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Abstract

We propose a domain-specific aspect language to prevent denial of service caused
by resource management. Our aspects specify availability policies by enforcing time
limits in the allocation of resources. In our language, aspects can be seen as formal
timed properties on execution traces. Programs and aspects are specified as timed
automata and the weaving process as an automata product. The benefit of this
formal approach is two-fold: the user keeps the semantic impact of weaving under
control and (s)he can use a model-checker to optimize the woven program and verify
availability properties. This article presents the main approach (programs, aspects,
weaving) formally using timed safety automata. The specification of resources, opti-
mizations and verification are sketched in a more intuitive fashion. Even if a concrete
implementation remains as future work, we address some high-level implementation
issues and illustrate the approach by small examples and a case study.
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1 Introduction

Along with confidentiality and integrity, availability is one of the three main
classes of security properties. Availability guarantees that the requests of au-
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thorized subjects are satisfied in a timely manner. In other words, there is
no denial of service. Like the other security properties, the implementation of
availability crosscuts the basic functionality of programs and produces tan-
gled code. In this paper, we use aspect-oriented techniques to express resource
management and address the prevention of denial of service (i.e., availability)
separately from the basic functionality. That separation of concerns leads to
programs that are easier to develop and maintain. This is especially useful in
a security context where programs may have to be changed quickly to respond
to new threats.

We propose a domain-specific aspect language in order to prevent denial of
service caused by resource management (e.g., starvation, deadlocks, etc.). As-
pects specify availability policies which enforce time constraints on resource
allocation. For example, a constraint may be that a service S does not retain
a resource R more than k seconds or that it does not allocate the resource R2
less than k seconds after it has released R1. To the best of our knowledge, this
is the first work using aspects to enforce the availability of resources.

In our language, an aspect can be seen as a timed property on execution
traces which specifies an availability policy. The semantics of base programs
and aspects are expressed as timed automata [1]. The automaton representing
a program specifies a superset of all possible (timed) execution traces whereas
the automaton representing an aspect specifies a set of desired /allowed (timed)
execution traces. Weaving can be seen as a product of two timed automata
(i.e., the intersection of execution traces) which restricts the execution of the
base program to the behaviors allowed by the aspect.

In general purpose languages, aspects are often described in a syntactic fash-
ion as directives of code insertion at explicit join points. Such a code is not
restricted and, consequently, can completely distort the semantics of the base
program. In contrast, our aspects are constrained and have a more semantic
nature: they specify sets of desired timed behaviors. The main advantage of
such a formal approach is two-fold:

e aspects are expressed at a higher-level and the semantic impact of weaving
is kept under control;

e model checking tools (e.g., UPPAAL [2,3]) can be used to optimize weaving
and verify the enforcement of general availability properties.

Section 2 outlines our framework, in particular: the systems and availabil-
ity properties considered, the general approach and a small example used
throughout the paper to illustrate the different steps. We briefly recall the
main characteristics of timed automata in Section 3. The specification of re-
sources, illustrated with two standard types of resources, is described in Sec-
tion 4. Sections 5 and 6 present the syntax and semantics of services and



availability aspects, respectively. The technical core of the paper lies in Sec-
tion 7 which describes the abstraction of services and semantics of aspects in
terms of timed automata and the weaving as an automata product. Section 8
sketches the optimization, verification and concretization of the final (woven)
automaton back into a source program. Even if a concrete implementation
remains as future work, we address in Section 9 some key implementation
issues. Section 10 presents a case study where several temporal constraints
of an automatic teller machine are implemented as aspects. We conclude by
presenting related work in Section 11 and possible extensions in Section 12.

This article extends and revises the work presented in GPCE’07 [4]. Sections
4,9, 10, and 11 are new. We have clarified and/or simplified some technical
points (e.g., representations and translations) and have added more explana-
tions and examples. Older, preliminary versions have also been published in
a French conference [5], journal [6] and PhD thesis [7]. Correctness proofs of
our approach in a simpler setting can be found in [7].

2 Framework

We first define the systems and availability problems considered. Then, we
present our approach and the example used thereafter to illustrate it.

2.1 Systems and availability

We consider systems that can be decomposed along three layers: users, services
and resources (Figure 1). Users send their requests to services and wait for
the answer. Services process users’ requests sequentially. Requests are stored
in a FIFO queue; processing a request involves computation and accesses to
resources. Resources are (logical or physical) entities shared among services.
For instance, files, printers, processors or network connection managers are
examples of resources. This type of client-server model is of widespread use
in web servers and distributed applications. We suppose that the numbers of
services and resources are fixed and known.

Each service can be seen as a non-terminating loop processing requests: the
request is fetched, processed, the result is sent to the corresponding user and
so on. We do not specify users and how services deal with user requests any
further. Since we are interested in resource management and the prevention
of denial of service, we focus on interactions between services and resources.

The availability problems we consider come from concurrent accesses of ser-
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Fig. 1. Three-layer model

vices to shared resources. For instance, there can be starvation when a service
cannot allocate a resource or deadlocks when two services wait for a resource
allocated by the other one. Such problems can be prevented by appropriate
resource management. Of course, hardware faults can also cause availability
problems. This source of denial of service must be addressed by dedicated
fault-tolerance techniques (see for example [8,9]).

2.2 Approach

Yu and Gligor have studied denial of service caused by resource management
[10]. They have shown that availability properties depend not only on resources
but also on constraining the behavior of services using user agreements. Our
resource management system is inspired by Yu and Gligor’s model. As illus-
trated in Figure 2, it is made of two parts:

e the specification of resources in terms of sufficiently precise automata which
can be translated into programs. Several types of resources (exclusive access,
shareable) have been specified in [5].

e the specification of constraints on the use of resources. We define these
constraints as availability aspects which are woven on the source code of
services. Compared to other aspects, availability aspects are original in that
they specify timed behaviors. They can, for example, limit the amount of
time a service may allocate a resource or forbid too frequent reallocations
of a resource by the same service (see Section 6).

In this paper, we present informally the specification of resources and mostly
focus on the aspect-oriented part of the framework. Resource management
constraints are specified by an availability aspect per service. Each aspect is
independent and defines a local policy which is woven on the corresponding
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Fig. 2. Global layout of the system

service. These aspects correspond to Yu and Gligor’s user agreements. We do
not consider global aspects constraining services depending on the behavior
of other services. They are more expressive but their implementation involves
a global monitor observing the execution of the complete system. Local as-
pects are sufficiently expressive to prevent most denial of service and their
implementation can be optimized using static weaving.

Our approach relies on timed automata and weaving, the key transformation
step, is specified as a timed automata product. The technical core of our
technique is made of the following steps:

e a service is abstracted into a timed automaton over-approximating its exe-
cution traces and its timed behavior (Section 7.1);

e an aspect is defined using a domain-specific language. Its semantics is given
by a timed automaton (Section 7.2);

e the aspect is woven to the service by performing the product of the two cor-
responding automata. The product automaton represents a refined service
that satisfies the constraints of the aspect (Section 7.3);

e information about the execution times of service instructions can be taken
into account, again using automata product. This permits to optimize the
woven automaton (Section 8.1);



e it is possible to automatically verify that the woven automaton satisfies
general availability properties (Section 8.2);

e the last step amounts to concretizing the (optimized and verified) automa-
ton into source code using timed commands (watchdog timers, waiting loops,
interrupts) (Section 8.3).

2.3  System example

We will use the example of Figure 3 to illustrate the different steps of our tech-
nique. This small system is made of two resources (M1 and M2) with exclusive
access and two services (S1 and S2) with a non terminating loop request. The
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Fig. 3. A simple system with two services and two resources

service S1 allocates the resource M1 then M2 (M1.alloc(); M2.alloc();). It
computes S1Comput (which takes between 2 and 10 seconds), releases the re-
sources M2 and M1 and iterates. The service S2 models a potentially dangerous
behavior. It allocates the resource M2, then computes S2Comput1 which takes
at least 1 second (and may not terminate). If the guard G is true, it allocates



M1, computes S2Comput2 (which takes between 3 and 20 seconds) and releases
M1. It releases M2 and iterates.

The resource management of this system may lead to two availability prob-
lems:

e starvation may occur if S2Computl does not terminate. In this case, the
service S2 never releases M2 which is needed by S1;

e deadlock may also occur when the service S1 has allocated the resource M1
and waits for M2 while the service S2 has allocated the resource M2 and waits
for M1.

3 Timed automata

In this section, we briefly recall the syntax and semantics of timed automata
which we use to model programs, aspects and weaving. Timed automata have
been introduced to specify problems and to verify properties where time is
explicit. We present timed safety automata [2,11] which are a commonly used
kind of timed automata.

3.1  Syntaz

Let H be a set of real valued variables used to represent clocks. A clock con-
straint C'is of the form

Ci=20k | x—yokwithz,ye H keN

and © € {<,<,=,>,>}

Transitions of timed automata are guarded by a set of clock constraints (to
be interpreted as the conjunction of the constraints). We write 2¢ for the set
of possible guards (i.e., clock constraints).

A timed automaton A is a tuple (Q, qo, H, >, =4, [) where:

e () is a finite set of states;
qo € @ is the initial state;

H is a finite set of clocks;

Y is a finite set of labels denoting events/actions of the automaton;
—,C Q x 2¢ x ¥ x 21 x Q is the transition relation;

I:Q — 2% maps a state to its invariant.



A transition (g, g,a,r,q") €—, specifies that the automaton can go from state
q to state ¢’ by performing the action a and resetting the set of clocks r (r € H)
if the guard g is true. The sub-set of clocks r is called a reset. We restrict an
invariant to be a conjunction of constraints of the form x < k or x < k with
k an integer.

The symbol . is overloaded to denote the empty guard (i.e., ) or true), the
empty reset (i.e., )) and the empty action more commonly written e. We also
write ¢ 225 ¢ for transitions; for example, ¢ 22 ¢’ denotes the spontaneous

transition.

3.2  Semantics

The operational semantics of a timed automaton A = (Q, qo, H, 3, =4, I) is
given by a transition system between states of the form (¢, u) where ¢ € @ is
the current state of the automaton and the function v : H — R maps clocks
to their current value. The initial semantic state is made of the initial state of
the automaton and the function returning 0 for all clocks.

The definition of the semantic transition relation makes use of the following
notations. Let u : H — R mapping clocks to their values, g a guard (i.e., a set
of clock constraints) and ¢ a real number then:

e u € g denotes that clocks of u (H) verify the guard g;
e u + d denotes that d is added to all clocks of u;
e u[r — 0] denotes the reset of all clocks of the set r.

The semantic transitions are either transitions representing the time passing
(q,u) = (qu+d)ifVd :0<d <d=u+d € I(q)

or transitions representing the execution of an action

g7a’r

(q,u) = (¢',u) if 3¢ === ¢’ such that

uweg, uellqd), v=u[r—0

Time may pass only if it satisfies the invariant of the current state. A transition
of the automaton may occur if and only if its guard and the invariant of the
new state are satisfied. The semantics of the automaton is the set of traces of
the associated transition system.

The first automaton in Figure 4 enforces that the action a is performed at
least before 10 time units (initially or after each action a). The state invariant



prevents the automaton from waiting more than 10 time units before perform-
ing a. The clock z is initially set to 0 and is reset after each a. The second
automaton enforces to wait at least 5 time units before performing an a. Each
time the action a is performed, the clock y is reset and an a transition can
only occur when y > 5. The clocks are assumed to be initialized to zero.

?a7x
y=>9,a,y
_)8
—_
x <10

Fig. 4. Simple timed automata

3.8 Timed automata product

The product of two timed automata X = (Q, o, Hy, 2, =4, [;) and Y =
(Qy, Yo, Hy, X, —, 1)) with the same set of actions and disjoint sets of clocks
is the automaton X ® Y = (Q, x Qy, (z0,%0), Hx U H,, X, —, I) with:

I(z,y) = L(x) Ul,(y)

gz,CL,T'z gy,aﬂ‘y
ACTION Ty ——rz T2 Y1 —y Y2
gz Ugy,a,rzUry
(Iluy1> (3727312)
. X Jorle, z T2 . n = ’.Jq‘y’y Y2
1 Tyl 2 I8
(z1,y) 2= (22,9) (z,41) 2 (2, 90)

The states of the product automaton is the cartesian product of the states of
the two automata X and Y. The initial state is made of the initial states of
X and Y. The invariant of a product state is the conjunction (union) of the
invariants of its two constituent states.

The transition relation of the product automaton is defined by three rules. The
rule ACTION denotes the case where an action is performed by both automata.
The guard is the conjunction of the two constituent guards. It is expressed as
a union ot the sets representing guards (recall that these sets are interpreted



as the conjunction of their elements). The set of clocks to reset is the union
of the two reset sets. The rules ¢; and €5 denote the cases where one of the
two automata performs the empty action. In these cases, the automata can
proceed independently.

The execution traces recognized by the product automaton X ® Y is the
intersection of the execution traces recognized by the two automata X and Y.

The product of the two automata of Figure 4 is represented in Figure 5. It
specifies the intersection of the allowed traces of the two automata. It enforces
that the delay between each action a lies between 5 and 10 time units.

y > 5,a,{z,y}

3

x <10

Fig. 5. Simple product automaton

4 Resources

Resources (communication, memory, CPU, etc.) play a central role in avail-
ability. Even if our main focus is the weaving of timed properties on services,
we sketch in this section how resources can be specified in the same framework
(e.g., timed automata) using examples. In order to verify global availability
properties, resources as the other components of the system (services and as-
pects) must be formally specified.

In our approach, resources are specified by:

e an interface listing all the instructions to access them;

e an automaton specifying their behavior, in particular:
- the evolution of their internal state according to the different accesses
made by services;
- the management of the requests from services.

We use the timed automata of UPPAAL [2,3] to specify the behavior of re-
sources. UPPAAL automata extend timed automata with urgent states (where
time is not allowed to pass), synchronization communications, arrays and
bounded integer variables. These extensions permit to represent programs and
aspects more concisely. It is however only syntactic sugar which can be trans-
lated into pure timed automata by encoding (e.g., adding new clocks to express
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urgency) and state enumeration. Another benefit of using UPPAAL is to allow
the verification of high-level availability properties of the woven automaton
by model-checking (see Section 8.2).

If the UPPAAL automaton is deterministic and complete (all conditional cases
are taken into account), it is easy to generate executable code from such
a specification. We do not describe formally UPPAAL syntax and semantics.
Instead, we explain the extensions intuitively as they are used in the examples.
The reader will find an abundant documentation about UPPAAL (manual,
tutorial, articles) at http://www.uppaal.com/.

The representation of a resource as an automaton is more declarative than a
direct encoding as a source program. Further, since it is in the same formalism
as services (base and woven), the global system can be described and analyzed
using UPPAAL.

In this section, we focus on two common types of resources: resources with
exclusive access and sharable resources.

4.1 Exclusive access resources

Exclusive access resources are used by a single user at a time. They are said
to belong to the mutex type. That kind of resource protects access (reads and
writes) of shared data. Different specifications can be considered.

A simple specification can be given by:

e an interface with only two operations:
- alloc() that takes the resource (i.e., enters the critical section);
- free() that releases the resource (i.e., exits the critical section).

e a specification of resource management where:
- alloc() are performed by choosing randomly a requesting service when
the resource is free;
- free() are performed without delay.

More precisely the resource management is specified by the automaton of
Figure 6.

Initially, the resource is free and is granted to a service requesting it. The
synchronizing communications alloc and free are supposed to be unique to a
resource (e.g., they can be indexed by the resource ID). A service accesses a
resource using the synchronizing communications alloc? to request and take
it and free! to release it. Time is allowed to pass when the service performs
alloc? but not free!. In the latter case, the service must be in an urgent state

11
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free?

Fig. 6. Basic behavior of mutex resource

in order to release the resource without delay.

This simple description is correct but does not ensure fairness of the allocation.
Starvation can arise since the resource is granted to a service chosen randomly
among all services requesting the same resource. A more refined specification
manages requests in a FIFO fashion. It is described by the automaton of Fig-
ure 7.

fifolk] := sid; k++

request?

request?,
fifolk] := sid,

ket fifoli] == fifoli + 1];i++

. o o
k > 0, sid := fifo[0], alloc!, k——, i :=0

Fig. 7. FIFO management of mutex resource

The automaton uses the notion of urgent states (marked with a U) and two
bounded integer variables 0 < k < max and 0 < ¢ < max where max
represents the maximum number of services. The automaton uses an array
(fifo bounded by max) to implement the FIFO file storing requests of services.
Initially, the file is empty (k = 0) and the resource waits for a request. The
shared variable sid is the ID of the service performing the request. That ID
is stored in fifo and the allocation is performed right away. Next, the array is
updated (i.e., the first element is removed and the others shifted) using the
index . The resource waits for the deallocation (free?) but, in the meantime,
accepts incoming requests and stores into the array. After the deallocation,
either the file is empty and the resource waits for another request, or the
first request of the file is processed. Note that the only two states where
time is allowed to pass are states where the resource waits for requests and
deallocations.
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That specification supposes that services request the resource using a transi-
tion of the form request!, sid := myid. That transition may be urgent since
the resource is always ready to accept requests. When the synchronization
takes place, the shared variable sid has the identity of the selected service.
A service that has performed a request must wait for the allocation using a
transition of the form sid = myid, alloc!. The guard sid = myid ensures that
the request currently processed is from the right service. Services may only
release (free!) resources that have been allocated to them.

The automaton of Figure 7 is complete and deterministic. It is used to generate
the following CSP-like code.

init : if k<=0 then request?; fifol[k]:=sid; k++;
sid:=fifo[0]; alloc!; k——;

i:=0;
while i<k do fifo[i]:=fifol[i+1]; i++; od;
loop : free? -> jmp init;

|| request? -> fifol[k]:=sid; k++; jmp loop;

In that language, we suppose that communication instructions are blocking
and when several guards are enabled the first one is chosen. In our example,
if free? and request? are enabled then free? is chosen.

Such a specification of mutex resources ensures some basic availability (fair-
ness) properties. For example, a service cannot repeatedly allocate the same
resource when others are waiting for it. Still, it can suffer from several avail-
ability problems.

e if a service takes a resource and fails to release it;

e deadlocks are possible when several services share several mutex resources.

4.2 Sharable resources

Mutex resources can be refined into resources made of a collection of k parts
which can be allocated to several services. Such shareable resources are com-
mon [12]: servers, memory and CPU can be seen as shareable (at least at a
proper abstraction level). They are typically defined by:

e an interface made of three operations:
- request (i) to request ¢ parts of the resource;
- alloc(i) to grant ¢ parts;
- free(di) to release i parts.

13



e the behavior, where usually:
- request (i) are processed in a FIFO ordering;
- alloc(di) are granted as soon as i parts are free;
- free(i) are performed without delay.

We do not give the corresponding automaton which uses similar encodings as
the automaton of Figure 7.

A shareable resource may cause the same availability problems as a mutex
resource. Indeed, a shareable resource with k£ parts can be seen as k mutex
resources. Therefore, contrary to mutex resources, deadlocks can arise with a
single shareable resource. Shareable resources may profit from more complex
availability policies e.g., managing quotas on the number of parts allocated by
services.

Many other kinds of resources or more sophisticated specifications can be
described in this framework (i.e., as UPPAAL automata). For instance, it would
be possible to associate services with priorities. Requests would be processed
depending on their ordering and the priority of the corresponding service.

5 Services

In this section, we describe the syntax and semantics of the source language
of services.

5.1 Syntaz

A service is defined by a set of instructions {Iy, ..., I,} of the form
Ii=l:col|li:g~ly; s

where [, I and [3 are labels, ¢ a command (e.g., an assignment) and g a test
(i.e., a boolean expression). In the following, we use action to denote either
a command or a test. Intuitively, if the current program point is /; and the
service S contains the instruction:

® [ : ¢~ Iy then the command c is performed and the current program point
becomes [, ;

e [ : g~ ly; I3 then if the test g is true the current program point becomes
[y else it becomes [3.
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Left-hand side labels are supposed to label a unique instruction. This syntactic
restriction ensures sequentiality and determinism of services (provided that
commands are sequential and deterministic).

The source language is very simple. Its main advantage is that programs are
very close to their control flow graph which will be translated to a timed
automaton. A higher-level language could be considered by using a control
flow analysis to abstract programs into automata.

Typically, a service is an infinite loop waiting for a user’s request, processing
and answering the request and so on. The loop of a service starts with the
instruction [ : getUser() ~» [; which waits and takes a new request and ends
with /; : endUser() ~» [y which returns the results to the user and jumps to Iy
to treat a new request. For example, the service S1 of Figure 3 can be written
in that syntax:

lo : getUser() ~ [
1 : Ml.alloc() ~ Iy
ly : M2.alloc() ~ I3
S1 =413 :81l.comput() ~ Iy
ly : M2.free() ~ s

5 : Ml.free() ~ g

l¢ : endUser() ~ o

The commands getUser() and alloc() are blocking (e.g., if there is no request
or if the resource is not available); the command S1.comput denotes a poten-
tially large collection of basic instructions without any resource management
command.

5.2  Semantics

The semantics of a service S is expressed as a labeled transition system
(Xs, (lo, 50), Es, —>s) where:

¥, is an infinite set of states (I, s) with [ a label and s a store;
(lo, So) is the initial state;

Es is the set of actions of S

—g is the transition function labeled by the action.

15



The semantics of commands ¢ is assumed to be given by the function C|c]
mapping the current store to the updated store. The semantics of tests is
assumed to be given by the function G[g] which takes the current store and
returns a boolean. The transition function can be then defined by the following
three rules:

lllC’\f)lges C[[C]]51:82

CoMM .
(l1731) —s (lz,Sz)

lllg’\ﬁlg; lges g[[g]]sl

THEN 7
(l1731) ] (l2731)

ll g l2 3 l3 es —Q[[g]]sl

ELSE S
(11751) —s (13,51)

The action g (resp. ) denotes the transition to the then-branch (resp. else-
branch) of the corresponding conditional.

6 Availability aspects

Finite time properties are a common class of availability properties that ensure
that users’ requests are eventually answered. This type of liveness property
must be ensured statically using verification techniques. They cannot be en-
forced dynamically by monitoring, weaving or code instrumentation [13]. Since
only safety properties can be enforced by weaving, we consider bounded time
properties which are availability and safety properties. For example, we may
want to ensure that requests are answered before a fixed time limit. Many
other timed properties can be specified as well. For instance, to guarantee a
fair use of resources, we may want to limit the allocation frequency of resources
by a service (e.g., by adding waiting periods).

Availability aspects specify mostly maximal and minimal periods between

events (e.g., the allocation and release of a resource). They are written in a
textual language and can be easily translated into timed automata.

16



6.1 Syntax

Our language is inspired by stateful aspects [14] (or trace-based aspects [15])
which take the history of execution into account. The syntax is described in
Figure 8.

A == {a; = E;} ; mutually recursive equations

EF = E0OE ; choice
| ((F,G)> L);a; ; adds advice L and proceeds
s with a; if the current event is
; matched by the pattern F and
; the timed guard G is true

F = Pat ; basic event patterns
| R AR, |-F
G == {...,tOk,...} ;timed guards
;oe{s, <> 2}
L == {I;...;1} ; advice
I == reset (i,k) ; programs the interrupt i to be

; triggered in k time units

| cancel (i) ; cancels the interrupt i
| start (t) ; initializes the timer t
| wait (t, k) s waits until t = k

| nop ; empty instruction

with k an integer, 1 an interrupt and t a timer

Fig. 8. Syntax of availability aspects

An aspect is a collection of mutually recursive equations. An equation is of
the form a; = (C'> L); a; and should be read as: the aspect waits for the event

17



C which triggers the execution of the sequence of instructions L and passes
the control to equation a;. In general, an equation may contain choices. For
example, the aspect (C'> L);a O (C'> L');a’ waits for the events C or C;
the first event occurring triggers the execution of the corresponding advice
and equation (L and a or L’ and a’). To ensure determinism, we suppose that
choices are exclusive ! .

A pattern F, close to AspectJ’s pointcuts [16], is either a simple pattern (a
term, possibly with wildcards *, matching commands), or a logical combina-
tion of patterns. For example, R.alloc matches only the allocation of the
resource R, *.alloc matches all allocations and R.* all operations on the re-
source R. A guard G is a conjunction (represented by a set) of comparisons of
timers to integer constants.

The list of instructions L denotes the advice to execute when the associated
pattern matches the current instruction. Availability aspects use only 5 types
of instructions:

e resel(i, k) programs an interrupt ¢ to terminate the current request and to
release all allocated resources after k seconds. We suppose that reset rolls
back a service to a safe initial state (e.g., using transactional techniques).
Most resources (processor, memory, printer, etc.) can be adapted to support
roll-back.

e cancel(i) cancels the interrupt i;
e start(t) initializes the timer ¢;

o wait(t, k) waits until ¢ has the value k. If ¢ > k then the instruction does
nothing (wait(t, k) = nop);

e nop permits advance without performing any action.

All instructions are executed after the matched instruction (i.e., they are after
advice) except wait(t, k) which is performed before (i.e., a before advice). We
forbid programming and canceling the same interrupt (e.g., reset(i, k); cancel(i))
within the same advice.

Availability aspects can only add guards or time-related instructions that do
not modify the state of the service. Their semantic impact boils down to
forbidding some execution traces: either they are aborted by a reset or their
timing is modified by wait. Aspects can therefore be seen as timed properties
and it is possible to reason on woven programs. Note that the instructions
reset and wait are parameterized by time constants. Allowing variables is an
easy extension but it would make verification (Section 8.2) undecidable. As
illustrated by the examples in Section 6.2 and Section 10, fixed time limits

! Another option would be to choose the first choice (i.e., C') when both choices
match the same event
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(or allocation frequencies) are common in availability policies. Constants are
sufficient for that purpose.

To simplify notations, we omit the guard when it is true and list notation for
a single instruction. For example, (true,M1l.alloc) > {reset(iy,25)} is written
Mi.alloc > reset(iy, 25).

6.2 Ezamples

We illustrate our language using several simple and common examples, namely
controlling the duration of resource allocation, the frequency of resource al-
locations, the duration according to the frequency and, finally, enforcing a
specific allocation ordering.

Controlling the duration of resource allocations We may want to
weave the following two aspects to the service S1 of Figure 3:

e A, that ensures that the resource M1 is released within 25 seconds ;
e A, that ensures that the resource M2 is released within 35 seconds.

These two aspects are specified as follows:

A a; = Ml.alloc > reset(iqy, 25); ag
1 p—

ay = Ml.free > cancel(iy); ay

1 a; = M2.alloc > reset(is, 35); ay
2 p—
as = M2.free > cancel(iz); a

As soon as the event M1.alloc (resp. M2.alloc) is executed, a reset is pro-
grammed to be set off 25 seconds (resp. 35 seconds) later. If the event M1.free
(resp. M2.free) occurs before, the interrupt is canceled.

Controlling the frequency of resource allocations Here, the goal is to
prevent a service from monopolizing a resource by re-allocating it immediately.
This may be required by resources constantly needed by several services.

Consider two services X and Y that need the resource M to answer a request.
The service X tries to allocate M1 as soon as it has released it whereas Y asks
for it R seconds after it has started to process a new request. Better fairness
can be guaranteed by making the service X wait at least 5 seconds between
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each allocation of M1. The following aspect specifies such a property which will
be woven on the service S1:

As = {al — Mi.alloc > {wait(t,5); start(t)}; a; }

A wait of at least 5 seconds is imposed before a new event M1.alloc is per-
formed (wait(t,5)). Afterward, the timer is reset and restarted. As for clocks
in timed automata, we assume that all timers are initialized to 0 at the be-
ginning of the program. Therefore, the aspect enforces that at least 5 seconds
have passed between the beginning of the service and the first event M1.alloc

Controlling the duration according to allocation frequency Instead
of decreasing the frequency, another option is to adapt the allocation time
depending on the frequency. For example, a policy might be to set the maximal
allocation time to be 10 seconds except if the resource was already allocated
by the same service less than 20 seconds before (t < 20). In that case, the
maximal allocation time is only 5 seconds. The following aspect specifies that

property:

a; = M.alloc b reset(i, 10); as
ay = M.free> {cancel(i); start(t)}; aq

az = (t < 20,M.alloc) > reset(i,5); as

O (t > 20,M.alloc) > reset(i, 10); as

Enforcing a resource allocation ordering Properties unrelated to time
can also be specified using the same language. For instance, it is possible
to enforce specific orders of resource allocation e.g., to prevent deadlocks.
The following aspect forbids the allocation of the resource M1 if the service
already possesses the resource M2. In this case, the service is terminated using
reset(i, 0). This aspect is useful only for services which may allocate M1 and M2
in both orders. The aspect will select only executions allocating first M1 then
M2.

a; = M2.alloc>{}; as
as = Ml.alloc > reset(i,0); a;

O M2.free>{}; a4

Many other availability policies can be described in our language. For example,
we could associate priorities to services and make them evolve according to
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services’ behavior. Different delays and frequencies could then be specified
depending on the priority.

7 Weaving

Our approach implements weaving as a timed automata product. A service is
represented by a timed automaton over-approximating its (timed) execution
traces. The semantics of aspects is given as a timed automaton. Such an
automaton recognizes the set of (timed) execution traces allowed by the aspect.
The product of these two automata performs the intersection of their two sets
of traces. That is, the product automaton recognizes the traces of the original
service minus the traces forbidden by the aspect. In practice, it amounts to
aborting some execution traces (using interrupts and resets) or to slowing
down others (using waits).

We first describe how services are abstracted into timed automata. The ab-
straction consists in the control flow graph without any time constraints (i.e.,
all the possible timing behaviors are included). Then, we give the semantics of
aspects in terms of timed automata. The next step is to weave the aspect into
the service. That step boils down to a classical product operation. The result-
ing automaton represents the service restricted in such a way that it respects
the property specified by the aspect. This automaton might not be precise
enough to verify availability properties. Section 8 will describe how to obtain
a better automaton for verification purposes by taking timing information into
account.

7.1 Abstraction of services

We use an abstraction over-approximating the execution traces (a standard
control flow analysis) that does not take time information into account. This
can be seen as the largest over-approximation as far as time is concerned. A
service is represented by an automaton which can be seen as the control flow
graph of the service. The timed execution of an instruction a is represented
by three instants and transitions. The first instant/transition [(a) represents
when the system knows the next instruction to be processed. The second
instant /transition B(a) defines the time when the instruction really begins,
and the third instant/transition E(a) the time when the instruction ends.

The state between [(a) and B(a) will be used to model possible wait advice.
The state between B(a) and E(a) serves to model the duration of instructions.
A wait advice also adds a timed constraint on the transition B(a).
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The abstraction is described by the relation nextg(ly, a, l3) which denotes that
S can go from the program point [; to Iy by performing the action a. That
relation is defined as follows:

nexts(ly,a,lo) iff h:a~1l eSS V i:a~lIly; les

nextg(ly,a,ls) iff l1:a~1; 1, €S8

The relation is clearly an over approximation of the control flow since values
(and the evaluation of tests) are abstracted away.

The service S = (X, (lo, S0), s, —s) is abstracted in the timed automaton
St = (Zgs, 10,0, Est, — s, [s1) where

e X, the set of abstract states, is composed of the set of program points and
a set of intermediate states. Formally:

Sst = {lla1, lag, ' | mexts(l,a,l')}

e the initial abstract state is the initial label (program point) l;
e the set of clocks is empty;

e the set of actions is composed, for each action of S, of three actions (instants)
I(a) (the initialisation of a), B(a) (the beginning of a) and E(a) (the end of

a):
Est = {l(a),B(a),E(a) | a€&s}

Splitting the action in three instants is used to represent the timed execution
of an instruction;

e the transition relation — g is defined as follows:

(1, ., I(a), ., la1) €E—>gt Ala1, -, B(a), ., lo2) E—>g
A (lao, -, E(a), ., l') €E—q
iff nexts(l,a,l’)
Each action a from one state to another is represented using two interme-

diate states l,; and [,2, and three transitions corresponding to the three
instants I(a), B(a) and E(a) without any timing constraint for now.

e the function /g does not add any timing constraint, that is:
VieXg. Ig(l) =10
The absence of any timing constraint implies that the automaton models all

possible execution times for each action. Figure 9 illustrates the abstraction
of service S1 into a timed automaton.
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Fig. 9. Abstraction of service S1

The abstraction is safe since the automaton accepts all execution traces of the
source program. Formally:

PROPERTY 1 [Safety] A service S = (Xg, (lo, S0), Es, —>s) and its associated
abstraction S* = (Xg,ly, Egt, —> gz, Lgt) are such that for all labels I, and lo,
states s1 and so, and action a:

) .B(a),.

a Sl(a),. LE(a),.
(l1,s1) —>s (lg, 52) = Fla1, la2- 1y (—>su lat Nt —g2 laa N2 @

st lo

7.2 Aspect semantics

The semantics of aspects is given in terms of timed automata. An aspect spec-
ifies a timed property and the timed traces recognized by the corresponding
semantic automaton are the timed traces allowed by the aspect. Intuitively,
the different basic advice instructions can be described as follows:

e reset(i, k) starts a timer ¢ to abort the current request after & time units.
The timer 7 is reset on the E() transition to the instruction matched by the
corresponding pointcut. After the E() transition, the interrupt environment,
which records the set of active resets, associated the timer 7 to k.

e cancel(i) removes i from the interrupt environment (i.e., associates L to i);
e wait(t, k) adds the guard t > k at the beginning of the action;

o start(t) resets the timer ¢ on the E() transition to the instruction matched
by the corresponding pointcut.

The semantics of aspects is given by automata of the form:

A= (Nu,lao, Hay Eay —a, 1) where
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e the set of states IV, is made of a sink state RESET and pairs (¢, e) where ¢
denotes the state (i.e., the current equation) of the aspect and e the current
interrupt environment;

e [, = (ag,{}) is the initial state;
e H, is the set of clocks (interrupts and timers) used in the aspect;
e £, contains the same actions as the service;

e [, associates each state (g, €) to an invariant enforcing that no valid interrupt
(i.e., defined in e) occurs. This function is defined as follows:

(g, e) ={i <ei) | Vie() #L}

In the remainder of this section, we use the special transition (g, e) se, (q,e)

which denotes that if no other transitions from (g, e) applies then the aspect
remains in the same state. This notation is syntactic sugar which can be trans-
lated into a collection of transitions from (g,e) to (¢, e) (the complementary
of outgoing transitions).

The relation —, is defined on the syntax of the aspect as follows:
lao = Eo] = (a0, {}) “5a (a0, {}) U [Eo)®D

The automaton corresponding to Ej (the initial equation) has the initial state
(ap, {}). No interrupt is active and, as for all states, there is an else transition.

[E\OE,]@) = [Ey]@) U [E,)@®

The transitions corresponding to an exclusive choice are the union of the
transitions for both choices.

(F,G) > L; a;] (@)
= [(F,G)> L%, U [Ej)e) ({a; = B} € A)

else

U (ai,€) =4 (a;,€') U interrupt(a;,e’)

A rule (F, G)> L involves the computation of a new interrupt environment (see
the next translation rule) and new transitions to a new state. The automaton
corresponding to the continuation of the aspect starts from this new state. As
any state, the else transition and the interrupt transitions (contained in the
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current environment) are generated.

(F.G) e L))

g2,€2)
GUA(e1),I(a),. giU/\(el),B(a),.
= { (Q1,€1) /\—>a (Qa1,€1) U (%1,61) /\—>a (Qa2761)
(el),E(a),r
U (Qa2, €1) /\—>a (g2, €2)

U interrupt(qa1,e1) U interrupt(qae,er)
| match(a, F) A ins(er, L) = (gi,7,€2)

For each action a matched by F', three transitions (I(a), B(a) and E(a)) are
added using two new intermediate state (¢q1, €1) and (ga2, €1). Transitions mod-
eling interrupts are added to these states. The function ¢ns analyzes the advice
L to compute the guards and resets of timers as well as the new interrupt envi-
ronment es. The guard g; represents the constraints for the wait in the advice
and the set r represents the timers reset by reset and start instructions in the
advice.

The intermediate functions used in the translation are defined as follows:

e The function interrupt takes a state (g, e) and returns the set of transitions
modeling the interrupts that may arise in this state.

interrupt(q,e) = {(g,e) Lu RESET | e(i) #L1}

There is a transition to RESET each time an interrupt ¢ reaches its trigger
value recorded in the environment e.

e The function match(a, F') returns true if F' matches a.

e The function ins takes an interrupt environment, an advice and returns the
guard, the reset set and the new interrupt environment taking into account
the wait, reset, start and cancel instructions of the advice.

ins(e,L) = ({t > k | wait(t,k) € L},
{z | reset(z,k) € LV start(z) € L},
e)

/

e if cancel(i) € L

if reset(i,k) € L

(1) =
with ¢ ¢/(i) =
€'(i) = e(i) otherwise

e The function A takes an environment and returns the guard corresponding
to the case where no interrupt occurs: A(e) = {i < e(i) | e(i) #L}

25



The translation proceeds by unfolding the recursive equations of the aspect.
The process terminates since there are a finite number of definitions (a; = . ..)
and interrupt environments.

else “ML@[LOC\,. O
i1 < 25

T 7 <25’]E(M1

., B(M1.alloc), .

~f7‘ee), i

“eonT)gie < 2 C

Fig. 10. Timed automata of A; (above), A2 (middle) and Az (below)

Figure 10 shows the semantic automata for the previously defined aspects
Ay, As and As. In the aspect A;, the clock 7 is reset at the initialization of
the interrupt. Then, for all states until the resource is released, the outgoing
transitions have the guard ¢ < 25, the state invariant has the condition i < 25
and a transition with guard ¢ > 25 to the state RESET is added. The sink
state RESET will be interpreted during the concretization as a collection of
transitions releasing all resources followed by a transition returning to the
beginning of the request loop.

Intuitively, the weaving of the first two aspects will amount to starting a timer
when the service takes the resource and to resetting the service when the timer
reaches its time limit (i.e., 25 or 35 seconds). For the aspect As, weaving will
ensure that there are at least 5 seconds between two M1.alloc events. This
behavior is simply described by the guard ¢ > 5 on transition I[(M1.alloc) and
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by resetting the timer ¢ after each M1.alloc i.e., at the transition E(M1.alloc).

7.8  Weaving an aspect to a service

In aspect oriented programming terminology, weaving is the step which inserts
advice within the program. Weaving per se is just the product (as described
in Section 3.3) of the automata representing the service and the aspect. This
practical and theoretical simplicity of weaving is an important benefit of our
framework. The aspect automaton specifies a set of allowed timed traces using
timers, guards and invariants. The automata product performs the intersec-
tion of the execution traces of the service and aspect. The semantic impact
of weaving is therefore to restrict the service’s behavior to the timed traces
allowed by the aspect. In implementation terms, it amounts to inserting the
time annotations of the aspect within the service to shorten or lengthen some
timed executions.

Figure 11 shows the product of the abstraction of service S1 with the aspects
Aj, Ay and As. In the product automaton, two interrupts are programmed
after M1.alloc and after M2.alloc, and one timer is started after M1.alloc. If
M1.free (resp. M2.free) is not executed before 25 seconds (resp. 35 seconds),
the automaton goes to state RESET. M1.alloc is also constrained by ¢ > 5
which enforces to wait at least 5 seconds between two calls to M1.alloc.

In comparison with Figure 9, guards, transitions to RESET and state invariants
have been added to model interrupts and timers.

Compared to a standard weaving a la AspectJ, the final result is similar: new
code (i.e., advice) is added at various join points. The respective approaches
are however quite different. In AspectJ, design and reasoning are mainly syn-
tactic processes. Aspects specify sets of join points and code to insert at these
points. The programmer usually reasons on the semantics of the program by
(mentally) visualizing the expected source code of the woven code. In our
domain-specific language, where advice is restricted, aspects can be seen as
a (timed) property on execution traces. An aspect specifies a set of allowed
traces which can be enforced to the base program using automata product
and a concretization into source code.

8 Optimization, verification and concretization

The product (woven) automaton can be
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Fig. 11. Product of service S1 with aspects Ay, Ay and Ag
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e optimized by taking into account (worst-case and best case) execution times
of instructions, and by removing all useless delays;

e used to model-check general availability properties (e.g., absence of dead-
lock, boundedness of the request loop, etc.);

e translated back into a source program.

We briefly present these three steps in turn.

8.1 Optimizations

We describe here how to optimize the woven automaton by taking into ac-
count execution time of instruction. We assume a cost function f.,q returning
for each instruction of the service a time interval [BCET(I), WCET(I)] where
BCET(]) (resp. WCET(])) is a best-case (resp. worst-case) execution time of I.
Note that it is always possible to build such a function since the trivial approx-
imation f.s(I) = [0,400] is always safe (if not very useful). Such intervals
can be seen as a new constraint removing all execution traces where I takes
less (resp. more) than BCET (I) (resp. WCET (I)). Again, these constraints
are taken into account by a product operation. A precise cost function (e.g.,
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see [17,18]) permits the removal of spurious tests or useless timers from the
woven automaton. For instance, if f..q directly implies that a service releases
its resource before the time limit required by an aspect, no instrumentation
will be needed to enforce this requirement.

In the following, we suppose that we have such a cost function and that it
returns the following results for the instructions of service S1:

feost(S1Comput) = [2,10]

Jeost(ML.alloc()) = feost(M2.211l0c()) = [0, +00]
feost(Ml.free()) = feost(M2.free()) = [0,0]

The function f..s yields an unbounded time interval for allocations since these
instructions depend on the state of the resource and are blocking. The time
information is taken into account by performing a product with the cost au-
tomaton C' = (N, co, {k}, Est, —¢, 1) where:

e for any action a such that f.,s(a) = [BCET(a), WCET(a)] we have

Sl(a),. B(a),{k k>BCET(a),E(a),.
Co Lh: a1, Yal wﬂ: Qa2 and qg2 (@@ c Co

with ¢,1 and 4o fresh states

e the state invariant specifies that control can remain in this state not longer
than WCET(a); that is:

k>BCET(a),E(a),

{k <wcEeT(a)} if Fg¢ S Co E—¢

I(q) =
0 otherwise

The timer k is reset at the beginning of a. The control remains in the inter-
mediate state at least until £ > BCET(a) and at most until £k = WCET(a).

Figure 12 shows this automaton for service S1. We have not represented tran-
sitions corresponding to alloc because we do not have useful time information
about this instruction.

Another issue to take into account is that sequencing (i.e., the ; operator)
takes no time. In our framework, this fact can be taken into account by a
product with a two-state timed automaton, the sequencing automaton, E =
({eo, e1}, €0, {seq}, Egt, —e, 1) where:

e each beginning of action goes to state e; and each end of action goes to
eg resetting the dedicated timer seq. Intuitively, the state ey represents the
sequencing between actions (which takes no time) and the state e; represents
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Fig. 12. Automaton constraining execution times of instructions of service S1

an action which may take time.

SlI(a),.
€0 7e €1

o= o 2y B(a) € £ AE(a) € Egs

) LE(a),{seq} .o

e the invariant of state ey ensures that no time can be spent in this state. No
constraint is placed on state e;.

I.(eg) = {seq <0}, I.(e1) =0 and I.(e3) =0

Figure 13 shows this automaton for service S1. To simplify the automaton, we
use the special symbol X which denotes all instructions of the service.

Fig. 13. Automaton for sequencing service S1

The last optimization step consists in taking B() transitions as early as pos-
sible. This is a bit more difficult because this transition can be constrained
by t > k guards corresponding to wait advices. Each instruction of the woven
program described by the three transitions

qo 907]1(04)77'0 q1 q1 ger(a)vrl q2 q2 ng]E(a)vr2 q3
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is transformed using the two following steps:

e the state ¢ is made urgent by resetting the clock u on the transition from
¢o to ¢1 and by having the state invariant I(q;) = {u < 0}.

e a loop is added for each guard (t > k) € ¢4

(t<k),... (t>k),.u
q — qu Qu

By definition of abstraction of services, aspect semantics and product of
timed automata, these (t > k) guards represent wait constraints. The state
invariant of the state ¢, is defined by I(q,) = {t < k}UI(q). The transitions
from the state ¢; into RESET are also duplicated on state q,,.

For example, when in state ¢; with a guard ¢ > k, then either the guard is
satisfied and the action a is performed immediately, or the automaton performs
an immediate transition into the new state g, where time passes until ¢ > k.
When t = k, the transition goes back into state ¢; where a is performed
immediately. This case generalizes to any number of wait constraints.

The timed automaton obtained after the product with the cost and sequencing
automata and the transformation to take earliest the B transition is more pre-
cise. These optimizations have integrated time information and have removed
many impossible timed traces The resulting automaton can be analyzed to re-
move useless guards, timers and invariants as well as unreachable states. This
process optimizes the overhead introduced by the aspect. It is easily carried
out by tools such as UPPAAL.

Figure 14 shows the service S1 of Figure 11 after computing the product with
the sequencing and cost automata corresponding to fe..s;, and simplification.

Aspect As prevents the service from retaining the resource M2 more than 35
seconds. The weaving of A5 has no impact on the code since the automaton
makes it clear that S1Comput (i.e., the use of M2) lasts at most 10 seconds. This
information, initially given by f..s; and integrated by product in the service
automaton, permits suppression of the useless interrupt i, and the related
transitions.

8.2 Verification

The previous product automaton is a formal representation of the woven ser-
vice. We may now want to verify that woven services satisfy general availabil-
ity properties that are not directly specified by aspects. Actually, aspects are
best seen as collections of timed properties (or availability policies) which are
supposed to ensure high-level availability properties. These properties can be
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Fig. 14. Timed automaton of S1 after weaving and optimization

verified by model-checking on the woven automaton. This verification step al-
lows also checking that aspects are not contradictory. For example, an aspect
adding waiting periods (e.g., to lower an allocation frequency) may conflict
with another aspect limiting the duration of another resource allocation. It
is also possible to verify global properties (e.g., absence of deadlocks) on the
complete system composed of the woven services and shared resources.

We have used UPPAAL to represent services and to verify properties expressed
as LTL formulas. We have woven the aspects A;, A; and Az on service S1. We
have applied similar aspects on service S2; namely two aspects enforcing the
releasing of resource M1 before 10 seconds and resource M2 before 15 seconds.
We have verified that the woven system respects the following properties:

e the system is well timed and has no deadlock. Note that deadlocks are pre-
vented by the aspect resetting S2 after 35 seconds;

o the service S1 treats a request in less than 35 seconds. This property can be
verified using a new timer avail reset at the beginning of the request loop
and by checking avail< 35 for all states. This property has been ensured by
weaving. Indeed, S1 cannot wait more than 25 seconds to get its resources
(10 seconds for resource M1 and 15 seconds for resource M2) the woven service
S2 must release resource M2 at most after 35 seconds. Since S1Comput takes
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at most 10 seconds, S1 will terminate before 35 seconds. This also means
that service S1 will always get access to the needed resources and, more
generally, that no denial of service S1 can arise anymore.

The verification of these properties is very fast (less that 1 second). Since
UPPAAL has been used to analyze complex protocols, we expect that it could
verify availability properties of much larger systems.

8.3 Concretization

The concretization of a standard automaton into our source code is very sim-
ple [19]. The concretization of timed automata requires the introduction of
timed instructions (initialization of timers, checking time invariants, timed
guards).

In order to take into account the timing facet introduced in the automaton
during weaving, we extend our source language with timed guards and com-
mands.

Guards are extended with timer comparisons:
gu=tok | ... witho e {<,> <,...}
The following commands are added:
c = start(t) | wait(t,k) | reset(i,k) | cancel(i) |

where t and ¢ denote identifiers for a timer and an interrupt, respectively,
and k denotes an integer. These commands are the source code equivalent of
the advice instructions. The start(t) command sets and starts a timer ¢ which
could be compared to integer constants in guards. Timers are also used to
slow down an execution using the command wait(t, k) that waits while ¢ < k.
The reset(i, k) command programs an interrupt ¢ to arise after k seconds. The
cancel(i) instruction cancels the interrupt 7. The commands are the equivalent
in source code of the advice instructions.

We sketch how a timed automaton is translated into that extended language.
First, the time information introduced by the cost and sequencing automata
is removed since it does not describe program instructions but merely non-
functional properties. Concretization uses the following rules:

e pairs of transitions of the form

Sl(a),r ,B(c),. LE(e),.
(1 —= @, @@—" @, @3— @)
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correspond to a command ¢ and are translated into the instruction [, : ¢ ~
lq4;
e pairs of transitions of the form
S1(g),- 5B(g),- SE(g),-
(66— &—6 6——a

@, B@ JE(9),.
G —> 4y, G ——7(q3 g3 — 7 Q,

correspond to a guard g and are translated into the instruction Iy, : g ~
lq4 ; lq4’;
e pairs of transitions of the form

NG I(a),. —gAG,I(a),.
(1 Sl L q2, q1 Bl q3)

correspond to a guard g added by an aspect and are translated into the
instruction lg; : g ~ ly2 ; l43. Concretization proceeds with the transitions

G,I(a),. G I(a),.
(¢ —= 5 ¢4 — ¢5)

e a loop ¢ AEN q 12hsed, q involves the insertion of the command wait(t, k)

before the corresponding program point (i.e., l,);

. . L. E(a), .
e the reset of a timer t in a transition ¢ % ¢ is translated by the

insertion of a command start(t) after the program point corresponding to
¢ (ie., ly);

e an interrupt involves inserting the command reset(i, k) at the initialization
of ¢ (i.e., i is within a reset) and the command cancel(i) at the program
point corresponding to the first state where there is no invariant ¢ < k
anymore.

Figure 15 shows the source code of service S1 obtained after the concretiza-
tion of the automaton of Figure 14. After the command M1.alloc(), a new
interrupt i is set to arise after 25 seconds. When the service takes less than 25
seconds to complete, the resource M1 is released (M1.free()) and the interrupt
is canceled (cancel (i) ).

9 Implementation issues

We have previously implemented related techniques [19,20] based on similar
steps (abstraction, weaving, optimization, concretization) in a simpler, un-
timed, setting. The source language was a simple Pascal-like imperative lan-
guage and aspects were safety properties expressed as finite state automata.
The extension to timed properties has not been implemented and the exper-
iments related in this article were conducted manually. In this section, we
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ly : getUser() ~ [
[y : Mi.alloc() ~ [}
I} : reset(i,25) ~» ly
ly : M2.alloc(

) ~ s
S1 =4 I3 : SiComput() ~ I}
Iy« cancel(i)  ~> Iy
ly : M2.free() ~ 5

l5 : Ml.free() ~ [

l¢ : endUser() ~ Iy

Fig. 15. Code of service S1 after weaving

review implementation issues raised by availability aspects. We focus on the
core of the technique, that is to say the abstraction, weaving, optimization,
verification and concretization steps.

Abstraction Abstraction relies on a control flow analysis (CFA) to pro-
duce a safe control-flow automaton. This step makes the rest of the approach
independent of the source programming language. In particular, our approach
is not limited, nor specialized, to the simple imperative language used in the
article.

There are many CFA variants and it is always possible to trade precision
for efficiency. For first order languages, determining the control flow graph is
considered almost trivial and most research on CFAs consider higher-order
languages whose complexity goes from polynomial to exponential time [21]. Tt
is easy to design linear-time analyses producing a safe control-flow automa-
ton for a standard imperative language. However, modeling procedure calls
and returns by a timed automaton is a crude approximation of procedural
programs. In [20] we extend finite automata with return stacks to represent
inter-procedural control flow more precisely. A similar extension of timed au-
tomata, as well as the corresponding weaving, optimization and concretization
steps, could certainly be designed. However, it is unlikely that the verification
process could be extended to tackle these new automata.

Note that only instructions related to resource management need to appear in
the control flow graph. Parts of the program that do not include such instruc-
tions may often be summarized by a single event. Therefore, the automaton
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produced by the abstraction is typically much smaller than the base program
itself.

Weaving Weaving per se is a timed automata product. It is a simple op-
eration but it may cause a blow up of the number of nodes of the resulting
automaton. Even if the automata representing the aspects and the program are
small, the multiplication of nodes may result in duplicating large chunks of the
base program during concretization. We have previously proposed a method
preventing all duplications in the context of finite state automata [20]. We
describe the main ideas of this technique and how it can be adapted to timed
automata on small examples.

Figure 16 presents a small example of weaving a safety property using finite
state automata and product. It comprises:

(a) a base program automaton whose traces belong to the language (aba*b)*;

(b) an aspect enforcing that each event a is followed immediately by the event
b. Otherwise the program must be reset;

(c) the standard automata product where the program is reset if the loop a*
is taken more than once.

b else
b Reset
(a) Small base program (b) Safety aspect (untimed)

(c) Woven program

Fig. 16. Weaving as a standard automata product

Apart from the special Reset node, the woven program has one more state
(i.e., a new control point) than the base program. In general, the woven au-
tomaton may have n x m states where n and m are the number of states of
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the base program and aspect automata respectively.

To prevent duplication, we define a so-called instrumented product where the
state of the aspect automata is encoded and manipulated as an integer vari-
able. Figure 17 (a) presents the direct instrumented product of the previous
example. The automaton keeps the same number of states (except for Reset).
Instead, the automaton is equipped with additional structures (a state vari-
able, guards and assignments) to mimic the aspect automaton. The variable
s represents the state of the aspect (initially 1). Each transition of the base
program tests s and makes it evolve as if the aspect was executed in parallel.
For instance, the loop-state can execute a if the aspect is in state 1 (in which
case it goes to state 2), or performs a reset if the aspect is in state 2. That
automaton is easily encoded in UPPAAL which allows guards and assignments
on bounded integer variables.

Reset

(a) Direct instrumentation

Reset

(b) Optimized instrumentation

Fig. 17. Weaving as an instrumented automata product

A naive instrumented product adds an assignment and a guard for each event
of the base program in the alphabet of the aspect but many optimizations are
possible. In our example, it is easy to show that s is always equals to 1 in the
initial state and equals to 2 in the second state. Tests and assignments are
useless for the corresponding transitions; they can be suppressed (see Figure 17
(b)). In [20], we describe how to produce optimal (in terms of number of
assignments) instrumentations. Actually, it is easy to show that assignments
are only needed (yet not always) to distinguish between paths arriving at the
same node. For a simple imperative base program, this involves adding at
most an assignment for each conditional or loop statement.

The technique is easily adapted to timed automata. Figure 18 presents in-
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strumented product with the same base program automaton as before and an
availability aspect enforcing that each event a is followed by an event b after
at most 5 time units (otherwise the program must be reset).

else

Reset

(b) Timed aspect

(d) Optimized instrumentation

Fig. 18. Weaving as an instrumented timed automata product

The naive instrumented automata product is shown in Figure 18 (c¢). The
encoding is similar as before. The underlying transition relation is encoded
using guards and assignments on the state variable s. As a state may rep-
resent several states of the underlying product automaton, invariants can be
disjunctions made of the invariants of the represented states.

The automaton, optimized using the same techniques as before, is shown in
Figure 18 (d). The transition from the second state to Reset is useless since
the action b occurs immediately after a. It will be removed by subsequent
temporal optimizations (see Section 8)
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The resulting automaton is nearly an UPPAAL automaton. The only departure
is the disjunctive invariants which must be conjunction in UPPAAL. However, in
our case, the disjunctions are mutually exclusive and it is very easy to rewrite
this automaton into pure UPPAAL syntax before performing the verification
step.

Constructing an instrumented product entails a linear code expansion in the
worst case whereas a synchronized product may entail a quadratic blowup. The
complexity remains the same with multiple aspects which can be represented
by a single aspect (their product automaton) and woven, as before, using a
single variable representing its state.

Of course, the standard or instrumented product automata represent the same
automaton. The instrumentation is just a compact encoding that will not
change the complexity of the verification step. The objective of this technique
is only to prevent the production of too large programs. The size of a wo-
ven program will always remains close to the size of the corresponding base
program. This benefit comes at the price of assigning and testing the variable
representing the state of the aspect. Even if a small time overhead is preferable
to a space explosion, there are also cases where the standard product is more
appropriate. A possible extension would be to give the user the opportunity
to specify on which automaton (or on which parts of an automaton) standard
or instrumented product must be used.

Optimization, verification and concretization The optimization step
is expressed as a product with small automata. It relies in part on a cost analy-
sis which may be expensive to be precise. Again, many tradeoffs between cost
and precision are possible. For example, it is possible to produce efficiently
a cost function by assigning their WCET to basic blocks of instructions and
[0, 4+00] to those containing problematic constructs such as while loops, re-
cursion, etc.. The verification step is potentially highly costly. Model checking
timed properties (e.g., TCTL) for timed automata is PSPACE-complete [1].
The instrumented product does not improve this step since all the encodings
(using a bounded integer variable and disjunctive invariants) entails expansion
of the model before or during the verification. Nevertheless, UPPAAL is able
to verify properties of large systems. The last step, concretization, is a linear
time traversal of the automaton.

To summarize, the verification is the only step whose cost may be prohibitive.
However, this is an optional step in the weaving process. The main objec-
tive is to express resource management policies separately and to implement
(weave) them automatically. Actually, with appropriate tradeoffs the weaving
of availability aspects can be implemented in linear time.
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10 Case study

Our case study is the program of an automatic teller machine (ATM) which is
a standard software engineering example (see e.g., [22,23]). An ATM usually
includes several constraints about, for example, the duration or the number
of tries to enter the PIN. The implementation of these constraints is usually
scattered across the program and represents a typical crosscutting concern.

We show how our approach can simplify the implementation of these con-
straints by specifying them separately from the basic functionality. Some con-
straints are temporal and require the use of timers and waiting loops; others
are untimed safety properties. Our approach permits to describe all of them
as aspects. In that respect, the case study shows that our technique can be
applied to general, timed or untimed, safety properties.

The base functionality of the ATM is defined by the following program:

ly : waitCard() ~ 1y

[y : pinPrompt() ~ 1y

l : enterPin() ~> 3

I3 : checkPin() ~ gl
ATM = ¢ [, : amountPrompt() ~» 5

l5 : enterAmount()  ~ g

l¢ : checkAmount()  ~»l7; Iy

l7 : cashCollection() ~ Ig

ls : cardReturn() ~ 1y

In its initial state, the ATM waits for a user to insert a card (waitCard()).
Then, it prints a prompt asking for the PIN (pinPrompt()), waits for it
(enterPin()) and checks it (checkPin()). If it is invalid, the ATM loops and
asks for a new PIN. If the PIN is valid, it asks for the amount to withdraw
(amountPrompt()), waits for it (enterAmount()) and checks it (checkAmount()).
If it is invalid, the ATM loops and asks for a new amount. If the amount is
valid, the ATM yields the corresponding cash (cashCollection()) and returns
the card (cardReturn()).

We consider three different constraints concerning the time limit to enter the
PIN, the number of tries allowed and the maximum duration of processing
after a correct PIN is entered. They are described by the three following as-
pects.
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Aspect A; specifies that the PIN has to be entered between 5 and 60 seconds
after printing of the prompt.

y a; = pinPrompt > {reset(iy, 60), start(ty)}; as
1 pu—

ay = enterPin > {wait(ty,5), cancel(i)}; a

After the instruction pinPrompt, an interrupt ¢; is programmed to be trig-
gered 60 seconds later and the timer ¢; is started to enforce that enterPin is
executed at least 5 seconds after pinPrompt. Then, the instruction enterPin
cancels the interrupt ;.

Aspect A, specifies that after entering three invalid PINs, the ATM must be
reinitialized.

a1 = checkPin > nop; as
a1 = checkPin > nop; aq
@y = checkPin > nop; as
ao = checkPin > nop; a;

a3 = checkPin > reset(is, 0); ay

a3 = checkPin D> nop; a;
The reinitialization is done using an immediate reset (reset(is,0)).

Aspect Az imposes that the duration of processing after a correct PIN is
entered may not exceed 180 seconds.

A a; = checkPin > reset(is, 180); as
3 p—

ay = cardReturn > cancel(iz); a;

In these aspects, the reset returns the card and reinitializes the ATM to its
initial state waiting for a card. This is the correct behavior when time con-
straints are violated. In real life, some ATMs retain the card after three invalid
PINs. A parameterized reset instruction would be sufficient to express these
different kinds of reinitializations.

Not all the instructions of the base program are of interest for the aspects. The
abstraction aggregates the instructions from I4 to [; into a single composite
one. In order to present a simpler automaton, we use the instruction process
to represent the block of instructions from Iy to lg (i.e., including cardReturn).
The aspect Az is rewritten to check that the duration between checkPin and
the end of process does not exceed 180 seconds.
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Figure 19 shows the timed automaton of the ATM obtained after abstraction,
weaving and optimization. Aspects A; and A3 are woven by a standard timed
automata product. Since a standard product with aspect As would duplicate
nodes, we weave it using an instrumented product (see Section 9).

As in Section 8, we make use of timers (here u, k and seq) to take into account
the execution time of instructions, the immediate sequencing of instructions
and to take B() transitions at the earliest. We have considered that all the
basic instructions of the ATM last one second except the instructions waiting
for the user’s input which have an unbounded execution time. That timing
information permits to analyze the automaton to remove useless transitions.
For example, the interruption #; of aspect A; can only be triggered in three
states of the woven automaton.

E(checkPin), B(checkPin), I(checkPin),

seq < 0
= (K} O o= 13 {u}

seq <0

{i3, seq}
Q— Q

k<1 u<o .,E(enterPin), {seq}

-
I(checkPin),
I(process),
., B(enterPin), .

{u} i
u<o
. u<o

.,B(checkPin), {k} Y ., I(enterPin), {u}
807

B(process), seq < 0

., E(pinPrompt),
{seq,i1}

k<1

iz < 180, ., B(pinPrompt), {k}

E(process),
u<o

{seq} s++; {seq}
5= 1y I A s < 3,I(pinPrompt),
o/ o/ o/ {u}
seq <0 "’ u<o”’ v seq < 0
I(waitCard()), B(waitCard()), E(waitCard()),
{u} . {seaq}

Fig. 19. Timed automaton of the ATM after weaving and optimization

The state of the automaton As is encoded by the integer variable s which is
initialized to 1. Transition E(checkPin) is annotated by s++ which summa-
rizes the state-transition table of the aspect A, (the state of Ay changes each
time an invalid PIN is entered). The program is reset after E(checkPin) if
s > 3 i.e., if more than three invalid PINs have been entered.

It can be verified that the complete process (from the insertion of the card
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until it is returned) takes between 6 and 363 seconds (at worst, 3%61 seconds
to enter a PIN and 180 seconds for the processing).

Concretization of the woven automaton yields the following program:

lo :s:=1 ~ I
[ :waitCard() ~ o
ly 8>3 ~ 3y
I3 : reset(iq,0) ~ gy
Iy : pinPrompt() ~
l5 : reset(iq, 60) ~ g
lg : start(ty) ~ Iy
l7 : wait(ty,5) ~ g
ls : cancel(iq) ~ g
ATM = { Iy : enterPin() ~ Lo
l1p : checkPin() ~ i3 I
li1 : s++ ~> g
l1o @ reset(is, 180) ~ i3
l13 : amountPrompt() ~» l14
l14 : enterAmount() ~ 115
l15 : checkAmount() ~ i ; 113
l16 : cashCollection() ~ ly7
l17 : cardReturn() ~ g
lis : cancel(is) ~ 1y

Usually, the specification of an ATM does not separate the basic functionality
from error processing. Our approach makes the separation of these concerns
possible.

11 Related work

Yu and Gligor [10] present a method to verify that a resource allocator re-
mains available. In their framework, a denial of service is defined as a scenario
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between one or several users preventing some others to access a resource.

They consider systems composed of users and resources. Users are specified
by sequences of requests. Resources are formally specified by:

e a collection of access operations. For example, mutex resources involve the
operations take and release;

e an internal state (a set of variables). A mutex resource has a boolean indicat-
ing whether the resource is allocated or free as well as a variable recording
the identity of the user owning the resource;

e properties specifying the proper use of the resource. Such properties might
be, for example, that users’ requests are processed one at a time in a FIFO
ordering.

Yu and Gligor’s model considers finite time availability properties. Typically,
properties express that requests will be processed in a finite (but not nec-
essarily bounded) amount of time. Bounded time availability properties are
stronger constraints. Yu and Gligor make clear that some constraints must
be enforced on users to guarantee the availability of resources. User agree-
ments define properties (e.g., liveness) that users must satisfy. For example, a
user performing a request take on a mutex resource must eventually perform a
release. Their methodology allows to prove that the system specification and
user agreements guarantee the expected availability properties. For a mutex
resource, it consist in showing that all take and release requests are eventu-
ally performed. Availability is guaranteed if user agreements ensure that any
take is eventually followed by a release.

Millen [24] considers other availability policies based on bounded (the resource
will be granted before a given delay) or probabilistic (the resource will be
granted according a probabilistic law) waiting time. His model relies on a
global monitor managing all resource accesses. The monitor uses a Denial
of service protection base (DPB) extending the standard Trusted Computing
Base (TCB). A DPB ensures that all requests are performed through the
monitor and that resources can be released by the monitor. Ensuring the
access to resources is not sufficient to prevent every denial of service. Indeed,
the resource can be released by the monitor before the user is done. Users
should specify the resource they need but also the time they need to retain it.

Our framework can be seen as an adaptation of Yu and Gligor’s framework
to bounded time policies. In particular, our services can be seen as their users
and aspects as user agreements. In both cases, availability properties can be
proved by taking into account the specification of the system and aspects/user
agreements. Of course, the major difference is the use of aspects which allows
a better separation of concerns and, above all, an automatic instrumentation
of programs using weaving. Like Millen’s monitors, we consider bounded time
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properties. However, we make use of local properties that are designed for and
woven to each service. Local policies often suffice to ensure availability prop-
erties. They are also easier to design, understand and implement efficiently.

Cuppens and Saurel [25] introduce a framework based on temporal and deontic
logics to specify availability policies. They can verify the internal consistency of
availability policies, whether a policy ensures specific and required availability
properties or if a (logical specification of a) system satisfies an availability
policy. Their approach is suitable to verify policies a posteriori but not to
enforce them.

J-Seal2 [26] is a secure mobile agent system proposing a simple and global
mechanism to ensure availability of processors and memory. The system pro-
vides resource control to limit the usage of physical resources like CPU and of
logical resources like threads. Their main goal is a completely portable imple-
mentation of resource control. It is described in terms of code instrumentation
but it is not generic enough to be used for other types of resources (e.g.,
resources with exclusive access).

Nandivada and Palsberg [27] abstract a TCP server into a timed automaton. A
WCET analysis is performed on the intermediate RTL code produced by gcc.
They focus on flooding attacks which are also represented as timed automata.
UPPAAL is applied to the whole system (server and attacker) to verify the
ability of the TCP server to survive denial-of-service attacks. They do not
consider the enforcement of availability properties but we could reuse their
timing analysis to abstract our services and infer time information.

Several AOP-related approaches also rely on automata. Let us mention:

e Ligatti, Bauer and Walker [28] who introduce edit automata which may ter-
minate programs as well as suppress or insert sequences of actions. These
automata are used to implement security monitors and enforce safety prop-
erties;

e Sipma [29] represents aspects as transformations of transition systems. That
framework is used to formally analyze common aspect constructs.

e Altisen, Maraninchi and Stauch [30] investigate the use of AOP for reac-
tive languages. They propose a dedicated aspect language and prove that
weaving preserves the usual behavioral equivalence for reactive systems.

Their respective goals and techniques are quite different from ours; in partic-
ular, none of them consider timed properties and automata.
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12 Conclusion

We have proposed a formal framework to enforce availability properties on
services sharing resources. At a practical level, we have defined a domain-
specific aspect language dedicated to the prevention of denial of service. At
a methodological level, our approach promotes a formal view of AOP with
aspects as properties and weaving as an automata product.

We have shown in [7] the correctness of the whole approach (abstraction,
weaving, concretization) in a simpler (untimed) setting. We have shown that
if a program respects the aspect (a safety property) then the woven program
has the same behavior. If a program does not respect the aspect then the
woven program is stopped just before the violation. With availability aspects,
proofs need to refer to the timed semantics of services. We have not completed
that generalization yet but we believe that the structure of the proofs remains
identical.

The implementation of our technique is likely to be realistic. The represen-
tations of services should remain of moderate size since code unrelated to
resource management can be represented by a single instruction. The costs
of analyses (control flow, execution time) can be controlled by adjusting the
precision of their approximation. Finally, if a weaving based on a standard
automata product may involve a code explosion in some cases, it is easy to
circumvent this problem by replacing code duplication by code instrumenta-
tion (see [20]).

This research belongs to a series of work considering aspects as formal prop-
erties on execution traces. The joint technique is to translate programs and
aspects into (various forms of) automata and to express weaving as a kind of
automata product.

e In [20], we have proposed a technique to enforce user-defined security poli-
cies expressed as automata. A potential use of the method is the securing
of applets using a just-in-time weaving of the policies/aspects. The instru-
mentation performed by weaving ensures that the applet will be stopped
just before it tries to infringe the policy.

e In [19], we have proposed domain-specific aspects to specify and enforce
scheduling policies to networks of communicating processes. A scheduling
aspect (expressed as an automaton) selects a subset of allowed execution
traces of the set of all possible interleavings. This technique permits trans-
formation of a network into an equivalent (and more efficient) sequential
program.

e In this article, we have generalized our previous framework to timed au-
tomata in order to express and enforce properties on execution time. We
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can prevent some execution traces and also modify their timed behavior.
Our aspect language is expressive enough to specify many different avail-
ability policies.

That series shares the same goal of keeping the semantic impact of weav-
ing under control in order to permit reasoning (analyses, verification, proofs)
on aspect-oriented programs. In general purpose aspect languages with unre-
stricted advice, it is very difficult, in general, to predict the effect of weaving
and to reason compositionally.

We are currently completing the formalization of the concretization and the
associated correctness proofs. A useful extension would be to provide better
support for the prevention of deadlocks. Limiting the duration of resource
allocation or enforcing an allocation ordering (cf. Section 6.2) permits avoid-
ance of deadlocks. However, these techniques are not always satisfactory. The
system can often be stuck waiting for a time limit to be reached. Worse, a
bad allocation ordering may involve systematic interrupts of services which
will not be able to perform their task anymore. A better solution would be to
transform services such that they allocate some resources earlier (but therefore
longer) to satisfy the allocation ordering specified by the aspect. We have not
formalized this transformation but it seems that static analyses techniques
would be useful to find the best timing satisfying the allocation ordering.
Another option would be to specify global policies for deadlock prevention.
Shared variables representing the availability of resources could be used to
schedule their allocation to services. Using such information, an aspect could
state, for example, that allocating a resource is not possible if another resource
is already allocated to another service.

Another interesting research direction would be to model in our framework
more sophisticated availability policies relying, for example, on dynamic per-
formance evaluation, admission control or priorities.
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