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Dataflow models of computation (MoCs) are widely used to design embedded signal processing and stream-
ing systems. Dozens of dataflow MoCs have been proposed in the few last decades. More recently, several
parametric dataflow MoCs have been presented as an interesting trade-off between analyzability and ex-
pressiveness. They offer a controlled form of dynamism under the form of parameters (e.g., parametric rates),
along with run-time parameter configuration. This survey provides a comprehensive description of the ex-
isting parametric dataflow MoCs (constructs, constraints, properties, static analyses) and compares them
using a common example. The main objectives are to help designers of streaming applications to choose the
most suitable model for their needs and to pave the way for the design of new parametric MoCs.
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1. INTRODUCTION
A model of computation (MoC) consists of a set of laws that govern the interaction of
components in a design [Lee 2001]. For embedded real-time systems, models of compu-
tation must deal with control, concurrency and time. Dataflow MoCs are widely used
to design such systems and, in particular, streaming applications. They are usually
defined by the following elements:

(1) Components, called actors, are computational nodes which, upon firing, consume
a finite number of inputs, execute some (usually unspecified) code, and produce a
finite number of outputs.

(2) Actors communicate data messages, called tokens. Most dataflow MoCs abstract
from the actual values of tokens. Some MoCs differentiate between data tokens and
control tokens.

(3) Actors communicate through one to one unbounded FIFO channels. An actor cannot
test for the presence or absence of data, and hence blocks if it attempts to consume
tokens from an empty channel.

Dataflow MoCs are usually classified into two major categories: static dataflow
MoCs [Ha and Oh 2012] and dynamic dataflow MoCs [Bhattacharyya et al. 2012].
Static MoCs, such as synchronous dataflow (SDF) [Lee and Messerschmitt 1987] and
cyclo-static dataflow (CSDF) [Bilsen et al. 1996], enjoy determinism, the decidabil-
ity of many properties, and powerful compile-time optimizations. They usually have
fixed rates, e.g., an actor consumes and produces the same amount of tokens at each
firing. Dynamic MoCs, such as Kahn process networks (KPN) [Kahn 1974], Boolean-
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controlled dataflow (BDF) [Buck 1993], dataflow process networks (DPN) [Lee and
Parks 2002], and the CAL actor language (CAL) [Eker and Janneck 2003] have data-
dependent communication protocols. They are more expressive, but at the cost of giving
up some compile-time analyses and resorting to run-time execution management. The
interested reader will find in [Ha and Oh 2012] and [Bhattacharyya et al. 2012] two
surveys presenting the main static and dynamic dataflow MoCs respectively.

The present survey focuses on parametric dataflow MoCs: a sub-class of dynamic
MoCs that has emerged in the last few years. In parametric MoCs, the dynamism
is controlled and takes the form of parameters (e.g., parametric rates) and run-
time parameter configuration. This trade-off allows more compile-time analyzabil-
ity than dynamic MoCs (e.g., KPN, DPN), while being more expressive than static
MoCs (e.g., SDF). This paper provides comprehensive characterizations (constructs,
constraints, properties, static analyses) of the existing parametric MoCs: Paramet-
ric Synchronous Data Flow (PSDF) [Bhattacharya and Bhattacharyya 2001], Vari-
able Rate Data Flow (VRDF) [Wiggers et al. 2008], Schedulable Parametric Data
Flow (SPDF) [Fradet et al. 2012], Boolean Parametric Data Flow (BPDF) [Be-
belis et al. 2013; Bempelis 2015], Parameterized and Interfaced Synchronous Data
Flow (PiSDF) [Desnos et al. 2013], and FSM-based parameterized scenario-aware
dataflow (PFSM-SADF) [Skelin et al. 2015; 2014]. These descriptions permit the com-
parison of the different MoCs and help designers of streaming applications to choose
the MoC best suited to their needs.

The article is organized as follows. Section 2 first introduces the basic dataflow ter-
minology by presenting succinctly SDF and clarifies the criteria used to characterize
and compare dataflow MoCs. Section 3 presents the main characteristics, properties
and analyses of parametric MoCs. Sections 4 to 9 describe parametric MoCs (PSDF,
VRDF, SPDF, BPDF, PiSDF, PFSM-SADF) in chronological order. Finally, Section 10
summarizes their main features and compares them using a common example.

2. BACKGROUND
We first present succinctly SDF [Lee and Messerschmitt 1987] because it constitutes
the foundation of all existing parametric dataflow MoCs. Then we define four charac-
terization criteria that are commonly used to compare MoCs.

2.1. The SDF MoC
An SDF graph is a directed graph, where nodes – called actors – are functional units.
The actors are connected by edges which can be seen as FIFO channels. The atomic
execution of a given actor – called actor firing – consumes data tokens from all its
incoming edges (its inputs) and produces data tokens to all its outgoing edges (its
outputs). The number of tokens consumed or produced at a given edge at each firing
is called the rate. An actor can fire only when all its input edges have enough tokens
(i.e., at least the number specified by the rate of the corresponding edge). In SDF, all
rates are constant integers known at compile time.
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Fig. 1. A simple SDF graph.
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Fig. 1 shows a simple SDF graph with three interconnected actors A, B and C. Actor
A has one input and one output port, whose rates are 2 and 4, respectively.

The state of a dataflow graph is the number of tokens present at each edge
(i.e., buffered in each FIFO). Each edge carries zero or more tokens at any moment
of time. The initial state of the graph is specified by the number of initial tokens. For
instance, edge (C,A) in Fig. 1 has two initial tokens. After the first firing of actor A,
the edge (A,B) gets four tokens while the two tokens of (C,A) are consumed.

A major advantage of SDF is that, if it exists, a bounded schedule can be found
statically. Such a schedule ensures that each actor is eventually fired (ensuring live-
ness) and that the graph returns to its initial state after a certain sequence of firings
(ensuring boundedness of the FIFOs). Such sequence is called an iteration and can be
repeated an infinite number of times (in the case of a reactive system).

The numbers of firings of the different actors per iteration are computed by solving
the so-called system of balance equations. This system is made of one equation per edge.
Consider an edge (X,Y ) with output and input rates rx and ry; its balance equation is:

zX · rx = zY · ry (1)

which states that, in an iteration, the number of firings of the producer X, denoted zX ,
multiplied by its rate rx, should be equal to the same expression for the consumer Y .
For example, the balance equation for edge (A,B) in Fig. 1 is: zA · 4 = zB · 1.

The existence of strictly positive solutions of the system of balance equations is re-
ferred to as consistency, sometimes as rate consistency. Such a set of solutions forms a
repetition vector noted [zX , zY , . . .]. Multiplying the solutions by the same positive con-
stant makes another set of solutions. One usually considers only the minimal strictly
positive integer solutions that are obtained by eliminating common factors. The graph
of Fig. 1 is rate-consistent, and the minimal solutions are: zA = 1, zB = 4 and zC = 2.
Such a set of solutions forms a repetition vector noted [zA, zB , zC ] = [1, 4, 2].

Consistency is a key property of a MoC because it guarantees that programs writ-
ten in this MoC can be executed in bounded memory, which is crucial for embedded
systems. Another important property is liveness, which guarantees that programs will
never deadlock. Any acyclic (and consistent) SDF graph is live1. For consistent cyclic
SDF graphs, liveness depends on the number and distribution of initial tokens.

2.2. Characterization criteria
Several criteria are usually considered to characterize dataflow MoCs or to motivate
the many variations that have been proposed.

— Expressiveness. The notion of expressiveness has no clear or formal meaning in the
dataflow community. It often refers to syntactic features or ease of expression and
is related to succinctness (used in [Stuijk 2007]) and compactness. One model is
said to be more expressive than another if its syntactic constructs allow shorter
representations.

— Hierarchy and compositionality. All dataflow MoCs can be seen as a composition
language to assemble programs abstracted in actors. Some dataflow MoCs offer hi-
erarchy as a mechanism for internal modularization and composition. For instance,
Ptolemy II [Eker et al. 2003] allows the hierarchical composition of graphs spec-
ified in different (dataflow or other) MoCs. However, hierarchy (or composite ac-
tors) may lose information compared to a flat graph and fail to preserve deadlock-
absence (see [Tripakis et al. 2013] for examples of non-compositional hierarchical
SDF graphs).

1Liveness only matters for consistent SDF graphs.
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— Analyzability. The analyzability of a MoC is determined by the decidability of impor-
tant properties and the complexity of the corresponding algorithms. The most im-
portant analyses of dataflow models are consistency, liveness, throughput/latency
computation, and compile-time scheduling. Analyzability and expressivity are to
some extent antagonistic.

— Reconfiguration. Reconfiguration is described by the explicit mechanisms of a
MoC for handling changes at run-time. Different reconfiguration mechanisms have
been proposed: scenarios (e.g., FSM-SADF [Geilen and Stuijk 2010]), actor modes
(e.g., EIDF [Plishker et al. 2008]), message passing (e.g., StreamIt [Thies et al.
2002]) and parameterization.

In this survey, we focus on parameterization. This reconfiguration technique pro-
vides concise constructs for enumerating large numbers of operating modes. Another
advantage of parameterization is to replace successive analyses of all possible config-
urations by a single symbolic (parametric) analysis. Such a symbolic analysis may not
be as precise, but it usually ensures that its results are a safe approximation of the
exact analysis of all the individual configurations.

Many features of dataflow MoCs could be parameterized: rates, initial tokens,
channels or actors (i.e., their presence/absence), internal states, execution times (for
throughput analysis or scheduling), and so on. The existing parametric dataflow MoCs
use mostly parametric rates and parametric conditions for the (de)activation of chan-
nels2. In this survey, we review the following specific characteristics of these MoCs:

— The kind of parameters (e.g., parametric rates, edge conditions to change the topol-
ogy). In most MoCs, parameters may also change the functionality of actors but this
side-effect is most often left unspecified.

— The allowed parametric functions (simple, products, or polynomials) and their
type/range (e.g., N,N∗, Bool, . . .).

— How parameters are produced (e.g., by an actor, a centralized controller, . . . ) and
communicated (e.g., using dataflow channels, shared variables, . . . ).

— When parameters may be set (e.g., between global iterations, within inner itera-
tions, or hierarchically).

— The symbolic analyses considered and studied (consistency, liveness, throughput,
buffer size, latency, scheduling).

3. CHARACTERISTICS, PROPERTIES, AND ANALYSES OF PARAMETRIC MOCS
Parametric MoCs have all in common a number of features: they all permit to de-
fine flat graphs (but some also support hierarchical graphs) with parametric rates (but
some also propose other kind of parameters) changing between iterations (but some
also allow inner iteration changes) with fixed numbers of initial tokens (but one MoC
allows also parametric numbers of initial tokens). To present the common character-
istics of parametric MoCs, we consider a base model, that we call Parametric Rate
DataFlow (PRDF), which embodies these mutual features.

A PRDF graph G = (V,E) is a connected directed graph that consists of a finite set
of actors V and a finite set of communication channels E. Each channel e ∈ E may
contain δ(e) ∈ N initial tokens. A channel A pr cr−−−→B between the producer A and the
consumer B is annotated with a production rate pr and a consumption rate cr. A rate
R is defined by the following grammar:

R ::= k | p | kp where k ∈ N∗ and p ∈ P

2PFSM-SADF also uses parametric execution times and PSM-CFDF introduces parametric set of modes.
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where P denote the finite set of integer parameters of the graph. The domain of values
of each parameter p is denoted by D(p). It is a finite set of at least two strictly positive
integers. The maximum value of a parameter p is denoted by pmax. Some parametric
MoCs consider richer rates (e.g., null values, parameters products, etc.).

Parameter configuration (i.e., setting the values of parameters) occurs dynamically
at global iteration boundaries. The set of all possible parameter configurations is de-
noted by Pconf. Some parametric MoCs allow parameter configurations to occur within
iterations. However, this feature requires additional constraints to ensure that the
graph returns to its initial state at the end of the iteration.

As most parametric models, PRDF does not provide specific constructs for model-
ing the changes of configurations. Parameter configuration can be chosen by a central
controller or specific actors (called modifiers) and could be specified, for instance, us-
ing a deterministic or a non-deterministic finite-state machine. The communication of
parameters to actors may use shared data or specific dataflow channels.

Most static analyses for parametric MoCs are agnostic to the configuration tran-
sition systems. They assume that a configuration c ∈ Pconf is non-deterministically
chosen at the beginning of every global iteration. Therefore, these analyses might be
conservative and could be further refined by taking into account a specific configura-
tion transition system.

3.1. Consistency
Consistency is a necessary condition for the existence of an iteration. A bounded exe-
cution (i.e., execution with bounded channels) can be obtained by repeating infinitely
this iteration. Non-consistent graphs cannot execute in bounded memory and are re-
jected at compile-time. The repetition vector ~z of the graph indicates the number of
firings of actors per iteration. It is obtained by solving the so-called system of balance
equations. For an edge A p q−−→B the balance equation is zAp = zBq, which states that
all produced tokens during one iteration are consumed in the same iteration. Note
that acyclic dataflow graphs are always consistent (the cyclic property referring to the
undirected version of the graph).

Consistency of parametric graphs consists in symbolically solving the system of bal-
ance equations (instead of solving it numerically as in SDF). Fig. 2(a) depicts a simple
cyclic PRDF graph where the set of parameters is P = {p, q} with D(p) = [2..10] and
D(q) = {3, 5, 7}. The black dot represents (pmax + qmax) initial tokens. The associated
system of symbolic balance equations is shown in Fig. 2(b).

(a)

zA × p = zB × 1

zB × 1 = zC × q (b)
zC × q = zA × p

Fig. 2. (a) A cyclic PRDF graph. (b) The corresponding balance equations.

A PRDF graph is consistent if the system of balance equations accepts a non-null
solution for every parameter configuration in Pconf. A PRDF graph is strongly consistent
if the system of balance equations accepts a non-null solution for every configuration in
N∗|P| (i.e., the domain of every parameter is considered to be N∗). The symbolic solution
of the system of balance equations of Fig. 2(b) is 3 ~z =

[
q

gcd(p,q) ,
pq

gcd(p,q) ,
p

gcd(p,q)

]
.

3Some existing analyses compute a simpler solution by not simplifying by gcd(p, q) i.e., ~z = [q, pq, p]
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A non-consistent PRDF graph has to be rejected not only because it might not exe-
cute in bounded memory but also because the configuration rule (i.e., changing param-
eters at iteration boundaries) requires that a repetition vector (i.e., iteration) exists.

Strong consistency is generally a conservative consistency analysis. However, it is
an exact analysis when there is no control on parameter configuration in the model,
i.e., when Pconf is the Cartesian product of all parameter domains

∏
p∈P

D(p): in this case

it can be shown that a PRDF graph is consistent if and only if it is strongly consistent.
However, this would not hold if rates were expressed as polynomials: in this case,
strong consistency would reject some programs that are actually consistent w.r.t. the
domains of parameters.

3.2. Liveness
Consistency is not a sufficient condition to ensure the existence of an iteration the
graph must be live i.e., deadlock free. To ensure the liveness of a SDF graph, one
iteration is found by abstract execution. A PRDF graph is live if and only if each con-
figuration (i.e., the corresponding SDF graph) is live. For instance, it is easy to check
that all configurations of the graph in Fig. 2 are live. This can be used to check live-
ness of FSM-SADF [Geilen and Stuijk 2010] graphs where there are few scenarios. For
parametric models with large configuration spaces, this method would be unpractical.
Parametric liveness analyses have to be considered.

First, we define a quasi-static schedule as an ultimately periodic infinite firing se-
quence, S1S

ω
2 where the (possibly empty) prologue S1 and the periodic sequence S2 can

be described by the following grammar:

S ::= A | Sf | S1 S2 where A denotes an actor and f a parametric integer expression.

Acyclic consistent PRDF graphs are always live since the topological order of ac-
tors is sufficient to define a single appearance schedule [Battacharyya et al. 1996].
Similarly, if all cycles can be broken, i.e., if at least one edge in each cycle is satu-
rated [Fradet et al. 2012], the graph is live. An edge is saturated if it contains enough
initial tokens for its consumer A to fire zA times. For graph in Fig.2, if the edge C → A
contains at least max(zA × p) = 70 tokens, then the single appearance quasi-static
schedule (↑p↑q AqBpqCp)ω is valid, where “↑x” denotes the setting of parameter x. Note
that the graph obtained by deleting all saturated edges is not equivalent to the original
graph because these edges actually constrain the pipelining in the execution.

The technique proposed in [Bebelis et al. 2013; Bempelis 2015], called PSLC for
Parametric SDF-like Liveness Checking, is a conservative parametric liveness analy-
sis that can be applied to arbitrary PRDF graphs. It constructs a quasi-static schedule
by an abstract execution that can be seen as a parametric version of the one used for
SDF. If an actor A has a parametric number of firings per iteration, i.e., zA = k × P
where k is a positive integer and P is a product of parameters, then each time A is
fired in the schedule, it is fired at least P times.

The repetition vector of the PRDF graph in Fig. 3(a) is ~z = [1, 3p, 6p]; its number of
initial tokens in is 2pmax; and its initial state is [0, 0, 2pmax]. The constructed live ab-
stract execution is shown in Fig. 3(b). As a result, the schedule is (↑p↑q A(BpC2p)3)ω.
This technique can also use preliminary clustering. If there were only two initial to-
kens in Fig. 3(a), the cycle consisting of actors B and C would be clustered and the live
schedule (↑p↑q A(BC2)3p)ω would be found. The technique however is not complete and
fails to attest the liveness of the graph in Fig. 3(a).
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(a)

[0, 0, 2pmax]
A−→ [3p, 0, 2pmax]

Bp

−−→

[2p, 2p, 2pmax − 2p]
C2p

−−→ [2p, 0, 2pmax]
Bp

−−→

[p, 2p, 2pmax − 2p]
C2p

−−→ [p, 0, 2pmax]
Bp

−−→

[0, 2p, 2pmax − 2p]
C2p

−−→ [0, 0, 2pmax]

(b)

Fig. 3. (a) A PRDF graph attested live by PSLC. (b) Its abstract execution.

3.3. Performance analysis
Timing (throughput, latency) and memory (buffer sizes) analyses are very important
steps in embedded real-time systems design. In particular, throughput is a key prop-
erty of real-time streaming systems. For example, a video decoder must guarantee
a throughput expressed as a minimum number of frames per second. These proper-
ties depend strongly on the scheduling policy. Most studies consider self-timed execu-
tion [Sriram and Bhattacharyya 2000] in which an actor fires as soon as it is enabled
(i.e., has enough tokens on its input channels). This is also known as the As Soon As
Possible (ASAP) scheduling, which assumes a sufficient, even infinite, number of pro-
cessing units4. One important property of this policy is that the execution (at least
for HSDF, SDF, CSDF and UCSDF) consists of a prologue phase followed by a peri-
odic phase called the steady state of the execution. The throughput and period, defined
as limits, are computed from the steady state. Moreover, ASAP scheduling allows a
maximal throughput.

Such analyses require to extend the MoC with timing information, usually the worst-
case execution time (WCET) of each actor. For the PRDF model, this can be defined as
a function τ : V ×Pconf −→ N∗ such that τ(A, c) is the worst-case execution time of A in
configuration c. At the time of writing, only few symbolic analyses have been developed
for parametric dataflow MoCs. The analyses proposed in [Bouakaz et al. 2016] can be
applied to PRDF with the following restrictions: (1) only acyclic graphs are considered,
and (2) auto-concurrency is disabled (e.g., by adding self-loops to actors). These sym-
bolic analyses give timing and memory properties as parametric formulas that can
be evaluated for any parameter configuration. They do not consider the cost of con-
figuration transitions and assume a single but symbolic configuration. The proposed
analyses are:

— The symbolic throughput TG of the ASAP execution of an acyclic PRDF graph G
(assuming large enough buffers). It has been proved that

TG =
1

max
A∈V
{zAτA}

with τA = max
c
{τ(A, c)} (2)

However, configurations could change so frequently that a steady state is never
reached. A different symbolic analysis computes ṪG(n)(c) an under-approximation
of the throughput of the first n iterations where the (symbolic) configuration c is
fixed. By considering a worst-case execution where the configuration is changed af-
ter each iteration and a strong synchronization is required at iteration boundaries,
a worst-case under-approximation of the throughput can be computed. Formally,

TG ≥ min
c∈Pconf

{TG(1)(c)}

4These assumptions do not forbid to encode resource constraints in the graph
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— Minimal buffer sizes that allow the maximal throughput TG (assuming a fixed sym-
bolic configuration). Symbolic safe upper bounds have been proposed for different
topologies of acyclic graphs. For instance, it has been proved that if the size of each
channel Ai

pi qi−−−→ Ai+1 in a chain {A1
p1 q1−−−−→ A2

p2 q2−−−−→ A3 → · · · → An} is at least
2(pi + qi − gcd(pi, qi)), then the ASAP execution achieves the maximal throughput.
Furthermore, exact formulas have been provided for a single edge with symbolic
rates A p q−−→B and multiple heuristics to improve the results for chains and trees.

— The maximum input-output latency of chains, which is the maximum duration of
an iteration in the ASAP execution of the graph (assuming a fixed symbolic config-
uration).

4. PARAMETRIC SYNCHRONOUS DATAFLOW (PSDF)
The first parametric dataflow MoC to be proposed was Parametric Synchronous
Dataflow (PSDF), as a parameterization of SDF [Bhattacharya and Bhattacharyya
2001]. It can be roughly described as PRDF equipped with hierarchy. Actually, the pro-
posed approach consists in a meta-model that can be applied to any MoC with a clear
definition of iterations: it has been applied both to the parameterization of SDF, result-
ing in the PSDF MoC, of CFDF, resulting in the CF-PSDF MoC [Wang et al. 2013], and
of CSDF, resulting in the PCSDF MoC [Kee et al. 2012]. The same approach has been
followed with the PiMM meta-model [Desnos et al. 2013] (see Section 8). PSDF explic-
itly incorporates hierarchy and parameter communication; yet, many points (rates,
analyses, etc.) remain unspecified.

4.1. Parameters
A PSDF actor A is parameterized with a set of parameters PA and Pconf,A a set of
valid parameter combinations for actor A. PSDF does not indicate how these configu-
rations are specified (enumeration, constraints, . . . ). Parameters can be used to control
the production and consumption rates of the actor or to control its functionality. The
grammar for rate functions is not defined, but null rates are disallowed. Unlike other
parametric models, an edge in PSDF can have a parametric number of initial tokens.
As pointed out in Section 3, the semantic of parametric initial tokens is ambiguous at
best and [Bhattacharya and Bhattacharyya 2001] does not specify any. For bounded
memory analysis, the maximum values of rates and numbers of initial tokens must be
specified and satisfied by the corresponding parametric functions. Again, no specific
techniques or analyses are imposed or suggested.

4.2. Hierarchy
A PSDF actor is either an atomic actor (i.e., an SDF actor with possibly parametric
rates) or a hierarchical one. The dataflow input and output ports of a hierarchical
PSDF actor (also called dataflow interface ports) are connected to ports of actors in
the lower level. Each hierarchical actor A is composed of an obligatory graph (the
body graph) and two optional PSDF graphs (the init and subinit graphs) which are
responsible for the parameter reconfiguration of A. The body graph models the core
functionality of A; therefore, its interface ports should be connected to the interface
ports of A.

4.3. Parameter reconfiguration
All parameters of the body graph of a hierarchical actor A are set by its init and subinit
graphs. Parameters of the subinit graph can be set by the init graph, provided by
dataflow input ports of A, or left unspecified. All parameters of the init graph and
unspecified parameters of the subinit graph are considered as the set of parameters of
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A. These parameters must be set by the init and subinit graphs of the hierarchically
higher-level actor.

Fig. 4 depicts a simple PSDF graph G. The body graph of G contains a hierarchical
actor A. The parameters of an actor that are not set by its internal init and subinit
graphs are indicated within curly braces (e.g., {p} in A). In our example, the only pa-
rameter of A set externally by the init graph of G is p. Dashed arrows represents con-
trol channels used to communicate parameter values. Interface ports are annotated
with lower case letters (a, b, c, and d).

body

init

body

subinit
init

Fig. 4. A simple hierarchical PSDF graph.

As indicated by the informal semantics of PSDF, the init graph of a hierarchical ac-
tor A is executed at the beginning of each iteration of the parent graph (i.e., the graph
that contains actor A). Therefore, parameters of the subinit and body graphs of A that
are set by the init graph can change after each iteration of the parent graph. In the
example of Fig 4, the parameter r in actor A is set once every iteration of G, while p
can be changed every iteration of the parent graph of G. At each firing of a hierarchical
actor, its subinit graph is first invoked (i.e., executed for one iteration), then its body
graph. Therefore, parameters of the body graph and parameters of the subinit graph
that are connected to dataflow inputs can change at every firing of the actor. In our
example, the parameter q in A is changed at every firing of A. So, parameters in PSDF
can change at iteration boundaries or, for those used in lower hierarchy levels, inside
iterations. Note that control channels (dashed arrows in Fig. 4) are only used to de-
pict parameter dependencies and not the actual transfer of values. Actually, the init
and subinit graphs produce exactly one value per output. These values are used by a
scheduler to set the parameter values in other graphs.

Consumption and production rates of the hierarchical actorA are not shown in graph
G but they can be inferred from its internal implementation. For instance, the interface
input port b is connected to actor H in the body graph of A. At each firing of A, the body
graph is executed once, and henceH fires r times since the repetition vector of the body
graph is [zH = r, zF = 2, zI = 2]5. Therefore, actor H consumes 3r tokens at each firing
of A. Thus, the consumption rate of port b at the level of G is 3r. Similarly, the rates
of ports a and c are 2 and 6 respectively (denoted in blue in Fig. 4). PSDF requires
that these inferred rates depend only on parameters of A that are set by its init graph.
Hence, these rates remain fixed during an iteration of the parent graph.

5Actually, this repetition vector should be divided by gcd(r, 2) to represent the actual vector which is com-
puted dynamically on values. To alleviate notations, we proceed with the simpler, non minimal, version.
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To summarize, the execution of our example begins with the top most PSDF graph
(i.e., the parent of G, which contains only actor G), the init graph of G is first executed
for one iteration (i.e., firing actor E). This will set the value of p. Then, the body graph
of G will be executed. Its execution starts by first firing all the init graphs of its hier-
archical actors. Here, A is the only hierarchical actor, and its init graph will set the
parameter r. Thus, an iteration of the body graph of G will be B2C9rA3D9. Each firing
of A in an iteration of the body graph of G, starts by executing the subinit graph of A
(and hence setting the parameter q), and then the body graph of A for one iteration
HrF 2I2. All these actions can be represented by the following quasi-static schedule:(

E ↑p
(
K ↑r (B2C9r(J ↑q (HrF 2I2))3D9)

))ω
Quasi-static scheduling techniques have been proposed for sub-classes of PSDF

graphs (i.e., acyclic graphs and cyclic graphs for which feedback loops can be broken).
PSDF checks (statically if possible, dynamically otherwise) that every (sub)graph is

locally synchronous (i.e., rate consistency, liveness and rates and tokens bounds); the
execution is terminated in case of violation. Consistency and liveness could be stati-
cally checked for all possible configurations in a bottom-up way, starting by checking
the deepest levels. Each level may consist of three graphs (init, subinit, and body)
which must be checked separately. However, no parametric/symbolic analysis is pro-
posed for consistency, liveness, or performance. Finally, without parametric initial to-
kens and PRDF-like rates, PSDF could be seen as a hierarchical PRDF with explicit pa-
rameter communication. The consistency and liveness symbolic analyses of Section 3
could be reused for such PSDF graphs. As already noted, a naive hierarchical deadlock
loses information and may reject graphs that would be accepted if flattened. For hier-
archical (non-parametric) SDF, this problem is solved in [Tripakis et al. 2013] using
enriched actors called DSSF profiles. It is likely that such profiles could be adapted to
PSDF and, more generally, to extend any parametric MoC with hierarchy.

5. VARIABLE RATE DATAFLOW (VRDF)
Variable rate dataflow (VRDF) [Wiggers et al. 2008] can be seen as PRDF extended
with (possibly multiple) parameter changes inside the iteration and additional con-
straints on parameter uses. More precisely, VRDF has the following characteristics:

• Auto-concurrency is not allowed (each actor can be seen as having an implicit self-
edge with one initial token).

• A rate is either a constant or a parameter; rates are described by the grammar

R ::= k | p where k ∈ N∗ and p ∈ P (parameters take their values in N)

The domain of each parameter may contain zero, but it must contain at least one
strictly positive value. This makes VRDF a dynamic MoC for both rate and topology.

• Parameter changes are not restricted to the boundaries of iterations. The value of
each parameter is set by a single actor, its modifier, which can do so at each of its
firings. Due to this reconfiguration mechanism and to the null rates, strong consistency
does not longer imply boundedness. Therefore, VRDF imposes many restrictions on
parameters usage. As in PRDF, the VRDF reconfiguration transition system is not
specified; it could be deterministic or not.

• A parameter p can be used as rates of at most two actors, one of them being the
modifier. Furthermore, if a parameter is used by a pair of actors, it must be used in
the output rates of the modifier and in the input rates of the other actor. Moreover,
if two actors A and B use the same parameter, then their solution in the computed
symbolic repetition vector (the firings count per iteration) zA and zB must be equal.
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These restrictions imply that, for any path from two actors A and B using p, if another
parameter q occurs on this path, then it must be used once as an input rate and once
as an output rate.

Fig. 5 shows a VRDF graph (dashed lines are explained later) which satisfies all the
above conditions. Parameter p is used by actors B and D (its modifier), and parameter
q is used by actors C (its modifier) and D. The repetition vector is ~z = [2p, 6, 6, 6, 3p].

Fig. 5. A simple VRDF graph.

Parameter communication (between modifier and user) must be explicit. As illus-
trated in Fig. 5, it is denoted by a dashed arrow, with the notation “[x]” to indicate
that the channel carries the values of parameter x. If a parameter p is used by a pair
of actors A (its modifier) and B, then a control channel A 1 1−−→ B has to be added to
communicate the values of p. These channels never have initial tokens. Each time a
modifier A fires, it modifies the value of p, produces tokens according to the value of p
and sends the new value of p over the control channel. When the user B fires, it first
consumes the value of p and consumes data tokens according to the value of p. Hence,
there is a one-to-one correspondence between the firings of A and those of B. There-
fore, whatever the chosen value of p, all produced tokens on a path from A to B will be
also consumed (i.e., guaranteeing boundedness). However, due to potential null rates,
this correspondence could be broken and an additional constraint is needed. Indeed,
consider the following graph:

where the first firing of A sets p to 1: the parameter is sent on the communication
channel (A,C), a single token is produced on edge (A,B) and neither B nor C can fire.
Suppose that from now on that p is set to 0 for an arbitrary number of firings. The
values for p accumulate on (A,C) while B and C are still waiting for a second token.
Therefore, the channel (A,C) cannot be bounded. To prevent this situation, VRDF
enforces the following constraint: let Gp be the sub-graph made of all paths between
two actors X and Y using parameter p, then the repetition vector of Gp must have
zX = zY = 1. This prohibits the rate 2 in the above example and enforces that rate to
be 1. An alternative solution would be to enforce that parameters have large enough
values to trigger both a production and a consumption, i.e., in our example p ≥ 2.

Another issue is that control channels may create deadlocks. For instance, if channel
B → C in Fig. 5 does not contain an initial token, adding the control channel D → B
creates a deadlock.

It is shown that a strongly consistent VRDF graph is bounded [Wiggers et al. 2008]
(i.e., can execute with bounded buffers). [Wiggers et al. 2008] proposes a conservative
memory analysis that computes upper bounds on buffer sizes (size constraints being
modeled by backward edges) for chains (which are always consistent). The analysis al-
lows, if possible, a strictly periodic and ASAP execution to achieve a given throughput
for all possible parameter reconfigurations.
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Quasi-static scheduling
There is a clear correspondence between a quasi-static schedule of a PRDF graph and
its symbolic repetition vector. Due to unrestricted parameter changes, this is not the
case for general VRDF graphs. Let us consider the VRDF graph of Fig. 5, whose rep-
etition vector is [2p, 6, 6, 6, 3p]. In PRDF, p and q would be set at the beginning of the
iteration, resulting in the following quasi-static schedule:(

↑p↑q A2pB6C6D6E3p
)ω

In VRDF, parameters p and q change after each firing of D and C respectively. Since
there is a one-to-one correspondence between the firings of C, D, and B, a quasi-static
schedule could be

(
(↑q C ↑p D EfAgB)6

)ω where f and g denote parametric expres-
sions. For the execution to be bounded, for each parameter configuration, E has to fire
as much as possible in order to consume all tokens produced by D, while A has to fire
only the necessary number of times to enable one firing of B. However, expressions
f and g are required to know the number of tokens in channels A → B and D → E
at the beginning of the current parameter reconfiguration. This depends on previous
parameter values and involves dynamic scheduling.

For well-parenthesized graphs, where parameters on each path occurs first as an
output rate then as an input rate, a quasi-static schedule always exists. Consider, for
instance, a well-parenthesized version of the VRDF graph of Fig. 5 :

Its repetition vector is [6, 2, 2p, 2p, 2, 1] and a valid quasi-static schedule is:(
A6(↑p B (↑q C D)pE)2

)ω
This observation holds for any acyclic VRDF graph where every maximal path is well-
parenthesized.

Variable-Rate Phased Dataflow (VPDF)
[Wiggers et al. 2011] adapts the main VRDF ideas to CSDF. The resulting MoC is
called Variable-Rate Phased Dataflow (VPDF). In this model, each actor could have
many (but fixed and finite) phases (i.e., cyclic). The sequence of phases is repeated
periodically as in CSDF. Production and consumption rates of an actor during one
phase can be parametric as in VRDF. The novelty is that each phase of a VPDF actor
can be repeated a parametric number of times.

For instance, if the production rate of an actor A is annotated with [n ? p,m ? 2], then
this means that A has two phases and it produces p tokens in the first phase and 2
tokens in the second phase. Moreover, each cycle consists of repeating the first phase
for n times followed by repeating the second phase for m times.

In addition to the constraints on parameters usage defined in VRDF, VPDF imposes
more restrictions, for instance,

— a rate of a phase is parameterized with a different parameter than that of the rep-
etition count of the phase;

— every parameter is associated with a single phase;
— a parameter is assigned one value per iteration through all phases of the actor.

This last constraint is a major difference with VRDF where a parameter can change
at each firing of its modifier.
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6. SCHEDULABLE PARAMETRIC DATAFLOW (SPDF)
The schedulable parametric dataflow model (SPDF) was proposed in [Fradet et al.
2012]. It can be seen as PRDF with the following extensions:

• Rates are products of positive integers and parameters. They are described by the
following grammar:

R ::= k | p | R1R2 where k ∈ N∗ and p ∈ P (3)

A parameter p takes its values in the interval [1..pmax]. Since parameters cannot be
null, SPDF is a dynamic rate model but not a dynamic topology model. Finally, an
SPDF graph is strongly consistent iff it is consistent.

• Parameter reconfiguration in SPDF is not restricted to iteration boundaries. Each
parameter p in an SPDF graph is associated with a unique modifier actor. The annota-
tion p@π indicates that B is the modifier of parameter p with a modification period π.
It states that p can be modified every π firings of B.

Periods may be parametric and share the same grammar as rates. Modifications
can be seen to be performed at boundaries of local iterations. These inner iterations
are implicit in SPDF, whereas PSDF requires an explicit hierarchical decomposition to
model them.

Fig. 6(a) depicts a simple SPDF graph where A is the modifier of p with modification
period p, which means that if the value of p is set by the nth firing of A to be p1, then
the next value of p will be set by the (n+ p1)

th firing of A.

(a) (b)

Fig. 6. (a) A period safe SPDF graph. (b) A rejected SPDF graph.

Due to this reconfiguration mechanism, rate consistency alone is not sufficient to
guarantee boundedness. The following restrictions on modification periods of param-
eters are needed to ensure that an iteration returns the graph to its initial state and
therefore boundedness.

A parameter p is modified at the boundaries on the local iterations of the subgraph
influenced by p. This subgraph, called region of p and denoted reg(p), is defined by:

reg(p) = {C,D|C r r′−−→D ∈ E ∧ p ∈ r ∨ p ∈ r′ ∨ p ∈ zC ∨ p ∈ zD}}
Let B be the modifier of a parameter p and π be its modification period. The number

of modifications during one iteration (also called the modification frequency: freq(p) =
zB/π) must be a positive integer. The produced values of pwill be broadcast to all actors
influenced by parameter p (the region of p).

Let us consider first SPDF graphs with a single parameter p. If the repetition solu-
tions of all actors in the region can be factorized by freq(p), then for each modification of
the parameter, the sub-graph formed by actors in the region performs a local iteration
and returns to its initial state, and waits for the next value of p. For the SPDF graph
in Fig. 6(a), the repetition vector is ~z = [3p, 3, 2]. So, reg(p) = {A,B} and freq(p) = 3.
The graph is data safe because the solutions of A and B in the repetition vector can
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be factorized by freq(p) as (ApB)3C2. Hence, after p firings of A, the sub-graph formed
by A and B returns to its initial state. Let p1, p2, and p3 be the first three values
of p, then the first global iteration is actually (↑p Ap1B)(↑p Ap2B)(↑p Ap3B)C2 and not
(↑p A3pB3C2).

The factorization by the frequency is a sufficient condition for boundedness (the
graph returns to its initial state after a global iteration) but not a necessary condi-
tion. For example, the SPDF graph in Fig. 6(b) is not data safe because ~z = [2p, 2, p, p]
and reg(p) = {A,B,C,D}, but the repetition solutions of these actors cannot be fac-
torized by freq(p) = 2. However, there is definitely a bounded execution of this graph
(i.e., an infinite execution that uses only bounded channels).

If there are several parameters in the graph, their regions may interleave. [Fradet
et al. 2012] imposes that if two regions reg(p) and reg(q) interleave (i.e., their intersec-
tion is not empty but one region does not include the other) then the repetition solu-
tions of actors in reg(p)∪reg(q) must be factorizable by freq(p, q) = lcm(freq(p), freq(q)).
Accordingly, the sub-graph formed by actors in reg(p) ∪ reg(q) will return to its initial
state after freq(p, q)/freq(p) modifications of parameter p and freq(p, q)/freq(q) modifi-
cations of parameter q. So, the set of parameters is partitioned into sets of parameters
such that two parameters p and q belong to the same partition if and only if the regions
of p and q interleave but one region does not include the other. For a parameter par-
tition P , let reg(P ) denote the union of regions of all parameters in P , while freq(P )
denote the least common multiplier (lcm) of frequencies of all parameters in P . The
repetition solutions of all actors in reg(P ) should be factorizable by freq(P ).

Moreover, denoting Mq be the modifier of q, [Fradet et al. 2012] imposes that, if the
repetition solution of Mq depends on another parameter p that belongs to a partition P ,
then freq(q) must be a multiple of freq(P ). In order words, since M belongs to reg(P ),
any local iteration of actors in reg(P ) must modify parameter q an integer number of
times. This criterion ensures that every modifier is contained in at least one region
whose local iterations never finish when a period of that modifier is not yet completed.

With these restrictions, an SPDF graph returns to its initial state after each global
iteration.

As in VRDF, each parameter has a unique modifier. To model parameter communica-
tions, control channels are added between the modifier and the users (i.e., actors that
depend on the parameter), as illustrated in Fig. 6.(a). The reader may refer to [Fradet
et al. 2012] for more details on how these channels are added. We only draw attention
to the fact that control channels may create deadlocks and need to be considered in
the liveness analysis. [Fradet et al. 2012] provides a conservative liveness analysis.
An SPDF graph is live if the graph is acyclic when all saturated edges are removed,
and that adding control channels for parameter communication to this acyclic graph
does not create new cycles. As defined in Section 3, a saturated edge is an edge that
contains enough initial tokens to fire its consumer for as many times as indicated by
its repetition count (its solution).

All these restrictions do not only aim at ensuring boundedness and liveness of ac-
cepted SPDF graphs, but also at allowing the generation of quasi-static schedules. For
the SPDF graph in Fig. 6.(a), one valid quasi-static schedule is:

(
(↑p ApB)3C2

)ω
However, due to parametric numbers of configuration changes (e.g., imagine p changing
every q firings with q changing every r firings, etc.), static analyses becomes intricate.
Even an apparently basic analysis like expressing symbolically the number of tokens
produced/consumed by actors during one global iteration can be quite involved.
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7. BOOLEAN PARAMETRIC DATAFLOW (BPDF)
The Boolean parametric dataflow MoC (BPDF) has been proposed in [Bebelis et al.
2013; Bempelis 2015] as a simplified version of SPDF but extended to a dynamic
topology MoC. It can also be seen an extension of PRDF with Boolean parameters.
Communication channels can be dynamically deactivated and activated using Boolean
conditions attached to edges. The main characteristics of BPDF are:

• Rate functions are constant positive integers or products of positive integers with
parameters, like in SPDF. However, BPDF rate reconfiguration may take place only at
iteration boundaries. Therefore, a BPDF graph needs, by definition, to be consistent.
Finally, a BPDF graph is strongly consistent iff it is consistent.

• Unlike VRDF, BPDF does not allow null rates. However, it provides a different
mechanism to deactivate channels at run-time. Each BPDF channel is annotated by a
Boolean condition. If the condition evaluates to false, then the channel is deactivated,
meaning that the actors connected by that edge will not write or read on this channel
until it is reactivated again. Boolean conditions are described by the grammar:

B ::= true | false | b | ¬B | B1 ∧B2

where b denotes a Boolean parameter in a finite set of Boolean parameters Pb. Boolean
parameters make BPDF a dynamic topology model. Compared to null rates, this mech-
anism has the following advantages:

— A clean separation between rates and channel conditions facilitate analyses such
as boundedness. For instance, strongly consistent VRDF graphs are only bounded
if strict restrictions are imposed on parameters usage because of special cases that
arise from null rates. In contrast, BPDF restrictions are easier to understand by
designers and programmers.

— Boolean conditions are a less coarse-grained abstraction than null rates. Indeed, a
Boolean parameter can be used in the conditions of several channels, which make
deactivation relations explicit in the model. For instance, a mutual exclusion be-
tween two channels can be made explicit by annotating them with conditions b and
¬b respectively. Such information can be exploited by analyses for a better accuracy
(liveness for instance).

• Boolean reconfiguration is not restricted to iteration boundaries. As for SPDF rate
parameters, each Boolean BPDF parameter b is associated with a unique modifier.
Upon firing, the modifier produces a new value of b, which is propagated to every actor
that consumes (resp. produces) from (resp. on) a channel whose condition depends on
parameter b. These actors are called the users of b and are denoted by Users(b). The set
of users of a parameter is closely related to the notion of regions in SPDF.

Fig. 7. A BPDF graph.

Fig 7 shows a BPDF graph that uses one integer parameter p and one Boolean pa-
rameter b (the dashed edge will be explained later). As in SPDF, the annotation “b@p”
indicates that a new value of b is produced each p firings of B. So, the nth value of b
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is produced by the (1 + (n − 1)p)th firing of B. A period may be parametric, with the
same grammar as in SPDF. We impose some restrictions on the values of periods to en-
sure boundedness. Let freq(b) denote the frequency of modification of the parameter b,
i.e., the number of produced values of b per iteration. If B is the modifier of b and π is
its period, then:

freq(b) =
zB
π

(4)

The first restriction is that freq(b) must be an integer (i.e., zB is a multiple of π). The
second restriction is that any BPDF graph must be period safe [Bempelis 2015], i.e., for
all b ∈ Pb and for all X ∈ Users(b), there exist k ∈ N such that zX = k.freq(b).

Intuitively, freq(b) values of b are produced during each iteration. These values are
broadcast to all users. Period safety ensures that each user consumes all the freq(b)
values of b in the same iteration. This can be checked with a simple factorization of
the repetition vector. For instance, the repetition vector of the BPDF graph in Fig. 7
is ~z = [1, 3p, 6p]. The factorization A(BpC2p)3 shows that a period equal to p is safe
(freq(b) = 3): B will produce a new value b after p firings and C will read it every 2p
firings. Actually, a period equal to 1 would also be valid (freq(b) = 3p), as can be seen
by the factorization A(BC2)3p.

Now an important property is that any rate consistent and period safe BPDF graph
is bounded [Bempelis 2015]. Intuitively, if a channel A p q−−→B is annotated by a Boolean
condition C, then the number of produced tokens by A during one iteration will be
equal to the number of tokens consumed by B in the same iteration, whatever the val-
ues of C. The number of firings ofA andB do not depend on C but only on whether they
write/read on that channel. Actually, when an actor becomes completely disconnected,
it continues to fire without producing or reading anything. For MoCs that allow null
rates instead, boundedness analysis is more complicated since these models do not im-
pose that production and consumption rates of a channel are both null or both not null,
i.e., a channel can be partially deactivated. This issue does not arise in BPDF thanks
to the Boolean conditions.

The consistency of BPDF graphs, as defined in [Bempelis 2015], is agnostic to
Boolean conditions; i.e., the symbolic repetition vector is computed assuming that all
channels are activated. For instance, if channel C → B in Fig. 7 was B 2 1−−→ C, the
graph (without considering the dashed edge) would still be rate consistent because the
cycle between B and C is actually a false cycle (mutual exclusive conditions).

• As in PRDF, the integer parameter communication of BPDF is left unspecified. How-
ever, the Boolean parameter communication is, as in VRDF, implemented by adding
special control channels from modifiers to users (the dashed edges in Fig. 7). These
channels do not contain any initial tokens. The rates of these channels do not jeop-
ardize the consistency of the graph but control channels may create deadlocks. Live-
ness analysis must hence consider the graph augmented with control channels. The
algorithm described in Section 3.2 is actually a simplified version of the conservative
liveness analysis proposed for BPDF graphs. It assumes that all channel conditions
are true and tries to find a schedule using abstract execution. In case of failure, the al-
gorithm uses clustering and finally considers Boolean conditions to detect and to take
into account false cycles.

A scheduling framework for BPDF graphs was proposed in [Bebelis et al. 2014]. It
takes as input a BPDF graph and a set of constraints aimed at minimizing timing,
buffer sizes, power consumption, or other criteria. The BPDF graph is executed ac-
cording to a slotted scheduling policy, such that each actor firing occurs inside a single
slots and cannot spread over more than one (but of course several actor firings can
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occur inside the same slot). At the beginning of a slot, enabled actors are first filtered
w.r.t. to the constraints. The selected firings will be performed, each on a different pro-
cessing unit. When all these firings are completed, the process is repeated for the next
slot, and so on. The enabling along with the constraints are pre-compiled as much as
possible in order to reduce the scheduling runtime overhead and, in some cases, to
produce a quasi-static schedule.

8. PARAMETERIZED AND INTERFACED SYNCHRONOUS DATAFLOW (PiSDF)
Parameterized and interfaced synchronous dataflow (PiSDF) has been proposed
in [Desnos et al. 2013] as an extension of SDF with parameters and hierarchy. As
PSDF, the corresponding parametrization framework (PiMM) can be applied to any
dataflow model with a clear definition of iterations. PiSDF shares many features with
PSDF, in particular it inherits its quasi-static scheduling algorithm for a sub-class of
graphs. Since PiSDF is closely related to PSDF, we express the graph taken for PSDF
(Fig. 4) as a PiSDF graph (Fig. 8). The main differences are:

• Hierarchy is simpler in PiSDF than in PSDF. PiSDF does not distinguish between
init, subinit and body graphs. The content of hierarchical actor needs to execute for
one iteration each time the actor is fired.

Fig. 8. A PiSDF graph.

As illustrated in Fig.8, parameters are represented by special vertices, and param-
eter dependencies are represented by dashed arrows. Configuration actors which set
parameters are represented in grey. Configuration ports (receiving parameter values)
are denoted by triangles ((e.g., [r] in Fig.8) whereas data ports are circles (e.g., a, b, c in
Fig.8). A parameter should have a fixed value during the firing of the hierarchical ac-
tor to which it belongs. This value can be set by either a configuration actor or another
parameter (e.g., a derivative parameter). In Fig. 8, parameters r and q belong to actors
G and A receptively. Parameter r is set by the configuration actor K.

As in PSDF, no grammar for parameters is given and null rates seem allowed. PiSDF
provides also static parameters, i.e., parameters that are configured only once at the
beginning of the execution, and never change after that. So, these parameters do not
depend on an actor for reconfiguration.

• PSDF defines an order of execution between the three (init, subinit and body) graphs,
which prevents parameter dependencies from creating deadlocks. PiSDF follows the
same approach and impose some restrictions on configuration actors. First, a configu-
ration actor fires exactly once per firing of the hierarchical actor to which it belongs,
and before any non-configuration actor. Moreover, it can consume data tokens only
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from interface input ports of hierarchical actors (e.g., see actor J in Fig. 8). Further-
more, parameters of a configuration actor should be either static (i.e., defined at the
beginning of the whole execution) or defined in higher hierarchical levels. So, config-
uration actors actually model the subinit graph in PSDF MoC. Nevertheless, PiSDF
allows configuration actors to communicate with the non-configuration actors using
ring-buffers (explained later).

• The semantics of interface input and output ports of hierarchical actors in PiSDF
is different from their semantics in PSDF. In this latter MoC, these ports do not play
any role but to conducts tokens from one hierarchy level to another. Indeed, as the
production and consumption rates of a PSDF hierarchical actor are inferred from its
internal implementation, there is a perfect correspondence between these rates and
the functionality of the internal implementation. This is not always the case in PiSDF
as production and consumption rates of a hierarchical actor need to be provided by
the designer in the parent graph of the actor. This implies that the parent graph can
be scheduled without taking into account the implementation of hierarchical actors.
This favors compositionality, but requires interface ports to ensure the correspondence
between the external rates and the internal functionality of a hierarchical actor.

The behavior of interface ports is that of interface ports in the Interface-Based SDF
(IBSDF) MoC [Piat et al. 2009]. We first precise that interface ports are taking into
account when computing the repetition vector of the graph inside a hierarchical actor.
This ensures that all produced tokens by an interface input port are consumed by an
iteration of the graph, and that an iteration produces enough tokens for an interface
output port. Suppose that both the consumption rate of H and the production rate of
I in A are equal to 2. The new repetition vector of non-configuration actors will be
[zH = 3r, zF = 6, zI = 6]. This means that H consumes 6r tokens per iteration, while
the interface input port reads only 3r tokens from the outside world. Therefore, the
interface port will behave as a ring buffer, and the 3r tokens are read twice per firings
of H. Similarly, I produces 12 tokens, while the interface output port provides only 6
tokens to the outside world. Therefore, it behaves as a ring buffer and writes only the
last 6 tokens to the outside world.

9. FSM-BASED PARAMETERIZED SCENARIO-AWARE DATAFLOW (PFSM-SADF)
The FSM-based parameterized scenario-aware dataflow model, PFSM-SADF, was pro-
posed in [Skelin et al. 2015; 2015] as a parameterization of FSM-SADF. The main
objective is to define an expressive parametric MoC whose throughput can be stati-
cally analyzed. A PFSM-SADF graph consists of a finite set of scenarios and a non-
deterministic finite-state machine that specifies the transitions between scenarios.
Each scenario can be seen as a PRDF graph with the following differences:

• Rate functions are positive constant integers or products of positive constant integers
with positive integer parameters (as in BPDF Sec. 7).

• For the sake of throughput analysis, approximate parametric execution times are
introduced. An actor execution time is an affine function described by the grammar:

D ::= k | k · p | D1 +D2 where k ∈ R+ and p is a positive real parameter

• Restrictions are imposed for strong consistency and a better analyzability:

(1) Self-loops must contain exactly one token.
(2) If a channel A r1 r2−−−→ B contains initial tokens, then the solution of the consumer

zB must be constant (i.e., non parametric) and the edge must be saturated (i.e., its
number of initial tokens must be greater than max(r2) · zB).
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(3) The graph must be compile-time schedulable and must have a single appearance
quasi-static schedule of the form XzXY zY . . . This entails that the graph obtained by
removing the saturated edges must be acyclic.

A PFSM-SADF graph is a tuple (Sp, F p) where Sp is a finite set of parameterized
scenarios and F p is an FSM over Sp. Each state of the FSM is labeled by a scenario.
At the end of each iteration of the graph, a transition is non-deterministically chosen
from the current FSM state, and a configuration in the scenario of the next state is also
non-deterministically chosen. So, in comparison with PRDF, two choices are made at
boundaries of iterations: the next scenario and the next configuration in that scenario.

Fig. 9 shows a simple PFSM-SADF graph with two scenarios S1 and S2. Its FSM
contains two states such that the initial state is labeled by scenario S2. Scenarios may
share actors and channels: functionally, this means that tokens produced in one sce-
nario may be used in another scenario. For instance, channel A→ B is shared between
S1 and S2, hence tokens present in channel A → B at the end of the iteration in sce-
nario S1 are used in scenario S2. In this case, the number of initial tokens in a shared
channel must be identical in all the concerned scenarios (recall that after each itera-
tion, the channels return to their initial states).

FSMscenario scenario

Fig. 9. A PFSM-SADF graph.

Worst-case throughput analysis
A parametric worst-case throughput analysis of PFSM-SADF graphs is proposed
in [Skelin et al. 2015; 2014], assuming a self-timed execution. It is based on a max-
plus characterization of the graphs. Max-plus algebra has also been used to compute
the throughput of SDF and SADF graphs (e.g., [Geilen 2011]).

As defined in [Geilen and Stuijk 2010], the throughput of an FSM-SADF graph is
the worst-case (i.e., the smallest) number of completed iterations per time unit that
can be achieved by any possible long-run scenario sequence. [Geilen and Stuijk 2010]
proposed two techniques for computing the throughput. The first one is based on state
space exploration, while the second one is based on max-plus automata theory. This
latter technique is extended in [Skelin et al. 2015] to PFSM-SADF.

Using techniques from [Geilen and Stuijk 2010], a worst-case throughput of the
PFSM-SADF graph can be computed. For instance, the second method (i.e., using max-
plus automata theory) constructs the throughput graph such that the inverse of the
maximum-cycle mean (MCM) of this graph is equal to the worst-case throughput of
the PFSM-SADF graph. The main idea is to produce and to solve a system of para-
metric recurrence equations representing timing invariants of iterations. [Skelin et al.
2014] proposed a method, called backward substitution, to solve such systems. Unfor-
tunately, this method does not work in the general case because of parametric ceiling
terms. The method is corrected in [Skelin et al. 2015] thanks to conservative approxi-
mations of parametric ceiling functions.

Parameterized Set of Modes Core Functional Dataflow (PSM-CFDF)
A similar approach as been applied to CFDF [Hsu et al. 2005]. CFDF actors have
sets of modes, each mode fixing constant production and consumption rates. However,
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Table I. Characteristics of Parametric Dataflow MoCs

MoC Parameters Par. Functions & Range Config. Changes Symbolic Analyses

PSDF Rates N∗
Hierarchical iterations Sc

Init. tokens Unspecified

VRDF Rates R ::= k | p p ∈ N Each firing Bu

SPDF Rates R ::= k | p | R1.R2 p ∈ N∗ Inner iterations Co, Li, Sc

BPDF
Rates R ::= k | p | R1.R2 p ∈ N∗ Global iterations

Co, Li, Sc

Edges B ::= b | ¬B | B1 ∧B2 Inner iterations

PiSDF Rates N Hierarchical iterations Sc

PFSM-SADF Rates R ::= k | p | R1.R2 p ∈ N∗ Global iterations Th, La

Co: Consistency; Li: Liveness; Th: Throughput; Bu: Buffer size; La: Latency ; Sc: Scheduling

as the number of modes grows, CFDF formulations can become clumsy. PSM-CFDF
was proposed in [Lin et al. 2015] as a parametric extension of CFDF. Parametrization
allows to regroup modes in sets called parametrized sets of modes (PSMs). Modes in
each PSM can be concisely described using parameters.

10. SUMMARY AND COMPARISONS
This section summarizes the main features of parametric MoCs and compares them
using a common example.

Table I presents the main characteristics of the MoCs detailed before. The absence
of a specific analysis in a model only means that it was not considered in the related
work. In many cases, symbolic analyses developed for some MoCs apply directly or
can be adapted to others. Parameters are most often changed by actors (modifiers) and
transmitted via dataflow channels. Other options could be considered, like changes by
a global controller or communication using shared data.

We consider a common example, inspired from video codecs, including several forms
of dynamicity. We express it in the different MoCs to illustrate their differences as
well as their respective advantages and drawbacks. The structure of the example is
depicted in Fig. 10(a). At each firing, B (resp. D and F ) produces (resp. consume) a
variable number of tokens q ∈ {1, ..., Q}. Because of the edge A 2 1−−→ B, actor B fires
twice in each iteration, hence potentially with two different values of q. Furthermore,
the two pipelines starting from B are executed exclusively: either the C/D pipeline
(B−−→C−−→D−−→F ) or the E pipeline (B−−→E−−→F ).

• A possible implementation of this example in SDF is presented in Fig. 10(b). Since
SDF is a static model, dynamicity is encoded within actors and exchanged data. For
rates, the SDF version always uses the maximum rate Q and both pipelines are al-
ways active. Additional communication links from B to actors C, D, E, and F (dashed
arrows) are used to inform the different actors of (i) the significant number q of tokens
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within the Q tokens exchanged, and (ii) which pipeline is active6. The iteration is now:

AB2C2QD2E2QF 2 (5)

For instance, if the current rate is q and only the C/D pipeline is enabled, B sends
this information to actors C,D,E, F , plus q valid tokens within Q to C and Q (possibly
dummy) tokens to E. C fires Q times and D selects the significant q tokens among the
Q tokens sent by C. Actor F discards theQ tokens sent through the “disabled” pipeline.

This encoding has several drawbacks. First, at each firing, B sends Q tokens to C
and E, which are both fired Q times regardless of the actual value of q. Besides, actors
C, D, and E are fired at each iteration while the specification states that their exe-
cution depends on which pipeline is enabled. Such an encoding implements the worst
case and is likely to be extremely inefficient. One may think to optimize the imple-
mentation by exchanging only the meaningful number of tokens q. However, in this
case the actual rates would be encoded and hidden within dynamic data, which would
prevent consistency and performance analyses.

• Fig. 10(f) and (g) depict implementations of the common example in PSDF and PiSDF,
respectively. Hierarchy is used to make the subgraph made of actors B, C, D, E, and F
(i.e., the body of the macro actor X) to operate with two different values of q within the
same iteration. In PSDF, this is achieved thanks to the X.subinit actor that assigns a
new value to q and then propagates it to actors B, D, and F . The two pipelines C/D
and E must be executed at each iteration. It follows that the iteration is:

AX2 with X = (↑q BCqDEqF ) (6)

A solution similar as the one used for SDF must be implemented to achieve the
dynamic behavior of the two pipelines. Even if not many static analyses have being
proposed for PSDF, a few restrictions (e.g., on initial tokens) should allow the symbolic
analyses presented in Section 3 to be reused.

In PiSDF, operating with two different values of q is achieved using actors X and I.
PiSDF, which allows null parameters, can implement the exclusive choice between the
two pipelines by introducing an additional parameter a ∈ [0, 1] such that if a = 1 the
C/D pipeline is executed (hence the rates q.a and a in Fig 10(g)), while if a = 0 the E
pipeline is executed (hence the rates q.(1−a) and (1−a) in Fig 10(g)). It follows that the
iteration for this PiSDF graph is:

AX2 with X = (↑q↑a B(CqD)a(Eq)1−aF ) (7)

Hierarchy improves expressivity (e.g., actor sharing) and allows to model inner it-
erations (within hierarchical actors). Actually PSDF and PiSDF are best seen as a
meta-model approach that can be applied to different MoCs. In particular, most of the
other MoCs studied in this survey could be made hierarchical following that approach.

• VRDF imposes many constraints on the graph structure and parameters usage. It
permits to change parameters at every single firing, which is much more flexible that
inner iterations (hierarchical as in PSDF or region-based as in SPDF). Compared to
other MoCs, parametric rates are restricted to be a single parameter. Rates such as
2pq must be simulated/encoded by introducing new parameters. The relations between
such parameters are not explicit, which may preclude some verification and/or anal-
yses. Fig. 10(d) depicts our solution of implementing the common example in VRDF.
Parameters q1 and q2, both modified by B, implement the dynamic rate. Two param-
eters are needed since a given parameter can only appear as the production or con-
sumption rate of at most two actors. Since parameters can take the value 0, one may

6A less explicit solution would encode this information within data tokens without using additional links.
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consider to implement mutually exclusive pipelines by adding parametric rates: q3 as
both rates of C (consumption and production), q4 for both rates of edge (D,F ), and q5
for both rates of E. Then, the exclusive execution of the two pipelines could be ensured
provided that:(

(q3 = q4 = 1) ∧ (q4 = q5 = 0)
)︸ ︷︷ ︸

C/D pipeline

xor
(
(q1 = q2 = q3 = 0) ∧ (q5 = 1)

)︸ ︷︷ ︸
E pipeline

(8)

However, ensuring this invariant would require extra communication between B
and all the other parameter modifiers (i.e., C, D, E), a solution comparable to the
encoding used above for SDF.

At each firing, B reads a new value of q which is used to set both q1 and q2. The
iteration is therefore:

A(↑q BCqDEqF )2 (9)
Unfortunately, the possibility of changing rates at each firing makes the design of

precise static analyses for VRDF difficult.

• Fig. 10(e) depicts our solution of implementing the common example in SPDF. Here,
B is the modifier of q and the “q@1” annotation indicates that q may change at each
firing of B. For this example, the iteration is similar to that of VRDF:

A

(
↑q B (CqDEq)︸ ︷︷ ︸

inner iteration

F

)2

(10)

Since SPDF does not provide any means to change the topology, a solution similar
as the one used for SDF must be implemented to achieve the dynamic behavior of the
two pipelines.

In SPDF, inner iterations may occur inside regions. Regions are more flexible than
the fixed hierarchical decomposition of PSDF. For instance, it is possible to have over-
lapped regions whereas hierarchical actors must be manually described and properly
nested. In this sense, SPDF is more expressive although, contrary to PSDF, it does not
help the reuse of previously modeled graphs. However, parametric numbers of config-
urations within an iteration complicate analyses a great deal.

• Fig. 10(c) depicts a BPDF encoding of the common example. The two pipelines must
be duplicated because a given parametric rate can only take one value during an itera-
tion. However, BPDF can use two Boolean parameters, b1 and b2, to model the mutual
exclusion in both pairs of pipelines. As a consequence, the iteration is:

A ↑q1↑q2
(
↑b1 B1 b1? (C

q1
1 D1F1) : (E

q1
1 F1)

)(
↑b2 B2 b2? (C

q2
2 D2F2) : (E

q2
2 F2)

)
(11)

The parametric rates of BPDF can only be changed between iterations. Compared to
SPDF, the absence of inner iterations changing rates simplifies static analyses. On the
other hand, BPDF allows inner iterations within regions but only for the Boolean pa-
rameters used in enabling conditions of communication channels. This is less problem-
atic since the number of firings is fixed at the beginning of the iteration (even though
the firings of completely disconnected actors are dummy firings and can be suppressed
in the implementation). They have little impact on analyses, which remain close to
those presented in Section 3. In particular, Boolean conditions can often be expanded
into a small set of possible configurations. Compared to null rates, Boolean conditions
express more easily relations between different channels than in VRDF (e.g., mutual
exclusion) and, contrary to PiSDF, they can change within iterations. Actually, the
addition of such Boolean conditions could be considered to extend most of the other
parametric MoCs presented in this survey.
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Fig. 10. A common example expressed in all the parametric MoCs.

• Finally, PFSM-SADF combines scenarios with parametric rates changed between
iterations only. Fig. 10(h) depicts a solution for the common example in PFSM-SADF.
It consists of four scenarios, S1 to S4, and one finite state machine (on the left), which
selects the active scenario. Each scenario Si duplicates the graph in the same way
as BPDF because PFSM-SADF does not allow rates to take multiple values within a
given iteration. For instance, scenario S1 executes the C/D pipeline with q1 and then
the C/D pipeline with q2, yielding the following iteration:

S1 ::= A ↑q1↑q2 (B1C
q1
1 D1F1) (B2C

q2
2 D2F2) (12)
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The iteration is similar for scenario S2, which executes the C/D pipeline with q1 and
then the E pipeline with q2, and so on for S3 and S4.

Static analyses of Section 3 could be applied individually to each PFSM-SADF sce-
nario. Compared to BPDF, PFSM-SADF can only activate or deactivate channels at
the iteration boundaries by changing scenarios. The relationship between configura-
tions (e.g., that the activation of two channels/paths are mutually exclusive) must be
encoded manually. On the other hand, scenarios are also more flexible and handy to
describe very different (or unrelated) graphs. The notion of scenarios could be used to
equip other MoCs with dynamic topology features.

Each parametric MoC is more expressive than SDF, because parameters allow dy-
namic changes of rates (while maintaining consistency). However, in terms of expres-
sivity, there is no clear order between the different parametric MoCs presented in this
survey. A first subclass of MoCs allows parameter changes within iterations: PSDF
and PiSDF do it by using hierarchy, SPDF uses the more flexible notion of regions,
and VRDF even allows changes every firing. PSDF, SPDF and VRDF can be regarded
as increasingly expressive but their analyzability follows the inverse order. Further-
more, the strong syntactic constraints enforced by VRDF complicates the comparison.
A second subclass of MoCs allows dynamic changes of the dataflow graph: BPDF does
it by using Boolean parameters on edges, and PFSM-SADF by using scenarios. BPDF
is more expressive since, thanks to parameters, it can represent concisely large sets
of graphs. On the other hand, PFSM-SADF looks better suited for representing small
sets of very different graphs.

In conclusion, each model has its own benefits and drawbacks and any advice or
choice depends on the target application. However, hierarchy, Boolean parameters and
scenarios can be used to extend most MoCs while being compatible with static anal-
yses. Therefore, if the goal is to improve expressivity while preserving analyzability,
then we believe that BPDF extended with hierarchy and scenarios would be a fine
trade-off.
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