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The synchronous dataflow model of computation is widely used to design embedded stream-processing appli-
cations under strict quality-of-service requirements (e.g., buffering size, throughput, input-output latency).
The required analyses can either be performed at compile time (for design space exploration) or at run-time
(for resource management and reconfigurable systems). However, these analyses have an exponential time
complexity, which may cause a huge run-time overhead or make design space exploration unacceptably slow.
In this paper, we argue that symbolic analyses are more appropriate since they express the system per-
formance as a function of parameters (i.e.,, input and output rates, execution times). Such functions can
be quickly evaluated for each different configuration or checked w.r.t. different quality-of-service require-
ments. We provide symbolic analyses for computing the maximal throughput of acyclic synchronous dataflow
graphs, the minimum required buffers for which as soon as possible scheduling achieves this throughput,
and finally the corresponding input-output latency of the graph. The paper first investigates these problems
for a single parametric edge. The results are extended to general acyclic graphs using linear approximation
techniques. We assess the proposed analyses experimentally on both synthetic and real benchmarks.
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1. INTRODUCTION

Embedded stream-processing applications become computationally intensive with
strict quality-of-service requirements. Many-core platforms are hence required for per-
formance, scalability and energy consumption reasons [Kumar et al. 2011]. To take
advantage of such platforms, design models should express task-level parallelism and
be simple enough to allow predictable system design.

Dataflow process networks (DPN) [Dennis 1974] and Kahn process networks
(KPN) [Kahn 1974] allow to explicitly express parallelism and communications where
tasks (or actors) are independent and communicate only through channels. Using a
dataflow model of computation (MoC), concurrency can be implemented without ex-
plicit synchronization mechanisms and data races are ruled out by construction. Fur-
thermore, these models are inherently functionally deterministic, i.e., for the same

1This paper is an extended and improved version of [Bouakaz et al. 2016b].
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sequence of inputs, the system will always produce the same sequence of outputs. How-
ever, many important properties such as boundedness (i.e., the system can execute in
finite memory) and liveness (i.e., no part of the system will deadlock) are undecidable.

The synchronous dataflow (SDF) model [Lee and Messerschmitt 1987] is a restric-
tion of DPN and comes with static analyses that guarantee the boundedness and live-
ness of an application as well as predictable performances (e.g., throughput, latency,
memory requirements). For these reasons, it is widely used to design digital signal
processing and concurrent real-time streaming applications on many-core platforms.

In response to the increasing complexity of stream-processing systems, many para-
metric extensions of the SDF model have been proposed (e.g., PSDF [Bhattacharya
and Bhattacharyya 2001], SPDF [Fradet et al. 2012], BPDF [Bebelis et al. 2013],
7wSDF [Desnos et al. 2013], etc.) in which the graph (e.g., its communication rates or
channels) may change at run-time.

Performance analyses of SDF graphs are used to check whether non-functional re-
quirements are met. They can be performed both at design time and at run-time. At
design time, it is a crucial step in the development of embedded applications. Many
decisions and settings of the system need to be explored (e.g. hardware/software par-
titioning, memory allocation, granularity and different implementations of tasks, pro-
cessor speeds, etc.) and the best options that satisfy the non-functional requirements
can be chosen. At run-time, performance analysis is performed either for resource man-
agement or to cope with the dynamic behavior of parametric extensions of SDF.

The most prominent performance constraints of real-time stream-processing sys-
tems are throughput, latency and memory. Throughput is a crucial timing constraint of
stream-processing systems. For example, a video decoder is supposed to decode a min-
imum number of frames per second. A throughput-optimal scheduling policy, such as
self-timed scheduling, allows the designer to guarantee timing requirements. Latency
is another important timing constraint that is usually used in the design of real-time
control systems. It measures the time delay between stimulation and response, and
hence the reactiveness of the system and its ability to react in a timely way. Finally,
most embedded systems must comply to severe constraints on the size, weight, power
and cost. Therefore, the minimization of memory requirements is a crucial step in the
design of such systems. Throughput, latency, and memory measures are often antago-
nistic. Huge efforts have been devoted in the past decades to solve these problems.

We focus on self-timed scheduling that produces maximal throughput (with suffi-
ciently large buffers). We propose symbolic analyses of dataflow graphs where com-
munication rates and execution times of actors are parameters. Most non-functional
properties of the application can be described as a function of these parameters. By
evaluating these functions for specific values, the properties and performance of spe-
cific configurations can be obtained efficiently. We propose three symbolic analyses of
acyclic graphs under self-timed scheduling to answer the following questions:

Q1. What is the throughput of the application?
Q2. What are the minimum channel sizes that allow maximum throughput?
Q3. What is the latency of the application under such channel sizes?

Although our symbolic analyses may give only approximate (but safe) results, they
are very useful in many cases (see Fig. 1):

(i) At early design stages, the SDF graph modeling the application is only partially
specified and design space exploration may require a potentially huge number of con-

figurations to be analyzed (path [3]). Symbolic analyses are a big advantage in this case:
formulas are generated only once and simply evaluated for each possible configuration
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Fig. 1. Symbolic and numerical analyses.

(i.e., set of parameters) (path [4)). Indeed, exact algorithms for throughput and latency
computation may be acceptable at compile-time; however, frequent calls to these al-
gorithms to check a large set of configuration values make design space exploration
unacceptably slow.

(ii) Similarly, non-functional requirements of parametric dataflow models can be ex-
pressed symbolically as parametric formulas at compile-time. Then, the requirements
can be either checked by evaluating formulas for all potential configurations (path )
or, better, by an analytic proof (path[6a)). For instance, the designer could be interested
in ensuring at compile-time that the throughput of the application is never below some
given quality-of-service regardless of parameters changes at runtime.

(iii) For dynamic models and run-time resource management, appropriate settings
have sometimes to be chosen dynamically. Consider a parametric application where
frequency scaling is used to guarantee a specific throughput while minimizing power
consumption: frequency must be adjusted at each parameter change. Instantiating
the graph (path [5)) and performing a numerical analysis is far too costly at run-time.
Consequently, fast analyses, like the evaluation of symbolic formulas, are required

(path [6b)).

(iv) Finally, even for completely static SDF graphs, many analyses have an exponential
complexity. Exact algorithms for minimal buffer sizes are too expensive even for small
graphs: [Moreira et al. 2010] shows that this problem is NP-complete for homogeneous
SDF (HSDF) graphs. Besides, SDF-to-HSDF conversion may lead to an exponential
growth of the size of the graph. Our symbolic analysis (path [2]) is much more efficient
and its approximate solution can also be considered as a starting point to prune the
parameter space and hence improve the performance of the exact algorithm.

This paper is an extended and improved version of [Bouakaz et al. 2016b] which was
limited to the symbolic computation of buffer sizes. Section 2 introduces the applica-
tion model, the scheduling policy, and the definitions. Section 3 presents the through-
put analysis of acyclic SDF graphs and the duality theorem required to solve the other
questions. Section 4 presents different symbolic analyses for a simple SDF graph with
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a single edge A 2% B where p (resp. ¢) is the symbolic production (resp. consump-
tion) rate of actor A (resp. B). Section 5 describes linearization techniques for graph

A2 B that are used in Sections 6 and 7 to extend the results of Section 4 to general
acyclic graphs. Section 8 presents experiments conducted on synthetic and real-case
benchmarks. Finally, we review related work in Section 9 and conclude in Section 10.

The interested reader will find a sketch of the main proofs in the electronic appendix
and yet more additional details in a companion paper [Bouakaz et al. 2016al].

2. BACKGROUND
2.1. Application model

An SDF graph G = (V, E) consists of a finite set of actors (computation nodes) V and
a finite set of edges F that can be seen as unbounded FIFO channels. The execution
of an actor (called firing) first consumes data tokens from all of its incoming edges
(its inputs), then computes and finishes by producing data tokens to all of its outgoing
edges (its outputs). The number of tokens consumed (resp. produced) at a given input
(resp. output) edge at each firing is called its consumption (resp. production) rate. An
actor can fire only when all its input edges have enough tokens, i.e., at least the number
specified by the corresponding rate. An edge may contain some initial tokens. Finally,
we denote by tx the execution time of actor X.

Fig. 2. The simple SDF graph with t4 = 2, {g = 7, and one initial token.

For instance, Fig. 2 shows an SDF graph with two actors A and B, with execution
times ¢4 = 20 and tg = 7. The production and consumption rates on channel A — B
are 8 and 5. This edge carries one initial token, represented by the black dot.

Each edge carries zero or more tokens at any moment. The state of a dataflow graph
is the vector of the number of tokens present at each edge. The initial state of a graph
is specified by the number of initial tokens on its edges. The initial state of the graph
of Fig. 2 is represented by the vector [is5 = 1].

An iteration of an SDF graph is a non empty sequence of firings that returns the
graph to its initial state. For the graph in Fig. 2, firing actor A five times (producing
40 tokens) and actor B eight times (consuming 40 tokens) forms an iteration. The rep-
etition vector Z = [z24=5, z5=8] indicates the number of firings of actors per iteration.
If such a vector exists, then the graph is said to be consistent [Lee and Messerschmitt
1987]. We denote by zx the number of firings of actor X in the iteration. The repeti-

tion vector is obtained by solving a system of balance equations. Each edge A 2% B is
associated with the balance equation z4p = zgq, which states that all produced tokens
during an iteration must be consumed within the same iteration.

Homogeneous SDF (HSDF) is a restriction of SDF where all the production and
consumption rates are equal to 1. HSDF graphs are particularly useful because (i) any
consistent SDF graph can be converted into an HSDF graph; and, (ii) the throughput
of an HSDF graph can be computed as the inverse of the Maximal Cycle Ratio (MCR)
of the graph (or Maximum Cycle Mean, MCM?2). The ratio of a cycle is equal to the sum
of execution times of the actors in the cycle divided by the number of initial tokens
in the channels of this cycle. This provides a way to compute the throughput of any
SDF graph. Yet, there are two important drawbacks: first, the translation from SDF

2Although the MCR and MCM differ slightly, they are often used indifferently in the dataflow literature.
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to HSDF in general leads to an exponential increase of the number of nodes; second,
partially specified or parametric SDF graphs cannot be converted into HSDF.

2.2. Scheduling policy

In this paper, we focus on as soon as possible (ASAP) scheduling of consistent graphs
without auto-concurrency (i.e., two firings of the same actor cannot overlap). In such
self-timed executions [Sundararajan Sriram 2000], an actor fires as soon as it becomes
idle (no auto-concurrency) and has enough tokens on its input channels. We assume
that there are sufficient processing units, e.g., there are as many processors as actors or
all actors are implemented in hardware. ASAP scheduling allows the graph to reach its
maximal throughput. Such schedules are naturally pipelined and composed of a tran-
sient phase followed by a steady state that repeats infinitely. Fig. 3 shows the ASAP
schedule of a simple SDF graph: each rectangle is one actor firing whose length is pro-
portional to the actor’s execution time, and the thick broken lines mark the iterations
boundaries.

Transient phase steady state

La(2) | |
|
Fig. 3. ASAP schedule of the SDF graph A>3 B with t4=15 and t5=8.

Fig. 4 illustrates how to make the absence of auto-concurrency explicit in an SDF
graph by adding self-edges with rates equal to 1 and a single initial token: firing A
consumes the unique token in its self-edge, preventing any other firing of A until an-
other token is produced to the self-edge at the end of the current firing. Disabling
auto-concurrency is mandatory for stateful actors to ensure proper state update.

Fig. 4. The SDF graph of Fig. 2 with auto-concurrency disabled and channel size bounded by 15.

Channels are unbounded in SDF. However, the size of a channel A 2% B can be

constrained to contain at most d tokens by adding a backward channel B X5 A with d
initial tokens, as shown in Fig. 4. This modeling, assumed in most works, enforces that
an actor can start firing only if there is enough space on its output channels. Moreover,
the empty space is made available not at the beginning of the firing of the consumer
but when it produces the tokens representing buffer places. One could imagine a less
conservative modeling where the consumer makes the empty space available just af-
ter consumption, and the producer checks whether there is enough empty space only
at the end of its firing. However, the approach proposed in this paper for symbolic
computation of buffer sizes can be adapted to any modeling technique.

In this paper, we study only consistent acyclic SDF graphs with initially empty chan-
nels (except self-edges).
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2.3. Definitions

The multi-iteration latency Ls(n) of the first n iterations of a graph G is equal to the
finish time of the last firing of its first n iterations (time is counted from the very first
firing).

The period P of the execution of a graph G is the average length of an iteration and
is formally defined as

Pe = lim /:G(n)

n— oo n

o)

The throughput T of a graph G is the number of iterations per unit of time, hence:
Te =1/Pc (2)

Eq.(1) and Eq.(2) show the relation between throughput and multi-iteration latency.
This is particularly useful in the case of parametric dynamic dataflow models where
parameter reconfigurations are frequent. If a given configuration lasts only during m
iterations, then m/Ls(m) gives the achievable throughput for the current configura-
tion.

The input-output latency {g(n) of the n'” iteration of a graph G is equal to the time
between the start time of the first firing and the finish time of the last firing of the n**
iteration. The definition given in [Ghamarian et al. 2007] is slightly different but in
our context (graphs with initially empty channels) the two definitions are equivalent.

The input-output latency of the complete execution ¢/ is defined as the maximal
latency over all iterations:

g = max_ lg(n) 3)

Input-output latency is particularly useful for real-time control systems since it is
the maximum delay between sampling data from sensors and sending control com-
mands to the actuators.

For a channel A 2% B, the i firing of B (denoted B,) is enabled if and only if the
number of produced tokens is at least i ¢. Hence, B has to wait for the j** firing of A
(denoted A;) such that jp > iq. The data-dependency between A and B is formalized
by the following equation:

B; > A; with j:[ﬂ (4)
p

The ceiling function in Eq. (4) makes symbolic manipulations difficult. We propose
in Section 4 a new characterization that is more intuitive and suitable to reason about
buffer sizes and latency.

3. THROUGHPUT AND DUALITY

In this section, we first determine the exact maximal throughput for acyclic SDF
graphs (Q1). Then, we introduce the notion of duality and present a property on dual
graphs, used to address the minimum buffer sizes and latency questions.

PROPERTY 3.1 (THROUGHPUT). The maximal throughput of an acyclic SDF graph
G = (V,E) is equal to

To—— 1 )

t
Reptaata)

Hence, the minimal period is Pg = ﬂ{la‘i‘{zAtA}-
€
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(a) HSDF graph equivalent to (b) HSDF graph equivalent to
A—0—>2 TB B> A

Fig. 5. SDF-to-HSDF transformation of a graph and its dual.

We say that actor A imposes a higher load than actor B when z4ty > 2ptg. The
throughput and period of an acyclic graph are therefore defined by the actor that has
the highest load, that is actor argmax 4, {24t4}. This implies that this actor never gets
idle (i.e., all its firings are consecutive) once the execution enters the steady state.

Definition 3.1. The dual of an SDF graph G, denoted G, is obtained by reversing
all edges of G.

THEOREM 3.2 (DUALITY THEOREM). Let G be any (possibly cyclic) live SDF graph
and G be its dual, then Tg = Tg- and Vi. Lg(i) = L (i).

We use the transformation of a graph to its dual as well as Theorem 3.2 at several
occasions during the analysis of minimal buffer sizes and latency.

4. THE PARAMETRIC GRAPH A 2% B
This section focuses on the simplest parametric acyclic SDF graph made of a single

edge: G = A 2% B. The graph G is parametrized by the production and consumption
rates p,q € Nt as well as the execution times 4,73 € RT. The balance equation z4p =
zpq entails that the repetition vector of this graph is:

[24=q/ ged(p, q), 26 =p/ ged(p, q)]
and, according to Property 3.1, its throughput is:

1
Te=———"F"""— (6)

max(zata, 25tB)

We provide exact symbolic formulas for the minimum buffer size and latency ques-
tions. This section shows that the symbolic analysis, even for such simple graphs, is
quite involved.

4.1. Enabling patterns

We introduce enabling patterns, which characterize the data-dependency between a
producer and a consumer. A formal definition can be found in [Bouakaz et al. 2016a].
Compared to Eq. (4), they are better suited to the reasoning about buffer sizes and
latency. Intuitively, an enabling pattern between a producer and a consumer describes
how firings of the consumer are enabled by the firings of the producer. For example,

the enabling pattern of A 2% Bis A2~ B, meaning that after every two firings of

actor A, one firing of B is enabled (B! is written B). The enabling pattern of A4 25%pB
is A~ B; A~ B?; A~ B; A~ B?)? which is illustrated in Fig. 6. This pattern can also
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be written as the factorized pattern:
[AMB; [A’\’)B2]i]i:1"2

This factorized representation is particularly useful when the length and shape of en-
abling patterns depend on parameters. Depending on the production and consumption

rates p and ¢, there are six possible enabling patterns.

A~~B A~ B?

A~ B A~ B? A~ B2

A

B

Fig. 6. An ASAP execution of A2 B with ta =20and tg = 7.

PROPERTY 4.1. Fig. 7 gathers all possible enabling patterns for the graph A~ B.

CaseA. p>gq
Letp=kq+rwith0<r <gq

CaseB. p<gq
Letg=kp+rwith0<r<p

Case A.l. =0
A~ BF
Case A.2. ¢ <2r

1 ged(p,q)

[AMBk;[A'\»Bk'*'l]aj}j:
Case A.3. ¢ > 2r

(35 e o] 55

CaseB.1. =0

A~ B
Case B.2. p > 2r
j=1--

[Ak-&-lMB;[AkMB]’Yj} FdD
Case B.3. p < 2r

—r

“Ak+1fv>B] Aj ;Ak'\»B] j:1“gC5(z’,q)

where o; = { ir J - Vj

q—r q

7_1)"'J where ~; = LEJ - {(J*UPJ 1
and g; = Pﬂ

j—1 jir j—1)r
*Pﬂﬂ*l- and&:[] W,[o W
Fig. 7. Enabling patterns.

p—r

4.2. Minimum buffer size for maximum throughput of A~% B

We now use enabling patterns to compute the minimum size of the buffer 4 % B
(denoted 64 p) such that the ASAP execution achieves the maximal throughput (given
by Eq. (6)) or, equivalently, the minimal period. The buffer size is modeled by adding a
backward edge with 64 p initial tokens. We distinguish two cases:

e Case 24ty > zgig (i.e, qt4 > ptg): Actor A has the highest load and should fire
consecutively for maximal throughput. Let §; be the minimum number of initial tokens
in the backward edge (representing the buffer size) such that the j*” firing of A can
occur immediately after the (j — 1) firing of A. By definition of 04 5, we have 04 5 =
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max J;. Let 2; denote the number of firings of B that have finished by the start of the
J
j firing of A. Hence, §; = jp — x;q and

OaB = mjaX(J'p —7;q) (7

The main difficulty when solving symbolically Eq. (7) is to identify an analytic for-
mula for sequence (z;). Enabling patterns are the key to solve this problem. A trivial
case is (A.1) where p = kq and the enabling pattern is A~ B*. In order for A to fire con-
secutively, the backward edge should have at least 2p tokens. This is because t4 > kig,
so the first k firings of B complete before the third firing of A, which still needs 2p
initial tokens in order to fire again immediately, i.e., 63 = 2p. This behavior repeats
for all iterations, hence, Vi > 2. §; = 2p and the minimum buffer size is 2p. In general,
unlike sequence (z,), enabling patterns are time-independent. Thus, when consider-
ing execution times ¢4 and tg, three cases will emerge (cases I, II, and III in Fig. 8);
each one has to be solved w.r.t. all possible enabling patterns. The three cases should
be read as “I else II otherwise III”. These cases are described in details in [Bouakaz
et al. 2016a]. For instance, case I corresponds to the case where at any given enabling
point (i.e., any ~» in the enabling pattern), all newly enabled firings of B complete their
execution before the next enabling point.

PROPERTY 4.2. If zata > 25tp, then the minimum buffer sizes of A X% B for maxi-
mal throughput are given by the symbolic formulas of Fig. 8.

e Case 25ty < zptp (i.e, gty < ptg): Actor B has the highest load and should fire consec-
utively for maximal throughput. However, in general not all firings of B are necessarily
consecutive since initially, there are no tokens to be consumed. The previous approach
can still be followed thanks to the duality theorem. Since the graph G and its dual G
have the same throughput, we can apply the former reasoning on G~ where B is the
producer and has the highest load. Then, Property 4.3 will be used.

PROPERTY 4.3. If Op 4 is the minimum buffer size that allows the ASAP execution
of G™ to achieve its maximal throughput, then the minimal buffer size 04  for G is
such that 04 p = 0p_4 (obtained from Property 4.2 by mutual replacement of A by B and

of p by ¢).

NoOTE 4.1. If actors A and B impose the same load (i.e., zat4 = 2gtg), then all four
cases (II1.A.2, I11.A.3, II1.B.2 and II1.B.3) give the same upper bound:

04 g = 2(p+q—ged(p, q)) (13)

This bound is also tight, in the sense that for all p, ¢, there exist t4 and ¢z such that 64 g
as given in Fig. 8 is equal to 0} . This upper bound does not depend on the execution
times of the actors. Therefore, it can be used as a safe buffer size if the execution times
of actors are unknown.

4.3. Multi-iteration latency of A 2% B
In this section, we derive analytical formulas for the multi-iteration latency of the

first n iterations (i.e., Ls(n)) of graph A L 9% B (assuming a constant configuration
of the parameters). Since our goal is to compute (an approximation of) the maximal
achievable throughput, we suppose that buffers are unbounded. There are two cases
depending on whether A or B imposes the highest load.
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Case L.
Case L1. A1V ((A2VAS3)A (t4 > (k+ 1))
04,5 = 2p +q — ged(p, q) (8)
Case I.2. B.1V ((B.2VB.3)A (tg < kta))
t,
04,5 =p+q—ged(p,q) + Lﬂ p 9)
Case II.
CaseILl. (A2A+ > H;ﬂll 5)V (A3 AT > o) where ' =ty — ki
tp
0a.8 =2p+q—ged(p, g [ —‘ (10)
Case I1.2. (B2 Av/ <[£1 a)V (B3 AY <LL H ) where r' = tp — kia
/
0a,8 =P+ 2q — ged(p, q) + {tA _T,W (p—r) (11)
Case III.
CaseIIl.1. A2
ba.5 = 2p+q+7 — ged(p, @) + fax(jr mod (q — 1)) (12)
j:

where n is the smallest positive integer such that LB"E;,J > [%W and ' = t4—ktp.

Cases II1.(A.3), IT1.(B.2), II1.(B.3) see [Bouakaz et al. 2016al].

Fig. 8. Minimum buffer size 4 p When z4t4 > 2ptp.

e Case zuty > zplp, i.e., A imposes a higher load than B. As illustrated in Fig. 9,
actor A never gets idle and Pc = zata. Therefore, we can put

La(n) =nPg + AaB (14)

such that A4 p is the remaining execution time for actor B after actor A has finished
its firings of the n'" iteration (Aa,p is constant over all iterations). The value of Ay p
is given by Property 4.4. Eq.(14) shows that the multi-iteration latency will under-
approximate the maximal throughput by only a small amount that decreases with the
value of n. Indeed, an over-approximation of the achieved period is

,Cg(’n) . nPe + Aa B _

n n
because A 4p is non-negative, as can be shown from Property 4.4.

PROPERTY 4.4. If zata > zptp, then the value of A4 p is given by the symbolic formu-
las of Fig. 10.

e Case 25ty < 2ip, i.e., B imposes a higher load than A. As illustrated in Fig. 11,
actor B never gets idle in the steady state. However, in general, not all firings of B are
necessarily consecutive since initially there are no tokens on the forward edge A — B.
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Fig. 9. Multi-iteration latency £ (2), case zata > zptp (p=5, ¢=3, ta =14, tg =8).

Case 1.
Ay — M " (15)
q
Case II1.
Case I1.1.
AA,B =1ts + quir—‘ ((/C + 1)tB — tA) (16)
Case I1.2.
Aup =15+ F’rﬂ (ts — kta) 17
Case III.
Case IIl.1. Letr' =t4 — ktg and n = gc‘é(*;q)
o . .y .
AAB:tA“FT/—FM—‘r(tB—T/)ma%(( JT —{JTJ> (18)
’ ged(p, q) =0 \tg —r" [q—r
Cases II1.(A.3), ITI1.(B.2), IT1.(B.3): see [Bouakaz et al. 2016a].

Fig. 10. Multi-iteration latency: value of Ay p.

Note that A4 5 is not constant over all iterations and diverges to infinity if the buffer
is supposed unbounded. We thus compute L (n) with the duality theorem. We have
La(n) = Lg-(n). Since the producer B in graph G—! imposes the highest load, we
have L5-1(n) = nPg- + Ap 4 where Ap 4 is computed on the dual graph thanks to
Property 4.4.

4.4. Input-output latency of A% B

We now derive analytical formulas for the input-output latency /¢ (n) of graph A *% B.
There are two cases depending on which actor imposes the highest load.

e Case A imposes the highest load: /¢(n) is equal to the finish time of the n'" iteration,
which is equal to L5 (n) = nPg + Aa g (Eq. (14)), minus the start time of the first firing

of A in the n'" iteration. This start time is equal to (n — 1)P¢ since A is never idle.
Hence,

lg(n) = La(n) — (n—1)Pg = Pc + Aa, (19)

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article 0000, Pub. date: 2016.



0000:12 A. Bouakaz et al.

! 2zata g

A Ay As - £o(2)

Bs

|
|
|
T
<
Ayp ! AV:: !

21 - —|-

Fig. 11. Multi-iteration latency £ (2), case zats < zptp (p=>5, ¢=3, ta =14,tp =12).

Hence, (¢ = Po + Aa.p = Lg(1); i.e., the first iteration results in the maximum delay
between sampling inputs and sending results.

e Case B imposes the highest load: We have {;(n) = L& (n) — (n —1)zaty if the buffer is
unbounded. In this case, the input-output latency diverges with n. However, in prac-
tice the buffer is bounded. The buffer size will impact the input-output latency since
the firings of A will not be consecutive. As in the previous case, we will assume that
the buffer size is larger than 64 p to allow the maximal throughput (i.e., B runs con-
secutively in the steady state). We propose an over-approximation of the maximum
input-output latency in Section 5.2, which uses a backward linearization technique.

5. LINEARIZATION OF A 2% B

In order to use the results of the previous section to obtain approximate analyses of
general acyclic dataflow graphs, we propose a technique that linearizes the firings of
actors. We propose a forward linearization (i.e., linearizing the firings of the consumer)
and a backward linearization (i.e., linearizing the firings of the producer).

5.1. Forward linearization of graph A 2% B

Consider the graph G = A 2% B, where, as illustrated in Fig. 12, the firings of A are
consecutive while those of B are neither consecutive nor uniformly distributed. Let
f5(i) denote the finish time of the i firing of actor B. In order to derive formulas that
can be composed (e.g., to deal with a chain of actors), we transform B into two fictive
actors B" (upper bound) and B’ (lower bound) that both fire consecutively as many
times as B does (i.e., zg« = z¢ = z5°), and such that

Vi. fe(i) < fp(i) < fpu(i)
Actor B® (i.e., B* or B) has a starting time t3. and an execution time #3-, and, since
it fires consecutively, fz- (i) = itps + t3..

In the following, we will present tight linearizations, in the sense that 3i. fz(i) =
f5= (). For instance, we can see in Fig. 12 that the 5" firings of B and B* finish at the
same time. o

Intuitively, thanks to these linearizations, a chain A *% B2, C such that zt4 >
zptp > zcte can be treated by first scheduling the subgraph A 2% B, then linearizing
the firings of B (which are not consecutive since z4t4 > zptg) to obtain B¥, then

scheduling the subgraph B* *—%; C, and finally combining the two schedules. Thanks
to this approach, we can compute a safe upper bound of the minimum buffer sizes for

3Actually, this is valid if we compute over a single iteration. Regarding the multi-iteration latency, we lin-
earize over a fixed number n of iterations.
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a chain A — B — C, instead of trying to generalize the formulas of Fig. 8 for the two
edges, which is too complex.

5.1.1. Upper bound linearization. We present two linearization methods, Push and
Stretch, illustrated in Fig. 12. Push is applied to n successive iterations: it consid-
ers the actor B? which is obtained by pushing all the firings of B in n iterations to the
right end to get rid of all the gaps. The execution time remains the same (i.e., tgr = tp)
but the start time of the first of the consecutive firings varies with the number of itera-
tions n considered. It is equal to the multi-iteration latency £4(n) minus the execution
time of nzp firings: t3, = L(n) — naptp.

[ 4 | | | | | el
B 0O B
Stretch Bg ‘ | | Bs | |: |
tpe .
Push | | [ [ [ [ ]]
‘BP !

Fig. 12. Upper bound linearization (p = 8, ¢ = 5, t4 = 20, tg = 7).

The second method, Stretch, builds the actor B* by increasing the execution time of
B in order to fill the gaps over an infinite execution. We distinguish two cases:

e Case z4ty > zptg: This case is illustrated in Fig. 12. We fix the load of B® to be the
same as A, that is tgs = ’1% Then t3., the starting time of B, is computed as follows:
for all i, we have fz: (i) = itgs + t3.; since we also want fz:(i) > fz(i) to hold for all i,
it follows that Vi. t3. > fz(i) — itg-; hence t3. = max(fp(i) — itg:). As in the case of
the minimum buffer size problem, we have to consider the three cases (I), (II) and
(IIT) and all six enabling patterns. It can be shown (see [Bouakaz et al. 2016a]) that
. =ta+tp — Wtf;. We conclude that:

t d
Vi. fgs(i) = itgs + th. = q?“z' + (tA +ip — gC(;?’Q)tA) (20)

Method Stretch may move the starting of some firings earlier (e.g., the 2!" firing of
B® in Fig. 12), but it always postpones their endings. This is why it is a safe over-
approximation for computing the multi-iteration latency.

e Case 24ty < zgptp: In this case, methods Push and Stretch are identical. The firings
of B are consecutive in the steady state. Therefore, we can take igs = tg» = ¢ and,
using the duality theorem, we have L (n) = Lg-1(n) = nzptg + Ap 4 and we can take
3. = Ap a, where Ag 4 is computed on the dual graph (Property 4.4).

5.1.2. Lower bound linearization. Here we use the Stretch method: the execution time of
B is increased in order to fill the gaps over an infinite execution, yielding a new actor
B* such that Vi. fg:(i) = itge + ty, < fs(i), i.e., the finishing times of B are moved
earlier. This implies that the the starting times of B‘ may also be moved earlier. Again,
we distinguish two cases:
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e Case 25ty > zptp: We have iz = % and tgz = min(fg(i) — itge). Fig. 13 shows the

symbolic formulas for tgg (the proof'is in [Bouakaz et al. 2016a]).

Case A. p>gq
Letp=Fkgq+rwith0<r<gqg

the = ktg + min {tB, m‘} (21)
P

CaseB. p<gq
Letg=kp+rwith0<r <pand o =ptg — qia
Case L.
the =tp (22)
Cases IT + I1I.

— —0 r— d
e =tot 2ot [2] L min {27, 22000, 23)
p rip p b

Fig. 13. Lower bound linearization in case zat4 > 25t5.

e Case zuty < zptg: This case is equivalent to a push to the left, that is, deriving a
fictive actor B’ such that t5. = t5, B has the same starting time as By, and all firings
of B* are consecutive. Hence, t9, is equal to t}.

5.2. Backward linearization of graph A% B

In order to compute the input-output latency of chains of actors, we also propose a
backward lower bound linearization of the producer. Here the goal is to make the fir-
ings of A consecutive. If A imposes a higher load than B, then the backward lineariza-
tion is trivial since the firings of A are already consecutive, assuming that the buffer
size allows the throughput to be maximal.

Suppose now that B imposes a higher load than A and that the channel is large
enough to allow B to run consecutively in the steady state (i.e., the ASAP execution
achieves its maximal throughput). Hence, a safe buffer size will be 64 5 (Property 4.2).

Let sx (i) denote the start time in the ASAP schedule of the i*" firing of actor X.
We want to transform actor A into a fictive actor A* with consecutive firings such that
Vi. sqe(i) < sa(i); i.e., start times are moved backward. This constraint is sufficient in
this case to guarantee an over-approximation of the input-output latency. However, if
channel A — B is a part of a chain (say Z — A — B), then we also need to ensure that
the finish times of A’ are not postponed; otherwise, this may impact the schedule of
graph Z — A’ by delaying the firings of Z (due to the buffer size constraint) and hence
under-approximating the total input-output latency. Therefore, the required lineariza-
tion constraint is rather:

Vi. fae(i) < fa(4) (24)

PROPERTY 5.1. If zata < ztp, then a valid backward lower bound linearization of
A is given by

fae (i) = itqe + (15 + sp(jo + 1) — dotar) (25)
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where (ig, jo) is a solution of the equation igp — jog = d (d being the smallest buffer size
guaranteeing the maximal throughput), and t,. and tg[ are the results of the forward

lower bound linearization of A in the dual graph G~

lg

At Al 14

tAe:9.6 Te~l sl S ' N N \ S ' B A ﬁG(Q)

B B

Fig. 14. Backward lower bound linearization (p=8, q=5, t4 =5, t5=6).

We now show how to use Property 5.1 to compute an upper bound of the input-output
latency of graph A2% B when B imposes a higher load than A. Fig. 14 illustrates the

ASAP execution of the graph G = A £ 5 B such that ¢4 = 5, tg = 6 and the buffer size
d is equal to 22. Actor A’ represents the backward lower bound linearization of A.

Let p denote the length of the interval between the finish time of the firings of B
after n iterations, i.e., Lg(n), and the finish time of the firings of A’ also after n it-
erations, i.e., fie(nza). So, p = La(n) — fae(nza), which is constant for all n. An over-
approximation of the maximum input-output latency is therefore:

4 . . . d
lg =Pg+p with (see electronic appendix) p= 5tB — 19 (26)

The following sections rest upon these linearization techniques. The forward up-
per bound linearization techniques, Push and Stretch are used to compute an over-
approximation of the multi-iteration latency; Stretch is also used to over-approximate
buffer sizes. Forward lower bound linearization is used as an intermediate technique
to compute the backward lower bound linearization which is applied to compute an
over-approximation of the input-output latency.

6. BUFFER SIZING FOR ACYCLIC GRAPHS

Exact symbolic buffer sizing for a single edge graph is already so complex that it seems
to be out of reach for arbitrary (even acyclic) graphs. This section shows how to use
the previous results to obtain approximate analyses for the minimum buffer sizes of
general acyclic dataflow graphs in order to reach the maximal throughput. To achieve
this, we make use of the forward linearization techniques.

We first present formulas to compute safe upper bounds for general DAGs, then we
present a heuristic that improves this bound for chains, trees (a DAG with only forks),
and in-trees (a DAG with only joins). These kinds of graphs, especially chains, are
common in streaming applications. Finally, we present the exact numerical analysis
that is used later to evaluate our approximate analyses.

6.1. Safe upper bounds

We first present a negative result. Let G be an acyclic graph and let the size of each
channel A 2% B be equal to 64 p as defined in Section 4.2. These buffer sizes do not
always permit maximal throughput (they do however allow maximal throughput in
some specific cases described in Section 6.2). Indeed, the computation of 64 5 assumes
that A runs consecutively. This is not always the case if A is constrained by some input
data-dependencies.
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PROPERTY 6.1. Let G be a graph without any undirected cycle, if the buffer of every
channel AL% B in G is at least 04 5 = 2(p + q — ged(p, q)), then the ASAP execution of
the graph achieves the maximal throughput*.

NOTE 6.1. Since the minimum buffer sizes below which the graph is definitely not
live are equal to p + ¢ — ged(p, ¢) [Battacharyya et al. 1996], Property 6.1 provides a
first solution that is less than twice the exact one. For parametric dataflow models, the
upper bound 0} ; can actually be reached for some configurations. However, if the sys-
tem supports dynamic reallocation of memory, it is still useful to evaluate the minimal
buffer sizes in order to adjust the buffers sizes after each configuration change.

Unfortunately, Property 6.1 does not hold for general acyclic graphs that contain
undirected cycles. A counterexample is the graph G. = {4 235 p 2% p ALl

C ii>D} with t4 =4, tg = 3, tc = 12 and ¢p = 8. The repetition vector is 2’ = [6, 8, 2, 3]
and all actors impose the same load (i.e., VX. zxtx = 24). The ASAP execution when
all buffer sizes are equal to their upper bound 2(p + ¢ — ged(p, ¢)) is shown in Fig. 15.
Actor A does not fire consecutively so the throughput is not maximal. The reason is
that the chain A— C — D imposes an earliest start time for D that is greater than the
earliest start time imposed by the chain A — B — D. More precisely, the first firing of
actor D is delayed by actor C, which delays the 7*" firing of B, which in turn delays
the 8" firing of A. Let f4, (resp. f3,) denote the forward linear upper bound on the
finish times of actor D following the first (resp. second) chain. We have f (i) = 8i+ 16
and ff,(i) = 8i + 28, hence f,(i) > f5,(i). In order to prevent the second chain
A — C — D from impacting the schedule of the first chain A - B — D, we must
increase the size of buffer B — D so that B can fire without being blocked during
f52(@) — f51(i) = 28 — 16 time units. Since B produces 3 tokens per firing and 5 = 3,

the size of the B— D buffer must be increased by [2510] x 3 = 12.

ol [ T T Taf | LT | [T ]

Fig. 15. ASAP execution of G; Z = [6, 8, 2, 3].

In general, if the actors of a chain 4; - A5 » ... - A,, do not have the same load,
we consider, as an upper-bound case, the chain where all actors’ loads are increased to
be equal to the maximum load of the original chain, obtained by applying the Stretch
method to all actors, i.e., the upper-bound forward linearization. Then, Eq. (20) can be
applied transitively on edges of this chain to compute a forward upper bound lineariza-
tion of A,,.

PROPERTY 6.2. Let two different chains from Ay to A, such that fau 1(i) = ta,i+s1,

Jau 2(i) = ta,i + s2 with s1 < so, and such that the size of each buffer A; RN N Aitq
is equal to 0} Apr = 2(p; + qi — ged(pi, ¢:))- In order to prevent the second chain from

4This property generalizes the double-buffering technique used for HSDF graphs.
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disturbing the schedule of the first one, it suffices to increase the size of the last channel
A,y 22t I AL of the first chain by (:

¢= [82 - ﬂ Pu_i 27)

ta,

Actually, ¢ can be computed in different ways (see [Bouakaz et al. 2016a]). This
approach can be applied to any acyclic graph with undirected cycles as shown in Algo-
rithm 1. Such an approach is safe but not always needed (e.g., when the predecessors
of a node do not have common ancestors).

ALGORITHM 1: Safe upper bounds for graphs with undirected cycles

Input: SDF graph G with undirected cycles, all actors impose the same load
Output: Safe buffer sizes

Data: L = list of actors of GG in topological order

while L # 0 do

B = dequeue(L);

pred(B) = incoming-edges(B);

if pred(B) =0 then sp =0;

else
for each edge AL% B € pred(B) do sp.a = sa + tf(p +q—gcd(p,q)) ;
SB = max (SB,A);

A2 Bepred(B)

for each edge AL B € pred(B) do size(AX-%B) =04 5 + [SB*SB’A—‘ D;

tA, 1

6.2. Improving the upper bounds

In this section, we improve the minimum buffer sizes for chains, trees, and in-trees,
starting with chains. We say that a chain is monotone iff either each actor imposes a
higher load than its successor, or each actor imposes a lower load than its successor.

Definition 6.1. The chain A; — --- — A, is monotone if and only if (Vi. 24,14, >
ZAi+1tAi+l) \% (VZ ZAitAi S ZA11+1tA1,+1)

PROPERTY 6.3. A monotone descending chain A, — --- — A,, where the size of each
buffer A; — Aiy1is at least Oa, 4,,, (Property 4.2) achieves its maximal throughput.

i4+1

First, note that Property 6.3 also holds for monotone ascending chains by duality.
Note also that Property 6.3 is only a sufficient condition, because 04, 4,,, allows actor
A; to fire consecutively. However, it is not a necessary condition to achieve the maximal
throughput.

Property 6.3 also holds for non monotone chains made of an ascending sub-chain
followed by a descending one. We say that those chains are of the form [ ]. The computed
buffer sizes on both sub-chains allow the actor(s) at the “top” of the [] to achieve its
maximal throughput (in full generality, there can be several such actors with identical
load).

Unfortunately, Property 6.3 does not hold for an arbitrary chain (i.e., neither as-
cending, descending nor of the form []). Our solution is to put such an arbitrary chain
under the form [ ]: we increase the execution times of some actors (without exceeding
the maximum load P¢), then we compute the buffer sizes as in Property 6.3, and finally
we restore the original execution times. Fig. 16 illustrates this solution.
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load

Fig. 16. Transformation of a chain to a [7] form.

Any chain on the form [ | obtained by increasing the load of the actors of the original
chain is a valid solution. For example, the chain A - B — ... - K of Fig. 16 can be
transformed into the red chain which is of the form []. Actually, any chain of this form
inside the gray area is a valid solution. An interesting problem is to find one that
minimizes the sum of the buffer sizes. We have proposed three possible solutions.

e MAX: All loads are raised up to the maximal load (i.e., the top boundary of the gray
area). This case is identical to Property 6.1, i.e., the size of each channel 4 2% B will
be equal to 0} p = 2(p + ¢ — ged(p, q))-

e MIN: All loads are raised up to the bottom boundary of the gray area. In Fig. 16,
the load of B will be increased to that of A, the load of E to that of D, and the load of
H to that of G.

e OPT: The third solution is an optimization heuristic based on two observations:
(i) The minimum difference between the loads of A and B that allows to optimize the

size of A X% B can be deduced from Fig. 8. (ii) The maximum gain on a channel size
that comes from changing the loads depends on the production and the consumption
rates of this channel. This expected size gain is used to prioritize the treatment of
channels.

More details on the OPT heuristic and an experimental comparison of the three
algorithms can be found in [Bouakaz et al. 2016a].

The case of trees is solved in the same way. If the tree does not contain any sub-trees
(i.e., it consists of a set of chains originating from the same root node), then the load
of the root node is first increased to be equal to the maximum of all loads in the tree
and then the previous method can be applied on every chain composing the tree. This is
correct because the computed buffer sizes will allow the root actor to run consecutively,
thus guaranteeing that the execution reaches the maximum throughput. If the tree
contains sub-trees, the same process is first applied recursively on sub-trees, and then
we proceed by replacing each sub-tree by its root node. In-trees are dealt with by using
the duality theorem.

7. LATENCY COMPUTATION FOR ACYCLIC GRAPHS

Like Section 6, this section shows how we can use the results for a single edge graph

A 2% B to obtain approximate analyses for the latency of general acyclic dataflow
graphs. To achieve this, we make use of the linearization techniques (Section 5.1).

7.1. Multi-iteration latency of acyclic graphs

In this section, we compute an upper bound of the multi-iteration latency of the first n
iterations, denoted L (n). Since we are interested in the latency, all the buffer sizes in
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G are assumed to be infinite. A similar approach can be used to compute a lower bound.
However, upper bounds are more useful in practice since they ensure important safety
properties (e.g., a deadline, a minimal quality of service, etc.). Here, the computed up-
per bound is used to under-approximate the maximal achievable throughput.

The principle is first to extract all the maximal chains from G, then to use an upper
bound forward linearization to compute the latency of each such chain, and to find the
best linearization that minimizes the over-approximation of the latency.

Any acyclic SDF graph G can be represented as a set of maximal chains G(G), that
is, chains from a source actor to a sink actor. By considering each chain g € G(G) as an
SDF graph®, we have the following property:

PROPERTY 7.1. For any acyclic SDF graph G, Vi. La(i) = max,eg(a){Ly(i)}

| _ Le()) .
! Lasp : :
........... ! i
0 T
tA=T7 i
” T
tp=13 :
S el T[]
lc=4
Upper bound ‘17)'
linearization A
Stretch | B | F#)'
tgu =17.5
el 1| LIL1]
- P >}
Lasc

Fig. 17. Computation of L a_c of achain A 2553 l0

Using Property 7.1, the problem reduces to computing the multi-iteration latency of

each chain in G. For each chain A 2> B2 ®, 0 — ... -5 Z, we compute an upper

bound of its multi-iteration latency for n iterations, denoted by La_z (we omit n for
the sake of conciseness). We can compute exactly £4_.p as described in Section 4.3.
However, since the technique assumes that the producer can run consecutively, in gen-
eral it cannot be applied between B and C. We compute an upper bound linearization
of the firings of B such that they are consecutive and Vj < nzg. fgu(j) > f5(j).

As illustrated in Fig. 17, the exact multi-iteration latency of chain A — B — C'is
La(n) = L5+ 6 where 6 is the remaining execution time of C' after the end of B.

Let n = fgu(nzz) — La_p (i.e., the approximation introduced by the upper bound
linearization, see Fig. 17), then § < Agu ¢ + 7. Indeed, Ag« ¢ (computed by Equations
of Fig. 10) gives the remaining time for C after the end of B (recall that firings of B
are consecutive and hence the method described in Section 4.3 can be used).

The critical part of this method is to find the best upper bound linearization
that minimizes the difference between the exact value § and the approximate one
(Agw.c + n). We propose two upper bound linearization methods, Push and Stretch
(Section 5.1.1). It can be shown that the two methods are incomparable even if we dis-
tinguish the cases when B imposes a higher load than C and vice-versa. In both cases,
there are graphs for which either Push or Stretch is better. Since the two methods are
not costly to try, we apply both and take the minimum.

5When computing the latency of g, the repetition count of each actor X in g is made equal to Zg(X).
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In the case of Push, we have

Lase<Lasp+n+Dprc=Lasg+0+Mpc
In the case of Stretch (Fig. 17), we have

Lase < Lasp+n+Apec
= Lasp+ (fpe(nz) — Lasp) + Apec = fe(n2p) + Aps o

Therefore, we have

Lase <min{la,p+ Ao, fos(nzm) + Aps.c} (28)

The same process can be repeated to treat an arbitrary long chain. For instance, to
compute the latency of the sub-chain A -+ B — C' — D, we have Lasp= mln{[ﬁ Asc +
Ac,p, fo=(nzc) + Acs p} such that L 4_,c is the latency computed in the previous step
(i.e., for sub-chain A — B — (), and C* is the linearization of C' using the method
Stretch applied transitively on actors of the sub-chain A — B — C.

NOTE 7.1. Instead of analyzing separately all the chains of a DAG, which may
have an exponential complexity, it is more efficient to use the compositionality of
our approach to prevent some recomputations. For instance, if we have two chains
A—-B—-D—FEFand A - C — D — FE (i.e, actor D is a join), then we merge the
information that comes from both paths: £4_,p is taken as the maximum of £4_,5_,p
and £4_,c_p. An algorithm inspired from longest path algorithms and using compo-
sitionality should achieve polynomial time complexity.

NOTE 7.2. According to the duality theorem, the multi-iteration latencies of a chain
A — --- — Z and of its dual are equal. However, our method may give different ap-
proximate values, i.e., LAy #+ L7 4. Therefore, for a given chain, we analyze both
the chain and its dual and return min{ﬁ Az L A}. Again, since both computations
have a linear complexity, this is not costly.

NoTE 7.3. Knowing whether the minimum buffer sizes to guarantee the maximal
throughput will also allow the graph to achieve its minimal multi-iteration latency is
an open problem.

7.2. Input-output latency of chains

We now compute the maximum input-output latency /4 (or an upper bound /) of a
chain G. The input-output latency of the n'" iteration, {5 (n) is equal to the difference
between the multi-iteration latency L4 (n) and the start time of the first firing of the
source actor in the n!” iteration.

If the source actor A imposes the highest load among all actors of the graph or if all
the channels are unbounded, then the source actor never gets idle and achieves the
maximal throughput. Hence, we can put

la(n) = La(n) — (n— 1)zata (29)

If the source actor does not impose the highest load, then ¢;(n) as given by Eq. (29)
is unbounded unless the channels are bounded. Therefore, as in the case of the graph
A2 % B we need to consider the buffer sues When computing the input-output latency.

Consider for instance the chain A 2% B 2% C with ta = 5,tg = 4 and tc = 8. The
size of channel A — B is 24 and the size of channel B — C is 12. Actor C imposes

the highest load. Fig. 18(a) shows the ASAP schedule for two iterations. We have /¢ =
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lc(2) = 83. Note that the sink actor C' runs consecutively but not the source actor A,
which prevents us from using Eq. (29) to compute the input-output latency.

As illustrated in Fig. 18(b), our solution consists in using a lower bound backward
linearization (Section 5.2). Starting by the end of the chain (channel B — (), ac-
tor B is first transformed into a fictive actor B¢ that runs consecutively such that
Vi.fge(i) < fg(i). This constraint also implies that the start times of the firings of B¢
are advanced compared to the start times of B (because tz: > tg), which leads to an
over-approximation of the input-output latency.

Since B’ runs consecutively and imposes a higher load than A, the same process
can be repeated to linearize A backward. It follows that the start times of the firings
of A’ in the final schedule are an under-approximation of the actual start times. The
computation of the input-output latency is now straightforward (using Eq. (29)) since
the input actor A’ runs consecutively. So, we have /¢ = 89.8, which is only an 8.2%
over-approximation compared to the actual input-output latency ¢ = 83.

; (G(2)=83 :
T 0O O i
ItA:5 :
SO EEREREREECREREERREREN :
| tp=4 |
ol L el ]
| =% !
! Le(1)=62 :
(a) Actual schedule
) la(2) =89.8
H 1
EN :
ItAifg W T ] L T ] e = A :
1
| el L ] |
: tge=0 = —r— 0 e 1 = —=r=B :
| el L b el [ 1 1 ]
| lc=8 N
! lg(1) =898 '

(b) Linearized schedule

Fig. 18. Input-output latency computation for the chain A LN I SN/

The previous approach can be applied to any arbitrary chain where the sink actor
imposes the highest load. If the actor with highest load®, denoted H, is in the middle of
achain A—...— H—...— Z, then the lower bound linearization of A (i.e., A%) is com-
puted using the above described backward linearization starting from actor H, while
the upper bound linearization of Z (i.e., Z*) is computed using the forward lineariza-
tion (Section 7.1) starting from actor H. An over-approximation of the input-output
latency can be then computed between A’ and Z*“.

61f there are many, then we take any of them.
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8. EXPERIMENTS

Detailed experiments can be found in [Bouakaz et al. 2016a]. This section only outlines
the main results.

8.1. Buffer sizing

We have compared the results of the three algorithms (MAX, MIN and OPT) presented
in Section 6.2 with each other and with the exact minimum buffer sizes using many
randomly generated SDF graphs and some real benchmarks.

We have compared the results of algorithm MIN with those of MAX (i.e., safe upper
bounds 2(p + g — ged(p, q))) on millions of randomly generated chains. The experiments
show that, on average, algorithm MIN reduces the total buffer sizes by 8% compared to
the upper bounds (algorithm MAX). Similarly, we have compared algorithm OPT with
both MAX and MIN algorithms on randomly generated chains. The experiments show
that, on average, OPT improves over MAX by almost 11.1% and improves over MIN
by almost 3.5%. This is a significant improvement knowing that transferred tokens in
streaming applications could be blocks of video frames. However, if one is looking for
time efficiency (which could be important for an online computation for instance), then
MIN is less expensive than OPT.

We have also compared the results of algorithm OPT with the exact minimum
buffer sizes computed by the enumeration algorithm (which we denote by EXACT).
Due to the exponential complexity of the minimum buffer sizes problem, we evalu-
ate our approach on only ten thousand randomly. In average, algorithm OPT over-
approximates the exact solution by 25%. Furthermore, the experiment shows that
MAX over-approximates EXACT by 55% in average.

Finally, we evaluated the heuristics using five real applications: the H.263 decoder,
the data modem and sample rate converter from the SDF? benchmarks [Stuijk et al.
2006b], the fast Fourier transformer (FFT), and the time delay equalizer (TDE) from
the StreamlIt benchmarks [Thies and Amarasinghe 2010]. All these graphs have a
chain structure. Table I shows some characteristics of these applications together with
the obtained results. Our approach improves better the upper bounds in case of chains
with a [] form (H.263 decoder and FFT). It comes close to the upper bound for the
sample rate converter since the two actors with the highest loads are the right and
left ends of the chain; increasing the loads of the other actors to get a monotone chain
results in a size of almost 2(p + ¢ — ged(p, ¢)) for every channel.

Table I. Experimental results for real benchmarks.

graph #actors | >,z load shape MAX | EXACT | OPT
modem 6 37 32 20 30
sample rate conv. 6 612 60 34 57

H.263 decoder 4 1190 2378 1257 1257

/ N\
FFT 11 94 J\ 992 504 808
NN

TDE 27 2867 7328 3680 5272

8.2. Latency computation

We have evaluated our approach for computing the multi-iteration latency using mil-
lions of randomly generated chains. The experiments show that the average over-
approximation is negligible when the number of firings per iteration of the graph is
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small. Indeed, if there are many harmonious rates (recall that, when p divides ¢ or

¢ divides p, the computed latency for A % B is exact), then the computed latency
remains close to the exact value. Then, the average over-approximation increases to
reach its peak (approximately 2.5%) at around fifty firings per iteration. This is because
the exact values of latency at these points are small and hence the over-approximation
is more noticeable. Then, the average over-approximation decreases and converges to
zero for graphs with large latencies. These observations were confirmed by many other
experiments (e.g., with longer chains, larger rates, etc.) not reported in this paper. The
experiment also shows that using only the Stretch linearization method is better (in
average) than using only the Push method. It also shows that using both methods on
all channels of the chain (line Push+Stretch) is better than taking the minimum of
their separate results (line min{Push, Stretch}). The results are further improved by
using the duality theorem (line Push+Stretch+Dual) as explained in note 7.2.

Table II presents the obtained results for the real benchmarks. It shows that our ap-
proach gives exact results for most of these benchmarks. Production and consumption
rates of channels of these graphs are quite harmonious (p divides ¢ or ¢ divides p), for
which our approach performs very well, as noticed in the previous experiment.

Table Il. Multi-iteration latency computation for real benchmarks.

graph Pg Lo(1) | Lo(W)/Le() | Lo(2)/Lc(2)
(a) modem 32 62 1 1
(b) sample con. 960 1000 1.022 1.011
(c) H.263 dec. 332046 369508 1 1
(d) FFT 78844 94229 1 1
(e) TDE 17740800 | 19314069 1 1

Finally, we evaluate our approach for computing the input-output latency us-
ing 10° randomly generated chains. The experiment shows that our analysis over-
approximates the exact computation, on average, by at most 13%. The over-
approximation is less noticeable for graphs with large input-output latencies.

9. RELATED WORK

Few symbolic results about SDF graphs can be found in the literature. In this section,
we present the most relevant ones. Consistency can easily be checked analytically. The
repetition vector can be computed symbolically as is it done in most dynamic paramet-
ric SDF models (e.g., [Bebelis et al. 2013; Fradet et al. 2012]).

There is no exact analytic solution to check the liveness of a graph with buffers
with fixed bounds. In [Bebelis et al. 2013] and [Bempelis 2015], the authors apply
Eq. (4) transitively (which leads to nested ceilings) on edges of each cycle in the graph.
Then, the obtained equations are linearized by over-approximating the ceiling function
(l.e., [x] < x + 1). However, this is a very conservative liveness analysis. As proved
in [Battacharyya et al. 1996], the minimum buffer size for which the simple graph
ALY Bis live is equal to p + ¢ — ged(p, ¢)7. This however does not imply that any
graph whose channels are sized this way is live. Still, this analytic equation is used in
many algorithms of buffer sizing to compute a lower bound on buffer sizes as a starting
solution ([Stuijk et al. 2006a; Bempelis 2015]). Marchetti and Munier [Marchetti and
Kordon 2009] propose a polynomial time symbolic liveness algorithm for Weighted
Event Graphs (WEG), a class of Petri Nets equivalent to SDF graphs. This algorithm
can be used to minimize the number of initial tokens in a WEG, a problem which is
equivalent to minimizing the buffer sizes in an SDF graph.

"The equation is slightly different when there are initial tokens.
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Let 3; denotes the token timestamp vector, where each entry corresponds to the pro-
duction time of tokens in the i'” iteration of the graph. Then, as shown in [Geilen 2011],
the max-plus algebra can be used to express the evolution of the token timestamp vec-
tor: §; = M3;_1. The eigenvalue of matrix M is equal to the period of the graph. In case
of parametric rates, it is sometimes possible to extract a max-plus characterization of
the graph with a parametric matrix [Skelin et al. 2014; 2015].

[Ghamarian et al. 2008] presents a parametric throughput analysis for SDF graphs
with bounded parametric execution times of actors but constant rates. Since rates
and delays are non-parametric, the SDF-to-HSDF transformation is possible and the
throughput analysis is based on the MCM of the resulting HSDF graph. Therefore, all
cycle means are linear functions in terms of the parametric execution times. By using
these linear functions, the parameter space is thus divided into a set of convex polyhe-
dra called “throughput regions”, each with a throughput expression. [Damavandpeyma
et al. 2012] have extended this approach to scenario-aware dataflow (SADF) graphs.

A different analytic approach to estimate lower bounds of the maximum throughput
is to compute strictly periodic schedules instead of ASAP schedules (e.g., [Bodin et al.
2013]). This approach is similar to our Stretch linearization method used in Section 7
to compute the latency of the graph. We have however shown that using both Push
and Stretch methods usually gives better results. The advantage of the strictly pe-
riodic scheduling approach is its capability to handle cyclic graphs. However, not all
cyclic graphs have strictly periodic schedules. Furthermore, experiments on real-life
benchmarks show that these approaches result in huge over-approximations (some-
times 7 times the exact value) [Bodin et al. 2013].

10. CONCLUSION
We first studied analytically the different cases of the execution of a completely para-

metric single edge dataflow graph A 2% B. We introduced enabling patterns to better
characterize the data-dependency between the producer and the consumer. We pre-
sented the exact symbolic solutions for the minimum buffer size needed by a single
edge graph to achieve its maximal throughput. We also presented exact symbolic anal-
yses for computing the latencies of such a graph.

Then, using these results and novel forward linearization techniques, we provided
safe upper bounds of buffer sizes of acyclic graphs for maximal throughput. Further-
more, we proposed a heuristic to improve these bounds for graphs with a chain or a
tree structure. We also proposed new forward and backward linearization techniques
to compute over-approximations of the multi-iteration latency of general acyclic graphs
and the input-output latency of chains.

The interested reader can find in [Bouakaz et al. 2016a] several experimental evalu-
ations of these algorithms on both synthetic and real benchmarks. These experiments
show, for instance, that our heuristic for buffer computation improves the safe upper
bounds by 11.1% in average, over-approximates the exact solutions by 25% in aver-
age, and can give the optimal solution for some real applications. Furthermore, our
symbolic analyses over-approximate the exact solutions by only 2.5% in case of the
multi-iteration latency and 13% in case of the input-output latency.

Future work will concern the extension of these analyses to deal with general
(i.e., possibly cyclic) dataflow graphs.

ELECTRONIC APPENDIX
The electronic appendix for this article can be accessed in the ACM Digital Library.
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This electronic appendix contains the most important proofs for the ACM TODAES
paper “Symbolic Analyses of Dataflow Graphs”. Additional proofs and details (experi-
ments, algorithms, examples, notes, etc.) can be found in a companion paper [Bouakaz
et al. 2016al].

A. THROUGHPUT AND DUALITY

PROPERTY 3.1 (THROUGHPUT). The maximal throughput of an acyclic SDF graph
G = (V,E) is equal to
1
Te = ——F—= (5)

maxizat,
maxizata}
Hence, the minimal period is Pg = glaac{zAtA}.

€

PROOF. We prove this result by considering the MCM analysis of the corresponding
HSDF graph. For a given acyclic SDF graph G, let HSDF(G) denote the HSDF graph
equivalent to G. The only cycles in HSDF(G) are those used to represent the infinite
firings of the same actor (see Fig. 5(a)). For each actor A, its corresponding cycle con-
tains one delay and 24 instances of A. Thus, the cycle mean is equal to z4t4, hence
the MCM is equal to 1ax zata and denotes the inverse of the maximal throughput of

HSDF(G)and G. O

THEOREM 3.1 (DUALITY THEOREM). Let G be any (possibly cyclic) live SDF graph
and G™ be its dual, then Tg = Tg- and Vi. Lg(i) = Lo (i)

PROOF. The detailed proof'is in [Bouakaz et al. 2016a]. The first step involves show-
ing that HSDF(G) is the dual (after renaming actors) of HSDF(G~!). The SDF-to-
HSDF transformation algorithm [Sundararajan Sriram 2000] replicates each actor A
in the original graph z, times, each instance representing a firing of A in one iteration
(e.g., Fig. 5(a) contains 3 replicas of A), and transforms each edge A 2% B in the orig-
inal graph, independently of the other edges, into p z4 edges, each one representing a
data dependency between a firing of A and a firing of B (e.g., Fig. 5(a) contains 6 edges
from replicas of A to replicas of B). Hence, it is sufficient to prove that HSDF(A 2% B)
and HSDF(B X% A) are dual to each other. This is done by showing that, for each data
dependency in HSDF(A 2% B), there is a dual dependency in HSDF(B <5 A).

The second step involves showing that both graphs HSDF(G) and HSDF(G—1)
have the same MCM. By Eq. (5), it follows that 7o = 75-1. We then prove that
Vi. Lusprc) (i) = Lusprc-1)(i) by unfolding both HSDF graphs for i iterations and
obtaining two dual directed acyclic graphs (DAGs). Therefore, for each maximal path
in the first DAG (i.e., a path from a source node to a sink node), there is a dual maximal
path in the second DAG. Both such paths have the same length, which concludes the
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(a) HSDF graph equivalent to (b) HSDF graph equivalent to
A—'—>2 3 B B3> A

Fig. 5. SDF-to-HSDF transformation of a graph and its dual.

proof. This theorem can be also proved using the max-plus algebra and showing the
transposition relation between the max-plus characteristic matrices of a graph and its
dual. O

B. LINEARIZATION OF A >4 B
PROPERTY 5.1. If zata < zpig, then a valid backward lower bound linearization of A is
given by
Sfae (@) = itge + (tge +s5(jo + 1) —iotac) (25)

where (ig, jo) is a solution of the equation iogp — jog = d (d being the smallest buffer size
guaranteeing the maximal throughput), and t4. and tge are the results of the forward
lower bound linearization of A in the dual graph G—.

PROOF. The key element to compute the backward lower bound linearization lies in
the following observation, which relates backward linearization to forward lineariza-

tion. Fig. 14(a) shows the ASAP schedule of graph G = A 2 3% B such that ta=5,tg =6
and the buffer size is equal to 22. Actor B imposes the highest load. Fig. 14(b) shows

the ASAP schedule of the dual graph G~ = B 5 % A with the same buffer size. The
producer B in G~! imposes the highest load.

FOOH 0 B0 00 0O O

anEEN HEER
same schedule as G~
(a) Schedule of G

Ol i N
el L PPl PP

(b) Schedule of G~

E

s |

Fig. 14. Relation between forward and backward linearizations for G = A 2 5 B with ta = 5,tg = 6 and
buffer size equal to 22.

Asillustrated in Fig. 14(a), there is an initial phase in the schedule of G, composed of
io firings of A and j, firings of B, after which the schedule of G is similar to that of G~'.
In some cases, the firings of A after the initial phase can be a bit delayed compared
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to those of A in the dual graph. However, assuming an exact similarity will be an
under-approximation of the start times of A, and hence an over-approximation of the
input-output latency.

Recall that a buffer of size equal to d is modeled by adding a backward edge with d
initial tokens. At the boundary of the initial phase (the “cut” in Fig. 14(a)), the forward
edge will contain d tokens while the backward edge will be empty, and this graph
coincides exactly with the dual graph G in its initial state. The fact that all initial
tokens on the backward edge (i.e., d tokens) are transferred to the forward edge is
modeled by the following equation:

iop — jog =d

If the buffer size is a multiple of gcd(p, g), then the Diophantine equation above is
always solvable. If the buffer size is not a multiple of gcd(p, ¢), then it can be diminished
without affecting the ASAP schedule. In both cases, the computed pair (ig, jo) (called
the “cut” in Fig. 14) allows to transform the graph A — B into a dual graph B — A such
that all firings of A after i, in the first graph have the same dependencies as the firings
of A in the second graph. Hence, if we take sg(jo + 1) as the relative point of origin, the
firings of A have the same starting times in both graphs (as can be seen in Fig. 14)

Our linearization of A achieves an under-approximation of the starting times of A,

that is an over-approximation of the latency. Let fA(z’) denote the finish time of the i*"
firing of A in the ASAP schedule of the dual graph G'. Hence, we have:

Vi > 1. fa(i) +sp(jo + 1) < fa(i +io)
which means that the finish time of the (i + ig)!" firing of A in G can be under-
approximated by the finish time of the corresponding i firing of A in the dual graph,
i.e., fa(i), plus the shift due to the initial phase, i.e., sg(jo + 1).
As described in Section 5.1.2 of the main paper, it is possible to compute a forward
lower bound linearization of the firings of A in the dual graph G since A is the con-

sumer. We can then put f4 (1) > itge + fgz. The following equation is therefore a valid
lower bound linearization.

Vi > ig. fa(i) > itae + tae
where 3, =19, + sp(jo + 1) — iotac.
Note that this last equation is also a valid lower bound for all i < iy. O
We now prove Eq. (27) below, used to over-approximate the input-output latency of
graph A% B when B imposes a higher load than A:
p= gtB -9 (27)

PROOF. First, consider the dual graph B 2% A, since zpts > zata, Eq. (14) holds,
hence, by duality (Theorem 3.2), we have Lg(n) = nPg + Ap a. In graph G, A 4
represents the sum of all the initial gaps before the continuous firings of B. Therefore,
sp(jo + 1) = jotp + Ap,A.

Recall that p = Lg(n) — fae(nza). Since Lg(n) = nPg + Ap 4 and fye(nza) = nPg +
(tge + SB(jO + 1) — iotAe), we have:

p = nPg+ Ap.a —nPs — (t5 + jots + Ap,a — iotac)

= oty — jotp — 5

. . ) d d
Now, since t4: = Z31&3 and 102 — jo = —, we finally have p = —tg — tge. O
q q q q
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C. BUFFER SIZING FOR ACYCLIC GRAPHS

PROPERTY 6.1. Let G be a graph without any undirected cycle, if the buffer of every
channel AL% B in G is at least 04 5 = 2(p +q — ged(p, q)), then the ASAP execution of
the graph achieves the maximal throughput.

PROOF. We present the proof for chains. The proof for general graphs with no undi-

rected cycle can be found in [Bouakaz et al. 2016a]. Let G be the chain {A; R U
Ay 2By Ay 5 o0 A, }, according to Eq. (5), the minimal period of G is Pg =

max {za,ta,}. The period and therefore the throughput remain the same if the execu-

tion time of each actor A; is considered to be ETG' Let G- be the version of G where all

actors have the same load as the maximum load in G. Then G and G- have the same
period and throughput.

If the size of each buffer A; ™ A;y1 in G_ is 6%, 4. = 2(pi + ¢; — ged(pi, ¢:)),
then G_ still achieves the maximal throughput. Indeed, size 2(p; + ¢1 — ged(p1,q1)) for
the first channel allows both A; and A; to run consecutively in the steady state (see
Eq. (13) in the main paper). Similarly, size 2(p2 + g2 —gcd(ps2, ¢2)) for the second channel
allows both A; and A3 to run consecutively, and so on.

Since graph G- with these buffer sizes achieves the maximal throughput, reducing
the execution times of actors in G- to their original values will never decrease the
throughput of the graph thanks to the monotonicity of the self-timed execution. Hence,
graph G with these buffer sizes achieves the maximal throughput. O

PROPERTY 6.2. Let two different chains from A, to A, such that fau 1(i) = ta, i+ 51,
fau 2(7) = ta,i+ s2 with s; < so, and such that the size of each buffer A; RAELIN A
is equal to 0% Arvy = 2(pi + ¢; — ged(pi, qi))- In order to prevent the second chain from
disturbing the schedule of the first one, it suffices to increase the size of the last channel
Ay 2= N AL of the first chain by (:

¢ = FZ — ﬂ Poi (28)

tAn—l

PROOF. The proof is based on the following observation. Let A =% B be a graph
with two actors such that 24t4 = zztg. Hence, 0} g = 2(p+q—ged(p, q)). Even if the first

firing of B starts only at time sg = %(p + g — ged(p, q)), as indicated by forward upper

bound linearization (Eq. (20) of the main paper), actor A can still fire consecutively
provided that the buffer size is 0 ;. Hence, if all actors in the first chain are delayed
as indicated by the forward upper bound linearization, then the sizes 6} A still allow
the first actor A; to fire consecutively. Note that after introducing these delays, no actor
gets idle once it starts executing.

Let s; and s, denote the start times of the last actor A,, in the two different chains as
computed by the previous process. If so > s1, then the extra delay (s, — s1) imposed by

the second chain may prevent A; from running consecutively. Let A,,_; Lot Ol 4, be

the last channel in the first chain. Increasing the size of this channel by ’72‘?_51—‘ DPrn—1,

n—1
as explained in the previous example, will allow actor A,,_; to fire consecutively during
the extra delay (s2 — s1). That is, the impact of the second chain on the first one is
avoided. O

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article 0000, Pub. date: 2016.



Symbolic Analyses of Dataflow Graphs App-5

D. LATENCY COMPUTATION FOR ACYCLIC GRAPHS
PROPERTY 7.1. For any acyclic SDF graph G, Vi. Lg(i) = maxgegay{Lq (i)}

PROOF. This property follows immediately form the compositionality of the SDF-
to-HSDF transformation, i.e., HSDF(G) = U,cg () HSDF(g). Therefore, any maximal

path in the DAG obtained by unfolding HSDF(G) for i iterations will be found in the
DAG obtained by unfolding some graph g € G(G) for i iterations. Indeed, since G does
not contain any cycle (except self-edges), there will be no path from actor A to B in
HSDF(G) unless both actors belong to the same chain. O
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