
Automatic Rate Desynchronization of Embedded

Reactive Programs

ALAIN GIRAULT

Inria Rhône-Alpes, Pop Art project, Montbonnot, FRANCE

and

XAVIER NICOLLIN

INPGrenoble, Verimag, Gières, FRANCE

and

MARC POUZET

Université Paris-Sud, LRI, Orsay, FRANCE

Many embedded reactive programs perform computations at different rates, while still requiring
the overall application to satisfy very tight temporal constraints. We propose a method to auto-

matically distribute programs such that the obtained parts can be run at different rates, which
we call rate desynchronization. We consider general programs whose control structure is a finite
state automaton and with a DAG of actions in each state.

The motivation is to take into account long duration tasks inside the programs: these are
tasks whose execution time is long compared to the other computations in the application, and
whose maximal execution rate is known and bounded. Merely scheduling such a long duration
task at a slow rate would not work since the whole program would be slowed down if compiled
into sequential code. It would thus be impossible to meet the temporal constraints, unless such
long duration tasks could be desynchronized from the remaining computations. This is precisely
what our method achieves: it distributes the initial program into several parts, so that the parts
performing the slow computations can be run at an appropriate rate, therefore not impairing the
global reaction time of the program.

We present in detail our method, all the involved algorithms, and a small running example.
We also compare our method with the related work.

Categories and Subject Descriptors: C.3 [Computer Systems Organization]: Special-purpose
and application-based systems—Real-time and embedded systems; D.3.2 [Software]: Program-
ming languages—Concurrent, distributed, and parallel languages; D.3.2 [Software]: Program-
ming languages—Data-flow languages

Author’s address: A. Girault, Inria Rhône-Alpes, Pop Art project, 655 avenue de l’Europe,
38334 Saint-Ismier cedex, France, Email: Alain.Girault@inrialpes.fr
X. Nicollin, INPGrenoble, Verimag, Centre Équation, 2 avenue de Vignate, 38610 Gières, France,
Email: Xavier.Nicollin@imag.fr
M. Pouzet, Université Paris-Sud, LRI, 91405 Orsay cedex, France, Email: Marc.Pouzet@lri.fr
A shorter version of this article has been published in the conference EMSOFT 2003 under the
title “Clock-Driven Automatic Distribution of Lustre Programs”.

Permission to make digital or hard copies of part or all of this work for personal or classroom
use is granted without fee provided that copies are not made or distributed for profit or direct
commercial advantage and that copies show this notice on the first page or initial screen of a
display along with the full citation. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to
post on servers, to redistribute to lists, or to use any component of this work in other works requires
prior specific permission and/or a fee. Permissions may be requested from Publications Dept.,
ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or
permissions@acm.org.
c© 2006 ACM 1539-9087/2006/0800-0001 $5.00

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 3, August 2006, Pages 1–0??.

2 · A. Girault, X. Nicollin, and M. Pouzet

General Terms: Algorithms, Design

Additional Key Words and Phrases: Embedded programs, reactive systems, desynchronization,
automatic distribution, long duration tasks, parallelization algorithm

1. INTRODUCTION

1.1 Embedded reactive programs

Embedded programs are programs running on systems such as autonomous vehi-
cles, mobile systems, satellites, and so on. Their main requirement is to comply
with limited resources : limited memory, limited computing power, limited power
supply. . . Often, they must also react continuously to their environment, at a speed
determined by the latter, and are thus termed as reactive programs [Harel and
Pnueli 1985]. As such, they must meet the following additional requirements:

(1) Temporal requirements. This concerns both the input rate and the in-
put/output response time. To check their satisfaction on the implementation,
it is necessary to know bounds on the execution time of each computation as
well as on the maximal input rate.

(2) Safety requirements. Being intrinsically critical, they require rigorous de-
sign methods and languages as well as formal verification and validation of their
behavior.

(3) Parallelism requirements. At least, the design must take into account the
parallelism between the system and its environment. Moreover, these systems
are sometimes implemented on distributed architectures, whether for reasons
of processor load, performance increase, fault tolerance or functionality (geo-
graphical distribution).

1.2 Automatic rate desynchronization

In this paper, we present a method to achieve the automatic rate desynchroniza-

tion of embedded programs. The programs we consider have a control structure
expressed as a finite state automaton, and are meant to be run in an execution loop,
where one iteration of this loop corresponds to one reaction of the program, and
where inputs are obtained from the environment at the beginning of each state of
the automaton. Therefore, a reaction of the program involves obtaining the inputs
from the environment and then executing one transition of its automaton.

Given a centralized source program and some distribution specifications provided
by the user, we will produce automatically a desynchronized program having the
same observable behavior as the one of the centralized source program. This will
consist of a distributed program, with as many parts as required by the distribution
specifications. These parts will communicate harmoniously through asynchronous
buffers, and each will have its own execution loop. By rate desynchronization we
mean that the rates of the obtained part will not necessarily be all identical, and
thus not identical to the rate of the centralized source program.

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 3, August 2006.

Automatic Rate Desynchronization of Embedded Reactive Programs · 3

1.3 Motivation: long duration tasks

One of the main motivations for rate desynchronization is the handling of long

duration tasks. These computations have the following three characteristics:

(1) their execution time is long compared with the other computations in the ap-
plication,

(2) their execution time is known and bounded,

(3) their maximal execution rate is known and bounded.

Of course, the execution time and execution rate of a long duration task must be
consistent with the performance of the hardware running the system. Otherwise
the temporal requirements of the system will never be met. We will address this
issue in § 5.1.

Many embedded reactive programs do involve long duration tasks. This is the
case of the CO3N4 software control system, developed at Schneider Electric

for nuclear plants [Bergerand and Pilaud 1988]. One of CO3N4’s subsystems had
a very tight timing constraint, and its first implementation could not meet it. This
subsystem consisted of two parts, a slow one performing a long duration task, and a
fast one performing everything else. The engineers came up with a solution where
the slow part was cut into two subparts, with the system performing at each of
its cycles the fast part, and alternately the first slow subpart and the second slow
subpart.

As an example, consider a system with three tasks: task A performs slow com-
putations (duration=8, period=deadline=32); task B performs medium and more
urgent computations (duration=6, period=deadline=24); and finally task C per-
forms the fastest and most urgent computations (duration=4, period=deadline=8).
There are two ways to implement such a system:

(1) Manual task slicing. Tasks A and B are sliced into small chunks which are
interleaved with task C, as shown in Figure 1 (the chunks are denoted by A1,
A2, A3, and A4 for tasks A, and B1, B2, and B3 for task B). Such a manual
task slicing is very hard to achieve, error prone, and difficult to debug. The
main reasons are that the slicing itself is complex, in the general case various
subparts may communicate with each other, and finally, obtaining a correct
and deadlock-free interleaving is difficult.

� � � � � � � � � 	
 ��

����� ������������������������ �� ������� � � !�!�!�!"�"�"#�#�#$�$�$%�%�%&�&�&'�'�'�'(�(�(

)�)�)�)�)�)*�*�*�*�* +�+�+�+�+�+�+�+�+,�,�,�,�,�,�,�, -�-�-�-.�.�.

C A1 B1 C A2 B2 C A3 B3 C A4 B1 C

A B C

420 1086 161412 222018 282624 343230
time

36

duration / period / deadline 4 / 8 / 86 / 24 / 248 / 32 / 32

task

Fig. 1. Manual task slicing.

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 3, August 2006.

4 · A. Girault, X. Nicollin, and M. Pouzet

(2) Distribution into three processes. Here, tasks A, B, and C are performed
by one process each, and the task slicing is done by the scheduler of the un-
derlying real-time operating system, with some priority policy.1 There are two
ways to achieve such a distribution into three processes:
(a) Manually programming three asynchronous tasks. The example of the

Mars Rover Pathfinder 2 shows the limitation of this approach for criti-
cal systems. In the Mars Rover case, several parallel tasks had to share
common resources. Since some tasks were more urgent than others, the
designers used priorities. However, at some point during execution, the
phenomenon known as priority inversion occurred [Sha et al. 1990], caus-
ing a total system reset! The intrinsic non determinism of the system,
combined with the fact that each parallel subsystem was designed sepa-
rately, made the problem all the more difficult to debug. We claim that
this approach — manual programming of a real-time parallel program —
makes the program harder to debug, test, and verify.

(b) Distributing a centralized program into three processes. To achieve auto-
matically a distributed implementation, we choose the so-called object code

distribution method. It involves first building the complete object code
of the centralized program (that is, a single task program), and then dis-
tributing it according to the system designer’s specifications. The main
advantage of this approach is that it is easier and less error-prone than to
design directly a distributed system. This explains the recent success of
automatic distribution methods (see [Gupta et al. 1999] for a survey of ex-
isting methods, or [Caspi et al. 1999] for a more specific algorithm working
on programs having a finite state automaton control structure). The other
advantage of this approach is the possibility to debug and formally verify
the centralized program before its distribution, which is always easier and
faster than debugging a distributed program. Finally, there remains the
issue of the correctness of this approach: it will be addressed in § 3.1.

In other words, the solution we propose avoids, not only the manual partition
of A and B into small chunks Ai and Bi (as in solution 1), but also the manual
partition of the whole program into A, B, and C (as in solution 2a). Moreover, since
the distribution will be automated, it will allow the user to test several partitions
along with several priority policies.

1.4 Outline of the paper

The paper is organized as follows. In Section 2, we present the format of our
programs. In Section 3, we present a first attempt of automatic distribution and
we discuss why this does not work, i.e., why the rates of all the obtained parts
are identical. In Section 4, we explain in detail our method for achieving the rate
desynchronization. Finally, in Section 5, we discuss issues like worst case execution
time, implementation, and related work, and we give some concluding remarks.

1This priority problem is orthogonal to the scope of this paper. For instance, one can choose the
Rate Monotonic scheduling policy (RM [Liu and Layland 1973]), where the order relation between
the task priorities is the reverse of the order relation between the task periods.
2This story report is available at http://www.cs.cmu.edu/afs/cs/user/raj/www/mars.html.

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 3, August 2006.

Automatic Rate Desynchronization of Embedded Reactive Programs · 5

2. PRELIMINARIES

Our method for achieving the rate desynchronization of programs heavily uses past
work on automatic distribution, based on a finite state automaton format called
OC. In this section, we present first this format (basically a finite state automaton
with a DAG of sequential actions in each state), and then an OC program that will
serve as a running example in subsequent sections.

2.1 Automaton format

Our distribution algorithm [Caspi et al. 1999] uses an automaton format named OC
(for Object Code [Plaice and Saint 1987]). An OC program is a finite deterministic
automaton. This state graph can be cyclic, but in each state, there is sequential
acyclic code, represented by a rooted binary directed acyclic graph (DAG) of ac-
tions. A program manipulates three kinds of variables: input variables can be used
only as r-values; local and output variables can be used as r-values and l-values;
output variables are also written to the environment.

Each DAG has one root (graphically represented by a circled dot), several unary
and binary nodes, and one or more leaves:

—Unary nodes are sequential actions, which can be either:
—an indication that the input variables of the program have been read and that

their values are available in the local memory of the program: go(...,ini,...),
where ini are the inputs; this go action must be the first node of each DAG,
it makes explicit the interaction of the program with its environment;

—an assignment to a local or output variable: var:=exp, where exp can contain
external function calls;

—an output writing: write(var);
—an external procedure call: proc(...,vari,...)(...,valj,...), where vari and
valj are respectively the variable and value parameters.

—Binary nodes are deterministic branchings: if (var) then p else q endif,
where p and q are (possibly empty) subdags.

—Leaves, and only leaves, denote the next state number: goto n.

This automaton format is quite general since programs written in a classical
imperative programming language can be compiled into this format. In fact, any
OC program can be translated into a flow graph of basic blocks, and vice-versa.

Finally, concerning the execution, an OC program is embedded in an execution

loop: at each cycle, the inputs are read from the environment, and then one tran-
sition of the automaton is executed (i.e., the code of the current state’s DAG is
executed). The outputs are written to the environment when executing the au-
tomaton’s transition, through the write actions. For a reactive system, checking
the temporal constraints amounts to verifying that the automaton can be run in an
execution loop whose period is less than the maximal time allowed by the temporal
constraint.

2.2 The FILTER OC program

We consider the following OC program FILTER. It has two states, numbered 0
and 1, 0 being the initial state. In each state, the DAG can be depicted as a graph

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 3, August 2006.

6 · A. Girault, X. Nicollin, and M. Pouzet

or equivalently as a textual list of instructions. Figure 2 below shows the textual
representation of the FILTER program.

state 0

go(CK,IN);

if (CK) then {

RES:=0;

write(RES);

OUT:=SLOW(IN);

write(OUT);

goto 1;

} else {

write(RES);

goto 0;

} endif;

state 1

go(CK,IN);

if (CK) then {

RES:=OUT;

OUT:=SLOW(IN);

write(OUT);

} else {

} endif;

write(RES);

goto 1;

Fig. 2. Textual representation of the centralized FILTER program.

Figure 3 below shows the equivalent graphical representation of the FILTER pro-
gram.

RES:=0

write RES

if (CK)

go(CK,IN)

OUT:=SLOW(IN)

write(OUT)

goto 1

write(RES)

goto 0

RES:=OUT

if (CK)

go(CK,IN)

OUT:=SLOW(IN)

write(OUT)

write(RES)

goto 1

state 0 state 1

Fig. 3. Graphical representation of the centralized FILTER program.

The FILTER program has:

—two inputs: the Boolean CK and the integer IN;

—two outputs: the integers RES and OUT; OUT is computed by calling the external
function SLOW; this function is supposed to perform a long and complicated com-
putation; here, for sake of simplicity, we assume that the result of SLOW(n) is
3*n.

Additionally, each input and output has a rate, which is the sequence of cycles
where it “exists”, that is, where it bears a value. Nothing is known a priori about
the rates; in particular, they do not need to be periodic. Here, IN is used only
when CK is true, so we say that its rate is CK.3 In contrast, since CK is used at

3Even though IN is read at each cycle, by the go action, it is used only when CK is true.

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 3, August 2006.

Automatic Rate Desynchronization of Embedded Reactive Programs · 7

each cycle, we say that its rate is the base rate of the program. OUT is written each
time CK is true, hence its rate is CK. Finally, RES is written at each cycle so its rate
is the base rate.

Now, since the branchings can be nested, so can be the rates. Therefore, we can
build a tree of rates, whose root is the base rate of the program and whose nodes
are the different rates. A rate C1 is then said to be faster than another rate C2 if
C2 is in the subtree whose root is C1. Each node of this tree can then be decorated
with the set of inputs and outputs whose rate is precisely the node.

The FILTER program remains in state 0 until the first instant when CK bears the
value true; then it moves to state 1. Figure 4 below is an example of a run. In this
run, the rate CK is periodic (true at instants 1, 4, 7, and so on, as shown by the
thick bars above), but this is not necessary the case, and it is not required by our
method.

FILTFILT FILT FILT FILT FILT FILT

RES2=0

OUT1=42
RES1=0 RES3=0

OUT2=27
RES4=42 RES5=42 RES6=42

OUT3=69
RES7=27

o
u
tp

u
ts

2/1

CK2=F

logical time/state
of the program

1/0

IN1=14
CK1=T CK3=F

3/1

IN2=9
CK4=T

4/1 5/1

CK5=F

6/1

CK6=F

IN3=23
CK7=T

7/1

in
p
u
ts

Fig. 4. A run of the centralized FILTER program.

The logical time of the program, mentioned in Figure 4, is the cycle number of the
program, also called the base rate. Each other rate also defines a logical time, which
is the logical time of all the variables with this rate; it is slower than the logical
time of the program. In order to identify the values of the different variables, we
add as a subscript the cycle number of its rate’s logical time. For instance, CK1=T,
CK2=F. . . Similarly, IN1=14, IN2=9. . . Note that the variables IN and RES advance
at a different rate: the value IN2 occurs at the same program cycle as the value
RES4. Note also that RES4 is equal to OUT1. Actually, the output RES is a “delayed”
version of the output OUT. In this sense, the input value IN1=14 yields the output
value RES4=42.

Throughout the paper, we suppose that SLOW takes 7 time units to complete and
that, altogether, the other computations of the program take 1 time unit. Thus,
the Worst Case Execution Time (WCET) of FILTER is 8 time units (7+1). In the
run of Figure 4, this WCET is reached at cycles 1, 4, and 7. So the period of the
execution loop (that is, the base rate of the program) cannot be smaller than 8 time
units. This is not acceptable if the temporal requirements impose a smaller period.
The purpose of our rate desynchronization method is to achieve a smaller period for
the computations scheduled on the base rate. In Section 3, we show that the simple
distribution of FILTER into two communicating tasks does not solve the problem

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 3, August 2006.

8 · A. Girault, X. Nicollin, and M. Pouzet

because these two tasks still share the same logical time, and hence they have the
same period. Next, in Section 4, we present our method to further desynchronize
the two tasks, so that the fast computations be performed at a fast rate, while the
slow computations are performed at a slow rate.

3. A FIRST ATTEMPT OF DESYNCHRONIZATION

First, we present the basic distribution algorithm and the communication primitives
used, before studying why it fails to work for the FILTER program.

3.1 Automatic distribution algorithm

The distribution algorithm we use in this paper is fully presented in [Caspi et al.
1999]. We only outline it here. It involves the following successive steps:

(1) assign a unique computing location to each sequential action, according to the
distribution specifications provided by the user; these specifications are a parti-
tion of the set of inputs and outputs of the program into n subsets, one for each
computing location of the final parallel program; note that achieving the “best”
localization of the sequential actions (whatever the optimization criterion) is
irrelevant in the present paper since we want to drive the distribution according
to the rates of the program’s inputs and outputs and not according to some
optimization criterion; readers interested in these topics can refer to [Gupta
et al. 1999];

(2) replicate the program on each location;

(3) on each location, suppress the sequential actions not belonging to the considered
location;

(4) on each state of the automaton of each location, insert sending actions in order
to solve the data dependencies between any two distinct locations;

(5) on each state of the automaton of each location, insert receiving actions in
order to match the sending actions.

To make the obtained distributed programs less sensitive to communication la-
tencies, the sends are inserted as early as possible in the OC program, while the
receives are inserted as late as possible. Neither of the two insertion algorithms
crosses the state frontier, that is, the send and receive actions are inserted state by
state.

Finally, the correctness of our distribution algorithm has been formally proved
in [Caillaud et al. 1997], meaning that the obtained distributed program is func-
tionally equivalent to the initial centralized one.

3.2 Communication primitives

We choose to have two FIFO queues for each pair of locations, one in each direction.
This is quite cheap in terms of execution environment, and has proved to work
satisfactorily [Caspi and Girault 1995]. Concretely, we use two communication
primitives:

—The send primitive send(dst,var) sends the current value of variable var to
location dst by inserting it into the queue directed towards dst.

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 3, August 2006.

Automatic Rate Desynchronization of Embedded Reactive Programs · 9

—The receive primitive var:=receive(src) extracts the head value from the queue
starting at location src and assigns it to variable var, which is the local copy of
the distant variable computed at location src.

These primitives perform both the data-transfer and the synchronization needed
between locations: when the queue is empty, receive is blocking. The only require-
ment on the network is that it must preserve ordering and integrity of messages.

3.3 Distribution of the FILTER program

From now on, let us assume that the user wishes his FILTER program to run over
two computing locations L and M, according to the following rate distribution spec-

ifications.

location name assigned rates

L base
M CK

We now need to derive the corresponding distribution specifications, expressed
on the inputs and outputs of the program instead of the assigned rates (as required
by our distribution algorithm). To do this, we assign to a given computing location
all the inputs and outputs whose rate belongs to it.

We also infer the rate of each location. Indeed, the knowledge of these rates will
be required to compute the final WCET (in § 5.1). To compute the inferred rate of
any given location, we take the root of the smallest subtree containing all the rates
chosen by the user.

For the above distribution specifications, we obtain:

location assigned inferred inferred
name rates inputs & outputs location rate

L base CK, RES base
M CK IN, OUT CK

Applied to the FILTER program of Figure 2, these distribution specifications yield
the following distributed program, shown in Figure 5.

location L (base rate) location M (rate CK)

state 0

go(CK);

send(M,CK);

if (CK) then {

RES:=0;

write(RES);

goto 1;

} else {

write(RES);

goto 0;

} endif;

state 1

go(CK);

send(M,CK);

if (CK) then {

OUT:=receive(M);

RES:=OUT;

} else {

} endif;

write(RES);

goto 1;

state 0

go(IN);

CK:=receive(L);

if (CK) then {

OUT:=SLOW(IN);

write(OUT);

goto 1;

} else {

goto 0;

} endif;

state 1

go(IN);

CK:=receive(L);

if (CK) then {

send(L,OUT);

OUT:=SLOW(IN);

write(OUT);

} else {

} endif;

goto 1;

Fig. 5. The FILTER program distributed over two locations L and M.

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 3, August 2006.

10 · A. Girault, X. Nicollin, and M. Pouzet

The distributed program of Figure 5 calls for the following remarks:

(1) The go(CK,IN) action from the centralized FILTER program has been split into
two actions: go(CK) on location L and go(IN) on location M. This is a direct
consequence of our distribution specifications.

(2) On location M, all computations are scheduled on its rate CK. Hence, they are
necessarily inside the then branch of the test if(CK). Only a send or a goto

can appear in the else branch, which is the case in state 0.

(3) The value of CK is sent by location L and received by location M at each cycle

of the base rate. As a result, location M actually runs at the speed of the base
rate instead of CK.

Figure 6 below is an example of a run of the distributed FILTER program, where L
and M are both embedded in their own periodic execution loop.

������������ ����������
���������� ������������ ����������

���������� 	�		�	

������������������
������������������ ������������������

�������������� ������������ ����
L L L L L

M MM M M

CK1=T CK2=F CK3=F CK4=T

RES1=0 RES2=0 RES3=0 RES4=42

1/0 2/1 3/1 4/1 logical time/state for L

4/1 logical time/state for M2/1 3/11/0

OUT1=42 OUT2=27
IN1=14 IN2=9

OUT1CK3 CK4CK2CK1

Fig. 6. A run of the distributed FILTER program.

Assume that the communications take 1 time unit. The new WCETs for L

and M are respectively 2 and 8 time units. On a multiprocessor architecture, the
global WCET is 8, hence the situation is the same as before; on a monoprocessor
architecture, it is worse since the global WCET is 10. One reason is that CK is sent
by L to M at each cycle. Would the period of L be smaller than that of M, the size
of the FIFO queue would be unbounded.

Instead of the distributed program of Figure 5, we would like a program where
location M runs at the speed of its assigned rate, that is CK. This would give enough
time for the computation of the long duration task embedded in SLOW. In the next
section, we explain in detail our method to achieve this.

4. THE PROPOSED METHOD

In location M of the distributed program of Figure 5, the go(IN) action could
be performed inside the then branch of the test if(CK). Indeed, the rate of IN

is CK, and therefore a new value of IN is only expected at those cycles where CK is
true. If we manage to move the go(IN) action inside the then branch of the test,

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 3, August 2006.

Automatic Rate Desynchronization of Embedded Reactive Programs · 11

then all the actions performed by location M will be scheduled on CK, except the
CK:=receive(L). Hence, the idea is that a carefully chosen bisimulation should be
able to detect that, in such a case, the if(CK) branching is useless. Suppressing this
useless if(CK) test on location M will obviate the sending of CK by location L, and
consequently the receiving of CK by location M, therefore allowing the two processes
to run at different rates, that is, to have their rates desynchronized !

4.1 Moving the go actions downward

Moving the go actions downward concerns only the programs of the computing
locations whose rates are not the base rate. For each such location, let CK be its
rate and IN1,...,INn be its n inputs, as specified by the distribution specifications.
Hence, the current action at the root of its DAGs is go(IN1,...,INn). We traverse
each of its DAGs downward, starting from the root, as follows:

—On a unary node, continue in the next node.

—On a branching if(var), if var is CK, then insert go(IN1,...,INn) at the be-
ginning of the then branch, mark the DAG, and terminate; otherwise continue
in both branches then and else.

—On a branching closure, continue in the next node.

—On a leaf, do nothing.

—At the end of the traversal, if the DAG is marked, then remove the go at its root.
It means that a go action has been inserted somewhere in the DAG.

To illustrate this algorithm, we apply it to the FILTER program. According to
our distribution specifications (see § 3.3), only the DAGs of location M need to be
traversed. Figure 7 shows the result for state 0 while Figure 8 shows the result for
state 1.

loc. M (rate CK) - state 0

go(IN);

if (CK) then {

OUT:=SLOW(IN);

write(OUT);

goto 1;

} else {

goto 0;

} endif;

 loc. M (rate CK) - state 0

if (CK) then {

go(IN);

OUT:=SLOW(IN);

write(OUT);

goto 1;

} else {

goto 0;

} endif;

Fig. 7. State 0 of location M: (left) before and (right) after the traversal.

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 3, August 2006.

12 · A. Girault, X. Nicollin, and M. Pouzet

loc. M (rate CK) - state 1

go(IN);

if (CK) then {

send(L,OUT);

OUT:=SLOW(IN);

write(OUT);

} else {

} endif;

goto 1;

 loc. M (rate CK) - state 1

if (CK) then {

go(IN);

send(L,OUT);

OUT:=SLOW(IN);

write(OUT);

} else {

} endif;

goto 1;

Fig. 8. State 1 of location M: (left) before and (right) after the traversal.

4.2 Suppressing useless branchings

In [Caspi et al. 1995], we have presented an algorithm for suppressing binary
branching whose branches are observationally equivalent. It involves traversing
each automaton, starting from the first node of its initial state’s DAG, and for each
branching encountered, checking whether or not both branches are observationally
equivalent. If they are, then the branching is suppressed; otherwise, it is kept.
Checking if two branches are observationally equivalent is done on-the-fly with a
bisimulation, called test bisimulation.

For our method to work, we split Step 4 of our distribution algorithm (see § 3.1)
into two phases. The branching suppression will take place between these two
phases. During the first phase, we only insert the send actions concerning the unary
nodes of the DAG, that is, everything but the branchings. During the second phase,
we insert the send actions concerning the binary nodes, that is, the branchings that
were not suppressed.

The test bisimulation is formally expressed by three axioms and six inference
rules (defined below). These axioms and rules apply to OC programs represented
as CCS terms [Milner 1980] of the form:

q ::= nil | x | a.q | c1.q + c0.q | rec x.q

where x belongs to a finite set of variables. Intuitively, a.q represents a unary node
with action a, while c1.q + c0.q represents a binary node with action c1 leading to
the then branch and action c0 leading to the else branch, and finally rec x.q is
the starting point of a loop. Here a, c1, and c0 are abstract actions defining the
concrete actions performed by the program.

We consider only closed and well guarded terms, that is without free variables
(i.e., each variable instance is bound by a rec), and such that each variable occurs
within some subterm a.q′, c1.q

′, or c0.q
′ (i.e., there is no empty loop such as recx.x).

We call them deterministic binary terms, noted DBTs.
We also define invisible binary terms, noted IBTs, as closed and well-guarded

terms of the form:

q ::= nil | x | c1.q + c0.q | rec x.q

The difference between an IBT and a DBT is that the only concrete actions per-
formed by an IBT are binary branchings (i.e., binary DAG nodes), while a DBT
performs both regular actions (i.e., unary DAG nodes) and binary branchings.

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 3, August 2006.

Automatic Rate Desynchronization of Embedded Reactive Programs · 13

Indeed, for our purpose of branching suppression, we consider branchings to be
invisible actions in the sense of observational equivalence. Note that any IBT is
also a DBT.

For instance, to build the DBT of the FILTER program (location M), we start by
defining the abstract actions according to Table I. Note that goto actions do not
appear in the DBTs since we want to represent full programs and not just DAGs;
hence goto actions are “expanded”.

abstract action concrete action

a go(IN)

b send(L,OUT)

d OUT:=SLOW(IN)

abstract action concrete action

e write(OUT)

c1 if (CK) then

c0 if (CK) else

Table I. Abstract actions of the FILTER program (location M).

According to Table I, the DBT of the sole state 1, shown in Figure 8(right),
is the subterm p = [c1.a.b.d.e.p + c0.p]. Introducing the rec notation gives the
subterm p = rec x.[c1.a.b.d.e.x + c0.x]. The DBT of the sole state 0, shown in
Figure 7(right), is the subterm q = [c1.a.d.e.p + c0.q]. Again, introducing the rec
notation and replacing p by the corresponding subterm for the full program gives
the DBT q = rec y.[c1.a.d.e.rec x.[c1.a.b.d.e.x + c0.x] + c0.y].

• axiom 1: H
v

` 〈p, p〉 • axiom 2: H
v

` 〈s, t〉 • axiom 3: H ∪ 〈p, q〉
i

` 〈p, q〉

• rule 1:
H

v

` 〈p, q〉

H
i

` 〈p, q〉
• rule 2:

H
i

` 〈p, q〉

H
v

` 〈a.p, a.q〉

• rule 3:
H

i

` 〈p1, q1〉 , H
i

` 〈p0, q0〉

H
v

` 〈c1.p1 + c0.p0, c1.q1 + c0.q0〉

• rule 4:
H

v

` 〈p1, q〉 , H
i

` 〈p0, q〉

H
v

` 〈c1.p1 + c0.p0, q〉
and the three symmetrical rules

• rule 5:
H

i

` 〈p1, q〉 , H
i

` 〈p0, q〉

H
i

` 〈c1.p1 + c0.p0, q〉
and the symmetrical rule

• rule 6:
H ∪ 〈rec x.p, q〉

v

` 〈p[rec x.p/x], q〉

H
v

` 〈rec x.p, q〉
and the symmetrical rule

Table II. Axioms and inference rules of the test bisimulation.

The axioms and inference rules formally defining our test bisimulation are pre-
sented in Table II. Here, p, q, p0, q0, p1, and q1 denote DBTs (or IBTs since an IBT
is a DBT), while s and t denote only IBTs. Moreover, H is a set of pairs of terms,

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 3, August 2006.

14 · A. Girault, X. Nicollin, and M. Pouzet

with the meaning that H
i

` 〈p, q〉 or H
v

` 〈p, q〉 iff p and q are test bisimilar
provided that each element of H is itself a pair of test bisimilar terms.

The principle is the following: for any pair of terms 〈p, q〉, if we can build a proof

tree with root ∅
v

` 〈p, q〉, then p and q are test bisimilar, which we note p ∼ q.
The labels “i” and “v” allow the correct comparison of IBTs with DBTs. More
specifically:

—H
i

` 〈p, q〉 is the root of a proof subtree whose nodes are exclusively instances
of rule 5 and whose leaves are exclusively instances of axiom 3; this means that
one of the two subterms only performs branchings, hence “i” for invisible;

—H
v

` 〈p, q〉 is the root of a proof subtree with at least one internal node being
an instance of rule 2, 3, 4 or 6, or one leaf being an instance of axiom 1 or 2; this
means that both subterms at least perform one identical action, hence “v” for
visible.

The purpose of the three axioms and six rules is as follows:

—Axiom 1 states that a DBT is always test bisimilar to itself.

—Axiom 2 states that two IBTs are always test bisimilar.

—Axiom 3 and rule 6 allow any pair 〈p, q〉 to be considered at most once, even in
the presence of loops in the DBTs. Indeed, loops in the DBTs could produce
infinite branches in the proof tree of the test bisimulation. Instead, rule 6 adds
the roots of such branches in the set of hypotheses H ; these roots are either of the
form 〈rec x.p, q〉 or 〈p, rec x.q〉. Then, axiom 3 allows us to cut these branches.

By construction, H
v

` 〈p, q〉 means that p ∼ q under the hypotheses that all
elements of H are pairs of test bisimilar terms.

—Rule 1 says that the
v

` relation is stronger than the
i

` relation.

—Rule 2 says that if p and q are test bisimilar, then so are a.p and a.q.

—Rule 3 says that if p1 and q1 are test bisimilar, as well as p0 and q0, then so are
c1.p1 + c0.p0 and c1.q1 + c0.q0.

—Rule 4 says that if p1 and q are test bisimilar, as well as p0 and q, and if ad-

ditionally at least one pair is test bisimilar under the
v

` relation, then so are
c1.p1 + c0.p0 and q. The three symmetrical rules express all the alternatives re-
garding the “v” and “i” labels on the rule’s premise, and regarding the left and
right terms of the rule’s conclusion.

—Rule 5 is weaker than rule 4 in the sense that no
v

` is required for the pairs

〈p1, q〉 and 〈p0, q〉, but that the pair 〈c1.p1+c0.p0, q〉 is test bisimilar under the
i

`

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 3, August 2006.

Automatic Rate Desynchronization of Embedded Reactive Programs · 15

relation instead of
v

` . The symmetrical rule expresses the alternative regarding
the left and right terms.

We have proved in [Caspi et al. 1995] that the inference system of Table II is sound
and complete. In other words:

∅
v

` 〈p, q〉 ⇐⇒ p ∼ q

Actually building the proof tree with a reasonable time and space complexity is
difficult. For this purpose, we use an on-the-fly algorithm inspired from [Fernandez
and Mounier 1991].

We illustrate our test bisimulation with our FILTER program (location M). For the
sake of brevity, we consider here only the DBT of state 1 (shown in Figure 8(right)),
which is p = rec x.[c1.a.b.d.e.x + c0.x]. We first traverse the DAG until we reach
the branching. At this point, we call the test bisimulation checker with the initial
pair 〈a.b.d.e.rec x.[c1.a.b.d.e.x + c0.x], rec x.[c1.a.b.d.e.x + c0.x]〉 = 〈a.b.d.e.p, p〉 (for
convenience, we write p instead of rec x.[c1.a.b.d.e.x + c0.x]). We thus build the
proof tree of Figure 9.

rule 4

axiom 1
{〈a.b.d.e.p, p〉}

v

` 〈a.b.d.e.p, a.b.d.e.p〉 {〈a.b.d.e.p, p〉}
i

` 〈a.b.d.e.p, p〉
axiom 3

rule 6
{〈a.b.d.e.p, p〉}

v

` 〈a.b.d.e.p, c1.a.b.d.e.p + c0.p〉

∅
v

` 〈a.b.d.e.p, p〉

Fig. 9. Proof tree for the DBT of program FILTER’s location M.

Building the proof tree of Figure 9 proceeds in three steps. The first step uses
rule 6 to unroll the loop once: p = recx.[c1.a.b.d.e.x+c0.x] is thus transformed into
c1.a.b.d.e.recx.[c1.a.b.d.e.x+c0.x]+c0.recx.[c1.a.b.d.e.x+c0.x] = c1.a.b.d.e.p+c0.p
and the pair 〈a.b.d.e.p, p〉 is added to the empty hypotheses set. In the second step,
rule 4 consumes the branching c1/c0 and creates two branches in our proof tree.
The left branch is ended thanks to axiom 1. The right branch is ended thanks to
axiom 3. As a result, a.b.d.e.p ∼ p, and the branching can be suppressed. Therefore,
the DBT for Figure 8(right) is reduced to p′ = rec x.a.b.d.e.x.

Figure 10 shows the result of applying our test bisimulation to the DAGs of
location M. In state 1, the parts labeled q1 and q0 are found to be bisimilar, hence
the branching is suppressed (see the proof tree above). The same goes in state 0
for p1 and p0, even though there is a goto in the else branch.

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 3, August 2006.

16 · A. Girault, X. Nicollin, and M. Pouzet

OUT:=SLOW(IN)

write(OUT)

send(L,OUT)

go(IN)

goto 1

write(OUT)

OUT:=SLOW(IN)

go(IN)

goto 1

if (CK)

go(IN)

write(OUT)

OUT:=SLOW(IN)

goto 1

goto 0

OUT:=SLOW(IN)

write(OUT)

send(L,OUT)

go(IN)

if (CK)

p1 p0

q1 q0

goto 1

Fig. 10. Suppression of the branchings in the program of location M.

4.3 Discussion

At this point, there remains to insert the send actions for the condition variables of
the branchings that have not been suppressed. For the FILTER program, the only
remaining branching is the if(CK) of location L, and since CK belongs to location L,
nothing is inserted. Finally, all the receive actions need to be inserted. For the
FILTER program, the corresponding result is shown in Figure 11:

location L (base rate) location M (rate CK)

state 0

go(CK);

if (CK) then {

RES:=0;

write(RES);

goto 1;

} else {

write(RES);

goto 0;

} endif;

state 1

go(CK);

if (CK) then {

OUT:=receive(M);

RES:=OUT;

} else {

} endif;

write(RES);

goto 1;

state 0

go(IN);

OUT:=SLOW(IN);

write(OUT);

goto 1;

state 1

go(IN);

send(L,OUT);

OUT:=SLOW(IN);

write(OUT);

goto 1;

Fig. 11. The final FILTER program distributed over two locations L and M.

Figure 12 shows a run of the new rate desynchronized FILTER program on a
distributed architecture, to be compared with Figure 6.

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 3, August 2006.

Automatic Rate Desynchronization of Embedded Reactive Programs · 17

������ ������ ����

����

	�	�	
�
�
���

������������������ ��������������������������������������

L L L

M

LLLLLLL

M M M

T T FFFFTFFCK=

0 27 272742424200RES=

IN1=14 IN2=9 IN3=23
OUT2=27OUT1=42 OUT3=69

1/0 2/1 3/1 5/1 6/1 8/1 9/1

logical time/state for M

logical time/state for L4/1 7/1

1/0 2/1 3/1
OUT2OUT1

Fig. 12. A run of the rate desynchronized FILTER program.

Observe that the period of L can now be smaller than that of M. In this run,
the former is one third of the latter, CK being true once every three instants.
For instance, with the same durations as in § 3.3, the periods of L and M can be
respectively 3 and 9.

On a single processor architecture with a preemptive operating system and a RM
scheduling policy, Figure 13 shows the schedule obtained when the periods of L

and M are respectively 5 and 15. No communication takes place before the second
occurrence of CK, which corresponds to cycle 4 of task L and to the beginning
of cycle 2 of task M. At this point, task L begins and is suspended as soon as it
reaches the OUT:=receive(M) action, since the queue is empty. Then, M begins and
immediately sends OUT, which resumes L. Since L has a higher priority, it preempts M
and completes its execution. Then, M resumes and continues until the beginning
of L’s cycle 5 when it is preempted by L. This results in slicing M into M1, M2, and M3.
Here, the deadlines are met thanks to the distribution into two rate desynchronized
processes.

���
�

��

!!"
"
##$
$
%%&
&

''(
(
))*
*
++,
,
--.
.
//0
0
112
23�34�4556
67�7�78�89�9�9:�: ;�;<�< =�=>�>?�?�?@�@A�A�AB�BC�C�CD�D�D E�EF�F G�GH�H I�IJ�J K�KL�LM�M�MN�N�N O�OP�P

QQ
Q
RR
R
SS
S
TT
T
U�UU�U
U�U
V�VV�V
V�V
W�W�W�WW�W�W�WW�W�W�W
X�X�X�XX�X�X�XX�X�X�X

L M1 L M2 L M3L M1 L M2 L M3 L

LML M1

4/1 5/1 6/1

2/1

1/0 2/1 3/1

1/0

OUT1

logical time/state for L

logical time/state for M

420 1086 161412 222018 282624 343230
time

36

Fig. 13. Centralized schedule obtained with the rate desynchronization.

In the next section, we present a data-flow analysis that will move the send

actions backward in order to prevent this unnecessary task switching.

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 3, August 2006.

18 · A. Girault, X. Nicollin, and M. Pouzet

4.4 Data-flow analysis

Figure 13 shows that a lot of unnecessary task switching may occur. We propose to
apply a tailored data-flow analysis to move the sending of OUT from M to L backward,
that is just after the assignment to OUT. As a result, the preemptions taking place
in Figure 13 will not occur, therefore resulting in the run shown in Figure 14.

�� �� �� �� �	
� � �� �� �� ��

���������������� ��� � !�!"�"#�#�#$�$%�%�%&�&'�'�'(�(�()�)*�* +�+,�, -�-.�. /�/0�01�1�12�2�2 3�34�4
L M1 L M2 L M3L M1 L M2 L M3 L

4/1 5/1 6/1

2/1

1/0 2/1 3/1

1/0 logical time/state for M

logical time/state for L

OUT1 OUT2

420 1086 161412 222018 282624 343230
time

36

Fig. 14. Centralized schedule obtained when OUT is sent as soon as possible.

The goal of this data-flow analysis is to move the send actions backward. As
explained in § 3.1, the send actions are initially inserted on a state by state basis
(step 4). In contrast, here, we do cross the state frontier. Also, this analysis takes
place before the insertion of the receive actions, to avoid messing with the order
of the values transmitted in the FIFO queues.

For this purpose, we define for any action a the set def(a) of the variables it
defines (e.g., {x} for an assignment x:=e or a go(x)).

Then, for each location s, for each DAG of this location’s program, we start a
traversal at each leaf of this DAG. For each other location t, we define one set
Sents,t, initially empty, which will contain at any point the variables sent by s

to t; we propagate these sets upward in the following way:4

(1) when reaching a send(t,x), remove it from the DAG and insert x in Sents,t;

(2) when reaching an action a, for each x ∈ def(a) and for each t such that x ∈
Sents,t, remove x from Sents,t and insert a send(t,x) in the DAG just after
the action a;

(3) when reaching a branching closure, duplicate each set Sents,t and proceed in
both branches then and else;

(4) when reaching a branching, compute each intersection Sentinters,t of the sets
Sentthens,t and Sentelses,t ; in the then branch, for each variable x in Sentthens,t −
Sentinters,t , insert a send(t,x); do similarly in the else branch; proceed in the
DAG above the branching with the set Sentinters,t ;

4We process one location at a time, but actually our software has a unique data structure for all
the locations, consisting of an ordered list of DAGs, where each node is labeled with the set of
locations that must compute its action. Hence, instead of performing n traversals, one for each
location s, we only perform one traversal.

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 3, August 2006.

Automatic Rate Desynchronization of Embedded Reactive Programs · 19

(5) when reaching the root of a DAG that is not the program’s initial state, say
state u, replicate each non empty set Sents,t into as many copies as leaves goto
u that exist in the program, and proceed in all theses leaves; for all the other
empty sets Sents,t, the traversal terminates here.

This traversal terminates because the number of states is finite, and because
any sent value is always expected by the destination location in the same DAG
where the send action appears initially (this is true by construction, see [Caspi
et al. 1999]). Hence, any variable inserted in a Sents,t set is extracted from this
set either during the first traversal of the DAG where it was inserted (if the action
that needs its value is “above” the initial send), or during the second traversal (if
it is “below”). As a result, in both cases the set Sents,t is empty after the second
traversal of this DAG when it reaches the root, so the algorithm terminates.

Concerning our example, the program of location L does not contain any send,
so this data-flow analysis leaves it unmodified. The program of location M contains
two leaves, respectively in states 0 and 1. The DAG of state 0 does not contain any
send, so the traversal initiated at the leaf of this DAG has no effect. The DAG of
state 1 contains one send(L,OUT), just below the go(IN). Here is what happens:
the traversal is initiated at the leaf goto 1 with an empty set SentM,L. When the
send(L,OUT is reached, it is removed from the DAG and OUT is inserted in SentM,L.
Then, the root of state 1 is reached (go(IN)), which has two incoming transitions,
one from state 0 and one from state 1. The traversal is thus resumed from the
two corresponding leaves goto 1. In the DAG of state 0, the write(OUT) is first
reached, with no effect. Then, the OUT:=SLOW(IN) is reached: since OUT ∈ SentM,L,
a send(L,OUT) is inserted at this point and SentM,L becomes empty. Exactly the
same thing happens in the DAG of state 1. This traversal is illustrated in Figure 15,
where the send(L,OUT) in the dashed box is removed and replaced by the two
send(L,OUT) in the solid boxes.

go(IN)

OUT:=SLOW(IN)

write(OUT)

goto 1

send(L,OUT)

go(IN)

OUT:=SLOW(IN)

write(OUT)

goto 1

send(L,OUT)

send(L,OUT)

state 0

state 1

Fig. 15. Traversal of the FILTER program, location M.

4.5 Inserting the receive actions

What remains to do is to insert the receive actions. The algorithm of § 3.1-step 5
works, but on a state by state basis. For the same reason advocated when moving

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 3, August 2006.

20 · A. Girault, X. Nicollin, and M. Pouzet

the send actions backward, we do want to cross the state frontier. Therefore, we
propose a new receive insertion algorithm. For this purpose, we define, for any
action a, the set use(a) of the variables it uses (e.g., {y,z} for the assignment
x:=y+z). Our algorithm consists of a traversal of the program, starting from the
root of the initial state’s DAG, with a FIFO queue Queues,t for each pair of locations
(s,t), which will contain at any point the variables sent by s to t, in their sending
order (hence the usage of FIFO queues instead of sets). These initially empty FIFO
queues are propagated forward in the following way:5

(1) when reaching a send(t,x) computed by s, insert x at the tail of Queues,t;

(2) when reaching a leaf goto u, propagate all the queues Queues,t to the root of
the DAG of state u, and resume the traversal at the root of this DAG;

(3) when reaching a DAG’s root, if it is unmarked, mark it and propagate all the
queues Queues,t to the first node of the DAG; if it is already marked, do nothing;

(4) when reaching an action a computed by t, for each x ∈ use(a) computed by s

where s6=t (hence x is a distant variable of t), if x ∈ Queues,t, then extract the
head variable h from Queues,t and insert a h:=receive(s) action in the DAG
of location t, until the variable x is extracted; this insures that the receive

actions are inserted in location t in an order that matches exactly that of the
send actions in location s;

(5) when reaching a branching, duplicate each queue Queues,t and proceed in both
branches then and else;

(6) when reaching a branching closure, for each pair of locations (s,t), compute the
greatest common suffix Queuesuffixs,t of the queues Queuethens,t and Queueelses,t ; it
contains the variables that have been sent by s to t in both branches and such
that the sends are the closest to the branching closure; they can therefore be
received after the closure; so, in the then branch, for each location t, extract
each variable h from the head of the truncated queue Queuethens,t − Queuesuffixs,t ,
and insert a h:=receive(s) action in the DAG of location t, until the queue
is empty; do similarly in the else branch; proceed in the DAG below the
branching closure with the common suffix Queuesuffixs,t .

This traversal terminates when all the DAGs are marked. Moreover, the traversal
is consistent because, when a root is pointed to by several leaves (i.e., several goto
u), then the queue Queues,t that will be propagated from each of these leaves will
contain exactly the same variables in the same order.

Concerning our example, since there is no send from L to M, the queues QueueL,M
remain empty during the whole traversal, so nothing happens for M.

5Remember that the data structure handled by our software consists of an ordered list of DAGs,
where each node is labeled with the set of locations that must compute its action.

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 3, August 2006.

Automatic Rate Desynchronization of Embedded Reactive Programs · 21

Figure 16 illustrates what happens for L. As said above (footnote 5), the data
structure traversed by the receive insertion algorithm consists of a single ordered
list of DAGs, where each node is labeled with the set of locations that must compute
its action. For instance, the unary node “(L) RES:=0” means that the action
RES:=0 must be computed by the sole location L. Hence, this single data structure
represents the program of both locations L and M. Here, only the queue QueueM,L
is depicted: “∅” means that it is empty, while “x,y]” means that it contains the
values of x and y, with y being the head value.

state 0

∅
(L) go(CK); ①

∅
(L) if (CK) then {

∅
(M) go(IN);

∅
(L) RES:=0;

∅
(L) write(RES);

∅
(M) OUT:=SLOW(IN);

∅
(M) send(L,OUT); ②

OUT]

(M) write(OUT);

OUT]

(L,M) goto 1;

traversal continues in state 1

(L) } else {

∅
(L) write(RES);

∅
(L,M) goto 0;

traversal continues in state 0

(L) } endif;

state 1

OUT]

(L) go(CK);

OUT]

(L) if (CK) then {

OUT]

(M) go(IN);

OUT]

(L) OUT:=receive(M); ④

∅
(L) RES:=OUT; ③

∅
(M) OUT:=SLOW(IN);

∅
(M) send(L,OUT); ⑤

OUT]

(M) write(OUT);

OUT]

(L) } else {

OUT]

(L) } endif; ⑥

(L) write(RES);

OUT]

(L,M) goto 1;

traversal terminates since

state 1 is already marked

Fig. 16. Insertion of the receive actions on the rate desynchronized FILTER program.

The traversal begins at the root of state 0’s DAG, with the queue QueueM,L being
initially empty (at point ①). When traversing the DAG of state 0, in the then

branch a send(L,OUT) is encountered (at point ②), so OUT is inserted at the tail of
QueuethenM,L . Since none of the actions encountered after has OUT in its use set, the
leaf goto 1 is reached with still OUT ∈ QueuethenM,L . In contrast, in the else branch,
QueueelseM,L is empty when the leaf goto 0 is reached. Note that the branching
closure is never reached because of the two leaves.

As a consequence, the traversal resumes in state 1 with QueueM,L containing OUT

alone. In the then branch, the action RES:=OUT is encountered, with OUT in its use
set (at point ③); OUT being in QueuethenM,L , it is extracted from the head of QueuethenM,L

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 3, August 2006.

22 · A. Girault, X. Nicollin, and M. Pouzet

and the action OUT:=receive(M) is inserted in the DAG of location L (at point ④).
The queue QueuethenM,L is then empty. A second send(L,OUT) is encountered (at
point ⑤), so OUT is once again inserted at the tail of QueuethenM,L , and the branching
closure is reached (at point ⑥). In the else branch, none of the actions encountered
has OUT in its use set, so the branching closure is reached with still OUT ∈ QueueelseM,L

(also at point ⑥). Hence, the greatest common suffix contains only OUT, while
both truncated queues are empty. Therefore, no receive action is inserted in the
then and else branches, and the leaf goto 1 is reached with OUT ∈ QueueM,L. The
traversal terminates here since the DAG of state 1 is already marked.

As a result, the final programs of locations L and M are shown in Figure 17. In
location M, the codes of states 0 and 1 are identical. An automaton minimization
tool can detect this and remove state 1, replacing the goto 1 in state 0 by a goto

0.

location L (base rate) location M (rate CK)

state 0

go(CK);

if (CK) then {

RES:=0;

write(RES);

goto 1;

} else {

write(RES);

goto 0;

} endif;

state 1

go(CK);

if (CK) then {

OUT:=receive(M);

RES:=OUT;

} else {

} endif;

write(RES);

goto 1;

state 0

go(IN);

OUT:=SLOW(IN);

send(L,OUT);

write(OUT);

goto 1;

state 1

go(IN);

OUT:=SLOW(IN);

send(L,OUT);

write(OUT);

goto 1;

Fig. 17. The rate desynchronized FILTER program after the data-flow analysis.

4.6 The new distribution algorithm

Taking into account the modifications described in § 4.1 and 4.4, our new rate
desynchronization algorithm involves the following successive steps:

(1) locate each sequential action; same as § 3.1-Step 1;

(2) replicate the program; same as § 3.1-Step 2;

(3) suppress the sequential actions; same as § 3.1-Step 3;

(4) on each state and each location, move the go action downward according to the
rate of the computing location; see § 4.1;

(5) on each state of the automaton, insert send actions to solve the data dependen-
cies between two distinct locations, except when concerning branching actions;

(6) on each state and each location, suppress the useless branchings; see § 4.2;

(7) on each state, insert send actions to solve the data dependencies concerning
the branching actions that were not suppressed during Step 6;

(8) move the send actions upward with a data-flow analysis; see § 4.4;

(9) insert the receive actions with the new algorithm; see § 4.5.

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 3, August 2006.

Automatic Rate Desynchronization of Embedded Reactive Programs · 23

5. DISCUSSION

5.1 Checking the temporal requirements

Checking the temporal requirements is always crucial when programming embedded
reactive systems. This involves computing the WCET of the object code generated
by the compiler, and comparing it to the execution loop period it is embedded in
(see § 1.2). In our case, it is more complex because the program is distributed into n
processes. Each of the n processes is an OC program, a finite state automaton with
a DAG of actions in each state. We compute the WCET of an OC program as the
maximum of its DAGs’ WCETs. This is where the long duration tasks are taken
into account. We thus have n WCET, each corresponding to a program whose
execution rate is the location’s rate (see § 3.3).

—If each location’s rate is constant (i.e., does not vary dynamically), then we can
compute the utilization factor of each processor and check the Liu & Layland
condition to know whether a static or dynamic priority schedule is feasible or
not [Liu and Layland 1973]: namely Rate Monotonic (RM) for the static priority
policy and Earliest Deadline First (EDF) for the dynamic priority policy. Note
that to avoid uncontrollable context switching between tasks, static priorities are
preferable for hard real-time systems.6

Concerning our FILTER example, the WCET of locations L and M are respec-
tively 2 and 8. Since the rates of locations L and M are respectively 5 and 15, the
Liu & Layland condition for RM holds:7

2

5
+

8

15
=

14

15
≤ 1

As a result, the schedule shown in Figure 13 above is feasible with static priorities
under the RM policy.

—Now, what happens if some rates vary dynamically? For instance, a given input
can be present each time some other input is greater than some threshold. In
such a case, the Liu & Layland conditions are useless, so checking the temporal
requirements is much more difficult. Yet, it can be the case that each rate
follows a cyclic pattern, with the WCET of each program following the same
cyclic pattern (otherwise, as explained in Section 1.3, there is an inconsistency).
For instance, a given input can be present twice every three iterations. It is then
possible to check the Liu & Layland conditions for each combination of presence
and absence of the inputs and outputs, the total number of such combinations
being the meta-period of the cycles.

5.2 Implementation

The method presented in this paper has been implemented in the ocrep tool 8,
to distribute automatically OC programs with the bisimulation-based branching

6Although this point is still being debated by the real-time scheduling community.
715 being a multiple of 5, the bound on the utilization factor is 1 instead of 2(

√
2 − 1).

8ocrep is available at http://pop-art.inrialpes.fr/~girault/Ocrep.

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 3, August 2006.

24 · A. Girault, X. Nicollin, and M. Pouzet

reduction.
It has been successfully tested on several OC programs produced by either the

Lustre [Halbwachs et al. 1991] or the Esterel [Berry and Gonthier 1992] compil-
ers (a two player tennis game, a digital wristwatch, and various control software for
car making factories). Both are synchronous programming languages, particularly
well suited to designing reactive embedded systems [Benveniste et al. 2003]. The
synchronous approach has been proposed to ease the design of reactive systems. It
is based on the so-called synchronous abstraction. Without entering into details,
it is similar to the abstraction made when designing synchronous circuits at the
gate level. The ocrep tool acts as a post-processor for the Lustre and Esterel

compilers. Concretely, it takes as input an OC program foo.oc, and a file foo.rep
containing the distribution specifications (see item 1 in § 3.1).

In the following two sections, we give details of how our method is applied to
Lustre and Esterel programs.

5.3 Automatic clock-driven distribution of Lustre programs

Lustre is a data-flow synchronous programming language [Halbwachs et al. 1991].
Like Signal/ Polychrony [Le Guernic et al. 1991] and Lucid Synchrone [Caspi
and Pouzet 1996], it use clocks as powerful control structures to manipulate data [Caspi
1992; Colaço and Pouzet 2003]. In data-flow languages, each variable manipulated
by the program is a stream, which is an infinite sequence of typed data, and clocks
are a form of temporal types. The clock of a stream defines the sequence of logical
instants where the stream bears a value. In Lustre, any Boolean stream can be a
clock. A predefined clock always exists: it is the base clock of the program, which
is the sequence of its activation instants. That is, the base clock is the stream
of ticks of the execution loop. Lustre, Signal/Polychrony, and Lucid Syn-
chrone offer operators to upsample and downsample streams. Downsampling allows
the definition of a slower clock, while upsampling allows the projection of a slow
stream onto a faster clock. All the clocks of a program can be represented within
a single tree of clocks, whose root is the base clock.9 A clock C1 is then said to be
faster than another clock C2 if C2 is in the subtree whose root is C1. Clocks look
very close to the rates introduced in § 2.2. However, a clock has a more powerful
meaning due to its language nature (i.e., it is a temporal type), something that a
rate lacks.

node FILTER (CK : bool; (IN : int) when CK)

returns (RES : int; (OUT : int) when CK);

let

RES = current ((0 when CK) -> pre OUT);

OUT = SLOW (IN);

tel;

function SLOW (A : int) returns (B : int);

base {RES, CK}
↓
CK {IN, OUT}

Fig. 18. The Lustre FILTER program and its clock tree.

Figure 18 shows an example of a Lustre program (to the left) along with its

9Actually, this is not true in Signal/Polychrony, where it is a forest instead of a tree.

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 3, August 2006.

Automatic Rate Desynchronization of Embedded Reactive Programs · 25

clock tree (to the right). Note that when, current, pre, and -> are respectively
the downsampling, upsampling, delay, and initialization operators. Compiling this
Lustre program gives the OC program of Figure 2. Each node of its clock tree is
decorated with the inputs and outputs whose clock matches the node. Note that
this clock tree is identical to the rate tree of the FILTER OC program.

The following table gives an example of a run of this program, corresponding to
the FILTER OC program’s run shown in Figure 4:

cycle number 1 2 3 4 5 6 7 8 9 ...

CK T F F T F F T F F ...

IN 14 9 23 ...

OUT 42 27 69 ...

pre OUT nil 42 27 ...

0 when CK 0 0 0 ...

(0 when CK) -> pre OUT 0 42 27 ...

RES 0 0 0 42 42 42 27 27 27 ...

As we have already noted for Figure 4, the input value IN1=14 yields the output
value RES4=42. The delay in cycles between these two values (the first cycle for IN
versus the fourth cycle for RES) is due to the pre operator: it delays the upsam-
pling of the OUT value of one cycle of the slow clock CK. In other words, it “gives
time” to the SLOW computation to terminate before using its result to compute
RES. As we have seen in § 4, the corresponding OC program obtained can be rate
desynchronized. However, the same Lustre program without the pre cannot be
rate desynchronized. The technical reason is that the test bisimulation does not
suppress the if(CK) branching on location M. It makes sense because, without the
pre operator, the result of the SLOW computation is used at once to produce the
value of RES. It is as if we were trying to schedule a long duration task at a fast
rate, which is of course impossible.

Fig. 19. A screen-shot of the ludivin GUI.

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 3, August 2006.

26 · A. Girault, X. Nicollin, and M. Pouzet

Finally, the ludivin 10 GUI [Salpétrier 2002] has been developed to build au-
tomatically the clock tree of a Lustre program, help the user specify a desired
distribution, and call ocrep to perform the rate desynchronization. Figure 19 is a
screen-shot of the ludivin GUI, opened with the FILTER program. To avoid name
conflicts, the base clock is named true, which is a keyword of Lustre.

5.4 Automatic rate desynchronization of Esterel programs

Esterel is an imperative synchronous programming language [Berry and Gonthier
1992], now commercialized by Esterel Technologies, with successes in elec-
tronic design automation and avionics. It shares with Lustre the synchronous
abstraction, and programs can be compiled into the same automaton format OC.

It is possible to obtain an OC program similar to the one of Figure 2 (not exactly
the same but having the same overall behavior) from the Esterel compiler. The
corresponding Esterel program is shown in Figure 20 below. The “loop ...

each E” construct restarts its body each time the event E is present. A signal
(input or output) is present if and only if it is emitted during the current reaction.
The “||” construct launches its two branches simultaneously and terminates as
soon as both branches terminate. The “emit X (V)” construct emits the output X
with the value V, “?X” is the current value of X, and “pre(X)” is the previous
value of X. The “suspend ... when E” construct suspends its body as soon as
the event E is present. Finally, “immediate” implies that this suspension can occur
in the same instant than the one when the body was started.

module FILTER:

input CK;

input IN : integer;

output RES : integer;

output OUT : integer;

function SLOW(integer): integer;

loop

suspend

emit OUT (SLOW(?IN))

when immediate [not CK]

||

emit RES (pre(?OUT))

each tick

end module

Fig. 20. The Esterel source code for FILTER.

Compiling the above Esterel program produces the OC automaton of Figure 21.
Compared to OC programs obtained from the Lustre compiler, there are three
particularities: first, the reset action assigns 0 to the variable in argument; second,
_V_5 is a local variable used to implement the pre operator; and third, _P_IN is
the Boolean encoding the presence information of the input IN (and similarly for
_P_CK). For the sake of clarity and space, Figure 21 shows a simplified version of the

10ludivin is available at http://pop-art.inrialpes.fr/~girault/Ludivin.

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 3, August 2006.

Automatic Rate Desynchronization of Embedded Reactive Programs · 27

OC program, where the sink state has been removed, and where state 2, identical
to state 1, has also been removed.

state 0

go(CK,IN);

reset(RES);

reset(OUT);

reset(_V_5);

if (_P_CK) then {

if (_P_IN) then {

} else {

reset(IN);

}

RES:=_V_5;

write(RES);

OUT:=SLOW(IN);

write(OUT);

_V_5:=OUT;

goto 1;

} else {

} endif;

if (_P_IN) then {

} else {

reset(IN);

}

RES:=_V_5;

write(RES);

goto 1;

state 1

go(CK,IN);

RES:=_V_5;

write(RES);

if (_P_CK) then {

OUT:=SLOW(IN);

write(OUT);

_V_5:=OUT;

goto 1;

} else {

}

goto 1;

Fig. 21. OC program obtained by compiling the FILTER Esterel program.

location L (base rate) location M (rate CK)

state 0

go(CK);

reset(RES);

reset(_V_5);

if (_P_CK) {

RES:=_V_5;

write(RES);

OUT:=receive(M);

_V_5:=OUT;

goto 1;

} else {

}

RES:=_V_5;

write(RES);

goto 1;

state 1

go(CK);

RES:=_V_5;

write(RES);

if (_P_CK) then {

OUT:=receive(M);

_V_5:=OUT;

goto 1;

} else {

} endif;

goto 1;

state 0

go(IN);

reset(OUT);

if (_P_IN) {

} else {

reset(IN);

}

OUT:=SLOW(IN);

send(L,OUT);

write(OUT);

goto 1;

state 1

go(IN);

OUT:=SLOW(IN);

send(L,OUT);

write(OUT);

goto 1;

Fig. 22. The rate desynchronized program obtained by distributing the OC program of Figure 21.

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 3, August 2006.

28 · A. Girault, X. Nicollin, and M. Pouzet

There is no clock in Esterel, so the clock-driven distribution method described
for Lustre programs in § 5.3 cannot be used. However, our rate desynchronization
method described in § 4 achieves the same result as with the OC FILTER program
of Figure 3; that is, it produces a distributed program where the part computing
the SLOW function (i.e., location M) can be run at the rate defined by the boolean
input CK. The obtained rate desynchronized OC program is shown in Figure 22.
Observe that, in location M, all the branchings if (_P_CK) have been suppressed.

When distributing Lustre programs, the success of the method was expected
since Lustre clocks are very close to OC rates. In contrast, for Esterel programs,
this is more surprising, because there is no clock in Esterel. In fact, our rate
desynchronization method does manage to produce distributed programs that can
be run at different rates, provided that the computations are sufficiently decoupled.
In some sense, this means that we were able to “create” a clock in the Esterel

program. Note that our method also “creates” clocks with Lustre programs where
there is no clock but where some computations are also sufficiently decoupled.

5.5 Related work

There has been a lot of work in the research area of automatic distribution &
parallelization in a general way. Reference [Gupta et al. 1999] is a good survey
paper on this topic, with its Section 5 being devoted to distributed memory par-
allelism. Yet, none of the existing general methods tackles the specific problem of
long duration tasks, rate desynchronization, or clock driven distribution. To the
best of our knowledge, our method is the only one to address this specific problem.
Nonetheless, there are a number of related approaches worth mentioning.

Our work is related to Giotto [Henzinger et al. 2003], a compiler for em-
bedded systems. Its abstraction consists of instantaneous communication, time-
deterministic computation, and value-deterministic computation. This is very much
like the synchronous abstraction. Giotto’s basic functional unit is the task, which
is a periodically executed piece of code. One important point is that each period
must be static. In contrast, rates (or clocks) can specify periods that change dy-

namically, even though the consistency checking between the clock (which is non
periodic), the task execution time (which must also vary dynamically) and the pro-
cessor performances is more complex. A Giotto program can also be annotated
with platform constraints, which are similar to our distribution specifications: a con-
straint may map a particular task onto a particular CPU. The Giotto compiler
schedules the tasks onto the target architecture, and guarantees that the logical
semantics is preserved (w.r.t. both functionality and timing). However, a Giotto

program might be over constrained when it does not permit any execution consis-
tent with the platform constraints. In such a case, the compiler rejects it as non
valid. In contrast, our method always produces an executable distributed program.
Then, determining whether this program meets the desired timing constraints is left
to the user. Since we use finite deterministic automata, computing such a worst case
execution time is feasible, although still subject to the intrinsic non-determinism
of modern processors (multi-level cache, pipeline, instruction level parallelism, and
so on).

Another related work is Real-Time Workshop’s (RTW) distributed code genera-
tion for Simulink programs [The MathWorks, Inc. 1999]. In Simulink, one can

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 3, August 2006.

Automatic Rate Desynchronization of Embedded Reactive Programs · 29

assign different rates to different blocks, in order to deal with long duration blocks.
This approach is similar to clocks in Lustre, except that these rates are static

whereas clocks are dynamic. Figure 23(a) is an example of such a program: the
WCET of task B is five times longer than the WCET of task A, but accordingly,
the rate of task A is five time faster than the rate of task B. RTW produces a
schedule where task B is preempted by the successive instances of task A, which is
faster and has therefore a higher priority: this schedule is shown in Figure 23(b).
Due to the successive preemptions of task B by task A, task B is sliced into several
chunks: B1, B2, B3, B4, and B5. The solid arrows from the successive instances
of A to B1, B2, and so on, depict communications. The dashed arrow going down
from B1 to A depict the beginning of the preemption of B by A. The dashed arrow
going up from A to B1 depict the end of the preemption.

���������� ���������� ���������� ���������� 	�	�	
�
�

���������� ������� ���������� ����������

����������
������������
��rate 5

A
rate 1

B

A A A A A A

B2 B3 B4 B5 B1B1

(a) (b)

B is preemptedend of preemption

communication

begin of preemption

Fig. 23. (a) Two Simulink blocks; (b) The schedule produced by RTW.

The communication from A to B raises a problem: how can the data produced
by A during its first cycle, and not the subsequent data, be used by B? As we
can see in Figure 23(b), task A sends its output at each of its cycles, while task B
only expects an input data at the beginning of its own cycle. The solution involves
adding a zero oracle between A and B, which inherits the priority of A and the rate
of B, as shown in Figure 24(a). In the new schedule of Figure 24(b), only one data
is sent and received. When the communication takes place from a low rate block
towards a high rate one, the solution involves adding a unit delay between the two
blocks.

����������
���������� ����������

���������� ����������
 � � � � !�!�!!�!�!

"�"�""�"�"#�##�#$�$$�$
%�%�%&�&�& '�'�'(�(�()�)�)*�*�* +�+�+,�,�, -�-.�.
/0/0/0//0/0/0/
10101011010101 2233rate 1

B
rate 5

A Z

A A A A

B1 B2 B3 B4 B5

A Z

(a) (b)

Fig. 24. (a) Two Simulink blocks with a zero oracle; (b) The new schedule.

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 3, August 2006.

30 · A. Girault, X. Nicollin, and M. Pouzet

Another related work is Esterel’s asynchronous tasks mechanism [Paris 1992].
Basically, a synchronous Esterel program can launch an asynchronous task by
means of a dedicated output signal (called exec), and then be warned of its ter-
mination by means of a dedicated input signal (called return). Although not as
powerful and flexible as rates, this mechanism allows long duration tasks to be
taken into account. However, they are handled externally w.r.t. the synchronous
program, while our method allows them to be handled inside the OC program.

Also, there has been a lot of work done on the automatic distribution of Signal/
Polychrony programs [Maffëıs 1993; Aubry et al. 1996; Benveniste et al. 1998;
Benveniste et al. 2000]. Distribution in Signal is performed by first compiling the
program into a hierarchical data-flow graph with conditional dependency equations,
called a Synchronized Data-Flow Graph (SDFG). Vertices of this SDFG are signals
and variables, while the edges are labeled with clocks. Therefore, each vertex is lo-
cated in a hierarchy of clocks. In the most general case, the set of all the program’s
clocks form a forest instead of a tree. This means that the program does not have a
base clock, which raises code generation problems since the periodic rate of the pro-
gram cannot be statically determined. Yet, for a wide class of programs, the forest
is reduced to a single tree and the program does have a base clock. Such programs
are called endochronous. Once the SDFG is built, communications are inserted in it,
then subgraphs are extracted corresponding to different computing locations. It is
then checked that two programs obtained in this manner are isochronous, meaning
that their synchronous composition is equivalent to their asynchronous composition.
Finally, sequential code is generated from each subgraph. However, this method
does not directly perform the rate desynchronization (or the clock-driven distribu-
tion) of Signal program, meaning that the user is required to partition manually

the source program into clock-wise fragments [Le Guernic 2003]. An interesting
perspective would be to apply our rate desynchronization method to SDFGs.

Finally, a recent article [Caspi et al. 2003] describes a distributed implementa-
tion of Lustre programs over Time-Triggered Architectures (TTA) [Kopetz 1997].
TTA includes a synchronous bus connected to all the processors, which sends them a
global fault-tolerant clock. The authors introduce extensions of Lustre to annotate
a program in order to define a periodic clock (periodic cl), to specify where a block
should be executed (location), what its basic clock should be (basic period), and
to specify its WCET (exec time). Then, the authors describe their implementation
of Lustre over TTA, using a scheduler that, starting from the data dependencies
partial order given by the Lustre compiler, has to solve a multiperiod multipro-
cessor scheduling problem. If no solution is found, the graph is refined. However,
for long duration tasks to be scheduled, it is necessary to have a partition of the
program into smaller blocks (to be expressed in the source program by the user
himself), while our method computes this partition automatically.

5.6 Concluding remarks

To conclude, we would like to stress the original contributions of our work. We
provide a method and tool to automatically distribute programs having a very
general control structure (a finite state automaton with a DAG of actions in each
state) according to the rates of the inputs and outputs, hence avoiding the manual
partition of an entire system into several tasks with different periods. The user only

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 3, August 2006.

Automatic Rate Desynchronization of Embedded Reactive Programs · 31

needs to partition the set of the program’s rates. This rate desynchronization allows
long duration tasks to be taken into account inside such programs. That is, we are
able to produce automatically distributed programs where the parts that perform
slow computations do not impair the global reaction time of the program. This
feature is crucial for embedded reactive programs having tight temporal constraints.
Once the distribution is done, the Liu & Layland conditions can be checked to
choose the most suited priority policy.

We have also shown how our rate desynchronization method can be applied to
distribute a Lustre program according to its clocks, as well as to distribute an
Esterel program where the computations are sufficiently decoupled, into parts
that can be run at different rates, exactly as if the Esterel program had clocks.

Acknowledgments

Many thanks to Prof. Edward Lee (UC Berkeley) for a very helpful explanation of
Real-Time Workshop’s distributed code generation, to Albert Benveniste and Paul
Le Guernic (Inria/Irisa) for interesting discussions on the Signal approach to
automatic distribution, and to the anonymous reviewers for their comments and
suggestions.

REFERENCES

Aubry, P., Le Guernic, P., and Machard, S. 1996. Synchronous distributions of Signal pro-
grams. In Hawaii International Conference on System Sciences, HICSS’96. IEEE, Honolulu,
USA, 656–665.

Benveniste, A. et al. 1998. Safety critical embedded systems design: the SACRES approach.
Tutorial at the Symposium on Formal Techniques in Real-Time and Fault Tolerant systems,
FTRTFT’98.

Benveniste, A., Caillaud, B., and Le Guernic, P. 2000. Compositionality in dataflow syn-
chronous languages: Specification and distributed code generation. Information and Computa-
tion 163, 125–171.

Benveniste, A., Caspi, P., Edwards, S., Halbwachs, N., Le Guernic, P., and de Simone, R.

2003. The synchronous languages twelve years later. Proceedings of the IEEE 91, 1 (Jan.),
64–83. Special issue on embedded systems.

Bergerand, J.-L. and Pilaud, E. 1988. SAGA: a software development environment for depend-
ability in automatic control. In International Conference on Computer Safety, Reliabilitiy, and
Security, SAFECOMP’88. Pergamon Press, Fulda, Germany.

Berry, G. and Gonthier, G. 1992. The Esterel synchronous programming language: Design,
semantics, implementation. Science of Computer Programming 19, 2, 87–152.

Caillaud, B., Caspi, P., Girault, A., and Jard, C. 1997. Distributing automata for asyn-
chronous networks of processors. European Journal of Automation (RAIRO-APII-JESA) 31, 3,
503–524. Research report Inria 2341.

Caspi, P. 1992. Clocks in data-flow languages. Theoretical Computer Science 94, 125–140.

Caspi, P., Curic, A., Maignan, A., Sofronis, C., Tripakis, S., and Niebert, P. 2003. From
Simulink to Scade/Lustre to TTA: A layered approach for distributed embedded applica-
tions. In International Conference on Languages, Compilers, and Tools for Embedded Systems,
LCTES’03. ACM, San Diego, USA, 153–162.

Caspi, P., Fernandez, J.-C., and Girault, A. 1995. An algorithm for reducing binary branch-
ings. In 15th Conference on the Foundations of Software Technology and Theoretical Computer
Science, FST&TCS’95, P. Thiagarajan, Ed. LNCS, vol. 1026. Springer-Verlag, Bangalore, In-
dia, 279–293.

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 3, August 2006.

32 · A. Girault, X. Nicollin, and M. Pouzet

Caspi, P. and Girault, A. 1995. Execution of distributed reactive systems. In 1st International

Conference on Parallel Processing, EURO-PAR’95, S. Haridi, K. Ali, and P. Magnusson, Eds.
LNCS, vol. 966. Springer-Verlag, Stockholm, Sweden, 15–26.

Caspi, P., Girault, A., and Pilaud, D. 1999. Automatic distribution of reactive systems for
asynchronous networks of processors. IEEE Trans. on Software Engineering 25, 3 (May),
416–427.

Caspi, P. and Pouzet, M. 1996. Synchronous Kahn networks. In ACM SIGPLAN International
Conference on Functional Programming, ICFP’96. ACM Press, Philadelphia, USA.

Colaço, J.-L. and Pouzet, M. 2003. Clocks as first class abstract types. In International
Conference on Embedded Software, EMSOFT’03, R. Alur and I. Lee, Eds. LNCS, vol. 2855.
Springer-Verlag, Philadelphia, USA, 134–155.

Fernandez, J.-C. and Mounier, L. 1991. “On the fly” verification of behavioural equivalences
and preorders. In Workshop on Computer-Aided Verification, CAV’91, K. Larsen, Ed. LNCS.
Springer-Verlag, Aalbord, Denmark.

Gupta, R., Pande, S., Psarris, K., and Sarkar, V. 1999. Compilation techniques for parallel
systems. Parallel Computing 25, 13, 1741–1783.

Halbwachs, N., Caspi, P., Raymond, P., and Pilaud, D. 1991. The synchronous data-flow
programming language Lustre. Proceedings of the IEEE 79, 9 (Sept.), 1305–1320.

Harel, D. and Pnueli, A. 1985. On the development of reactive systems. In Logic and Models
of Concurrent Systems, NATO. Springer-Verlag.

Henzinger, T., Horowitz, B., and Kirsch, C. 2003. Giotto: A time-triggered language for
embedded programming. Proceedings of the IEEE 91, 84–99.

Kopetz, H. 1997. Real-Time Systems: Design Principles for Distributed Embedded Applications.
Kluwer Academic Publishers.

Le Guernic, P. 2003. Personnal communication.

Le Guernic, P., Gautier, T., Borgne, M. L., and Lemaire, C. 1991. Programming real-time
applications with Signal. Proceedings of the IEEE 79, 9 (Sept.), 1321–1336.

Liu, C. and Layland, J. 1973. Scheduling algorithms for multiprogramming in hard real-time
environnement. Journal of the ACM 20, 1 (Jan.), 46–61.

Maffëıs, O. 1993. Ordonnancements de graphes de flots synchrones ; application à la mise en
œuvre de Signal. Ph.D. thesis, University of Rennes I, Rennes, France.

Milner, R. 1980. A Calculus of Communicating Systems. LNCS, vol. 92. Springer-Verlag.

Paris, J.-P. 1992. Exécution de tâches asynchrones depuis Esterel. Ph.D. thesis, University of
Nice, Nice, France.

Plaice, J. and Saint, J.-B. 1987. The Lustre-Esterel Portable Format. Inria, Sophia-Antipolis,
France. User Manual.

Salpétrier, F. 2002. Interface graphique utilisateur pour la répartition de programmes Lustre
dirigée par les horloges. M.S. thesis, ESISAR, Valence, France.

Sha, L., Rajkumar, R., and Lehoczky, J. 1990. Priority inheritance protocols: An approach to
real-time synchronization. IEEE Trans. on Computers 39, 1175–1185.

The MathWorks, Inc. 1999. Real-Time Workshop User’s Guide, Version 3.

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 3, August 2006.

