
Specialized Aspect Languages Preserving Classes of Properties

Simplice Djoko Djoko
INRIA, EMN, LINA

simplice.djokodjoko@inria.fr

Rémi Douence
EMN, INRIA, LINA

douence@emn.fr

Pascal Fradet
INRIA

Pascal.Fradet@inria.fr

Abstract

Aspect oriented programming can arbitrarily distort the
semantics of programs. In particular, weaving can invali-
date crucial safety and liveness properties of the base pro-
gram. In previous work, we have identified categories of
aspects that preserve classes of temporal properties. We
have formally proved that, for any program, the weaving of
any aspect in a category preserves all properties in the re-
lated class. In this article, after a summary of our previous
work, we present, for each aspect category, a specialized
aspect language which ensures that any aspect written in
that language belongs to the corresponding category. It can
be proved that these languages preserve the corresponding
classes of properties by construction. The aspect languages
share the same expressive pointcut language and are de-
signed w.r.t. a common imperative base language. Each
language is illustrated by simple examples. We also prove
that all aspects written in one of the languages belong to
the corresponding category.

1 Introduction

Aspect oriented programming (AOP) proposes to modu-
larize concerns that crosscut the base program [11]. How-
ever, aspects can in general distort the semantics of the base
program. The programmer may have to inspect the woven
program (or debug its execution) to understand its seman-
tics. In a previous article [6], we have considered several
categories of aspects that alter the semantics of the base
program in a tightly controlled manner. For each category
of aspects Ax, we have identified a corresponding class of
properties ϕx that is preserved by weaving these aspects.
In other words, let P be a program that satisfies a prop-
erty ϕ ∈ ϕx, then weaving any aspect A ∈ Ax on P will
produce a program satisfying ϕ. Our categories of aspects,
inspired by Katz’s [10], comprise observers, aborters and
confiners1.

1Several other categories are studied in [6] but, due to lack of space, we
focus here on these three categories only

◦ Observers do not modify the base program’s state and
control flow. Advice may only modify the aspect’s lo-
cal variables. Persistence, debugging, tracing, logging
and profiling aspects are typical observers.

◦ Aborters are observers which may also abort execu-
tions. The program’s state is not modified but its con-
trol flow may be terminated. Aspects ensuring safety
properties such as security aspects are usually aborters.

◦ Confiners may modify the state and control flow but
ensure that states remain in the reachable states of the
base program. Some optimization aspects (which may
use shortcuts to reach future states) or fault-tolerance
aspects (which roll-back to past states) are confiners.

Categories of aspects are related by inclusion: observer
aspects are included into aborters which are included into
confiners. The classes of preserved properties are related by
the opposite inclusion chain. Observers preserve a signifi-
cant part of LTL properties whereas confiners only preserve
invariant state properties.

In this article, we present for each aspect category a re-
stricted aspect language which ensures that any aspect writ-
ten in that language belongs to the corresponding category.
Therefore, these languages ensure that the corresponding
properties are preserved by construction. The aspect lan-
guages are designed for a simple imperative base language
and use an expressive pointcut language. Each aspect lan-
guage is illustrated using simple examples of aspects. We
also prove that all aspects written in a language belong to
the corresponding category.

In order to be self-contained, we recall our formal frame-
work in Section 2 and the categories of aspects and classes
of properties considered in Section 3. Section 4 introduces
the imperative (base and advice) language, its associated
pointcut language and three aspect languages correspond-
ing to observers, aborters and confiners. Section 5 reviews
some related work and Section 6 discusses possible future
research directions and concludes.

2 Semantic Framework

In order to formally study aspect categories, we have in-
troduced a Common Aspect Semantics Base (CASB) for
AOP [7]. The languages of Section 4 are defined within
that abstract framework.

2.1 The Common Aspect Semantics Base

The CASB relies on the small step semantics of the base
language. That semantics is described through a binary re-
lation→b on configurations (C,Σb) made of a program C
(a sequence of basic instructions i terminated by •) and a
state Σb. A single reduction step of the base language se-
mantics is of the form

(i : C,Σb)→b (C ′,Σ′b)

Intuitively, i represents the current instruction and C the
continuation.

In the following, woven configurations (C,Σ) are sup-
posed to be made of the following components:

◦ C is the sequence of instructions of woven program.
We write ib for a base program instruction and ia for an
advice instruction. The instruction ε, which represents
the final instruction of a program, is considered as an
ib instruction;
◦ The state Σ is made of three subsets Σb ∪ Σa ∪ Σψ

– Σb represents the state of the base program
(i.e., variables, environment, heap, manipulated
by ib and possibly ia instructions);

– Σa represents the local state of aspects (manipu-
lated by ia instructions only);

– Σψ represents aspects. It is a function that checks
whether the current instruction should be woven
and transforms the configuration accordingly.

When a new instance of an aspect is created, both Σa

and Σψ are modified. The semantics of woven reduction is
represented by the binary relation→ defined by:

REDUCE
(C,Σ)→b (C ′,Σ′) w(C ′,Σ′) = (C ′′,Σ′′)

(C,Σ)→ (C ′′,Σ′′)

A reduction step→ of the woven program first reduces the
first instruction of the current configuration using→b, then
it weaves the reduced configuration using the function w.
The weaving function w is defined by two rules: either, the
current instruction is not matched by the aspects (Σψ returns
nil) and w returns the configuration unchanged

WEAVE0

Σψ(C,Σ) = nil

w(C,Σ) = (C,Σ)

or the current instruction is matched by aspects and Σψ re-
turns a new configuration (C ′,Σ′):

WEAVE1

Σψ(C,Σ) = (C ′,Σ′) w(C ′,Σ′) = (C ′′,Σ′′)
w(C,Σ) = (C ′′,Σ′′)

Note that weaving can be recursively applied on the code
of a newly introduced advice. In some cases, we should
prevent some instructions to be matched. For example, an
aspect matching an instruction i and inserting a before ad-
vice a should not match i again just after executing a. We
used tagged instructions such as i which have exactly the
same semantics as i except that it is not subject to weaving.
Formally

TAGGED
(i : C,Σ)→b (C ′,Σ′)
(i : C,Σ)→ (C ′,Σ′)

Since weaving is always performed after a →b reduc-
tion, it is not possible to weave the first instruction of the
program. However, in some cases, it is useful to start the
program by an advice. To permit such weaving, we assume
that initial configurations are of the form (start : C,Σ)
where start is a dummy first instruction.

In the following, programs are represented by their ex-
ecution traces. For simplicity and regularity, we only con-
sider infinite traces. In order to do so, the final instruction ε
is supposed to have the following reduction rule:

∀Σ.(ε : •,Σ)→b (ε : •,Σ)

The base program execution trace, with (C0,Σ0) as ini-
tial configuration, will be denoted by B(C0,Σ0) (defini-
tion 1).

DEFINITION 1.

B(C0,Σ0) = (i1,Σ1) : (i2,Σ2) : . . .
with ∀(j ≥ 0).(ij : Cj ,Σj)→b (ij+1 : Cj+1,Σj+1)

Since the properties we consider concern only states and
current instructions, continuation (the control stack) does
not appear in traces. We write W(C0,Σ0) for the infinite
woven execution trace (definition 2).

DEFINITION 2.

W(C0,Σ0) = (i1,Σ1) : (i2,Σ2) : . . .
with ∀(j ≥ 0).(ij : Cj ,Σj)→ (ij+1 : Cj+1,Σj+1)

2.2 Properties

Properties are defined as LTL formulae [14] w.r.t. our
(base and woven) execution traces. In our context, an
atomic proposition of LTL is either an atomic proposition
sp on states Σ (e.g., x ≥ 0), or an atomic proposition ep

on instructions or events (e.g., foo which is true when the
method foo is called). We consider LTL formulae in posi-
tive normal form i.e., where negation occurs only on atomic
propositions (Grammar 3).

GRAMMAR 3.

ϕ ::= sp | ¬sp | ep | ¬ep | ϕ1 ∨ ϕ2 |
ϕ1 ∧ ϕ2 | © ϕ | ϕ1 ∪ ϕ2 | ϕ1Wϕ2

The operator© is read ”next”, ∪ is read ”until”, and W
is read ”weak until”.

Standard classes of temporal properties [18] comprise:
liveness properties (e.g., true ∪ backup i.e., the func-
tion backup is eventually called) and safety properties
(e.g., ¬resetW false i.e., the function reset is never
called). In general, they are not preserved by aspect weav-
ing. For instance, an aspect replacing calls to backup by an
empty advice would invalidate the previous liveness prop-
erty and an aspect with a call to reset in its advice would
invalidate the previous safety property. The next section
identifies categories of aspects that preserve classes of tem-
poral properties.

3 Categories of aspects

Our aspect categories are: observers (Ao), aborters (Aa)
and confiners (Ac). The weaving of any aspect of a category
Ax preserves a class of properties ϕx (a subset of LTL).
Aspect categories are related by inclusion:

Ao ⊂ Aa ⊂ Ac

The observer category is the most restricted category; it is
included in all the other. The corresponding classes of prop-
erties are also related by inclusion:

ϕo ⊃ ϕa ⊃ ϕc

Not surprisingly, the most restricted category of aspects
(Ao) preserves the largest class of properties (ϕo) and the
inclusion chain is in the opposite direction.

An important point to keep in mind is that our preser-
vation properties stand for any program, any aspect of the
category and any property of the class. Of course, for a
specific program and aspect many more properties might be
preserved. In that case, as soon as the program is modi-
fied the preservation of properties should be proved again.
The advantage of our approach is that when an aspect is
shown to belong to a category, then the corresponding class
of properties that will be preserved for any program. So,
when a program is modified, as long as it continues to sat-
isfy a property of the considered class, we know that weav-
ing the aspect will preserve it.

3.1 Observers

An observer does not modify the control flow of the
base program but only inserts advice instructions ia. This
is formalized by Definition 4 which states that the woven
and the base execution traces can be projected onto the
same sequence of base instructions and that advice instruc-
tions ia preserve the base state Σb. The projection function
projb (that discards ia and Σ from traces) and the predicate
preserveb (that checks that no ia modifies Σb) are defined
in the appendix.

DEFINITION 4.

∀(C,Σ). Σψ ∈ Ao ⇔ projb(α) = projb(α̃)
∧ preserveb(α̃)

with α = B(C,Σb) and α̃ =W(C,Σ)

In other words, Definition 4 states that observers may only
modify execution traces by inserting new advice instruc-
tions (ia) and a new local state (Σa). This definition entails
that the advice terminates.

The class of properties ϕo preserved by observer aspects
is defined by Grammar 5.

GRAMMAR 5.

ϕo ::= sp | ¬sp | ϕo1 ∨ ϕo2 | ϕo1 ∧ ϕo2 | ϕo1 ∪ ϕo2 |
ϕo1Wϕo2 | true ∪ ϕ′o

ϕ′o ::= ep | ¬ep | sp | ¬sp | ϕ′o1 ∨ ϕ′o2 |
ϕ′o1 ∧ ϕ′o2 | ϕo1 ∪ ϕo2 | ϕo1Wϕo2 | true ∪ ϕ′o

As in the previous section, the variables sp and ep de-
note atomic propositions on the base state and instructions
respectively. The language ϕo is LTL without the © op-
erator when atomic propositions are state propositions (sp).
So, it can express all safety, liveness and invariant properties
(without©) on base states Σb. The class is more restricted
when the property involves atomic propositions on events
(ep). These properties can only occur as true ∪ ϕ′o. This
makes it possible to define liveness properties on events.
Indeed, a liveness property can be expressed as true ∪ ϕ′o
and a liveness fair property as (true ∪ ϕ′o)W false . On
the other hand, this language forbids safety properties on
events. A safety property such as ¬epW false does not be-
long to grammar 5. Intuitively, safety properties on events
forbid some sequences of instructions. Since an observer
inserts new instructions, it may introduce a forbidden se-
quence. Persistence, debugging, tracing, logging and pro-
filing aspects typically belong to the class of observers.

Property 6 formally states that the weaving of an ob-
server preserves all properties in ϕo which were satisfied
by the base program. Its proof can be found in [6].

PROPERTY 6.

∀(C,Σ). Σψ ∈ Ao ⇒ ∀(p ∈ ϕo). α |= p⇒ α̃ |= p
with α = B(C,Σb) and α̃ =W(C,Σ)

3.2 Aborters

An aborter does not modify the state of the base pro-
gram. As in the previous definition of observers, the pred-
icate preserveb holds for the woven trace. However, an
aborter can modify the control flow by terminating the ex-
ecution of the woven program. This is modeled by an ia
instruction abort which reduces any configuration into the
final one:

∀(C,Σ). (abort : C,Σ)→ (ε : •,Σ)

If abort is never executed, the projections of the base and
woven traces are equal; the aborter behaves like an observer.
Otherwise, the projection of an aborted woven trace on base
instructions is a prefix of the projection of the base program
trace. After this point, all instructions are equal to ε. The
formal definition of aborters can be found in [6].

The class of properties preserved by aborters is defined
by Grammar 7.

GRAMMAR 7.

ϕa ::= sp | ¬sp | ϕa1 ∨ ϕa2 | ϕa1 ∧ ϕa2 | ϕa1Wϕa2 |
true ∪ ϕ′a

ϕ′a ::= ¬ep | ϕ′a ∨ ϕa | ϕ′a1 ∧ ϕ′a2 | true ∪ ϕ′a

The language ϕa is included in the set of properties pre-
served by observers. It is LTL for atomic propositions on
states (sp) without ∪ and © operators. This includes in-
variant and safety properties on states. Atomic propositions
on events (ep) occur only under a negation and only as an
”eventually” formula (i.e., in true ∪ ϕ′a). This language
makes it possible to define liveness properties on ¬ep. Ex-
amples of aborters are security aspects that detect forbidden
states or sequences of instructions or aspects that guarantee
that a computation stops after a time-out. The preservation
of properties of Grammar 7 by aborters is formalized in the
same way as Property 6.

3.3 Confiners

An aspect is a confiner if the state of any configuration
of the woven program is a reachable state. In general, con-
finers can modify the control flow and the state of the base
program.

The set of reachable states from the configuration
made of the program C and the state Σb is denoted by

Reachb(C,Σb) with:

Reachb(C,Σb) = {Σb′ | (C,Σb) ∗→b (C ′,Σb
′
)}

Confiners are defined by the fact that the base states of the
configurations of the woven trace remain in Reachb(· · ·).
This is formalized by Definition 8.

DEFINITION 8.
∀(C,Σ). Σψ ∈ Ac ⇔ ∀(j ≥ 1). α̃j = (i,Σj)

∧ Σbj ∈ Reachb(C,Σb)
with α = B(C,Σ) and α̃ =W(C,Σ)

The class of properties preserved by confiners is defined
by Grammar 7.

GRAMMAR 9.

ϕc ::= sp | ¬sp | ϕc1 ∨ ϕc2 | ϕc1 ∧ ϕc2 | ϕc1W false

The language ϕc is restricted to invariant properties
(i.e., ϕW false) on states. Since confiner aspects can modify
the control flow of events without restriction no properties
involving atomic propositions on events in ϕc are preserved.
For the same reason, safety properties such as ϕc1Wϕc2 are
not preserved by confiners.

Examples of confiners are reset aspects that restore the
initial state of the base program, fault-tolerance aspects that
restore a safe execution state from a previous checkpoint, or
memo aspects that shortcut a computation (or a already per-
formed request) and returns its cached result. The preserva-
tion of the properties of Grammar 9 by confiners is formal-
ized in the same way as Property 6.

4 Specialized Aspect Languages

In this section, we present the imperative base language
(Section 4.1) and a generic pointcut language (Section 4.2)
used by our aspect languages. We introduce in Sections 4.3,
4.4 and 4.5 three aspect languages corresponding to the
three categories of the previous section. All aspects defined
in a language belong to the corresponding category. There-
fore each language ensures the preservation of the corre-
sponding class of properties by construction.

4.1 Base language

A base program Prog is a sequence D of declarations
of global variables (g) and procedures followed by a main
statement S. Besides usual commands (assignment, proce-
dure call, sequencing, conditional, while loop), the instruc-
tion abort ends a program execution, skip does nothing
and loop(A) S repeatsA times the statement S. Arithmetic
and boolean expressions are described by nonterminals A
and B respectively. There are two distinguished kinds of
variables:

◦ global variables (g) which are declared in D;
◦ local variables (l) declared as parameters of proce-

dures.

Both kinds of variables can be used in assignments and ex-
pressions.

GRAMMAR 10.

Prog ::= D S
D ::= var g:=A | proc I(l1, . . . ln) S | D1;D2

S ::= V :=A | I(A1, . . . An) | S1;S2 |
if(B) then S1 else S2 | while(B) S |
abort | skip | loop(A) S

A ::= n | V | A1 +A2

B ::= true | A1=A2 | A1<A2 | B1&B2 | !B
V ::= g | l
I ::= p

Note that since all variables are integers, we avoid typ-
ing issues. However, the language could be easily extended
and equipped with a type system. As required by our frame-
work (Section 2.1), its semantics is defined by a relation→b

on (C,Σb) where C is a sequence of statements S and Σb

is made of environments associating global variables and
parameters to their values and of a return stack for proce-
dure calls. The operational semantics of this language is
very similar to the While language of [16]. We omit it here.
Example 11 illustrates the base language with a simple pro-
gram which will be used throughout.

EXAMPLE 11. The fourth fibonacci number is specified as
follows:

var result := 0;
proc fib(x)

if(x = 0) then result := result + 1 else

if(x = 1) then result := result + 1

else fib(x− 1); fib(x− 2)
fib(4)

4.2 Generic pointcut language

Our aspect languages share the same pointcut language
which is defined by grammar 12.

GRAMMAR 12.

P ::= Sp | if (Bp) | P1 ∨ P2 | P1 ∧ P2

Sp ::= V p:=Ap | Ip(Ap1, . . . , Apn) | Sp1 ;Sp2 |
if(Bp) then Sp1 else Sp2 | while(Bp) Sp |
abort | skip | loop(Ap) Sp | βS | ¬Sp

Ap ::= n | V p | Ap1 +Ap2 | βA | ¬Ap
Bp ::= true | Ap1=Ap2 | A

p
1<A

p
2 | B

p
1&Bp2 | !B |

βB | ¬Bp
V p ::= g | l | βV | ¬V p
Ip ::= p | βI | ¬Ip

A pointcut is either a statement with pattern variables Sp

(a static pointcut), or a predicate if (Bp) (a dynamic point-
cut), or a logical composition of pointcuts. A statement pat-
tern Sp is a statement which enables, for each syntactic cat-
egory (expressions, variables, . . .), pattern variables as well
as negative patterns (e.g.,¬S). For example,Ap defines pat-
terns on arithmetic expressions with pattern variables (βA)
(able to match any arithmetic expression) and negations. Ip

defines patterns of procedure identifiers. Matching of a pat-
tern Sp w.r.t. a current configuration (i : C,Σ) assigns val-
ues to pattern variables βS, βA, . . . These values will be sub-
stituted for the occurrences of pattern variables occurring in
dynamic pointcuts if (b) as well as in advice. The semantics
of patterns with negation (called anti-patterns) is described
in details in [12].

Dynamic pointcuts if (b) should represent valid boolean
expressions after substitution. To ensure this property, nega-
tion of patterns (e.g., ¬Bp) are not allowed to occur within
dynamic pointcuts. Also, variables occurring in dynamic
pointcuts (and advice) should also occur outside the scope
of a negation in the static pointcut (to have a unique substi-
tution).

EXAMPLE 13. To provide some intuition, here are a few
examples of patterns

◦ x :=βA matches all assignments to x;
◦ (¬x):=βA matches all assignments but those to x;
◦ ¬(x := y) matches all statements but x := y;
◦ while(βB) βS matches all while statements.
◦ p(3,βA) ∧ if(βA= 0) matches all calls to p with 3 and

an arithmetic expression whose value is 0;

Our implementation of pointcuts relies on a preliminary
transformation described in [7]. A pointcut p is transformed
into an equivalent pointcut of the form

(p1 ∧ if (b1)) ∨ . . . ∨ (pn ∧ if (bn))

where the static patterns pi are mutually exclusive. Each
static pattern is matched to the current instruction using the
anti-pattern algorithm [12] written matchs until a match is
found. The function matchs returns a substitution which
is applied to the corresponding dynamic pointcut and ad-
vice that will be evaluated relatively to the state. If no
match exists, the function matchs returns Fail . For in-
stance, matchs(p(3,βA), p(3, 0)) returns [βA 7→ 0] and
matchs(¬βA, 0) returns Fail .

4.3 Observer language

In this section, we define a restricted aspect language that
ensures that any aspect defined in this language is an ob-
server. As seen in Section 3.1, an observer does not modify

the control flow of the base program but only inserts advice
instructions (ia). In order to remain consistent with AspectJ
and most aspect-oriented languages, we consider around as-
pects composed of an arbitrarily complex statement of ia
instructions, followed by the command proceed to execute
the matched statement, followed by another arbitrarily com-
plex statement of ia. When the advice execution is over, the
base program execution is resumed after the matched state-
ment.

Note that our proceed instruction does not have param-
eters. Otherwise, observers would be able to modify the
parameters of procedures and arbitrarily change the state
or the control-flow of the base program. Furthermore, the
advice should terminate, otherwise the base program execu-
tion is never resumed and its control flow is not preserved.
We ensure termination by disallowing while statements in
advice, checking that there is no loop in the call graph of ad-
vice and ensuring that the pointcut cannot match any state-
ment of its own advice. Another option would be to permit
while-loops and recursion in advice and make the program-
mer responsible for ensuring termination.

The second condition an observer should obey is not to
modify the state of the base program (i.e., ia instructions do
not change the state Σb). We distinguish the base program
variables (that can be read by an advice) from the aspect
variables (that can be read and written by a ia).

The semantics of proceed is expressed using a proceed
stack (written ΣP) in the global state [7]. When an around
advice applies, the matched instruction is pushed onto that
stack. The proceed instruction pops and executes the in-
struction on top on the proceed stack:

PROCEED
ΣP = i : Σ

′P

(proceed : C,X ∪ ΣP)→ (i : C,X ∪ Σ
′P)

The syntax of observers is defined by the Grammar 14.

GRAMMAR 14.

Aspo ::= Do around P {So1 ; proceed; So2}
Do ::= var go := Ao | proc Io(lo1, . . . , lon) So |

Do
1;Do

2

So ::= V o:=Ao | Io(Ao1, . . . , Aon) | So1 ;So2 | skip |
if(Bo) then So1 else So2 | loop(Ao) So

Ao ::= n | V ′ | Ao1 +Ao2 | βA

Bo ::= true | Ao1=Ao2 | Ao1<Ao2 | Bo1&Bo2 |
!Bo | βB

V o ::= go | lo
V ′ ::= V o | g | βV

Io ::= po

An observer Aspo defines variables go and procedures
po to form the local state of the aspect. Then, around as-
sociates a pointcut with an advice which contains exactly
one proceed. We have considered that an aspect has one

pointcut and one advice to simplify the presentation but this
could be easily generalized to several pointcuts and advices.
The declarations Do must not contain any occurrence of
pattern variables. Other statements So are similar to state-
ment patterns Sp but without negation ¬. Indeed, an advice
must be a valid executable code after substitution of its pat-
tern variables (βA, βB, βV). Note that, the statement abort
is not allowed in advice since it would change the control
flow of the base program. Similarly, pattern variables βS for
statements are forbidden since they could match (and exe-
cute) assignments to base program variables. Note that, as-
signment statements in advice can only modify variables of
the aspect (V o). Of course, aspect and base variables (V ′)
can both be read. Finally, an advice can only call proce-
dure defined in the aspect (Io) since calling a base program
procedure could modify the base program state.

An aspect that counts calls to fib (Example 11) is de-
fined in Example 15. This profiling aspect respects the
grammar Aspo and is therefore an observer.

EXAMPLE 15. Profiling calls to fib

var n := 0 around (fib(βA)) n := n + 1

The semantics of weaving (Section 2.1) represents an
aspect as a function Σψ that takes the current configura-
tion (C,Σ) as parameter and returns either a new woven
configuration (C ′,Σ′), or nil when the pointcut does not
match. We define the semantics of our aspect language
in order to generate Σψ from an aspect definition as fol-
lows. The resulting function takes the current configuration
as parameter and matches the first instruction i. First, as
mentioned in the previous section, the pointcut p of the as-
pect is transformed into an exclusive disjunction of the form
(p1 ∧ if (b1))∨ . . .∨ (pn ∧ if (bn)). The function tests if the
current instruction i is matched one of the static pointcuts
pi. If i is not matched, the function returns nil . Otherwise,
the current instruction i is replaced by a code a and i is
pushed on the proceed stack ΣP . When it is executed, the
conditional a tests the dynamic part bi of the matched point-
cut. If bi is satisfied the advice s is executed, otherwise the
execution proceeds with the original instruction i (the ad-
vice is not executed). The pattern variables in b and s are
substituted by their matched values using the substitution σ
returned by matchs .

[[around (p) s]] =
let (p1 ∧ if (b1)) ∨ . . . ∨ (pn ∧ if (bn)) = Transf (p) in
λ(i : C,X ∪ ΣP).

case matchs(p1, i) = σ1 7→ (ā1 : C,X ∪ ī : ΣP)
· · ·

matchs(pn, i) = σn 7→ (ān : C,X ∪ ī : ΣP)
otherwise 7→ nil

where ai = σi(if(bi) then s else proceed)

The instruction ī and the conditional āi are tagged (see

Section 2.1) to prevent infinite weaving by matching them
again and again.

That semantics distinguishes evaluation of the static part
of a pointcut from the evaluation of its dynamic part. This
is mandatory in order to faithfully model AspectJ-like lan-
guages where several aspects can interact together (i.e., the
dynamic part of a pointcut can depend on a previous advice
execution). Property 16 formalizes the fact that any aspect
in Aspo is an observer.

PROPERTY 16. ∀a ∈ Aspo.[[a]] ∈ Ao

A sketch of the proof can be found in the appendix.

4.4 Aborter language

An aborter is an observer which may abort the execu-
tion. The aborter language is therefore very similar to the
observer language. Its grammar Aspa is expressed exactly
as Aspo except that the statement abort is allowed in Sa.
The abort instruction reduces any configuration in a final
configuration (see Section 3.2).

Example 17 specifies an aspect counting the number of
calls to the procedure fib (of the Example 11). If the num-
ber of calls reaches 100.000 the program is aborted. This
aspect can be used to enforce some computation quota. It is
defined in Aspa so it is an aborter.

EXAMPLE 17. Regulating calls to fib

var nbCalls := 0; around (fib(βA))
nbCalls := nbCalls + 1;
if(nbCalls = 100000) then abort else skip;
proceed; skip

Property 18 states that any aspect in Aspa is an aborter.

PROPERTY 18. ∀a ∈ Aspa.[[a]] ∈ Aa

4.5 A confiner language

Confiners can arbitrarily modify the control flow and the
state of the base program as long as the base state remains in
the set of originally reachable states. A general purpose lan-
guage ensuring this property is very hard to design. How-
ever, two specialized confiner languages come to mind:

◦ optimization dedicated languages whose advice would
jump directly to a future reachable state;
◦ fault-tolerance dedicated languages whose advice

would roll-back to a previous reachable state.

We propose here a specialized language dedicated to defin-
ing memo aspects. A memo aspect is an optimizing aspect
that caches computations. It introduces memoization in the
woven program: when a computation is performed for the

first time, it stores its arguments and results. When the same
computation is performed again, it shortcuts it and directly
returns its previously stored results. Grammar 19 presents
the syntax of this language.

GRAMMAR 19.

Aspm ::= memo (Im(Ap1, . . . , A
p
n) ∧ if (Bo))

Im ::= p | βI

A memo aspect is a primitive memo applied to a pointcut
whose static part denotes the procedure calls to be mem-
oized, and dynamic part is an arbitrary predicate. In or-
der to implement sophisticated strategies of memoization
a memo aspect can be combined with an observer. Since
observers (and aborters) are included in the confiner cate-
gory, the composition of a confiner aspect with any observer
(aborter, confiner) aspect is also a confiner. For example,
the base program could be first woven with an observer that
collects statistics regarding procedure calls (e.g., number of
calls, depth of recursion,. . . .) in its variables. It is then wo-
ven with a memoization aspect whose predicate accesses
the variables holding statistics.

To give the semantics of a memoization aspect, we need
to compute the lists of variables a procedure reads and
writes. These two lists are computed by the functions read
and write . We can now define the semantics of a memo as-
pect as a program transformation taking the aspect and the
declarations (D) of the base program:

T [[memo (p(a1, . . . , an) ∧ if (Bo))]]D =
var cache := empty

around (p(a1, . . . , an) ∧ if (Bo))
if contain(p, a1 : . . . : an, read [[D]]p)
then write[[D]]p := lookup(p, a1 : . . . : an, read [[D]]p)
else proceed;

store(p, a1 : . . . : an, read [[D]]p,write[[D]]p)

A memo aspect defines an initially empty cache variable to
store computation results. A cache entry associates a triplet
(p, a1 : . . . : an, read [[D]]p) (a procedure identifier, the list
of its arguments and the list of the variables read) to the list
of values of its written variable write[[D]]p.

When the pointcut is matched, the resulting substitution
σ is applied to the advice and it fully instantiates the proce-
dure, its arguments, as well as the lists of read (read [[D]]p)
and written (write[[D]]p) variables. When the advice is exe-
cuted, if the cache contains the result of the computation
(contain(p, a1 : . . . : an, read [[D]]p)) then the written
variables are assigned with the result stored in the cache
(lookup(p, a1 : . . . : an, read [[D]]p)), else the computation
is performed and the cache is updated (store(p, a1 : . . . :
an, read [[D]]p,write[[D]]p)). Actually, such an aspect is a
confiner only if the updating (write[[D]]p := lookup(...))
is considered as atomic. Otherwise the updating of several
variables produces temporary unreachable states. In a con-
current context, updating should also be atomic.

Note that, for the sake of conciseness, we have defined
the advice in the base language extended with data struc-
tures (i.e., cache implements a hash table, and lists to rep-
resent the values of read and written variables) and a return
value for procedures (e.g., contain, lookup).

Example 20 defines a memo aspect for the fib proce-
dure defined in the Example 11. It is easy to check that
the procedure fib reads no variable and writes the single
variable result.

EXAMPLE 20. Memoizing fib

memo (fib(βA) ∧ if (βA > 10))

This aspect, generated by the transformation T , memoizes
calls to fib only if its argument is greater than 10 (to amor-
tize the cost of caching).

var cache := empty

around (fib(βA) ∧ if (βA > 10))
if(contain(fib,[βA], []))
then result := lookup(fib,[βA], [])
else proceed; store(fib,[βA], [], [result])

Our version of fib (Example 11) computes many times
the same calls and has exponential complexity. The previ-
ous memo aspect suffices to improve its complexity to linear
time.

Property 21 formalizes the fact that any memo aspect is
a confiner.

PROPERTY 21. ∀a ∈ Aspm.[[T [[a]]]] ∈ Ac

4.6 Other languages

In the previous sections, we have presented restricted as-
pect languages that preserve classes for properties for se-
quential programs. Actually, non-deterministic (i.e., con-
current) programs bring new interesting categories of as-
pects and classes of properties. We have identified in [6] the
categories of selectors and regulators. Selector aspects se-
lect some executions among the set of possible executions.
Regulators select or abort some executions among the set of
possible executions.

We briefly discuss how to design specialized aspect lan-
guages for these categories. First, the base language must be
extended with a non-deterministic statement. For instance,
the statement s1 or s2 executes non-deterministically ei-
ther s1, or s2. Second, the aspect languages must
take into account that new statement. The advice lan-
guage can be extended with proceedLeft and proceedRight
in order to define selectors. For instance, the aspect
around(s1 or s2) proceedLeft would make determinis-
tic a non-deterministic program by selecting always the left

part of or statements. This language could be used to spec-
ify scheduling aspects. Regulators are selectors which can
abort the program.

Observers and aborters remains valid when Sp1 or Sp2
is added to the pointcut language. Regarding confiners,
our memo aspects must be adapted: functions read and
write must be extended in order to collect variables in both
branches of non-deterministic or statements. As in the de-
terministic case, this static analysis of read and written vari-
ables always terminates. Other specialized aspect languages
could be defined for confiners. For instance, an aspect lan-
guage for fault-tolerance could be defined using two kinds
of advice. An advice commit would save the current state of
the system then proceeds. Another advice rollback would
restore the previously saved state of the system. Another
option is: when the pointcut is s1 or s2, the advice commit
non-deterministically selects (i.e., proceeds with) a branch
and saves a state such that a rollback will always execute
the other branch. This option makes it possible to write an
aspect that systematically explores all possible executions
of a non-deterministic program. Both options save and re-
store reachable states, so such specialized aspect languages
would preserve confiner properties.

5 Related Work

The starting point of our study is seminal work by
Katz [10] that introduces the categories of spectative aspects
(corresponding to observers) and regulative aspects (close
to our aborters). However, that study is largely informal.
Furthermore, it suggests static analyses (e.g., alias analysis)
to ensure that an aspect belongs to a category (a posteriori
approach), while our work proposes syntactic criteria for
language definitions (a priori approach).

Our work is based on an abstract (i.e., language inde-
pendent) small step semantics of woven execution. Several
other works have formalized aspect languages. For exam-
ple, Wand et al. [20]) propose a denotational semantics for
a subset of AspectJ, Bruns et al. [1] present a formal as-
pect calculus µABC, and Clifton and Leavens [3] define an
operational semantics for an imperative OO language.

Concerning aspect categories, Clifton et al. in [4] pro-
pose annotations to formally specify that aspects have re-
stricted effects on the base program and on other aspects.
These annotations can limit the control flow impact of an
advice and they introduce a notion of ownership to specify
possible side effects. This makes it possible to define ob-
servers and aborters but not confiners. Dantas and Walker
[5] formally describe an aspect category named harmless
advice. This category corresponds to our aborters. Their
formalization is based on a big step semantics and a type
system to ensure that an aspect cannot modify the final val-
ues of the base program. However, none of these works

study or define classes of preserved temporal properties.
Krishnamurthi et al. [13] propose a modular verification

technique for verifying a property is preserved in the wo-
ven program but it requires analyzing each aspect defini-
tion. Clifton and Leavens [2] define a formal semantics of
weaving with a Hoare-logic and give informal definitions of
observer and assistant aspects (which look close to our ob-
servers and aborters). Rinard, Salcianu, and Bugara [17]
also propose categories of aspects. Some of them seem
closely related to ours (e.g., their observation aspects to ours
observers), but they are informally defined and their impact
on properties is not studied (e.g., several of their categories
can completely modify the semantics of the base program).

There have been several proposals of domain specific as-
pect languages. For example, Lopes [19] proposes two spe-
cialized languages RIDL and COOL for remote data trans-
fer and synchronization. Mendhekar et al. [15] present an
aspect language which makes use of a memoization prim-
itive to optimize image processing systems. Fradet and
Hong Tuan Ha [8] define an aborter-like language to prevent
the denials of service such as starvation caused by resource
management. The preservation of properties is not studied.

6 Conclusion

In previous work, we have formally identified categories
of aspects that preserves classes of properties [6]. It was
proved that any aspect in a category preserves any property
of the corresponding class (i.e., if the base program satis-
fies the property then the woven program still satisfies the
property). However, it remained to check whether an as-
pect belongs to a category. This article solves that question
by defining restricted aspect languages that ensure aspects
to belong to specific categories and therefore to preserve a
class of property. In particular, we have proposed a general
language for observers and aborters and a domain-specific
language for memo aspects (which belongs to confiners).
We also discussed how to design further specialized aspect
languages for other categories. Using that language ap-
proach, the programmer does not have to prove a posteriori
that an aspect belongs to a category. The programmer uses
the specialized aspect language that ensures a priori that
the aspect belongs to the category. We have shown how to
prove that the observer language can only specify observer
aspects.

Several research directions are worth following. Our lan-
guages of aspects should be shown to be maximal. For in-
stance, we should prove that all observers (resp. aborters)
can be defined in the observer (resp. aborter) language. Of
course, our memo language is not maximal: it does not en-
able the definition of rollback aspects that are also confiners.
However, other specialized languages belonging to the con-
finer family should be studied (e.g., dynamic optimizations,

fault-tolerance aspects). Finally, these languages should be
implemented to build an aspect programming workbench
allowing to reason about aspect composition and the preser-
vation of properties.

References

[1] G. Bruns, R. Jagadeesan, A. Jeffrey, and J. Riely. µabc: A
minimal aspect calculus. In CONCUR 2004, pages 209–224.
Springer-Verlag, 2004.

[2] C. Clifton and G. Leavens. Observers and assistants: A pro-
posal for modular aspect-oriented reasoning. In FOAL Work-
shop, 2002.

[3] C. Clifton and G. T. Leavens. MiniMAO1: An imperative
core language for studying aspect-oriented reasoning. Sci-
ence of Computer Programming, 63:321–374, 2006.

[4] C. Clifton, G. T. Leavens, and J. Noble. MAO: Ownership
and effects for more effective reasoning about aspects. In
ECOOP, volume 4609 of LNCS, pages 451–475, 2007.

[5] D. S. Dantas and D. Walker. Harmless advice. SIGPLAN
Not., 41(1):383–396, 2006.

[6] S. Djoko Djoko, R. Douence, and P. Fradet. Aspects preserv-
ing properties. In PEPM’08, pages 135–145. ACM, 2008.

[7] S. Djoko Djoko, R. Douence, and P. Fradet. A common
aspect semantics base and some applications. Technical Re-
port AOSD-Europe Deliverable D135, August 2008.

[8] P. Fradet and S. Hong Tuan Ha. Aspects of availability. In
GPCE’07, pages 165–174. ACM, October 2007.

[9] J. Gibbons and G. Hutton. Proof Methods for Structured
Corecursive Programs. In Proceedings of the 1st Scottish
Functional Programming Workshop, Aug. 1999.

[10] S. Katz. Aspect categories and classes of temporal proper-
ties. TAOSD, 1, 2006.

[11] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,
C. Lopes, J.-M. Loingtier, and J. Irwin. Aspect-oriented pro-
gramming. In ECOOP, June 1997.

[12] C. Kirchner, R. Kopetz, and P.-E. Moreau. Anti-pattern
matching. In ESOP, pages 110–124, 2007.

[13] S. Krishnamurthi, K. Fisler, and M. Greenberg. Verifying
aspect advice modularly. In SIGSOFT ’04/FSE-12, pages
137–146. ACM Press, November 2004.

[14] Z. Manna and A. Pnueli. The temporal logic of reactive and
concurrent systems. Springer-Verlag, 1992.

[15] A. Mendhekar, G. Kiczales, and J. Lamping. RG: A case-
study for aspect-oriented programming. Technical Report
SPL97-009 P9710044, Palo Alto, CA, USA, February 1997.

[16] F. Nielson and H. R. Nielson. Semantics with Applications -
A Formal Introduction. John Wiley and Sons, 1992.

[17] M. Rinard, A. Salcianu, and S. Bugrara. A classification sys-
tem and analysis for aspect-oriented programs. In SIGSOFT
’04/FSE-12, pages 147–158. ACM Press, 2004.

[18] A. P. Sistla. On characterization of safety and liveness prop-
erties in temporal logic. In PODC ’85, pages 39–48, 1985.

[19] C. Videira Lopes. D: A Language Framework for Dis-
tributed Programming. PhD thesis, College of Computer
Science, Northeastern University, Boston, 1997.

[20] M. Wand, G. Kiczales, and C. Dutchyn. A semantics for
advice and dynamic join points in aspect-oriented program-
ming. Trans. on Prog. Lang. and Sys., 26(5):890–910, 2004.

Appendix

This appendix presents the proof of property 16. It relies
on Property 22 which implies directly Property 16 by defi-
nition of Ao. The proofs of others properties are similar.

PROPERTY 22.

∀(a ∈ Aspo).∀(C,Σ). Σψ = [[a]]
⇒ projb(α) = projb(α̃) ∧ preserveb(α̃)

with α = B(C,Σb) and α̃ =W(C,Σ)

Property 22 is proved using Lemmas 23 and 26 which
show respectively that aspects do not modify the base pro-
gram state and its control flow.

In proofs, if α is a trace then its ith element is denoted
by αi and its prefix α1 : . . . : αj by α→j . The auxiliary
functions projb and preserveb are defined as follows:

projb : TracesB ∪ TracesW → Sequenceib
projb((ib,Σ) : T) = ib : (projb T)
projb((ia,Σ) : T) = projb T

preserveb : TracesW → bool
preserveb(α̃) = ∀(j ≥ 1). α̃j = (ia,Σj)

⇒ α̃j+1 = (i,Σj+1) ∧ Σbj = Σbj+1

where TracesB, TracesW and Sequenceib denote the sets
of base program execution traces, woven execution traces
and sequences of base instructions respectively.

LEMMA 23.

∀(a ∈ Aspo).∀(C,Σ). Σψ = [[a]] ⇒ preserveb(α̃)
with α̃ =W(C,Σ)

Proof. It is easy to see (proof by cases) that all ia instruc-
tions of {So; proceed;So} modify only Σa after reduction
by →. Indeed, instructions of So write only aspects vari-
ables and the proceed stack ΣP (modified by proceed) is a
subset of Σa (ΣP ⊂ Σa).

To prove Lemma 26, we first prove Lemma 24 which
expresses that for any prefix of α, there exists a prefix of α̃
equal after projection on base program instructions.

LEMMA 24.

∀(a ∈ Aspo).∀(C,Σ). Σψ = [[a]]
⇒ ∀(l ≥ 1).∃(m ≥ l). projb(α→l) = projb(α̃→m)

with α = B(C,Σb) and α̃ =W(C,Σ)

Proof. By induction on length of α and α̃ and assuming that
the advice terminates (Hypothesis 25).

HYPOTHESIS 25.

∀(Do around P {s} ∈ Aspo). s terminates

By Hypothesis 25
(∀(j ≥ 1). α̃j = (ia,) ⇒ ∃(k > j). α̃k = (ib,))

Base case l = 1
α→1 = (i1,)

Σψ(i1 : ,) = nil ⇒ α̃→1 = (i1,)
by definition of W(C,Σ)

⇒ projb(α→1) = projb(α̃→1)
by definition of projb

Σψ(i1 : ,) 6= nil ⇒ α̃→1 = (ia,)
by definition of W(C,Σ)

⇒ ∃(m > 1). α̃m = (i1,) ∧
∀(m′ < m). α̃m′ = (ia,)

by Hypothesis 25, and definition of W(C,Σ)
⇒ ∃(m > 1). projb(α→1) = projb(α̃→m)

by definition of projb

Induction l = n

We assume that

∃(m ≥ n). projb(α→n) = projb(α̃→m)

and show that this is the case for l = n+ 1
α→n+1 = α1 : . . . : αn : αn+1 ∧ αn+1 = (in+1,)

Σψ(in+1 : ,) = nil
⇒ ∃(m′ = m+ 1 ≥ n+ 1). α̃m′ = (in+1,)
∨ (∃(m′ > m+ 1). α̃m′ = (in+1,)
∧ ∀(m < m′′ < m′). α̃m′′ = (ia,))
by Hypothesis 25, and definition of W(C,Σ)

⇒ ∃(m′ ≥ n+ 1). projb(α→n+1) = projb(α̃→m′)
by definition of projb

Σψ(in+1 : ,) 6= nil
⇒ ∃(m′ > m+ 1). α̃m′ = (in+1,)
∧ ∀(m < m′′ < m′). α̃m′′ = (ia,))
by Hypothesis 25, and definition of W(C,Σ)

⇒ ∃(m′ > n+ 1). projb(α→n+1) = projb(α̃→m′)
by definition of projb andW(C,Σ)

LEMMA 26.

∀(a ∈ Aspo).∀(C,Σ).
Σψ = [[a]] ⇒ projb(α) = projb(α̃)
with α = B(C,Σb) and α̃ =W(C,Σ)

Proof. Using Lemma 24 and the coinduction relation [9]
below

projb(α) = projb(α̃)
⇔ ∀(k ≥ 1). approx k projb(α) = approx k projb(α̃)

where approx k α is a function returning the k-first ele-
ments of the sequence α.

