𝑝 (see Eq. 6).
However, depending on the size of Gd, considering all pos-
sible alignments may be overly expensive. Approximations
should be studied. A possible approximation consists in com-
puting a single over-approximated workload function for each
priority and each task. This lower drastically the number of
combinations to test (more on this in the Sec. 7). Note that
this approach is similar to the approximation used by Tindell
in his offset analysis [26] and by Guan et al. in their DRT
analysis [15]. In fact, since our approach generalizes these
two analyses, existing techniques should be applicable.

6 PROOF OF CORRECTNESS
We outline here the proofs of the main lemmas used to
establish the correctness of the RTA presented in Sec. 5. Our
short term goal is to complete these proofs using Coq and the
Prosa library (see Section 7). In contrast with classical proofs
in the RT community, machine-verified proofs require to list
all used hypotheses, to specify formally concrete executions
and to prove many properties usually taken for granted.

In the following, we consider a JFPLP schedule 𝜎 and a
system-level job arrival sequence 𝜌 ∼ Σ having a job 𝚥 of type
𝑣 with priority 𝑝 and belonging to task 𝐺𝑖. Any such job
occurs within a level-𝑝 busy window. Therefore, we consider
that 𝚥 occurs as the 𝑞-th job of type 𝑣 in a level-𝑝 busy
window starting at instant 𝑡1.

6.1 Concrete busy window and queueing
prefix

The key to the proof of the RTA is to show the correctness of
the upper/lower bounds (e.g., 𝐵𝑊 +

𝑝,𝜋) computed using the
abstract model (i.e., Gd). So, we need to specify formally
the length 𝐵𝑊𝑝 of the considered level-𝑝 busy window and
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the length 𝑄𝑣,𝜌(𝑞) of the 𝑞-th queueing prefix of jobs of type
𝑣 in order to bound them.
Length of the level-𝑝 busy window

The length of a level-𝑝 busy window starting at 𝑡1, denoted
by 𝐵𝑊𝑝, can be computed as the least positive fixed point
of the following equation.

Δ = 𝑠𝑒𝑟𝑣lp(𝑝),𝜎(𝑡1, Δ) + wlhep(𝑝),𝜌(𝑡1, Δ) (12)
The first term represents the service provided to the possible
non preemptable segment of a lower priority job. Then, the
amount of services performed by the scheduler for hep(𝑝)
jobs is equal to the workload requested from hep(𝑝) within
the duration of the busy window.
Length of the 𝑞-th queueing prefix

Similarly, computing the length of the 𝑞-th queueing prefix
of jobs of type 𝑣 (i.e., the queueing prefix of 𝚥) in the level-𝑝
busy window [𝑡1, 𝑡1 + 𝐵𝑊𝑝[ amounts to evaluate:

∙ the service provided to the possible non preemptable
segment of a lower priority job;

∙ the workload of jobs of task 𝐺𝑖 with the priority 𝑝
(minus the cost of 𝚥’s last segment);

∙ the workload of jobs of vertices from 𝐺𝑖 in hp(𝑝)
∙ the workload of other jobs with priorities in hep(𝑝).

Thus, the length of the 𝑞-th queueing prefix of jobs of type
𝑣, denoted by 𝑄𝑣,𝜌(𝑞), can be defined as the least positive
fixed point of the following equation.

Δ =𝑠𝑒𝑟𝑣lp(𝑝),𝜎(𝑡1, Δ)
+wlep(𝑝)∩𝑉𝑖,𝜌(𝑡1, (a(𝚥) − 𝑡1 + 1)) − last (⃗c(𝚥)) + 1
+wlhp(𝑝)∩𝑉𝑖,𝜌(𝑡1, Δ)
+wlhep(𝑝)∖𝑉𝑖,𝜌(𝑡1, Δ)

(13)

6.2 Basic lemmas
To bound 𝐵𝑊𝑝 and 𝑄𝑣,𝜌(𝑞) we rely on the following lemma.

Lemma 1 (⋆). Let f , g : N → N be two functions and Δ1 and
Δ2 be fixed points of the equations Δ = f (Δ) and Δ = g(Δ)
then, if for all 𝑥 : N, 𝑓(𝑥) ≤ 𝑔(𝑥) and, for all 𝑥 : N+, 𝑥 < Δ1,
we have 𝑥 < 𝑓(𝑥), then Δ1 ≤ Δ2.

Proof. Easy proof by contradiction. □

Using this lemma the proof that 𝐵𝑊 +
𝑝,𝜋 and 𝑄+

𝑣,𝜋(𝑞) upper
bound 𝐵𝑊𝑝 and 𝑄𝑣,𝜌(𝑞) respectively, amounts to show that
𝑠𝑒𝑟𝑣 and wl are increasing and to compare the rhs of their
recursive definitions.

A key step to this aim is to bound the workload of a set
of jobs of types in 𝑉 during a busy window by the workload
of the set of vertices in 𝑉 of the path representing that busy
window. More generally, we prove the following lemma:

Lemma 2. Let Δ be a time interval and let 𝜋 :=
{𝜋1, . . . , 𝜋𝑛} be the system path representing 𝜌/[𝑡1,𝑡1+Δ[
i.e., 𝜌/[𝑡1,𝑡1+Δ[ ∼ 𝜋, then

wl𝑉,𝜌(𝑡1, Δ) ≤ wl+
𝑉,𝜋(Δ) (14)

Furthermore, that bound is tight.

Proof. The arrival sequence 𝜌 can be decomposed into
𝑛 independent task-level job arrival sequences {𝜌1, . . . , 𝜌𝑛}
where each 𝜌𝑥 is the arrival sequence of the jobs of task 𝐺𝑥.
Then,

wl𝑉,𝜌(𝑡1, Δ) =
𝑛∑︁

𝑥=1

wl𝑉,𝜌𝑥
(𝑡1, Δ)

Recall the definition of

wl+
𝑉,𝜋(Δ) :=

𝑛∑︁
𝑥=1

cost(|preΔ+J(fst(𝜋𝑥))(𝜋𝑥)|𝑉 )

Therefore, it is sufficient to prove, for all task 𝐺𝑥 that

wl𝑉,𝜌𝑥
(𝑡1, Δ) ≤ cost(|preΔ+J(fst(𝜋𝑥))(𝜋𝑥)|𝑉 )

We show that the workload of 𝜌𝑥/[𝑡1,𝑡1+Δ[ is maximal when:
(1) any two consecutive jobs of 𝜌𝑥 are separated by their

minimum inter-arrival time 𝑑;
(2) all jobs take their maximum cost (i.e., WCET) C;
(3) the first job in the interval releases at 𝑡1 after having

experienced its maximum release jitter (J(fst(𝜋𝑥)))
whereas the jitter of all other jobs is null.

When these three conditions are met, the value of
wl𝑉,𝜌𝑥

(𝑡1, Δ) is maximal and exactly equal to cost(|
preΔ+J(fst(𝜋𝑥))(𝜋𝑥)|𝑉 ). That directly implies Lemma 2. □

6.3 Correctness of Π𝑣
Σ

As a first step towards the correctness proof of the RTA, we
must show that any possible level-𝑝 busy window is repre-
sented by one path in Π𝑣

Σ.

Theorem 1. Any level-𝑝 busy window is represented by at
least one path in Π𝑣

Σ as defined in Equation 5.

Proof. It suffices to show that W𝑘 bounds the length of
any level-𝑝 busy window. i.e.,

𝐵𝑊𝑝 ≤ W𝑘 (15)

Recall that W𝑘 is the least positive fixed point of the equation

Δ = 𝑁 +
𝑛∑︁

𝑥=1

max
𝜋𝑥∈Π𝑣

𝑥(Δ)
{wl+

hep(𝑝),𝜋𝑥
(Δ)} (16)

We first prove that the rhs of Equation 16 bounds the one of
Equation 17. It is fairly easy to prove that 𝐵𝑝 ≤ 𝑁 since 𝑁
represents the largest segment in the system. Furthermore,
for each task 𝐺𝑥 ∈ Σ, we clearly have

wl+
hep(𝑝),𝜋𝑥

(Δ) ≤ max
𝜋𝑥∈Π𝑣

𝑥(Δ)
{wl+

hep(𝑝),𝜋𝑥
(Δ)}

and therefore, for the system path and all tasks,

wl+
hep(𝑝),𝜋(Δ) ≤

𝑛∑︁
𝑥=1

max
𝜋𝑥∈Π𝑣

𝑥(Δ)
{wl+

hep(𝑝),𝜋𝑥
(Δ)}

Then, Lemma 1 entails 𝐵𝑊 +
𝑝,𝜋 ≤ W𝑘 and Theorem 2 permits

to establish Equation 5 by transitivity. □
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6.4 Correctness of bounds for job 𝚥

Now, we show the correctness of the upper/lower bounds
𝐵𝑊 +

𝑝,𝜋, 𝑞+
𝑣,𝜋𝑖,𝐵𝑊 +

𝑝,𝜋
, 𝑄+

𝑣,𝜋(𝑞) and 𝜃−
𝑣,𝜋𝑖

(𝑞) which implies the

correctness of the upper-bound 𝑅𝑇 +
𝜋 (𝑣) for the response time

of 𝚥. Let 𝜋 be the path representing the level-𝑝 busy window
[𝑡1, 𝑡1 + 𝐵𝑊𝑝[,

Theorem 2. Let 𝐵𝑊 +
𝑝,𝜋 be the least positive fixed point of

the equation
Δ = 𝐵𝑝 + wl+

hep(𝑝),𝜋(Δ) (17)

then 𝐵𝑊𝑝 ≤ 𝐵𝑊 +
𝑝,𝜋

(18)

Proof. We first prove that the rhs of Equation 17 bounds
the rhs of

Δ = 𝑠𝑒𝑟𝑣lp(𝑝),𝜎(𝑡1, 𝐵𝑊𝑝) + wlhep(𝑝),𝜌(𝑡1, Δ) (19)
The definition of a level-p busy window implies that at most
one non-preemptable segment of any vertex in lp(𝑝) of 𝜋
can execute in [𝑡1, 𝑡1 + 𝐵𝑊𝑝[. Further, such a segment (if
it exists) must have started execution before 𝑡1. Therefore,
𝑠𝑒𝑟𝑣lp(𝑝),𝜎(𝑡1, 𝐵𝑊𝑝) is bounded by 𝐵𝑝. Lemma 2 ensures
that the second term of the rhs of equation 19 is bounded by
wl+

hep(𝑝),𝜋(Δ). Then, Lemma 1 permits to conclude. □

Lemma 3. The number of vertices 𝑣 in 𝜋𝑖 upper-bounds 𝑞:
𝑞 ≤ 𝑞+

𝑣,𝜋𝑖,𝐵𝑊 +
𝑝,𝜋

(20)

Proof. This result follows by the definition of a path
representing a busy window and 𝑞+

𝑣,𝜋𝑖,𝐵𝑊 +
𝑝,𝜋

. □

Theorem 3. Let 𝑄+
𝑣,𝜋(𝑞) be the least positive fixed point of

the equation
Δ = 𝐵𝑝

+ wl+
ep(𝑝)∩𝑉𝑖,𝜋(len𝑞

𝑣(𝜋𝑖) + 1) − last(C⃗(𝑣)) + 1

+ wl+
hp(𝑝)∩𝑉𝑖,𝜋(Δ)

+ wl+
hep(𝑝)∖𝑉𝑖,𝜋(Δ)

(21)

then it bounds the length of the 𝑞-th queueing prefix of jobs
of type 𝑣 in the level-𝑝 busy window i.e.,

𝑄𝑣,𝜌(𝑞) ≤ 𝑄+
𝑣,𝜋(𝑞) (22)

Proof. As for Theorem 2, it suffices to prove that the rhs
of Equation 21 bounds the rhs of Equation 13. We prove it
by considering each term in turn.

(1) In Theorem 2, we proved 𝑠𝑒𝑟𝑣lp(𝑝),𝜎(𝑡1, 𝐵𝑊𝑝) ≤ 𝐵𝑝.
Further, the definition of a queueing prefix implies
that 𝑄𝑣,𝜌(𝑞) ≤ 𝐵𝑊𝑝. Therefore, for all Δ ≤ 𝑄𝑣,𝜌(𝑞)
(which is sufficient for Lemma 1), 𝑠𝑒𝑟𝑣lp(𝑝),𝜎(𝑡1, Δ) ≤
𝑠𝑒𝑟𝑣lp(𝑝),𝜎(𝑡1, 𝐵𝑊𝑝) ≤ 𝐵𝑝.

(2) The second term can be divided in two parts:

wl+
ep(𝑝)∩𝑉𝑖,𝜋∖𝑣𝑞 (len𝑞

𝑣(𝜋𝑖) + 1) (23)

+ C(𝑣) − last(C⃗(𝑣)) + 1 (24)

where 𝑣𝑞 denotes the 𝑞-th 𝑣 in 𝜋.

The second term of equation 13 can be separated in
two parts as well:

wlep(𝑝)∩𝑉𝑖,𝜌∖𝚥(𝑡1, a(𝚥) − 𝑡1 + 1) (25)
+ c(𝚥) − last (⃗c(𝚥)) + 1 (26)

Now, it is sufficient to prove that (25) ≤ (23) and (26)
≤ (24).
∙ According to Definition 12, the type of any job

of hep(𝑝) ∩ 𝑉𝑖 released in [𝑡1, a(𝚥) + 1[ occurs
preJ(fst(𝜋𝑖))+len𝑞

𝑣(𝜋𝑖)+1(𝜋𝑖). Taking into account the
minimum inter-arrival time, we have

wlep(𝑝)∩𝑉𝑖,𝜌(𝑡1, a(𝚥)−𝑡1+1) ≤ wl+
ep(𝑝)∩𝑉𝑖,𝜋(len𝑞

𝑣(𝜋𝑖)+1)

If we filter out 𝚥 from 𝜌 and the 𝑞-th 𝑣 (job 𝚥’s type)
from 𝜋, (25) ≤ (23) follows.

∙ By definition, we know that c⃗(𝚥) = ⟨𝑐1, . . . , 𝑐𝑠⟩,
C⃗(𝑣) = ⟨C1, . . . , C𝑠⟩ and, for all 𝑖 = 1, . . . , 𝑠, 𝑐𝑖 ≤ C𝑖.
So

𝑠−1∑︁
𝑖=1

𝑐𝑖 ≤
𝑠−1∑︁
𝑖=1

C𝑖

Equivalently (c(𝚥) − last (⃗c(𝚥)) ≤ (C(𝑣) − last(C⃗(𝑣)).
Therefore (26) ≤ (24) follows.

The last two inequalities between the last two terms of (21)
and of (13) follow directly from Lemma 2. □

Theorem 4. The term 𝜃−
𝑣,𝜋𝑖

(𝑞) = len𝑞
𝑣(𝜋𝑖) − J(𝑓𝑠𝑡(𝜋𝑖)) is a

lower bound of the duration between the arrival of 𝚥 and the
beginning of its level-𝑝 busy window.

𝜃−
𝑣,𝜋𝑖

(𝑞) ≤ a(𝚥) − 𝑡1 (27)

Proof. By cases.
(1) a(𝚥) − t1 < 0. The job 𝚥 arrives before 𝑡1 but releases
at or after 𝑡1 i.e., 𝑡1 ≤ a(𝚥) + j(𝚥). Constrained jitter implies
that no other job of the same task arrives before the release of
𝚥. So job 𝚥 must be the first vertex of 𝜋𝑖 and len𝑞

𝑣(𝜋𝑖) = 0. By
convention, j(𝚥) ≤ J(𝑣), therefore −J(𝑣) ≤ −j(𝚥) ≤ a(𝚥) − 𝑡1
and equation 27 holds.
(2) a(𝚥) − t1 ≥ 0. Let 𝚥′ be the job corresponding to the
first vertex in 𝜋𝑖. We know a(𝚥)−a(𝚥′) ≥ len𝑞

𝑣(𝜋𝑖) and j(𝚥′) ≤
J(fst(𝜋𝑖)). Then, len𝑞

𝑣(𝜋𝑖)−J(fst(𝜋𝑖)) ≤ a(𝚥)−a(𝚥′)−j(𝚥′) and
since a(𝚥′) + j(𝚥′) ≥ 𝑡1 that is −a(𝚥′) − j(𝚥′) ≤ 𝑡1, equation 27
follows. □

Lemma 4. Let 𝑅𝑇𝚥 be the response time of job 𝚥 then

𝑅𝑇𝚥 ≤ 𝑄+
𝑣,𝜋(𝑞) − 𝜃−

𝑣,𝜋𝑖
(𝑞) + last(C⃗(𝑣)) − 1 (28)

Proof. By definition 𝑅𝑇𝚥 := end(𝚥) − a(𝚥). Also, when
a job begins to execute its last non-preemtable segment it
cannot be preempted until its completion. Using the notion
of 𝑞-th queueing prefix, we have

end(𝚥) = 𝑡1 + 𝑄𝑣,𝜌(𝑞) + last (⃗c(𝚥)) − 1
Note that 𝑄𝑣,𝜌(𝑞) includes the first cost unit of job 𝚥’s last
segment, so we should subtract 1 from last (⃗c(𝚥)). Equivalently,
we have

𝑅𝑇𝚥 = 𝑄𝑣,𝜌(𝑞) − (a(𝚥) − 𝑡1) + last (⃗c(𝚥)) − 1
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The result follows from Theorem 3, Theorem 4 and the fact
that costs in the model upper-bounds costs in the execution.

□

6.5 Correctness of the RTA
The previous result applies to an arbitrary job 𝚥 of type 𝑣 in
a busy window starting at 𝑡1. It can be used to upper-bound
the response times of any job of type 𝑣 in that busy window,
and by extension any job of type 𝑣 in the arrival sequence.

Theorem 5. The response time of any job of type 𝑣 released
in a busy window starting at 𝑡1 is bounded by

max
𝑞≤𝑞+

𝑣,𝜋𝑖,𝐵𝑊
+
𝑝,𝜋

{𝑄+
𝑣,𝜋(𝑞) − 𝜃−

𝑣,𝜋𝑖
(𝑞) + last(C⃗(𝑣)) − 1} (29)

Proof. Follows from properties of max and Lemma 4. □

Theorem 6. The response time of any job of type 𝑣 released
in any arrival sequence 𝜌 ∼ Σ is bounded by

max
𝜋∈Π𝑣

Σ

⎧⎨⎩ max
𝑞≤𝑞+

𝑣,𝜋𝑖,𝐵𝑊
+
𝑝,𝜋

{︀
𝑄+

𝑣,𝜋(𝑞) − 𝜃−
𝑣,𝜋𝑖

(𝑞) + last(C⃗(𝑣)) − 1
}︀⎫⎬⎭

(30)

Proof. Follows from properties of max and Theorem 5.
□

7 DISCUSSION
In this section, we discuss the significance of the presented
model and analysis in the context of our broader effort toward
a Coq library of schedulability results.

In the past decades, there have a few attempts at proving
methods [13, 14] for solving real-time problems. Recently, the
Prosa library [11, 12] has been proposed to provide formal
specifications and mechanized proofs for schedulability analy-
ses using the Coq proof assistant. The motivation behind our
general task model for fixed priority scheduling is to add it to
the Prosa library and prove the correctness of its RTA. It can
thus cover a large variety of existing models and analyses.

7.1 Proving in Coq the RTA of Gd
systems

The complete Coq proof of the RTA for Gd systems is still
in progress7 and can be separated into two parts:

(1) The generic proof of RTAs for the JFPLP scheduling
policy. For this part, many definitions (i.e., those in Sec. 2)
have been formalized and used in Prosa, as well as a significant
part of the proof. We are actually formalizing the proof of a
more general statement, which does not rely on a task model,
but on an abstract workload function

wl+ : (𝜌 → N → N → 𝑇 ) → N → N

where: (a) the first argument (𝜌 → N → N → 𝑇 ) denotes a
function taking a job arrival sequence, a time instant and
7For more information, please visit https://team.inria.fr/spades/
generalized-digraph/.

a time duration and returning an abstract candidate repre-
sented by the type 𝑇 , where candidates correspond to incom-
parable scenarios which must be analyzed, e.g. paths for the
Gd model; (b) the second argument denotes a time duration
such that wl+ returns the workload during that duration.
The proof as well as the analysis are then applicable to many
task models respecting the fixed priority scheduling policy,
including the Gd model, by instantiating that function.

(2) Specifying the Gd task model and instantiating the
function wl+. This part is not formalized yet; however, ac-
cording to our experience, it should not raise any issue.

7.2 Intended use of the analysis
One of our objectives is to formally certify our RTA in order
to:

∙ compare it with existing RTAs for task models which
can be expressed by Gd, in terms of precision and time
complexity;

∙ obtain novel machine-verified RTAs which take into
account e.g., jitter, non-preemptable segments and
offsets;

∙ reuse the generic part of the proof to propose machine-
verified RTAs for task models beyond Gd by focusing
on upper bounding the workload.

7.3 Beyond the current analysis
By proposing a unified analysis for models as different as the
DRT model and Tindell’s offset model, our work underlines
the generic parts of the proof structure of such RTAs. Based
on this, we can now propose a framework which formalizes
these steps in a generic manner, to be reused for any new
task model. Such steps include the use of sustainability prop-
erties [5, 11], but also strategies to efficiently approximate
the worst-case response time.

8 RELATED WORK
Many task models have been proposed to analyze different
fixed-priority scheduling policies. Depending on their capacity
to model intra- or inter-task dependencies, those models can
be divided into three categories.

The simplest models do not consider any kind of depen-
dency: there is only one type of job for each task. The classic
periodic task model, presented by Liu and Layland [16] char-
acterizes a task by its worst-case execution time 𝐶 and its
activation period 𝑃 . The sporadic task model [19] generalizes
activation periods of tasks by introducing the concept of
minimum inter-arrival time. Later Thiele et al. introduced
the real-time calculus [24], whose arrival curves can model
many more arrival patterns. Another category of models con-
siders intra-task dependencies: there may be several types of
jobs for each task. The multiframe model [18], characterizes
a task by an array of execution times (𝐶0, 𝐶1, . . . , 𝐶𝑁−1)
and a minimum inter-arrival time 𝑃 . A task has 𝑁 types of
jobs and the (𝑖 + 1)-th job in the arrival sequence has the
worst-case execution time 𝐶 (𝑖 mod 𝑁) and arrives at least 𝑃
time units after the arrival time of the 𝑖-th job. The model
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(𝐶, 𝑃 , 𝐷) extends the multiframe model by allowing each
type of job to have a different inter-arrival time and dead-
line [6]. Later, Baruah introduced the recurring branching
task model [7], which adds branching structures. Each task
can be represented by a tree of job types (𝐶, 𝐷) labeled
by minimum inter-arrival times. Two other extensions use
directed acyclic graphs instead of trees: the recurring real-time
task model [8, 9]), and the non-cyclic recurring real-time task
model [4]. More recently, Stigge et al. introduced the DRT
task model [21] and its extended version [22] that use arbi-
trary graphs. None of those models allows to model inter-task
dependencies.

One of the most classic task model taking inter-task de-
pendencies into account is Tindell’s offsets model. A system
is made of a collection of transactions regrouping periodic
tasks having fixed timing relations. More recently, the DRT
model was extended by Mohaqeqi et al. to allow the RDV
mechanism [17] and by Abdullah et al. to take into account
shared resources [3].

To the best of our knowledge, none of the previous models
is general enough to express at the same time intra- and
inter-task dependencies as well as arrival curves. Our model
is a generalization in this respect. The formal certification of
its associated RTA should permit to factorize the correctness
proofs of many analyses.

9 CONCLUSION
In this paper, we have introduced the Gd model, a gener-
alization of the DRT task model that is expressive enough
to model and analyze many different fixed-priority systems.
In particular, Gd can express dependencies between jobs
as well as tasks. The work presented in this paper is moti-
vated by our ongoing contribution to Prosa, a Coq library
of models and analyses of real-time systems. The Gd model
and its associated RTA provide the needed foundations for a
Coq response time analysis of complex systems, in particular
regarding dependencies. Future work includes:

∙ The complete Coq formalization of the presented RTA,
which is still in progress.

∙ A formal comparison of our proposed analysis with the
existing RTAs of specific types of DRTs, e.g., constrained
deadline under job-level FPP or task-level FPNP [23], and
arbitrary deadline under task-level FPP [20]. Indeed, our
RTA for Gd uses a queueing prefix technique which may
require a smaller number of paths to be analyzed.

∙ A practical study of the complexity of the analysis and
of the possible trade-off between accuracy of the computed
bounds and runtime performance of an RTA implementation.

∙ Extensions to more complex models, in particular to
task chains and multiprocessor systems.

∙ A theoretical connection between the RTA proposed
here and the notion of sustainability.
We believe that this work represents a significant step toward
integrating previously independent features into a unified
framework for the response time analysis of real-time systems.
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