
Towards Chemical Coordination for Grids

Jean-Pierre Banâtre1, Pascal Fradet2 and Yann Radenac1

1 IRISA, Campus de Beaulieu, 35042 Rennes Cedex, France
2 INRIA Rhône-Alpes, 655 avenue de l’Europe, 38330 Montbonnot, France

In [6], Ian Foster and Karl Kesselman explain that grids
need “a rethinking of existing programming models and,
most likely, new thinking about novel models”. In this work,
we investigate a “novel programming model” for grids based
on the chemical metaphor.

On one side, applications are programmed in an abstract
manner describing essentially the chemical coordination be-
tween (not necessarily chemical) software components. On
the other side, chemical service programs are specifically
provided to the Grid run-time system in order to obtain the
expected quality of service in terms of efficiency, reliability,
security, etc. These service programs can be seen as special
coordination programs providing guidelines to the runtime
system allowing a better use of resources in order to obtain
the expected Quality of Service.

1. CHEMICAL PROGRAMMING
A chemical program can be seen as a (symbolic) chemical

solution where data is represented by floating molecules and
computation by chemical reactions between them. When
some molecules match and fulfill a reaction condition, they
are replaced by the body of the reaction. That process goes
on until an inert solution is reached: the solution is said to
be inert when no reaction can occur anymore. Formally, a
chemical solution is represented by a multiset and reaction
rules specify multiset rewritings.

We use a higher-order chemical programming language
called HOCL(Higher-Order Chemical Language). HOCL [2]
is based on the γ-calculus [3], a higher-order chemical com-
putation model which can be seen as an higher-order exten-
sion of the Gamma language [4]. In HOCL, every entity is a
molecule, including reaction rules.

A program is a molecule, that is to say, a multiset of atoms
(A1, . . . , An) which can be constants (integers, booleans, etc.),
sub-solutions (denoted by 〈M〉), pairs (denoted by A1:A2) or
reaction rules (denoted by replace-oneP by M if C, where
P is a pattern which filters the required molecule, C is the
reaction condition and M the result of the reaction). In par-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’06April 23-27, 2006, Dijon, France
Copyright 2006 ACM 1-59593-108-2/06/0004 ...$5.00.

ticular, the pattern 〈P 〉 matches an inert sub-solution, and
the pattern x::T is used to filter atoms of a given type T .

Compound molecules (M1, M2) are built using the asso-
ciative and commutative operator “,”:

(M1, M2), M3 = M1, (M2, M3) M1, M2 = M2, M1

formalize the Brownian motion and can always be used to
reorganize molecules.

The execution of a chemical program, i. e., a chemical so-
lution, consists in triggering reactions until the solution be-
comes inert.

A reaction involves a reaction rule replace-oneP by M if C
and a molecule N that satisfies the pattern P and the re-
action condition C. The reaction consumes the rule, the
molecule N and produces M .

A molecule inside a solution cannot react with a molecule
outside the solution (the construct 〈.〉 can be seen as a mem-
brane). A HOCL program is a solution which can contain re-
action rules that manipulate other molecules (reaction rules,
sub-solutions, etc.) of the solution.

The reaction rules are one-shot: they are consumed when
they react. However, in many programs it is practical to
have n-shot reaction rules (like in Gamma [4]) i. e., rules
which do not disappear when they react. Like in Gamma,
there are denoted by replaceP by M if C.

There are usually many possible reactions making the ex-
ecution of chemical programs non-deterministic and highly
parallel. Since reactions involves only a few molecules and
react independently of the context, many distinct reactions
can occur at the same time. For example, consider the
following program that computes the prime numbers lower
than 10 using a chemical version of the Eratosthenes’ sieve:

prime10 = let sieve = replacex, y by x if x div y in
〈sieve, 2, 3, 4, 5, 6, 7, 8, 9, 10〉

The reaction sieve just removes any element y which can
be divided by another one x. Initially several reactions
are possible, for example sieve, 2, 8 (replaced by sieve, 2)
or sieve, 3, 9 (replaced by sieve, 3) or sieve, 2, 10 or etc. The
solution becomes inert when sieve cannot react with any
couple of integers in the solution, that is to say, when the
solution contains only prime numbers. The result of the
computation in our example is 〈sieve, 2, 3, 5, 7〉.

To access within a sub-solution (e. g., to get the result of
a sub-program), a reaction rule has to wait for its inertia.
That means that a reaction rule matches only inert sub-
solutions. For example, if we want to compute the largest
prime number lower than 10, we can use the previous pro-
gram as a sub-program and then computes the maximum of

its result:

letmax = replacex, y by x if x ≥ y in
〈prime10, replace-one 〈ω〉by ω, max〉

When the solution prime10 becomes inert, the result is ex-
tracted and the reaction max computes the maximum prime
number.

2. CHEMICAL COORDINATION AND GRID
PROGRAMMING

HOCL is a general coordination language: it can com-
bine programs and ensure QoS properties on their execution.
Grids also can be represented as solutions of resources. It
is then easy to specify tasks placement or migration using
HOCL. The resulting system possesses nice autonomic prop-
erties as shown in [1].

Thanks to its higher-order nature, it is easy to define co-
ordination mechanisms in HOCL. For example, the parallel
operator is simply the comma: if M1 and M2 are two tasks,
the molecule (〈M1〉, 〈M2〉) represents their parallel execu-
tion.

HOCL can be seen as a chemical coordination language
where the coordinated objects are data and programs. Pro-
grams are considered as black boxes which take some (typed)
arguments and yield a (typed) result (for example they may
be defined in an external library). For example, our pre-
vious example sieve could be seen as the coordination of
the function div on integers in order to compute the prime
numbers.

A grid is represented by a solution of resources (e. g., all
machines in the grid). Resources have characteristics acces-
sible through predefined functions. For example, Cpu(R)
returns the type of cpu of a resource R, Load(R) yields its
current load, MemSize(R) returns the size of its available
memory, etc.

A program to be run on a grid is a set of tasks distributed
on several resources. A grid is a dynamic system: resources
come and go, some of them become overloaded or avail-
able, etc. So, before launching a program into a grid, it is in
general impossible to know what resources will be allocated
to the program. The coordinator can specify the dynamic
placement or the migration of tasks using reaction rules. For
example, the programmer may specify that a task allocated
to a resource may be migrated to a less loaded resource.

Initially, tasks are placed on some free resources and re-
action rules expressing the coordination (migration, dupli-
cation, etc.) of tasks are placed among the solution of
resources. A resource is represented as a tagged solution
R:〈x, . . . , f :a, . . .〉 where the solution contains the active and
idle tasks placed on the resource named (tagged) R. An idle
task is represented by a function-argument pair (f :a). An
active task is an expression (fa) or any active solution. For
example, the activation of idle tasks on a resource can be
specified by the reaction rule:

activate = replace r:〈ω, (f :a)〉
by r:〈ω, fa〉
if Load(r) < 80%

Placed in a grid, this rule will activate any idle task on
any resource whose load is less than 80%. The migration of
idle tasks on a less loaded resource can be expressed by the

reaction rule:

migrate = replace r1:〈ω1, (f :a)〉, r2:〈ω2〉
by r1:〈ω1〉, r2:〈ω2, (f :a)〉
if Load(r2) < Load(r1)− 10%

A basic load balancing can be specified by placing these two
rules in the solution representing the grid. For example

〈R1, R2, R3, . . . , Rn, activate, migrate〉

In general, coordination on a grid is specified by many such
rules for load balancing but also fault tolerance, security, etc.
These reactions can take place in parallel and leads to non
deterministic task placement or migration. Execution pro-
ceeds until self-stabilization that is, until the solution be-
comes inert.

3. CONCLUDING REMARKS
We have presented a chemically inspired approach that

unifies grid programming and coordination.
Concerning related work, let us mention two approaches

which bare some similarities to our approach. In [7], it is
shown how a rule-based multiset programming paradigm
close to Gamma [4] may be used as a unifying theme for
various models of computation, such as biological , molecu-
lar, DNA, etc. The Organic Grid [5] is another effort based
on a biologically inspired paradigm.

Practical realization of our approach is presently under-
way on an experimental grid architecture. We are devel-
oping a chemical grid virtual machine built from intercon-
nected chemical processing elements providing the basic func-
tionalities expected for program execution and coordination.

4. REFERENCES
[1] J.-P. Banâtre, P. Fradet, and Y. Radenac. Chemical

specification of autonomic systems. In Proc. of the 13th
Int. Conf. on Intelligent and Adaptive Systems and
Software Engineering (IASSE’04), 2004.

[2] J.-P. Banâtre, P. Fradet, and Y. Radenac. Generalized
multiset for chemical programming. Technical report,
INRIA, 2005. (to appear).

[3] J.-P. Banâtre, P. Fradet, and Y. Radenac. Principles of
chemical programming. In S. Abdennadher and
C. Ringeissen, editors, Proceedings of the 5th
International Workshop on Rule-Based Programming
(RULE 2004), volume 124 of ENTCS, pages 133–147.
Elsevier, 2005.

[4] J.-P. Banâtre and D. Le Métayer. Programming by
multiset transformation. Communications of the ACM
(CACM), 36(1):98–111, Jan. 1993.

[5] A. J. Chakravarti, G. Baumgartner, and M. Lauria.
Application-specific scheduling for the organic grid. In
Proceedings of the fifth IEEE/ACM International
Workshop on Grid Computing (GRID’04), pages
146–155, 2004.

[6] I. Foster and C. Kesselman, editors. The Grid 2:
Blueprint for a New Computing Infrastructure. Morgan
Kaufmann Publishers, 2nd edition, 2003.

[7] V. K. Murthy and E. V. Krishnamurthy. Gamma
programming paradigm and heterogeneous computing.
In Proceedings of the 29th Hawaii International
Conference on System Sciences (HICSS’96) Software
Technology and Architecture, volume 1, page 273, 1996.

