
Higher-order Chemical Programming Style

J.-P. Banâtre1, P. Fradet2 and Y. Radenac1

1 IRISA, Campus de Beaulieu, 35042 Rennes Cedex, France
(jbanatre,yradenac)@irisa.fr

2 INRIA Rhône-Alpes, 655 avenue de l’Europe, 38330 Montbonnot, France
Pascal.Fradet@inria.fr

Abstract. The chemical reaction metaphor describes computation in
terms of a chemical solution in which molecules interact freely according
to reaction rules. Chemical solutions are represented by multisets of el-
ements and reactions by rewrite rules which consume and produce new
elements according to conditions. The chemical programming style allows
to write many programs in a very elegant way. We go one step further
by extending the model so that rewrite rules are themselves molecules.
This higher-order extension leads to a programming style where the im-
plementation of new features amounts to adding new active molecules in
the solution representing the system. We illustrate this style by specify-
ing an autonomic mail system with several self-managing properties.

1 Introduction

The chemical reaction metaphor has been discussed in various occasions in the
literature. This metaphor describes computation in terms of a chemical solu-
tion in which molecules (representing data) interact freely according to reaction
rules. Chemical solutions are represented by multisets. Computation proceeds by
rewritings of the multiset which consume and produce new elements according
to reaction conditions and transformation rules.

To the best of our knowledge, the Gamma formalism was the first “chemical
model of computation” proposed as early as in 1986 [1] and later extended
in [2]. A Gamma program is a collection of reaction rules acting on a multiset of
basic elements. A reaction rule is made of a condition and an action. Execution
proceeds by replacing elements satisfying the reaction condition by the elements
specified by the action. The result of a Gamma program is obtained when a
stable state is reached, that is to say, when no reaction can take place anymore.

max = replace x, y by x if x ≥ y

primes = replace x, y by y if multiple(x, y)
maj = replace x, y by {} if x 6= y

Fig. 1. Examples of Gamma programs

Figure 1 gives three small examples illustrating the style of programming
of Gamma. The reaction max computes the maximum element of a non empty
set. The reaction replaces any couple of elements x and y such that the reaction
condition (x ≥ y) holds by x. This process goes on till a stable state is reached,
that is to say, when only the maximum element remains. The reaction primes

computes the prime numbers lower or equal to a given number N when applied to
the multiset of all numbers between 2 and N (multiple(x, y) is true if and only if
x is multiple of y). The majority element of a multiset is an element which occurs
more than card(M)/2 times in the multiset. Assuming that such an element
exists, the reaction maj yields a multiset which only contains instances of the
majority element just by removing pairs of distinct elements. Let us emphasize
the conciseness and elegance of these programs. Nothing had to be said about the
order of evaluation of the reactions. If several disjoint pairs of elements satisfy
the condition, the reactions can be performed in parallel.

Gamma makes it possible to express programs without artificial sequentiality.
By artificial, we mean sequentiality only imposed by the computation model and
unrelated to the logic of the program. This allows the programmer to describe
programs in a very abstract way. In some sense, one can say that Gamma pro-
grams express the very idea of an algorithm without any unnecessary linguistic
idiosyncrasies. The interested reader may find in [2] a long series of examples
(string processing problems, graph problems, geometry problems, . . .) illustrat-
ing the Gamma style of programming and in [3] a review of contributions related
to the chemical reaction model.

This article presents a higher-order extension of the Gamma model where all
the computing units are considered as molecules reacting in a solution. In par-
ticular, reaction rules are molecules which can react or be manipulated as any
other molecules. In Section 2, we exhibit a minimal higher-order chemical calcu-
lus, called the γ-calculus, which expresses the very essence of chemical models.
This calculus is then enriched with conditional reactions and the possibility of
rewriting atomically several molecules. The resulting higher-order chemical lan-
guage suggests a programming style where the implementation of new features
amounts to adding new active molecules in the solution representing the system.
Section 3 illustrates the characteristics of our language through the example of an
autonomic mail system with several self-managing features. Section 4 concludes
and suggests several research directions.

2 A minimal chemical calculus

In this section, we introduce a higher-order calculus, the γ-calculus [4], that can
be seen as a formal and minimal basis for the chemical paradigm in much the
same way as the λ-calculus is the formal basis of the functional paradigm.

2.1 Syntax and semantics

The fundamental data structure of the γ-calculus is the multiset. Computa-
tion can be seen either intuitively, as chemical reactions of elements agitated

by Brownian motion, or formally, as higher-order, associative and commutative
(AC), multiset rewritings. The syntax of γ-terms (also called molecules) is given
in Figure 2. A γ-abstraction is a reactive molecule which consumes a molecule

M ::= x ; variable

| γ〈x〉.M ; γ-abstraction

| M1, M2 ; multiset

| 〈M〉 ; solution

Fig. 2. Syntax of γ-molecules

(its argument) and produces a new one (its body). Molecules are composed us-
ing the AC multiset constructor “,”. A solution encapsulates molecules (e.g.,
multiset) and keeps them separate. It serves to control and isolate reactions.

The γ-calculus bears clear similarities with the λ-calculus. They both rely
on the notions of (free and bound) variable, abstraction and application. A
λ-abstraction and a γ-abstraction both specify a higher-order rewrite rule. How-
ever, λ-terms are tree-like whereas the AC nature of the application operator “,”
makes γ-terms multiset-like. Associativity and commutativity formalizes Brown-
ian motion and make the notion of solution necessary, if only to distinguish
between a function and its argument.

The conversion rules and the reduction rule of the γ-calculus are gathered
in Figure 3. Chemical reactions are represented by a single rewrite rule, the γ-

(γ〈x〉.M), 〈N〉 −→γ M [x := N] if Inert(N) ∨ Hidden(x, M) ; γ-reduction

γ〈x〉.M ≡ γ〈y〉.M [x := y] with y fresh ; α-conversion

M1, M2 ≡ M2, M1 ; commutativity

M1, (M2, M3) ≡ (M1, M2), M3 ; associativity

Fig. 3. Rules of the γ-calculus

reduction, which applies a γ-abstraction to a solution. A molecule (γ〈x〉.M), 〈N〉
can be reduced only if:

Inert(N): the content N of the solution argument is a closed term made ex-
clusively of γ-abstractions or exclusively of solutions (which may be active),

or Hidden(x,M): the variable x occurs in M only as 〈x〉. Therefore 〈N〉 can be
active since no access is done to its contents.

So, a molecule can be extracted from its enclosing solution only when it has
reached an inert state. This is an important restriction that permits the order-
ing of rewritings. Without this restriction, the contents of a solution could be
extracted in any state and the solution construct would lose its purpose. Reac-
tions can occur in parallel as long as they apply to disjoint sub-terms. A molecule
is in normal form if all its molecules are inert.

In order to illustrate γ-reduction, consider the following molecules:

∆ ≡ γ〈x〉.x, 〈x〉 Ω ≡ ∆, 〈∆〉 I ≡ γ〈x〉.〈x〉

Clearly, Ω is an always active (non terminating) molecule and I an inert mole-
cule (the identity function in normal form). The molecule 〈Ω〉, 〈I〉, γ〈x〉.γ〈y〉.x
reduces as follows:

〈Ω〉, 〈I〉, γ〈x〉.γ〈y〉.x −→ 〈Ω〉, γ〈y〉.I −→ I

The first reduction is the only one possible: the γ-abstraction extracts x from its
solution and 〈I〉 is the only inert molecule (Inert(I)∧¬Hidden(x, γ〈y〉.x)). The
second reduction is possible only because the active solution 〈Ω〉 is not extracted
but removed (¬Inert(Ω) ∧ Hidden(y, I)).

Like in the λ-calculus, constants can be defined using basic constructs. For
example, booleans and conditionals can be encoded as follows:

true ≡ γ〈x〉.γ〈y〉.x
false ≡ γ〈x〉.γ〈y〉.y

if C thenM1 elseM2 ≡ 〈〈C〉, γ〈x〉.x, 〈M1〉〉, γ〈y〉.y, 〈M2〉

In the encoding of the conditional, when the molecule C reduces to true (resp.
false) the whole expression reduces to M1 (resp. M2). Other standard construc-
tions (pairs, tuples, integers, recursion,. . .) can be encoded as well. Actually, the
λ-calculus can easily be encoded within the γ-calculus (see [4] for more details).

In fact, the γ-calculus is more expressive than the λ-calculus since it can
also express non-deterministic programs. For example, let A and B two distinct
normal forms, then:

(γ〈x〉.γ〈y〉.x), 〈A〉, 〈B〉 ≡ (γ〈x〉.γ〈y〉.x), 〈B〉, 〈A〉
↓γ ↓γ

(γ〈y〉.A), 〈B〉 (γ〈y〉.B), 〈A〉
↓γ ↓γ

A 6≡ B

The γ-calculus is not confluent.

2.2 Extensions

The γ-calculus is a quite expressive higher-order calculus. However, compared to
the original Gamma [2] and other chemical models [5,6], it lacks two fundamental
features:

– Reaction condition. In Gamma, reactions are guarded by a condition that
must be fulfilled in order to apply them. Compared to γ where inertia and
termination are described syntactically, conditional reactions give these no-
tions a semantic nature.

– Atomic capture. In Gamma, any fixed number of elements can take part in
a reaction. Compared to a γ-abstraction which reacts with one element at a
time, a n-ary reaction takes atomically n elements which cannot take part
in any other reaction at the same time.

These two extensions are orthogonal and enhance greatly the expressivity of
chemical calculi. So from now, γ-abstractions (also called active molecules) can
react according to a condition and can extract elements using pattern-matching.
Furthermore, we consider the γ-calculus extended with booleans, integers, arith-
metic and booleans operators, tuples (written x1: . . . :xn) and the possibility of
naming molecules (ident = M). The syntax of γ-abstractions is extended to:

γP ⌊C⌋.M

where M is the action, C is the reaction condition and P a pattern extracting
the elements participating in the reaction. If the condition C is true, we omit it
in the definition of the γ-abstraction.

Patterns have the following syntax:

P ::= x | ω | ident = P | P, P | 〈P 〉

where

– x stands for variables which match basic elements (integers, booleans, tuples,
...),

– ω is a named wild card that matches any molecule (even the empty one),
– ident = P matches any molecule m named ident matched by P ,
– P1, P2 matches any molecule (m1,m2) such that P1 matches m1 and P2

matches m2,
– 〈P 〉 matches any solution 〈m〉 such that P matches m.

For example, the pattern Sol = 〈x, y, ω〉 matches any solution named “Sol”
containing at least two basic elements. The rest of the solution (that may be
empty) is matched by ω.

γ-abstractions are one-shot: they are consumed by the reaction. However,
many programs are naturally expressed by applying the same reaction an arbi-
trary number of times. We introduce recursive (or n-shot) γ-abstractions which
are not consumed by the reaction. We denote them by the following syntax:

replace P by M if C

Such a molecule reacts exactly as γP ⌊C⌋.M except than it remains after the
reaction and can be used as many times as necessary. If needed, a reactive
molecule can be removed by another molecule, thanks to the higher-order nature
of the language.

A higher-order Gamma program is an unstable solution of molecules. The
execution of that program consists in performing the reactions (modulo A/C)
until a stable state is reached (i.e., no more reaction can occur). A standard
Gamma program can be represented in our extended calculus by encoding its
reaction rules by n-shot abstractions placed in the multiset.

For example, the Gamma program computing the maximum element of a
multiset of integers is represented by a reaction rule (max in Figure 1) to be
applied to the multiset. In our higher-order model, that rule is considered as a
molecule in the solution of integer molecules. Figure 4 illustrates such a solution
and its reduction. Like in the original Gamma, the program terminates when no

max

2 5
11

10

max

2
11

10

max

11

10

max

11

Fig. 4. A possible execution of the program computing the maximum.

more reactions can occur. In our example, the solution becomes inert when only
one integer (the maximum) remains.

The following solution computes the greatest common divisor (gcd) of its two
integers:

〈init, gcd, clean, 15, 21〉

where
init = γ(x, y)⌊x ≥ y⌋.x:y
gcd = replacex:y by y:(x mod y) if y 6= 0

clean = γ(x:y, gcd)⌊y = 0⌋.x

First, only the abstraction “init” can react. It places the two integers in a pair
and disappears (one-shot abstraction). Then, the molecule “gcd” transforms
sequentially the pair until the second place is null (x mod y yields the rest
of the division of x by y). Finally, the one-shot abstraction “clean” reacts: it
extracts the result (x) from the pair and removes the gcd molecule.

Names can be used to tag any molecule: abstractions, solutions, For
example, if we name “Gcd” the following solution computing the gcd of two
integers:

Gcd = 〈init, gcd, clean〉

then the abstraction computing the gcd of two parameters can be written:

γ(Gcd = 〈ω〉, x, y).〈ω, x, y〉

It builds a solution made of the molecules init, gcd, clean (i.e., Gcd) and the
two parameters x and y (assumed to be integers). When the solution becomes
inert, only the gcd of x and y remains.

N -shot abstractions are well fitted to express self-management properties.
For example, computing the prime numbers up to 5 can be expressed as:

〈primes, 2, 3, 4, 5〉 −→γ 〈primes, 2, 3, 5〉

where primes is the reaction of Figure 1. The molecule “primes” is part of the
result (stable state). If new integers are added (perturbation), reactions may
start again until a new inert solution is reached (new stable state). For example,
if we need the prime numbers up to 10, we may just add integers to the previous
inert solution:

〈primes, 2, 3, 4, 5〉, γ〈x〉.〈x, 6, 7, 8, 9, 10〉

and the solution will re-stabilize to 〈primes, 2, 3, 5, 7〉. The molecule “primes”
can be seen as an invariant: it describes the valid inert states (here, set of prime
numbers). In the next section, we make use of this property to add several self-
management features to a mail system.

3 Towards an autonomic mail system

In this section, we describe an autonomic mail system within our higher-order
chemical framework. This example illustrates the adequacy of the chemical par-
adigm to the description of autonomic systems.

3.1 General description: self-organization

The mail system consists in servers, each one dealing with a particular ad-
dress domain, and clients sending their messages to their domain server. Servers
forward messages addressed to other domains to the network. They also get
messages addressed to their domain from the network and direct them to the
appropriate clients. The mail system (see Figure 5) is described using several
molecules:

– Messages exchanged between clients are represented by basic molecules whose
structure is left unspecified. We just assume that relevant information (such
as sender’s address, recipient’s address, etc.) can be extracted using appro-
priate functions (such as sender, recipient, senderDomain, etc.).

– Solutions named ToSenddi
contain the messages to be sent by the client i of

domain d.
– Solutions named Mboxdi

contain the messages received by the client i of
domain d.

– Solutions named Poold contain the messages that the server of domain d
must take care of.

– The solution named Network represents the global network interconnecting
domains.

– A client i in domain d is represented by two active molecules senddi
and

recvdi
.

A1
ToSend

A1send

A1recv

A1Mbox

A2
ToSend A2send

A2recv
A2Mbox

A3send

A3recv

APool

A3ToSend

A3Mbox

1B

1B

2B

2B

send
1B

1B

2B

2B

A

A

B

get

put Network

get

B

B

put

Pool

ToSend

Mbox

ToSend

Mbox

send

recv

recv

Fig. 5. Mail system.

senddi
= replace ToSenddi

= 〈msg, ωt〉, Poold = 〈ωp〉
by ToSenddi

= 〈ωt〉, Poold = 〈msg, ωp〉

recvdi
= replace Poold = 〈msg, ωp〉, Mboxdi

= 〈ωb〉
by Poold = 〈ωp〉, Mboxdi

= 〈msg, ωb〉
if recipient(msg) = i

putd = replace Poold = 〈msg, ωp〉, Network = 〈ωn〉
by Poold = 〈ωp〉, Network = 〈msg, ωn〉

if recipientDomain(msg) 6= d

getd = replace Network = 〈msg, ωn〉, Poold = 〈ωp〉
by Network = 〈ωn〉, Poold = 〈msg, ωp〉
if recipientDomain(msg) = d

MailSystem = 〈 sendA1
, recvA1

, ToSendA1
= 〈. . .〉, MboxA1

= 〈. . .〉,
sendA2

, recvA2
, ToSendA2

= 〈. . .〉, MboxA2
= 〈. . .〉,

sendA3
, recvA3

, ToSendA3
= 〈. . .〉, MboxA3

= 〈. . .〉,
putA, getA, PoolA, Network, putB, getB, PoolB,

sendB1
, recvB1

, ToSendB1
= 〈. . .〉, MboxB1

= 〈. . .〉,
sendB2

, recvB2
, ToSendB2

= 〈. . .〉, MboxB2
= 〈. . .〉

〉

Fig. 6. Self-organization molecules.

– A server of a domain d is represented by two active molecules putd and getd.

Clients send messages by adding them to the pool of messages of their domain.
They receive messages from the pool of their domain and store them in their
mailbox. The senddi

molecule sends messages of the client i (i.e., messages in
the ToSenddi

solution) to the client’s domain pool (i.e., the Poold solution).
The recvdi

molecule places the messages addressed to client i (i.e., messages in

the Poold solution whose recipient is i) in the client’s mailbox (i.e., the Mboxdi

solution).
Servers forward messages from their pool to the network. They receive mes-

sages from the network and store them in their pool. The putd molecule forwards
only messages addressed to other domains than d. The molecule getd extracts
messages addressed to d from the network and places them in the pool of do-
main d. The system is a solution, named MailSystem, containing molecules rep-
resenting clients, messages, pools, servers, mailboxes and the network. Figure 5
represents graphically the solution with five clients grouped into two domains A
and B and Figure 6 provides the definition of the molecules.

3.2 Self-healing

We now assume that a server may crash. To prevent the mail service from be-
ing discontinued, we add an emergency server for each domain (see Figure 7).
The emergency servers work with their own pool as usual but are active only

A1
ToSend

A1send

A1recv

A1Mbox

A2
ToSend A2send

A2recv
A2Mbox

A3send

A3recv

APool

A3ToSend

A3Mbox

1B

1B

2B

2B

send
1B

1B

2B

2B

A

A

put Network
BPool

ToSend

Mbox

ToSend

Mbox

send

recv

recv

PoolB’PoolA’

get

UpA

put

get

DownIn

DownOut
B’

B’

B’

B’

Fig. 7. Highly-available mail system.

when the corresponding main server has crashed. The modeling of a server crash
can be done using the reactive molecules described in Figure 8. When a failure
occurs, the active molecules representing a main server are replaced by mole-
cules representing the corresponding emergency server. The boolean failure de-
notes a (potentially complex) failure detection mechanism. The inverse reaction
repairServer represents the recovery of the server.

The two molecules Upd and (DownInd,DownOutd) represent the state of
the main server d in the solution, but they are also active molecules in charge of
transferring pending messages from Poold to Poold′ ; then, they may be forwarded
by the emergency server.

The molecule DownOutd transfers all messages bound to another domain
than d from the main pool Poold to the emergency pool Poold′ . The molecule

crashServerd = replace putd, getd, Upd

by putd′ , getd′ , DownInd, DownOutd

if failure(d)

repairServerd = replace putd′ , getd′ , DownInd, DownOutd

by putd, getd, Upd

if recover(d)

DownOutd = replace Poold = 〈msg, ωp〉, Poold′ = 〈ωn〉
by Poold = 〈ωp〉, Poold′ = 〈msg, ωn〉
if domain(msg) 6= d

DownInd = replace Poold = 〈ωp〉, Poold′ = 〈msg, ωn〉
by Poold = 〈msg, ωp〉, Poold′ = 〈ωn〉
if domain(msg) = d

Upd = replace Poold′ = 〈msg, ωp〉, Poold = 〈ωn〉
by Poold′ = 〈ωp〉, Poold = 〈msg, ωn〉

MailSystem = 〈. . . , UpA, UpB, Pool′A, Pool′B, crashServerA, repairServerA,

crashServerB, repairServerB〉

Fig. 8. Self-healing molecules.

DownInd transfers all messages bound to the domain d from the emergency pool
Poold′ to the main pool Poold.

After a transition from the Down state to the Up state, it may remain some
messages in the emergency pools. So, the molecule Upd brings back all the mes-
sages of the emergency pool Poold′ into the the main pool Poold to be then
treated by the repaired main server. In our example, self-healing can be im-
plemented by two emergency servers A′ and B′ and boils down to adding the
molecules of Figure 8 into the main solution.

3.3 Self-protection

Self-protection can be decomposed in two phases: a detection phase and a reac-
tion phase. Detection consists in filtering data and reaction in preventing offen-
sive data to spread (and sometimes also in counter-attacking). It can easily be
expressed with the condition-reaction scheme of the chemical paradigm. In our
mail system, self-protection is simply implemented with active molecules of the
following form:

self-protect = replace x, ω by ω if filter(x)

If a molecule x is recognized as an offensive data by a filter function then it
is suppressed. Variants of self-protect would consist in generating molecules to
counter-attack or to send warnings.

Offensive data can take various forms such as spam, virus, . . . A protection
against spam can be represented by the molecule:

rmSpam = replace msg, ω by ω if isSpam(msg)

which is placed in a Poold solution. The contents of the pool can only be accessed
when it is inert, that is when all spam messages have been suppressed by the
active molecule rmSpam.

Two other self-management features have been developed in [7]: self-optimization
(by enabling the emergency server and load-balancing messages between it and
the main server) and self-configuration (managing mobile clients).

Our description should be regarded as a high-level parallel and modular spec-
ification. It allows to design and reason about autonomic systems at an appropri-
ate level of abstraction. Let us emphasize the elegance of the resulting programs
which rely essentially on the higher-order and chemical nature of Gamma. A di-
rect implementation of our chemical specifications is likely to be quite inefficient
and further refinements are needed; this is another exciting research direction,
not tackled here.

4 Conclusion

We have presented a higher-order multiset transformation language which can
be described using the chemical reaction metaphor. The higher-order property
of our model makes it much more powerful and expressive than the original
Gamma [2] or than the Linda language as described in [8]. In this article, we
have shown the fundamental features of the chemical programming paradigm.
The γ-calculus embodies the essential characteristics (AC multiset rewritings)
in only four syntax rules. This minimal calculus has been shown to be expressive
enough to express the λ-calculus and a large class of non-deterministic pro-
grams [4]. However, in order to come close to a real chemical language, two fun-
damental extensions must be considered: reaction conditions and atomic cap-
ture. Along with appropriate syntactic sugar (recursion, constants, operators,
pattern-matching, etc.), the extended calculus can easily express most of the
existing chemical languages.

In this higher-order model, reactive molecules (γ-abstractions) can be seen
as catalysts that perform computations and implements new features. This pro-
gramming style has been illustrated by the specification of an autonomic mail
system in terms of solutions of molecules. Some molecules react as soon as a
predefined condition holds without external intervention. In other words, the
system configures and manages itself to face predefined situations. Our chemical
mail system shows that our approach is well-suited to the high-level description
of autonomic systems. Reaction rules exhibit the essence of “autonomy” without
going into useless details too early in the development process. A distinctive and
valuable property of our description is its modularity. Properties are described
by independent collections of molecules and rules that are simply added to the
system without requiring other changes.

An interesting research direction is to take advantage of these high-level
descriptions to carry out proofs of properties of autonomic systems (in the same
spirit as [9]). For example, “not losing any messages” would be an important
property to prove for our mail system. Another research direction would be to
pursue the extension of our language to prevent clumsy encodings (e.g., using
advanced data structures and others high-level facilities).

References

1. Banâtre, J.P., Le Métayer, D.: A new computational model and its discipline of
programming. Technical Report RR0566, INRIA (1986)

2. Banâtre, J.P., Le Métayer, D.: Programming by multiset transformation. Commu-
nications of the ACM (CACM) 36 (1993) 98–111

3. Banâtre, J.P., Fradet, P., Le Métayer, D.: Gamma and the chemical reaction model:
Fifteen years after. In: Multiset Processing. Volume 2235 of LNCS., Springer-Verlag
(2001) 17–44

4. Banâtre, J.P., Fradet, P., Radenac, Y.: Principles of chemical programming. In:
Fifth International Workshop on Rule-Based Programming (RULE’04), Electronic
Notes in Theoretical Computer Science (2004)

5. Le Métayer, D.: Higher-order multiset programming. In (AMS), A.M.S., ed.: Proc.
of the DIMACS workshop on specifications of parallel algorithms. Volume 18 of
Dimacs Series in Discrete Mathematics. (1994)

6. Păun, G.: Computing with membranes. Journal of Computer and System Sciences
61 (2000) 108–143

7. Banâtre, J.P., Fradet, P., Radenac, Y.: Chemical specification of autonomic systems.
In: Proc. of the 13th Int. Conf. on Intelligent and Adaptive Systems and Software
Engineering (IASSE’04). (2004)

8. Carriero, N., Gelernter, D.: Linda in Context. Communications of the ACM 32

(1989) 444–458
9. Barradas, H.: Systematic derivation of an operating system kernel in Gamma. Phd

thesis (in french), University of Rennes, France (1993)

