POLKA
1 Introduction to POLKA

New Polka is a library to handle convex polyhedra, whose constraints and generators have rational coefficients. It is programmed in ANSI C, so you can use it in any C or C++ programs. An interface to the language OCaml version 3.00 is also provided. This library is currently used in my verification tool NBac, and also by others research teams working on static analysis and abstract interpretation.

It is mainly based on the IRISA library Polylib and the old library used in the Polka tool inside the synchronous team of the laboratory VERIMAG. The main motivation to develop a new library was the need for multi-precision integers and 64 bits integers. The interface and memory management have also been improved (according to the author!), and saturation matrices can be kept in memory, thus saving computation time. There is also an option to handle strict constraints like $x > y$.

Implemented operations include creation of polyhedra from constraints or generators, intersection, convex hull, image and preimage by linear transformations, widening operator (as used in linear relation analysis, see publications of Nicolas Halbwachs about this technique), and inspection of saturation matrices.

The C interface is simple but also quite rough. The OCaml interface offers however pretty input and output of constraints, matrices and polyhedra, and gives you a polyhedra desk calculator thanks to the OCaml toplevel.
Chapter 2: POLKA and the other polyhedra libraries

2 POLKA and the other polyhedra libraries

2.1 Comparison with Polylib library

Our objectives to develop our own version was at that time (1999) to use a Polylib-like library with multi-precision integers, and secondary to implement some parts differently. Our library is also more simpler because we don’t consider explicit unions of polyhedra as in IRISA’s library.

The main differences are sketched below:
1. we don’t consider unions of polyhedra;
2. we can use either machine or multi-precision integers;
3. strict inequalities are implemented;
4. conversion and minimization operations can be delayed; IRISA’s library always keep both representation, whereas we keep ordinary only one and do a conversion only when it is mandatory, for example when we wants to intersect polyhedra whose constraints are not available; when both representations are available, they are necessarily minimal, but that’s not the case when only one is available;
5. when both representations are available for a polyhedra, we keep also the saturation matrix. This allows to perform intersection and convex hull with another polyhedron in an quite incremental way, because we don’t compute it again.
6. in some case of variable assignation or substitution on a polyhedron, when the transformation is inversible, we operate on both representation if they were already available; it is the case too for the embedding or projection into a space with supplementary dimensions.
7. when we do the conversion from constraints to generators, for instance, we obtain a minimal set of the generators, but the set of constraints is still not minimal. The algorithm which perform this minimization seems to me cheaper than the one of IRISA; I must confess however that I have not fully understood the IRISA’s algorithm.
8. we implements widening operators, as defined in cousot78,polka:fmsd:97.

2.2 Inspiration coming from Cdd library

We took from the Cdd library the following ideas: matrices rows are lexicographically sorted (lazily, as for conversion). This presents two advantages: fukuda96 observed that it speeds conversion of representation. In addition when we merge constraints of two polyhedra in intersection operations, this allows us to remove identical constraints easily.

2.3 Other libraries

The Polylib library has been superseded by the PolyLib library, which now offers multi-precision arithmetic. It provides sophisticated operations used in automatic parallelization of programs.

The Parma library is a C++ library, which used POLKA as a starting point.
3 Installing POLKA

3.1 Requested tools

To compile the C library, you need

- an ANSI C compiler (only GCC with ‘-ansi’ option has been really tested);
- GNU Make
- GMP (Gnu Multi-Precision library) if you want the version of POLKA with multi-precision arithmetic.

In addition, if you want the OCaml interface, you need

- The OCaml system, version 3.00 or higher;
- The CamlIDL stub code generator, version 1.04 or higher; actually, only the runtime library is really required;

This documentation has been generated with the TEXINFO system, using the executables texi2dvi, makeinfo and texi2html.

3.2 Configuration

Configuration is performed by setting variables in the ‘Makefile.config’ file. The requested paths give the prefix directories. For instance, the GMP header file will be found in ‘$(GMP_INSTALL)/include’.

3.3 Building the libraries

Building both C library and OCaml interface

- ‘make alli’ Builds the libraries with normal long int machine integers;
- ‘make alli’ Builds the libraries with long long int machine integers; long long ints are recognized by GCC and in the ISO C99 standard;
- ‘make allg’ Builds the libraries with GMP integers;
- ‘make all’ Builds all the version of the library.

Installation is done with ‘make install’.

Using GMP integers prevents any overflow problems. Be cautious, these are not detected! The observed effect is usually an infinite loop.
Building the C library only

Enter the ‘C’ directory, and type the above-mentioned commands.

Generated files

‘make all%’ where % = i, l, g generates the ‘libpolka%.a’ C library, and the following public OCaml files:
- ‘libpolka%.caml.a’: C interface library
- ‘polka.cma’: bytecode OCaml library
- ‘polka.cmxa’ and ‘polka.a’: native OCaml library
- ‘(polka,vector,matrix,poly,polkaIO).(cmi|cmx)’: bytecode/native OCaml interface files

Building the documentation

Type ‘make doc’. The generated files ‘polka.dvi’, ‘polka.ps’, ‘polka.info’ and ‘html/*’ can be found in the ‘documentation’ directory.
Chapter 4: Using POLKA

4 Using POLKA

4.1 Convex polyhedra and their representation

4.1.1 Basic facts about polyhedra

Convex polyhedra have two dual possible representations: you can define a polyhedron with
by giving either a set of linear constraints or a set of generators:

\[P = \{ x \in Q^d | A\cdot x = b \} \]

\[P = \{ x \in Q^d | \forall i : A_i\cdot x = b_i \} \]

or

\[P = \{ x \in Q^d | x = \sum_i \lambda_i V_i + \sum_j \mu_j R_j \} \]

\[P = \{ x \in Q^d | x = V \cdot \lambda + R \cdot \mu, \sum \lambda = 1, \mu > 0 \} \]

\(A \) is the constraints matrix, \(V \) the vertices matrix and \(R \) the rays matrix.

\(x, b, \lambda, \mu \) are column vectors.

Working in a linear framework instead of an affine one is much more simpler, as a consequence
we will embed \(Q^d \) in \(Q^{d+1} \) in a classical way with the transformation
\(x \mapsto (x_i = 1, x) \) with \(x_i > 0 \), as explained for example in wilde93. Any polyhedron will then be a cone. The reverse
transformation is the intersection of the cone with the hyperplane \(x_i = 1 \). This allows us to
concentrate our attention to cones, dual representations of which are:

\[P = \{ x \in Q^{d+1} | A\cdot x = 0 \} \]

\[P = \{ x \in Q^{d+1} | x = R \cdot \mu, \mu > 0 \} \]

The double description method is a method to
convert from one representation to another and to minimize the size of representation. This
allows easily to perform intersection of convex polyhedra, by merging the constraints of the
involved polyhedra, or convex hull, by merging generators of the involved polyhedra.

4.1.2 Working with strict inequalities

Using strict inequalities can be done by introducing a second special variable \(\epsilon \), which
satisfies \(\epsilon > 0 \). A polyhedron is then empty if its intersection with the half-space
\(\epsilon > 0 \) is empty, or in other words, if there is no vertex whose coefficient associated to
\(\epsilon \) is strictly positive. The inclusion test need also a (more complicated) adaptation.

4.1.3 Representation of constraints, generators and affine expressions

Coefficients

Normally we should use rational numbers for coefficients of vectors and matrices. avis98b
observed experimentally in a very similar context that using a common denominator for all
coefficients of a vector or of a matrix row is more efficient, probably because vector combination
is easier. wilde93 uses also the same technique.

To avoid overflow problem, multi-precision integers are needed; their drawback is obviously
the loss of speed. As a consequence, we have defined a generic interface for integers and the
compile-time option allows to deal with either
• multi-precision integers; we use for that the GNU Multi Precision library (GMP), which reveals very efficient according to K. Fukuda’s home page;
• normal machine integers (32 or 64 bits long int’s), with at this time no overflow check;
• and long long int’s, introduced by the new ANSI C 99 standard and allowed by gcc and some others compilers.

The type \texttt{pkint_t} is supposed to provide conversion operators from machine int to type \texttt{pkint_t}. You should look at file ‘\texttt{gint.nw}’ for details.

Format of frames, generators and affine expressions

As in \textit{wilde93} we reserve a particular treatment for equality constraints, instead of considering them as two opposed inequalities, because more efficient methods are available for example to minimize them (gauss pivot). Dually, we distinguish for generators bidirectionnal lines from normal rays.

The format of objects depends if the library has been opened with the \texttt{strict} option or not. We note \(d\) the dimension of affine polyhedra, i.e., the number of dimensions different of \(\xi\) and \(\epsilon\).

If the \texttt{strict} option is unset (no strict inequalities):
• \([0,b,a_0,\ldots,a_{\{d-1\}}]\) represents the equality constraint
\[a_0x_0+\ldots+a_{\{d-1\}}x_{\{d-1\}}+b=0;\]
• \([1,b,a_0,\ldots,a_{\{d-1\}}]\) represents the inequality constraint
\[a_0x_0+\ldots+a_{\{d-1\}}x_{\{d-1\}}+b>0;\]
• \([0,0,a_0,\ldots,a_{\{d-1\}}]\) represents the line of direction \((a_0,\ldots,a_{\{d-1\}})\);
• \([1,0,a_0,\ldots,a_{\{d-1\}}]\) represents the ray of direction \((a_0,\ldots,a_{\{d-1\}})\);
• \([d,b,a_0,\ldots,a_{\{d-1\}}]\) represents the affine expression
\[x\mapsto a_0/dx_0+\ldots+a_{\{d-1\}}/dx_{\{d-1\}}+b/d;\]The nature of a vector: constraint, generator, or affine expression, is inferred by the context. As you can guess, index 0 is used either to distinguish bidirectional or unidirectional vectors (0 or 1), either to put a denominator; index 1 is the \(\xi\)-coefficient, used for constants.

If the \texttt{strict} option is set (strict inequalities), an additionnal dimension is introduced at index 2 to put \texttt{\texttt{epsilon}}-coefficients:
• \([0,0,0,a_0,\ldots,a_{\{d-1\}}]\) represents the equality constraint
\[a_0x_0+\ldots+a_{\{d-1\}}x_{\{d-1\}}+b=0;\]
• \([1,0,0,a_0,\ldots,a_{\{d-1\}}]\) represents the inequality constraint
\[a_0x_0+\ldots+a_{\{d-1\}}x_{\{d-1\}}+b>0;\]
• \([0,0,s,a_0,\ldots,a_{\{d-1\}}]\) where \(s>0\) represents the inequality constraint
\[a_0x_0+\ldots+a_{\{d-1\}}x_{\{d-1\}}+b>0;\]
• \([0,0,0,a_0,\ldots,a_{\{d-1\}}]\) represents the line of direction \((a_0,\ldots,a_{\{d-1\}})\);
• \([1,0,0,a_0,\ldots,a_{\{d-1\}}]\) represents the ray of direction \((a_0,\ldots,a_{\{d-1\}})\);
• \([1,b,s,a_0,\ldots,a_{\{d-1\}}]\) where \(s>0\) represents the vertex
\[(s/b)(a_0/b,\ldots,a_{\{d-1\}}/b);\]
• \([\text{den}, b, a_0, a_1, \ldots, a_{d-1}]\) represents the affine expression
 \[x \mapsto a_0/\text{den}x_0 + \ldots + a_{d-1}/\text{den}x_{d-1} + b/\text{den};\]
 Don’t ask me the intuitive meaning of \(s > 0\) in vertices!

 If a vector is given without matching a suitable format, depending on its nature, the results
 are unpredictable. That’s come from the fact that the library uses the assumption \(\epsilon > 0\)
 and possibly \(\epsilon = 0\) to decide whether a polyhedron is empty or not.

 The constraint \(\epsilon > 0\) (\(\epsilon > \epsilon\) with strict option) is called the positivity constraint,
 and the constraint \(\epsilon > 0\) the strictness constraint.

 To make more easy a certain form of genericity, the library offers variables \(\text{bool polka_strict}\)
 and \(\text{int polka_dec}\) that memorized respectively the operation mode (strict or non strict)
 and the index of the first “normal” coefficient (2 or 3). The index of the constant coefficient
 is in any case 1.

4.2 Using C library

First include some of the following files in your source program, say ‘test.c’. A casual user
doesn’t need the header ‘polka/{bit|satmat}.h’.

```
#include <polka/polka.h>
#include <polka/pkint.h>
#include <polka/vector.h>
#include <polka/bit.h>
#include <polka/satmat.h>
#include <polka/matrix.h>
#include <polka/poly.h>
```

‘polka/config.h’, ‘polka/cherni.h’ an ‘polka/cherni.h’ should be considered as internal.

Types, variables and functions in each module are prefixed by the name of the module. For
instance, we have the functions \(\text{matrix_t* matrix_merge(matrix_t*, matrix_t*)}\) and \(\text{void poly_minimize(poly_t*)}\).

Coefficients in vectors and matrices are of generic type \(\text{pkint_t}\).

To compile ‘test.c’, type ‘gcc <options> -DPOLKA_NUM=<n> -c -o test.o test.c’
where \(n\) is either 1, 2, 3 and defines the effective type of \(\text{pkint_t}\).

To link ‘test.o’, type ‘gcc <options> -o test test.o -lpolka% -lgmp’
where \(\%\) is either \(i, l, g\).

\(n\) and \(\%\) should respect the following correspondance:

\[
\begin{array}{c|ccc}
 n & \text{Effective type of } \text{pkint_t} \\
 \hline
 1 & \text{long int} \\
 2 & \text{long long int} \\
 3 & \text{mpz_t} \\
\end{array}
\]

4.3 Using OCaml library

The OCaml interface defines the modules Polka, Vector, Matrix and Poly.

To compile a file ‘test.ml’ into bytecode, first generate a suitable custom bytecode interpreter with
Chapter 4: Using POLKA

You can then compile `test.ml` and link it with:

- `ocamlc <options> -c test.ml`
- `ocamlc -use_runtime polkarun% -o test polka.cma test.cmo`

To compile `test.ml` into native code:

- `ocamlopt <options> -c test.ml`
- `ocamlopt -o test polka.cmxa test.cmx \
 -cclib "-L<path> -lpolka%_caml -lpolka% -lgmp -lcamlidl"`
Chapter 5: C Library

This chapter describes the C API of Polka, which is the native API of the library.

5.1 Organization of the C library

- Files ‘config.h’ and ‘pkint.h’ respectively define some configuration stuff and the operations on generic integers.
- ‘polka.c’ and ‘polka.h’ define global variables that set the operation mode and the maximum size of matrices, and the initialization finalization functions.
- ‘internal.c’ and ‘internal.h’ define the internal global variables.
- ‘bit.c’ and ‘bit.h’ define types bitstring_t and bitindex_t that allow to access and perform operations on bitstrings.
- ‘satmat.c’ and ‘satmat.h’ define the type satmat_t of saturation matrices and the needed operations.
- ‘vector.c’ and ‘vector.h’ define operations on vector, considered as C arrays;
- ‘matrix.c’ and ‘matrix.h’ define the type matrix_t and needed operations on it, including rows sorting, matrices merging, transformation by assignment or substitution of a variable by an affine transformation;
- ‘cherni.c’ and ‘cherni.h’ contain the conversion and minimization algorithms;
- last, ‘poly.c’ and ‘poly.h’ define the poly_t and operations on polyhedra.

In principle, a user needs only to know the ‘polka’, ‘vector’, ‘matrix’ and ‘poly’ interfaces, and some of ‘pkint’.
5.2 Module pkint

This module is defined by the file ‘polka_num.h’, included from ‘polka.h’. It defines generic operations on integers. The naming scheme and the semantics of these operations comes from the GMP library. They assume in particular that all integer objects are initialized before being used.

```c
typedef struct pkint_t {
    ACTUALTYPE rep;
} pkint_t;
```

The generic type of coefficients in vectors and matrices. The actual type is defined by the configure command.

void pkint_init (pkint_t integer) Initialize integer and set its value to 0.

void pkint_clear (pkint_t integer) Free the space possibly used by integer. Make sure to call this function for all pkint_t variables when you are done with them.

void pkint_set (pkint_t rop, pkint_t op) Set the value of rop from op.

void pkint_init_set (pkint_t rop, pkint_t op)
void pkint_init_set_ui (pkint_t rop, unsigned int op)
void pkint_init_set_si (pkint_t rop, signed int op)

Initialize rop and set its value from op.

void pkint_add (pkint_t rop, pkint_t op1, pkint_t op2) Set rop to op1 + op2.

void pkint_sub (pkint_t rop, pkint_t op1, pkint_t op2) Set rop to op1 − op2.

void pkint_neg (pkint_t rop, pkint_t op) Set rop to −op.

void pkint_mul (pkint_t rop, pkint_t op1, pkint_t op2) Set rop to op1 * op2.

void pkint_addmul (pkint_t rop, pkint_t op1, pkint_t op2) Set rop to rop+op1 * op2.
Function

void pkint_submul (pkint_t rop, pkint_t op1, pkint_t op2)
Set rop to rop − op1 * op2.

void pkint_div (pkint_t rop, pkint_t op1, pkint_t op2)
Set rop to op1/op2.

void pkint_mod (pkint_t rop, pkint_t op1, pkint_t op2)
Set rop to op1 modulo op2.

void pkint_abs (pkint_t rop, pkint_t op)
Set rop to the absolute value of op.

Function

int pkint_sgn (pkint_t integer)
Return the sign of integer: 0 if null, > 0 if positive, < 0 if negative.

Function

void pkint_gcd (pkint_t rop, pkint_t op1, pkint_t op2)
Set rop to Greatest Common Divisor of op1 and op2.

void pkint_divexact (pkint_t rop, pkint_t op1, pkint_t op2)
Set rop to op1/op2, assuming that op2 is a divisor of op1.

Function

int pkint_cmp (pkint_t op1, pkint_t op2)
int pkint_cmp_ui (pkint_t op1, unsigned long int op2)
int pkint_cmp_si (pkint_t op1, signed long int op2)
Compare op1 and op2. Return a positive value if op1 > op2, zero if op1 = op2, and a
negative value if op1 < op2.

Function

unsigned long int pkint_get_ui (pkint_t integer)
Return the least significant part from integer.

Function

signed long int pkint_get_si (pkint_t integer)
If integer fits into a signed long int return the value of integer. Otherwise return the
least significant part of integer, with the same sign as integer.
If integer is too large to fit in a signed long int, the returned result is probably not very
useful. To find out if the value will fit, use the function pkint_fits_slong_p.

Function

void pkint_set_str10 (pkint_t integer, char* str)
Put in integer the string representation in base 10 str of an integer. Behavior unspecified
if str is not a correct representation.

Function

void pkint_sizeinbase10 (pkint_t integer)
Return the size of integer measured in number of digits in base 10. The sign of integer is
ignored. The result may be too big than the exact value.
This function is useful in order to allocate the right amount of space before converting OP
to a string. The right amount of allocation is normally two more than the value returned
by pkint_sizeinbase10.
void pkint_get_str10 (char* str, pkint_t integer)
Convert integer to a string of digits in base 10.

If str is NULL, the result string is allocated using malloc. The block will be strlen(str)+1 bytes, that being exactly enough for the string and null-terminator.

If str is not NULL, it should point to a block of storage large enough for the result, that being pkint_sizeinbase10(integer) + 2. The two extra bytes are for a possible minus sign, and the null-terminator.

A pointer to the result string is returned, being either the allocated block, or the given str.

void pkint_print (pkint_t integer)
Prints integer on the standard output.
5.3 Module Polka

This module defines datatypes, some global read-only variables, and library initialization and finalization functions.

5.3.1 Datatypes

bool
datatype
ttypedef enum bool {
 false = 0,
 true = 1
} bool;

Boolean type.

tbool
datatype
ttypedef enum tbool {
 tbool_bottom = 0,
 tbool_true = 1,
 tbool_false = 2,
 tbool_top = 3
} tbool;

This the data-type for Boolean lattice, ordered as bottom<\{true, false\}<top.

dimsup_t
datatype
ttypedef struct dimsup_t {
 int pos;
 int nbdims;
} dimsup_t;

Data-type for insertion and deletion of columns in vectors, matrices, and polyhedra.

equation_t
datatype
ttypedef struct equation_t {
 int var;
 pkint* expr;
} equation_t_t;

Data-type for performing parallel assignments and substitutions on matrices and polyhedra.

5.3.2 Initialization and finalization functions

void polka_initialize (bool strict, int maxdims, int maxrows) Function

Initialize the global variables of the library. strict indicates the operation mode of polyhedra and allows to set global variables polka_strict and polka_dec properly. maxdims and maxrows are respectively the maximum dimension of polyhedra and the maximum number of constraints and/or generators in polyhedra. This also means that matrices can have at most maxrows rows and that vectors and matrices have at most polka_dec+maxdims columns.
void polka_finalize ()
Frees all the memory allocated for global variables in module ‘polka’.

void polka_set_widening_affine ()
Select the “affine mode” for the widening operation on polyhedra (see Section 5.8.8 [Widening operators on polyhedra lattice], page 35). In the affine mode, widening is performed on affine polyhedra instead of on underlying linear cones. Typically, \(x=1 \) widened by \(1=x<=2 \) will give \(x>=1 \) in affine mode, whereas it will give \(1<=x<=2 \) in linear mode.

void polka_set_widening_linear ()
Select the “linear mode” for the widening operation on polyhedra (see Section 5.8.8 [Widening operators on polyhedra lattice], page 35). In the linear mode, widening is performed on underlying linear cones, and not on the affine polyhedra they represent. This is the default mode.

5.3.3 Global variables

The public read-only global variables initialized by the function polka_initialize are the following ones:

bool polka_strict
True iff. strict inequalities are enable. This requires an additional dimension in vectors and matrices, and modifies emptiness and universality tests.

const int polka_cst
Indicates the index of the constant coefficient. Should be always 1, weather strict inequalities are enabled or not.

const int polka_eps
Indicates the index of the epsilon coefficient. Should be 2.

int polka_dec
Indicates the index of the first “normal” coefficient; 2 if polka_strict is false, 3 otherwise.

int polka_maxnbdims
Maximum number of dimensions allowed in polyhedra

int polka_maxnbrows
Maximum number of rows allowed in matrices.

int polka_maxcolumns
Maximum number of columns allowed in vectors and matrices.
5.3.4 Functions on equation

void translate_equations (equation_t* eqn, size_t size, int offset)
 Add offset to the field .var of equations belonging to the array eqn of size size. offset may be negative or positive.

int cmp_equations (const equation_t* eqna, const equation_t* eqnb)
 Compare the field .var of the two equations.

int sort_equations (equation_t* eqn, size_t size)
 Sort the array eqn of size size according to the field var in ascending order.
5.4 Module Vector

Vectors are implemented in file ‘vector.c’.

5.4.1 The type vector_t

```c
typedef pkint_t* vector_t;
```

A vector is a C array of elements of type pkint_t. You access to the kth element of the array q with q[k].

5.4.2 Basic Operations on vectors

```c
pkint_t* vector_alloc (size_t size)
```

Allocates an array of size elements of type pkint_t and initializes them to zero.

```c
void vector_free (pkint_t* q, size_t size)
```

Frees the array q of size size. The size parameter is needed because when the type pkint_t is a multi-precision integer, elements have to be finalized.

```c
void vector_clear (pkint_t* q, size_t size)
```

This function set all elements of the array q to 0.

```c
pkint_t* vector_copy (const pkint_t* q, size_t size)
```

Creates a copy of the array q of size size.

```c
void vector_print (const pkint_t* q, size_t size)
```

Prints the array.

5.4.3 Comparison & Hashing on vectors

```c
int vector_compare (const pkint_t* q1, const pkint_t* q2, size_t size)
```

Compares the two arrays q1 and q2 of same size size, considered as constraints or generators, lexicographically on the order 0, polka_dec, ..., polka_dec+size−1,1[2]. The returned int has the following meaning:

- <0 r1 is smaller than r2
- = 0 they are equal;
- >0 r1 is greater than r2;
- abs() = 1 in addition they are parallel.

For two parallel inequalities (equal coefficients apart for the \(xi\) and \(\epsilon\) dimensions), the defined order corresponds to the entailment of constraints (if either polka_strict is true or not): if \(c_1\) is less or equal than \(c_2\), then \(c_1 == >c_2\).
Chapter 5: C Library

Function

```c
int vector_compare_expr (const pkint_t* q1, const pkint_t* q2, size_t size)
Idem as previous functions for vectors considered as affine expressions.
```

Function

```c
unsigned int vector_hash (const pkint_t* q, size_t size)
This function computes a key associated to an array. The function is compatible with the
previous comparison function, that is, two identical vectors give the same key.
```

5.4.4 Normalization of vectors

Function

```c
void vector_normalize (pkint_t* q, size_t size)
Normalizes the array considered as a constraint or a generator. The first coefficient is
ignored.
```

Function

```c
void vector_normalize_expr (pkint_t* q, size_t size)
Normalizes the array considered as an affine expression. The first coefficient is updated.
```

5.4.5 Algebraic Operations on vectors

Function

```c
void vector_combine (const pkint_t* q1, const pkint_t* q2, pkint_t* q3, int k, size_t size)
This function computes a linear combination of q1 and q2 and puts it array q3 such that
q3[k]=0. The first coefficient is never considered for computations, except when k==0.
The result is normalized.
```

Function

```c
void vector_product (pkint_t* prod, const pkint_t* q1, const pkint_t* q2, size_t size)
Computes the scalar product of arrays q1 and q2 of common size size and stores it in
*prod. The first coefficient is ignored.
```

Function

```c
void vector_product_strict (pkint_t* prod, const pkint_t* q1, const pkint_t* q2, size_t size)
As the previous function, but the \epsilon-coefficients are ignored.
```

Function

```c
void vector_add (pkint_t* q3, const pkint_t* q1, const pkint_t* q2, size_t size)
This function computes the addition of q1 and q2 considered as affine expressions. The
result is normalized and put in q3.
```

Function

```c
void vector_sub (pkint_t* q3, const pkint_t* q1, const pkint_t* q2, size_t size)
This function computes the substraction of q1 by q2 considered as affine expressions. The
result is normalized and put in q3.
```
void `vector_scale` (pkint_t* q2, pkint_t num, pkint_t den, const
 pkint_t* q1, size_t size)

This function scales q1 considered as an affine expression by the fraction \(\frac{num}{den} \) and
put the results in q2. \(\text{den} \) is supposed to be positive.

5.4.6 Change of dimension of vectors

At the end

void `vector_add_dimensions` (pkint_t* q2, const pkint_t* q1, size_t size, int dimsup)

If \(\text{dimsup} \) is positive, adds \(\text{dimsup} \) dimensions at the end of q1 and puts the result in q2;
If \(\text{dimsup} \) is negative, deletes the \(-\text{dimsup}\) last dimensions of q1 and puts the result in q2.
q2 is supposed to have a sufficient size.

Anywhere

void `vector_add_dimensions_multi` (pkint_t* q2, const pkint_t* q1, size_t size, const dimsup_t* tab, int multi)

Fills the vector q2 by inserting new columns with null values in vector q1, according to
the array \(\text{tab} \) of size \(\text{multi} \).
For each element \(\text{dimsup} \) of that array, \(\text{dimsup}.\text{nbdims} \) dimensions are inserted starting
from rank \(\text{dimsup}.\text{pos} \) (of the initial vector). The coefficient \(\text{q1}[\text{polka}_\text{dec}+\text{dimsup}.\text{pos}] \)
is pushed on the right. For instance, if the array \(\text{tab} \) is \([(0,2);(1,1);(2,3)]\),
the vector \([d,b,a_0,a_1,a_2,a_3,...,a_{\text{d-1}}]\)
becomes \([d,b,0,0,a_0,0,a_1,0,0,a_2,a_3,...,a_{\text{d-1}}]\).
If the strict option is set, \([d,b,s,a_0,...,a_{\text{d-1}}]\) becomes \([d,b,s,0,0,a_0,0,a_1,0,0,0,a_2,a_3,...,a_{\text{d-1}}]\).
The array \(\text{tab} \) is supposed to be sorted in ascending order w.r.t. \(\text{tab}[i].\text{pos} \). q2 is
supposed to have a sufficient size.

void `vector_remove_dimensions_multi` (pkint_t* q2, const pkint_t* q1, size_t size, const dimsup_t* tab, int multi)

Fills the vector q2 by deleting some columns in vector q1, according to the array \(\text{tab} \) of
size \(\text{multi} \).
For each element \(\text{dimsup} \) of that array, \(\text{dimsup}.\text{nbdims} \) dimensions are deleted starting
from rank \(\text{dimsup}.\text{pos} \) (of the initial vector). For instance, if the array \(\text{tab} \) is \([(0,2);(3,1);(5,3)]\),
the vector \([d,b,a_0,a_1,a_2,a_3,a_4,a_5,a_6,a_7,a_8,...,a_{\text{d-1}}]\)
becomes \([d,b,a_2,a_4,a_8,...,a_{\text{d-1}}]\).
The array \(\text{tab} \) is supposed to be sorted in ascending order w.r.t. \(\text{tab}[i].\text{pos} \). q2 is
supposed to have a sufficient size.
Change of dimensions together with permutation

```c
void vector_add_permute_dimensions (pkint_t* newq, const pkint_t* q, size_t size, int dimsup, const int* permut)

dimsup is supposed to be positive or null. Add dimsup dimensions to q and apply the permutation permut. The result is stored in newq. The array permut is supposed to be of size size+dimsup-polka_dec.

The permutation permut defines a permutation (i.e., a bijection) from [0..(size+dimsup-polka_dec)-1 to itself. BE CAUTIOUS: value 0 in the permutation means columns polka_dec.
```

```c
void vector_permute_remove_dimensions (pkint_t* newq, const pkint_t* q, size_t size, int dimsup, const int* permut)

dimsup is supposed to be strictly positive. Apply the permutation permut to q, then delete the last dimsup dimensions. The result is stored in newq. The array permut is supposed to of size size-dimsup-polka_dec.

The permutation permut defines a permutation (i.e., a bijection) from [0..(size-polka_dec)-1 to itself. BE CAUTIOUS: value 0 in the permutation means columns polka_dec.
```

5.4.7 Miscellaneous on vectors

```c
bool vector_is_null_strict (const pkint_t* q, size_t size)  
Tests if the vector projected on the non $\epsilon$ constraints is null. The function use global variables polka_strict and polka_dec.
```

```c
bool vector_is_positivity_constraint (const pkint_t* q, size_t size)  
Tests if the vector represents the positivity constraint. The function use global variables polka_strict and polka_dec.
```

```c
bool vector_is_strictness_constraint (const pkint_t* q, size_t size)  
Tests if the vector represents the strictness constraint, if strict option is set. Otherwise, returns false. The function use global variables polka_strict and polka_dec.
```

```c
bool vector_is_dummy_constraint (const pkint_t* q, size_t size)  
Tests if the vector represents the positivity or the strictness constraint (if strict option is set for the latter case). The function use global variables polka_strict and polka_dec.
```
5.5 Module Matrix

5.5.1 The type matrix_t

```c
typedef struct matrix_t {
   /* public part */
   pkint_t** p;        /* array of pointers to rows */
   int nbrows;         /* number of effective rows */
   int nbcolumns;      /* size of rows */

   /* private part */
   pkint_t* _pinit;    /* array of coefficients */
   int _maxrows;       /* number of rows allocated */
   bool _sorted;
} matrix_t;
```

5.5.2 Access functions on matrices

They are implemented as macros.

```c
int matrix_get_maxrows (const matrix_t* mat) Macro
Return the maximum number of rows the matrix can contains. The active rows are always located in the first mat->nbrows columns.

bool matrix_is_sorted (const matrix_t* mat) Macro
Tests if the matrix is sorted (this is only an access function).

5.5.3 Basic Operations on matrices

```c
matrix_t* matrix_alloc (int nr, int nc, bool s) Function
Allocates a new matrix with nr rows and nc columns and sets all elements to zero. s indicates if once filled the matrix should be considered as already sorted or not, according to the lexicographic order.
If either nr or nc is zero, the matrix is said to be degenerated and no space is allocated for coefficients (fields p and _pinit of the matrix are null). Only functions of this paragraph handle correctly such matrices (this happens to be useful, for instance when interfacing with OCAML language).```
void matrix_free (matrix_t* mat)
Frees the matrix \textit{mat} and finalizes referenced elements.

\textbf{Function}

matrix_t* matrix_copy (const matrix_t* mat)
Return a copy of \textit{mat}. The new matrix is dimensioned from the active part of \textit{mat}.

\textbf{Function}

void matrix_print (const matrix_t* mat)
Prints the matrix.

\textbf{Function}

void matrix_clear (matrix_t* mat)
Sets to zeros the active coefficients of \textit{mat}.

\textbf{Function}

5.5.4 Comparison & Hashing on matrices

int matrix_compare (const matrix_t* ma, const matrix_t* mb)
Compares the two matrices row by row. The order is compatible with that defined on vectors, that is, if for the first non equal row \textit{i}, \textit{ma->p[i]} is less than \textit{mb->p[i]}, then the result is negative. In the case where the dimensions are different, compare first the number of rows, then the number of columns.

\textbf{Function}

unsigned int matrix_hash (const matrix_t* mat)
This function computes a key associated to the matrix. The function is compatible with the previous comparison function, that is, two matrices which are identical with \textit{matrix_compare} give the same key.

\textbf{Function}

int matrix_compare_sort (matrix_t* ma, matrix_t* mb)
Compares matrices considered as sets of vectors. The two matrices are sorted if they are not yet sorted, and then compared row by row with \textit{matrix_compare}. In the case where the dimensions are different, compare first the number of rows, then the number of columns.

\textbf{Function}

unsigned int matrix_hash_sort (matrix_t* mat)
This function computes a key associated to the matrix considered as a set of vectors. The matrix is sorted if it is not yet sorted, and then hashed with the \textit{matrix_hash}. The function is compatible with the previous comparison function, that is, two matrices which are identical with \textit{matrix_compare_sort} gives the same key.

\textbf{Function}

5.5.5 Operations on rows of matrices

int matrix_compare_rows (const matrix_t* mat, int l1, int l2)
Compares lexicographically rows \textit{l1} and \textit{l2} of matrix \textit{mat} (see \textit{vector_compare}).

\textbf{Function}

void matrix_normalize_row (const matrix_t* mat, int \textit{l})
Normalizes the row \textit{l} of the matrix (see \textit{vector_normalize}).

\textbf{Function}
void matrix_combine_rows (matrix_t* mat, int l1, int l2, int l3)
Combine rows l1 and l2 of the matrix and put the result in the row l3 (see vector_combine).

void matrix_exch_rows (matrix_t* mat, int l1, int l2)
Exchange rows l1 and l2 of the matrix.

bool matrix_is_row_dummy_constraint (const matrix* const mat, int row)
Tests if the given matrix row represents the positivity or the strictness constraint (if strict option is set for the latter case). The function use global variables poly_strict and poly_dec. Implemented as a macro.

5.5.6 Sorting & Merging matrices

void matrix_sort_rows (matrix_t* mat)
Sorts the rows of the matrix (by insertion sort), and remove duplicates.

void matrix_sort_rows_with_sat (matrix_t* mat, satmat_t* sat)
This variant permutes also rows of the saturation matrix sat together with rows of mat. There is here no handling of duplicates.

void matrix_add_rows_sort (matrix_t* mat, matrix_t* cmat)
Adds to the matrix mat the rows of matrix cmat. The matrices are sorted if they are not already sorted, and the output is sorted. Identical rows are eliminated. mat is supposed to be big enough to store the new rows (mat->_maxrows >= mat->nbrows + cmat->nbrows).

matrix_t* matrix_merge_sort (matrix_t* mata, matrix_t* matb)
This function merges the rows of mata and matb, which are sorted if they are not sorted, and returns a new sorted matrix. Identical rows are eliminated.

5.5.7 Linear transformation of matrices

In these functions, variables are referenced by their real index in the matrix. There is no check of bounds.

matrix_t* matrix_assign_variable (const matrix_t* mat, int var, const pkint_t* tab)
Computes the image of mat by the assignment of affine expression tab to variable var.

matrix_t* matrix_substitute_variable (const matrix_t* mat, int var, const pkint_t* tab)
Computes the image of mat by the substitution of variable var by affine expression tab.
Function `matrix_t* matrix_assign_variables (const matrix_t* mat, const equation_t* eqn, size_t size)`

Computes the image of `mat` by the parallel assignment of `eqn[i].var` by `eqn[i].expr`, for `i` between 0 and `size-1`. The array `eqn` is supposed to be sorted w.r.t. the field `.var`. You may use the function `sort_equations` to ensure this (see ‘polka.h’).

Function `matrix_t* matrix_substitute_variables (const matrix_t* mat, const equation_t* eqn, size_t size)`

Computes the image of `mat` by the parallel substitution of `eqn[i].expr` by `eqn[i].expr`, for `i` between 0 and `size-1`. The array `eqn` is supposed to be sorted w.r.t. the field `.var`. You may use the function `sort_equations` to ensure this (see ‘polka.h’).

5.5.8 Change of dimension of matrices

At the end

Function `matrix_t* matrix_add_dimensions (const matrix_t* mat, int dimsup)`

If `dimsup` is positive, adds `dimsup` columns on the right in `mat`; if `dimsup` is negative, deletes the `-dimsup` last columns of `mat`.

Anywhere

See Section 5.4.6 [Change of dimension of vectors], page 19, for more details about the meaning of arrays of elements of type `dimsup_t`.

Function `matrix_t* matrix_add_dimensions_multi (const matrix_t* mat, const dimsup_t* tab, size_t size)`

Inserts new columns with null values in matrix `mat`, according to the array `tab` of size `size`.

Function `matrix_t* matrix_remove_dimensions_multi (const matrix_t* mat, const dimsup_t* tab, size_t size)`

Deletes some columns in matrix `mat`, according to the array `tab` of size `size`.

Change of dimensions together with permutation

Function `matrix_t* matrix_add_permute_dimensions (const matrix_t* mat, int dimsup, const int* permutation)`

Scale `vector_add_permute_dimensions` to matrices.

Function `matrix_t* matrix_permute_remove_dimensions (const matrix_t* mat, int dimsup, const int* permutation)`

Scale `vector_permute_remove_dimensions` to matrices.
5.6 Module Bit

This module implements bitstrings and operations on them.

5.6.1 Type `bitindex_t`: accessing bits in bitstrings

To reference a particular bit in a bitstring, you have to use an index of type `bitindex_t`.

```
typedef struct bitindex_t {
    int index; /* the index of the referenced bit, starting from 0 */
    int word; /* the index of the word containing the bit, starting from 0 */
    bitstring_t bit; /* the mask selecting the right bit */
} bitindex_t;
```

Function

`bitindex_t bitindex_init (int col)`

Return a bitindex referencing the `col`th bit of any bitstring.

Function

`void bitindex_inc (bitindex_t* b)`

Increments the bitindex `b` by one, i.e. after the call the bitindex references the next bit.

Function

`void bitindex_dec (bitindex_t* b)`

Decrements the bitindex `b` by one, i.e. after the call the bitindex references the next bit.

Function

`int bitindex_size (int n)`

Return the number of elements of type `bitstring_t` needed to represent `N` bits.

5.6.2 Type `bitstring_t`: bitstrings

Users normally don’t need to know anything in this section.

```
typedef struct bitstring_t {
    int bitstring_size; /* Number of bits contained in an element of type bitstring_t. */
    bitstring_t bitstring_msb; /* Mask selecting the most significant bit of an element of type bitstring_t. */
} bitstring_t;
```

Function

`bitstring_t* bitstring_alloc (int n)`

Allocates an array of size `n` (the size is the number of `bitstring_t` and not the number of bits (see `bitindex_size`).

Function

`void bitstring_free (bitstring_t* b)`

Frees the array.
void bitstring_clear (bitstring_t* b, size_t size)
 Clears all bits of the array of size size.

int bitstring_cmp (const bitstring_t* r1, const bitstring_t* r2, size_t size)
 Compares the two bitstring of size size lexicographically.

void bitstring_print (const bitstring_t* b, size_t size)
 Prints the array as a string of bits.

int bitstring_get (const bitstring_t* b, bitindex_t ix)
 Return the value of the bit of array b referenced by the index ix. A null value represents a bit set to zero, a non-null value a bit set to one.

void bitstring_set (const bitstring_t* b, bitindex_t ix)
 Sets to one the bit of array b referenced by the index ix.

void bitstring_clr (const bitstring_t* b, bitindex_t ix)
 Clears the bit of array b referenced by the index ix.
5.7 Module Satmat

Saturation matrices allow the user to know which generator saturates which constraint, i.e. their scalar product is zero. This means that the generator belongs to the constraint. Such matrices are obtained from polyhedra (see next section) in two versions: either columns are indexed by constraints and rows by generator, either the opposite. A cleared bit indicates saturation, and bit set to one indicates that the generator only satisfies the constraint.

5.7.1 The type satmat_t

satmat_t
datatype

Saturation matrices are represented as an array of rows, each of which is a string of bits. A row \(i \) of the matrix \(\text{satmat}_t \ast \text{sat} \) is accessed with \(\text{sat} _p[i] \), of type bitstring_t*. For information, the private datatype is defined as follows:

```c
typedef struct satmat_t {
    bitstring_t** p;
    int nbrows;
    int ncolumns;
    bitstring_t* p_init;
} satmat_t;
```

5.7.2 Basic Operations on saturation matrices

```c
satmat_t* satmat_alloc (int nr, int nc)  // Function
Allocates a saturation matrix with \( nr \) rows and \( nc \) elements of type bitindex_t per row (see bitindex_size).

void satmat_free (satmat* sat)  // Function
Frees the saturation matrix.

satmat_t* satmat_copy (const satmat* sat)  // Function
Makes a copy of the saturation matrix.

void satmat_print (const satmat* sat)  // Function
Prints the saturations matrix on standard output.

void satmat_clear (satmat_t* sat)  // Function
Clears all bits of the saturation matrix.
```

5.7.3 Bit manipulations on saturation matrices

```c
bitstring_t satmat_get (const satmat_t* sat, int i, bitindex_t jx)  // Function
Return the bit corresponding to the row \( i \) and the column \( jx \). If the result is null, the bit is set to zero, a non null value indicates a bit set to one.
```
void satmat_set (satmat_t* sat, int i, bitindex_t jx) Function
Sets to one the bit of row i and column jx.

void satmat_set (satmat_t* sat, int i, bitindex_t jx) Function
Sets to zero the bit of row i and column jx.

5.7.4 Matrix manipulations

satmat_t* satmat_transpose (const satmat_t* org, int ncols) Function
Return the transposed matrix of org. ncols is the number of bits to be transposed for each row of org (and is the number of rows of the result).

void satmat_exch_rows (satmat_t* sat, int l1, int l2) Function
Exchanges rows l1 and l2 of the saturation matrix.

void satmat_sort_rows (satmat_t* sat) Function
Sorts the rows of the saturation matrix (lexicographic order).

int satmat_index_in_sorted_rows (bitstring_t* satline, satmat_t* sat) Function
Does satline correspond to a row of sat? If it is the case, return the index of satline in sat, otherwise return -1. The size of satline and sat is supposed to be the same, with the convention that unused bits of sat are supposed to be zero.
5.8 Module Poly

A polyhedron is represented by a structure whose all elements should considered as private. Operations on polyhedra and possibly vectors and matrices assumes compatible dimensions of the parameters. This is checked when possible (we cannot check the compatibility of vectors with matrices or polyhedra).

A polyhedron can be in minimal form or not. In the first case, the constraints, the generators, the saturation matrix, and the dimension of equality and lineality space are available. Otherwise, only the constraints or the generators are available.

5.8.1 Basic Operations on polyhedra

void poly_free (poly_t* po) Function
Frees the polyhedron and finalize referenced elements.

poly_t* poly_copy (const poly_t* po) Function
Makes a copy of the polyhedron. Referenced elements are recursively duplicated.

void poly_print (const poly_t* po) Function
Prints the polyhedron on standard output.

void poly_minimize (const poly_t* po) Function
Computes the minimal representation of the polyhedron. Once minimized, both constraints and generators are available, as such as the saturation matrix and the dimension of equality and lineality spaces.

void poly_canonicalize (const poly_t* po) Function
If polka_strict is false, same effect as poly_minimize, but ensures also normalization of equalities and lines spaces (with Gauss elimination). Otherwise, normalizes the strict constraints of po and performs minimization on the new set of constraints (also with normalization of equalities and lines spaces). This allows to remove constraints which are redundant considering the special meaning of the epsilon dimension.

5.8.2 Basic Constructors for polyhedra

poly_t* poly_empty (int dim) Function
Creates an empty polyhedron of affine dimension dim, in minimized form.

poly_t* poly_universe (int dim) Function
Creates an universe polyhedron of affine dimension dim, in minimized form.

poly_t* poly_of_constraints (matrix_t* mat) Function
Creates a polyhedron defined by the constraints stored in mat. The matrix mat will be referenced by the result, so don’t touch it any more after the call. The dimension of the polyhedron is equal to the number of columns of the matrix minus polka_dec. The returned polyhedron is not in a minimal form.
It’s the user responsibility to put in the matrix the constraint $x_i > 0$ or the constraints $x_i > \epsilon = 0$, if they are not implied by the other constraints. If you are not sure of what you are doing, use rather poly_universe and poly_add_constraints.

\[
\text{Function} \\
poly_t* \ poly_of_frames (matrix_t* \ mat) \\
\text{Creates a polyhedron defined by the generators stored in mat. The same remarks as above holds. The defined polyhedra have to be included in } x_i > 0 \text{ or } x_i > \epsilon = 0. \text{ If you are not sure of what you are doing, use rather poly_empty and poly_add_frames.}
\]

5.8.3 Access functions for polyhedra

Among the functions below, the first three don’t imply any computation. The obtention of a saturation matrix, as the four last functions, needs minimal form and performs minimization if necessary.

\[
\text{Function} \\
\text{const matrix_t* poly_constraints (const poly_t* po)} \\
\text{Return the matrix of constraints of the polyhedron, which is referenced by it, when this matrix is available, or else the null pointer. Don’t modify the matrix neither free it, as it is pointed by po. The obtained set of constraints may not be minimal.}
\]

\[
\text{Function} \\
\text{const matrix_t* poly_frames (const poly_t* po)} \\
\text{Return the matrix of generators of the polyhedron, if available, else the null pointer. The same remarks as above holds.}
\]

\[
\text{Function} \\
\text{const satmat_t* poly_satC (const poly_t* po)} \\
\text{Return the saturation matrix, whose rows are indexed by generators and columns by constraints. The same remarks as above holds.}
\]

\[
\text{Function} \\
\text{const satmat_t* poly_satF (const poly_t* po)} \\
\text{Return the saturation matrix, whose rows are indexed by constraints and columns by generators. The same remarks as above holds.}
\]

\[
\text{Function} \\
\text{int poly_dimension (const poly_t* po)} \\
\text{Return the (affine) dimension of the polyhedron (i.e., without taking into account the additional columns of vectors and matrices).}
\]

\[
\text{Function} \\
\text{int poly_nbequations (const poly_t* po)} \\
\text{Return the dimension of the equality space, i.e. the number of linearly independant equations satisfied by the polyhedron. Require minimization.}
\]

\[
\text{Function} \\
\text{int poly_nblines (const poly_t* po)} \\
\text{Return the dimension of the lineality space, i.e. the number of linearly independant lines included in the polyhedron. Require minimization.}
\]

\[
\text{Function} \\
\text{int poly_nbconstraints (const poly_t* po)} \\
\text{Return the number of constraints in minimal form.}
\]

\[
\text{Function} \\
\text{int poly_nbframes (const poly_t* po)} \\
\text{Return the number of generators in minimal form.}
\]
5.8.4 Predicates on polyhedra

bool poly_is_minimal (const poly_t* po)
Says if the polyhedron is minimized. Doesn’t imply any computation.

bool poly_is_empty (const poly_t* po)
Tests if the polyhedron is empty. Can imply minimization.

bool poly_is_universe (const poly_t* po)
Tests if the polyhedron is the universe one. Imply minimization.

tbool poly_is_empty_lazy (const poly_t* po)
This function tests emptiness without minimize the polyhedron. As a result, the answer can be: I don’t know (tbool_bottom).

tbool poly_versus_constraint (const poly_t* po, const pkint_t* tab)
Tests the relation between the polyhedron and the constraint, which must have the same dimension. If the constraint is an inequality the result has the following meaning:
- tbool_top: all frames belongs to the hyperplane defined by the constraint;
- tbool_true: all frames satisfies the constraint but do not verify the preceding property (the polyhedron is on the positive side of the constraint);
- tbool_false: no frame satisfies the constraint (the polyhedron is on the strictly negative side of the constraint);
- tbool_bottom: the constraint splits the polyhedron.

In the case where the constraint is an equality, the two possible results are tbool_top and tbool_bottom.

bool poly_is_generator_included_in (const pkint_t* tab, const poly_t* po)
Tests if a generator is included in the polyhedron. The function may minimize the polyhedron in order to get its constraints.

bool poly_is_included_in (const poly_t* pa, const poly_t* pb)
Tests the inclusion of the first polyhedron in the second one. This function may minimize the two polyhedra.

bool poly_is_equal (const poly_t* pa, const poly_t* pb)
Tests the equality of two polyhedra. Requires minimal form for both polyhedra.

5.8.5 Intersection and Convex Hull of polyhedra

All functions described in this paragraph are functional.
Strict version

These functions return polyhedra in minimal form and their parameters are minimized when it is not already the case.

\texttt{poly_t* poly_intersection (const poly_t* \textit{pa}, const poly_t* \textit{pb})}

Return the intersection of the two polyhedra. The function chooses one of the polyhedron as starting point, and adds to it the constraints of the other one. One chooses the polyhedron that have the greatest number of equalities, or else the greatest number of constraints.

\texttt{poly_t* poly_intersection_array (const poly_t* const* \textit{po}, int \textit{size})}

Return the intersection of the (non-empty) array of polyhedra \textit{po} of size \textit{size}. The function chooses one of the polyhedron as starting point, and adds to it the constraints of all the other ones. One choose the polyhedron that have the greatest number of equalities, or else the greatest number of constraints.

\texttt{poly_t* poly_add_constraints (const poly_t* \textit{po}, matrix_t* \textit{mat})}

Return the intersection of the polyhedron with the set of constraints given by the matrix. The matrix may be sorted by the function.

\texttt{poly_t* poly_add_constraint (const poly_t* \textit{po}, const pkint_t* \textit{tab})}

Return the intersection of the polyhedron with the constraint given by \textit{tab}.

\texttt{poly_t* poly_convex_hull (const poly_t* \textit{pa}, const poly_t* \textit{pb})}

Return the convex hulls of the two polyhedra. The function chooses one of the polyhedron as starting point, and adds to it the generators of the other one. One chooses the polyhedron that have the greatest number of lines, or else the greatest number of generators.

\texttt{poly_t* poly_convex_hull_array (const poly_t* const* \textit{po}, int \textit{size})}

Return the convex hull of the (non-empty) array of polyhedra \textit{po} of size \textit{size}. The function chooses one of the polyhedron as starting point, and adds to it the generators of all the other ones. One chooses the polyhedron that have the greatest number of lines, or else the greatest number of generators.

\texttt{poly_t* poly_add_frames (const poly_t* \textit{po}, matrix_t* \textit{mat})}

Return the convex hull of the polyhedron and the set of generators given by the matrix. The matrix may be sorted by the function.

\texttt{poly_t* poly_add_frame (const poly_t* \textit{po}, const pkint_t* \textit{tab})}

Return the convex hull of the polyhedron and the generator given by \textit{tab}.

Lazy version

These functions are the lazy version of the preceding ones. They return polyhedra in non minimal form and their parameters are minimized only if it is necessary.
poly_t* poly_intersection_lazy (const poly_t* pa, const poly_t* pb)
Function
poly_t* poly_intersection_array_lazy (const poly_t* const* po, int size)
Function
poly_t* poly_add_constraints_lazy (const poly_t* po, matrix_t* mat)
Function
poly_t* poly_add_constraint_lazy (const poly_t* po, const pkint_t* tab)
Function
poly_t* poly_convex_hull_lazy (const poly_t* pa, const poly_t* pb)
Function
poly_t* poly_convex_hull_array_lazy (const poly_t* const* po, int size)
Function
poly_t* poly_add_frames_lazy (const poly_t* po, matrix_t* mat)
Function
poly_t* poly_add_frame_lazy (const poly_t* po, const pkint_t* tab)
Function

5.8.6 Change of dimension of polyhedra

At the end

poly_t* poly_add_dimensions_and_embed (const poly_t* po, int dimsup)
This function adds dimsup dimension to the given polyhedron and embed it in the new space. The new dimensions are the last one, i.e. the corresponding coefficients are in the last columns of vectors and matrices. Preserves the minimality of the polyhedron: if the parameter is in minimal form, then its the case for the result, otherwise not.

poly_t* poly_add_dimensions_and_project (const poly_t* po, int dimsup)
This function adds dimsup dimension to the given polyhedron and project it onto the old dimensions, i.e. the constraints \(x_i = 0\) are satisfied for the new dimensions \(i\). The new dimensions are the last one, i.e. the corresponding coefficients are in the last columns of vectors and matrices. Preserves the minimality of the polyhedron.

poly_t* poly_remove_dimensions (const poly_t* po, int dimsup)
This function projects the given polyhedron onto the \(po->dim-dimsup\) first dimensions, and eliminates the last coefficients. Minimality is lost. The parameter may be minimized in order to get its generators.

Anywhere

See Section 5.4.6 [Change of dimension of vectors], page 19, for more details about the meaning of arrays of elements of type dimsup_t.

poly_t* poly_add_dimensions_and_embed_multi (const poly_t* po, const dimsup_t* tab, size_t size)
 Adds new dimensions in the polyhedron po, according to the array tab of size size, and embed it in the new space. Preserves the minimality of the polyhedron.
Function \texttt{poly_t* poly_add_dimensions_and_project_multi} (\texttt{const poly_t* po, const dimsup_t* tab, size_t size})

Adds new dimensions in the polyhedron \texttt{po}, according to the array \texttt{tab} of size \texttt{size}, and project it onto the old dimensions. Preserves the minimality of the polyhedron.

Function \texttt{poly_t* poly_remove_dimensions_multi} (\texttt{const poly_t* po, const dimsup_t* tab, size_t size})

Deletes some dimensions in the polyhedron \texttt{po}, according to the array \texttt{tab} of size \texttt{size}. Minimality is lost.

Change of dimensions together with permutation

Function \texttt{void poly_add_permute_dimensions_and_embed} (\texttt{const poly_t* po, int dimsup, const int* permutation})

dimsup is supposed to be positive or null. Add first \texttt{dimsup} dimensions at the end (the corresponding coefficients are in the last columns of vectors and matrices), embed the polyhedron into the new space and then apply the permutation \texttt{permutation} of size \texttt{poly_dim(po)+dimsup} to the dimensions of the polyhedron.

The permutation \texttt{permutation} defines a permutation (i.e., a bijection) from \([0..(poly_dim(po)+dimsup)-1]\) to itself. BE CAUTIOUS: value 0 in the permutation means columns \texttt{polka_dec}.

Function \texttt{void poly_add_permute_dimensions_and_project} (\texttt{const poly_t* po, int dimsup, const int* permutation})

dimsup is supposed to be positive or null. Add first \texttt{dimsup} dimensions at the end (the corresponding coefficients are in the last columns of vectors and matrices), project the polyhedron onto the old dimensions, and then apply the permutation \texttt{permutation} of size \texttt{poly_dim(po)+dimsup} to the dimensions of the polyhedron.

The permutation \texttt{permutation} defines a permutation (i.e., a bijection) from \([0..(poly_dim(po)+dimsup)-1]\) to itself. BE CAUTIOUS: value 0 in the permutation means columns \texttt{polka_dec}.

Function \texttt{void poly_permute_remove_dimensions} (\texttt{const poly_t* po, int dimsup, const int* permutation})

dimsup is supposed to be positive or null. Permute first the dimensions of the polyhedron according to the permutation \texttt{permutation} of size \texttt{poly_dim(po)}, then remove the \texttt{dimsup} last dimensions and project the polyhedron onto the reduced space.

The permutation \texttt{permutation} defines a permutation (i.e., a bijection) from \([0..poly_dim(po)-1]\) to itself. BE CAUTIOUS: value 0 in the permutation means columns \texttt{polka_dec}.

5.8.7 Linear transformations on polyhedra

Single variable/expression
Function \texttt{poly_assign_variable} (const \texttt{poly_t* po}, \texttt{int rank}, \texttt{const pkint_t* tab})

This function applies to the polyhedron the linear transformation \(x'_{\text{rank}} = \sum_{i=0}^{\text{dim}-1} a_i \frac{dx_i}{dx} + b/d \) with \texttt{rank} the rank of the variable (rank 0 corresponding to the first normal variable) and \(\text{tab} = [d, b, [0, a_{0}, \ldots, a_{\text{dim}-1}]} \). \texttt{po} may be minimized in order to obtain its generators. Minimality is then preserved if the transformation is invertible.

Function \texttt{poly_substitute_variable} (const \texttt{poly_t* po}, \texttt{int rank}, \texttt{const pkint_t* tab})

This function applies to the polyhedron the linear substitution \(x'_{\text{rank}} < - \sum_{i=0}^{\text{dim}-1} a_i \frac{dx_i}{dx} + b/d \) with \texttt{rank} denoting the rank of the variable (rank 0 corresponding to the first normal variable) and \(\text{tab} = [d, b, [0, a_{0}, \ldots, a_{\text{dim}-1}]} \). \texttt{po} may be minimized in order to obtain its constraints. Minimality is then preserved if the transformation is invertible.

The two following functions are kept for compatibility. The variable to be assigned or substituted is not denoted by its rank, but by its index in vectors: we have the relationship \texttt{index} = \texttt{rank} + \texttt{polka_dec}.

Function \texttt{poly_assign_variable_old} (const \texttt{poly_t* po}, \texttt{int index}, \texttt{const pkint_t* tab})

Function \texttt{poly_substitute_variable_old} (const \texttt{poly_t* po}, \texttt{int index}, \texttt{const pkint_t* tab})

Same as \texttt{poly_assign_variable} and \texttt{poly_substitute_variable}, but with \texttt{index} denoting the index of the variable in vectors.

Several variables/expressions

Function \texttt{poly_assign_variables} (const \texttt{poly_t* po}, \texttt{const equation_t* eqn}, \texttt{size_t size})

Computes the image of \texttt{po} by the parallel assignment of \texttt{eqn[i].var} by \texttt{eqn[i].expr}, for \texttt{i} between 0 and \texttt{size-1}. The array \texttt{eqn} is supposed to be sorted w.r.t. the field \texttt{.var}. You may use the function \texttt{sort_equations} to ensure this (see ‘polka.h’).

Function \texttt{poly_substitute_variables} (const \texttt{poly_t* po}, \texttt{const equation_t* eqn}, \texttt{size_t size})

Computes the image of \texttt{po} by the parallel substitution of \texttt{eqn[i].expr} by \texttt{eqn[i].expr}, for \texttt{i} between 0 and \texttt{size-1}. The array \texttt{eqn} is supposed to be sorted w.r.t. the field \texttt{.var}. You may use the function \texttt{sort_equations} to ensure this (see ‘polka.h’).

5.8.8 Widening operators on polyhedra lattice

These two operations are parametrized by the widening mode, see Section 5.3.2 [Widening mode], page 14.
Function \texttt{poly_widening} \((\text{const} \text{ poly_t*} \ pa, \text{ const} \text{ poly_t*} \ pb)\)

This function implements the standard widening operator defined in \textit{cousot78}. Minimal form is required for the two polyhedra. The returned polyhedron is defined by those constraints which are satisfied by both parameter polyhedra.

Function \texttt{poly_limited_widening} \((\text{const} \text{ poly_t*} \ pa, \text{ const} \text{ poly_t*} \ pb, \text{ matrix_t*} \ mat)\)

This function implements the version of the widening operator parametrized by a set of constraints. It adds to the polyhedron obtained by the standard widening the constraints of the matrix which are satisfied by both parameter polyhedra \textit{polka:fmsd:97}. The parameter matrix may be sorted.

5.8.9 Closure operation

Function \texttt{poly_closure} \((\text{const} \text{ poly_t*} \ poly)\)

Function \texttt{poly_closure_lazy} \((\text{const} \text{ poly_t*} \ poly)\)

If \texttt{polka_strict} is true, these functions compute the closure (in the topological sense) of the argument polyhedron, i.e., the smallest polyhedron with loose constraints only containing the argument. If \texttt{polka_strict} is false, they return a copy of the argument polyhedron. The parameter polyhedron may be minimized.

The two functions differ by their strict/lazy implementation.

5.9 C Example

```c
#include <stdio.h>
#include "polka.h"
#include "pkint.h"
#include "poly.h"

void essai1()
{
    poly_t *PUniv, *P1, *P2, *P3;
    bool result;
    matrix_t* conP1 = matrix_alloc(2,4,false);
    /* x >= 2 */
    pkint_set_si(conP1->p[0][0], 1);
    pkint_set_si(conP1->p[0][1], -2);
    pkint_set_si(conP1->p[0][2], 0);
    pkint_set_si(conP1->p[0][3], 1);
    /* x > 1 */
    pkint_set_si(conP1->p[1][0], 1);
    pkint_set_si(conP1->p[1][1], -1);
    pkint_set_si(conP1->p[1][2], -1);
    pkint_set_si(conP1->p[1][3], 1);

    PUniv = poly_universe(1);
    P1 = poly_add_constraints(PUniv, conP1);
```
poly_print(P1);
poly_minimize(P1);
poly_print(P1);

P2 = poly_add_constraint(PUniv, conP1->p[0]);
P3 = poly_add_constraint(PUniv, conP1->p[1]);

result = poly_is_included_in(P2, P3);
if(result == true)
 printf("\n\npoly[x>=2] is included in poly[x>1]\n");
else
 printf("\n\npoly[x>=2] is not included in poly[x>1]\n");
}

void essai2()
{
 const matrix_t* rayP1;
 matrix_t* rayP1b;
 bool result;
 int i;

 int nbdim=12;

 PUniv = poly_universe(nbdim);

 /* P1 */
 matrix_t* conP1 = matrix Alloc(nbdim*2,nbdim+3,false);
 for (i=0;i<nbdim; i++){
 pkint_set_si(conP1->p[2*i][0], 1);
 pkint_set_si(conP1->p[2*i][polka_cst], 1000000000);
 pkint_set_si(conP1->p[2*i][polka_dec+i], -1);
 pkint_set_si(conP1->p[2*i+1][0], 1);
 pkint_set_si(conP1->p[2*i+1][polka_cst], 1000000000);
 pkint_set_si(conP1->p[2*i+1][polka_dec+i], 1);
 }
 printf ("Here1a\n");
 P1 = poly_add_constraints(PUniv, conP1);
 poly_minimize(P1);
 matrix_free(conP1);
 printf("Here1b\n");

 /* PZero */
 conP1 = matrix Alloc(nbdim,nbdim+3,false);
 for (i=0;i<nbdim; i++){
 pkint_set_si(conP1->p[i][polka_dec+i], 1);
 }
 PZero = poly_add_constraints(PUniv, conP1);
 poly_minimize(PZero);
 matrix_free(conP1);
poly_free(PUniv);

/* */
rayP1 = poly_frames(P1);

for (i=0; i<5; i++){
 printf("Here2a %d\n",i);
 rayP1b = matrix_copy(rayP1);
 matrix_qsort_rows(rayP1b);
 rayP1b->_sorted = true;
 printf("Here2b %d\n",i);
 P2 = poly_add_frames(PZero,rayP1b);
 printf("Here2c %d\n",i);
 matrix_free(rayP1b);
 poly_free(P2);
}
poly_free(P1);
poly_free(PZero);
}

int main(int argc, char** argv)
{
 polka_initialize(true,20,10000);
 essai2();
 return 0;
}
6 OCAML Library

This chapter describes the OCAML API of POLKA. The reader is supposed to have first read the documentation of the C library.

6.1 Organization of the OCaml interface

Not all functions of type C library are interfaced; for instance, you can’t manipulate saturation matrices in OCAML (but of course, if someone asks me this feature, I can add it). The three datatypes that are interfaced are vectors, matrices, and polyhedra, and there is a corresponding module for each of these datatypes. All objects are properly finalized, thanks to the use of “custom” blocks.

The interface was developed with the CAMLIDL tool. Each ‘.idl’ file produces a ‘_caml.c’, a ‘.mli’ and a ‘.ml’ file. Each file is represents a module.

The interface is decomposed as follows:

- Files ‘polka_lexer.mli’, ‘polka_lexer.mll’ and ‘polka_parser.mly’ implements pretty-input of vectors and matrices;
- Files ‘polka_caml.h’, ‘polka_caml.c’, ‘polka.mli’ and ‘polka.ml’ take care of global stuff and defines the OCAML module Polka.
- ‘vector.idl’ defines the module Vector.
- ‘matrix.idl’ defines the module Matrix.
- ‘poly.idl’ defines the module Poly.

When invalid arguments are given to some function (incompatible dimensions, out-of-bound access, ...), an Invalid_argument exception is usually thrown.

We provide a unified type for coefficients, which is the OCAML native integers. Converting to OCAML native integers coefficients as used in the C library, which can be long int, long long int or mpz_t, may produce overflow. In this case, an exception Polka.Overflow(str) is raised, carrying the string representation of the coefficient in base 10. This concerns only the functions Vector.get and Matrix.get.
6.2 Polka

This module defines datatypes, some global read-only variables, and library initialization and finalization functions.

Exceptions and Datatypes

Overflow of string

Exception raised when an overflow occurs when converting from internal type `pkint_t` in the C library to OCAML native integer. The exception carries the string representation of the number in base 10.

dimsup

Datatype

```ocaml
define type dimsup = {
    pos : int;
    nbdims : int;
}
```

Data-type for insertion and deletion of columns in vectors, matrices, and polyhedra.

Initialization and finalization functions

initialize : bool → int → int → unit

initialize strict maxdims maxrows initializes internal data-structures and global variables of the library:

- **strict** indicates whether strict inequalities are enabled or not;
- **maxdims** is the maximum number of dimensions allowed in polyhedra; the maximum number of columns allowed in vectors and matrices is thus equal to this number plus `polka_dec` (see below);
- **maxrows** is the maximum number of rows or vectors allowed in matrices.

Set variables **strict** and **dec** (see below).

set_gc : int → unit

Sets the ratio used/max of the OCAML garbage collector for all the abstract objects allocated by POLKA. The default is 2^{26}, which means that there is at most 64MB of unreclaimed memory.

finalize : unit → unit

Free internal data-structure used in the library.

set_widening_affine : unit → unit

set_widening_linear : unit → unit

Select respectively the “affine mode” or the “linear mode” for the widening operation on polyhedra (see Section 5.3.2 [Widening mode], page 14).
Variables

`strict : bool ref`
 Indicate if strict inequalities are enabled or not.

`dec : int ref`
 Index of the first “real” dimension in vectors and matrices.
6.3 Vector

t Abstract datatype for vectors.

6.3.1 Basic Operations on OCaml vectors

make : int -> t
make size
Return a vector of size size with all coefficient initialized to 0. size=0 is accepted.

copy : t -> t
Return a copy of the vector.

_print : t -> unit
Print in a unformatted way on the C standard output the vector.

get : t -> int -> int
get vec index
Return the corresponding coefficient of the vector; in case of overflow during the conversion from pkint_t to int, raise exception Polka.Overflow.

get_str10 : t -> int -> string
get_str10 vec index
Return the string representation in base 10 of the corresponding coefficient of the vector.

set : t -> int -> int -> unit
set vec index val
Store the value val in the corresponding coefficient of the vector.

set_str10 : t -> int -> string -> unit
set_str10 vec index val
Store the value val represented in base 10 in the corresponding coefficient of the vector.

length : t -> int
Return the length of the vector.

6.3.2 Comparison & Hashing of OCaml vectors

compare : t -> t -> int
Compare the two vectors as does vector_compare. In the case where the vectors have different lengths, compare the length.

compare_expr : t -> t -> int
Compare the two vectors as does vector_compare_expr. In the case where the vectors have different lengths, compare the length.
Function \texttt{hash}: \texttt{t -> int}
Compute a hash key for vectors, as does \texttt{vector_hash}.

6.3.3 Normalization of OCaml vectors

\texttt{norm}: \texttt{t -> unit}
\texttt{norm_expr}: \texttt{t -> unit}
Normalize in place the vector, respectively as a constraint or a generator, or as an affine expression.

6.3.4 Algebraic Operations on OCaml vectors

\texttt{product}: \texttt{t -> t -> int}
Scalar product. The first coefficient is ignored. Raise \texttt{Invalid_argument} when the sizes are different.

\texttt{product_strict}: \texttt{t -> t -> int}
As the previous function, but the \texttt{_epsilon}-coefficients are also ignored.

\texttt{add_expr}: \texttt{t -> t -> t}
\texttt{sub_expr}: \texttt{t -> t -> t}
Respectively add and subtract two vectors of same size considered as affine expressions. Raise \texttt{Invalid_argument} when the sizes are different.

\texttt{scale_expr}: \texttt{int -> int -> t -> t}
\texttt{scale num den vec}
Scale the vector considered as an affine expression with the rational number \texttt{num/den} and returns the result.

6.3.5 Change of dimensions on OCaml vectors

At the end

\texttt{add_dims}: \texttt{int -> t -> t}
\texttt{add_dims n vec}
Add or remove (abs \texttt{n}) dimensions to the vector, depending on the sign of \texttt{n}. Dimensions are added or removed at the end of the vector.

Anywhere

\texttt{add_dims_multi}: \texttt{t -> Polka.dimsup array -> t}
Same as C function \texttt{vector_add_dimensions_multi}.

\texttt{del_dims_multi}: \texttt{t -> Polka.dimsup array -> t}
Same as C function \texttt{vector_remove_dimensions_multi}.
Change of dimensions together with permutation

add_permute_dims: \(t \rightarrow \text{int} \rightarrow \text{int array} \rightarrow t \)
Function
Same as C function vector_add_permute_dimensions.

permute_del_dims: \(t \rightarrow \text{int} \rightarrow \text{int array} \rightarrow t \)
Function
Same as C function vector_permute_remove_dimensions.

6.3.6 Miscellaneous on OCaml vectors

is_positivity_constraint: \(t \rightarrow \text{bool} \)
Function
Tell whether the vector is the positivity constraint as does vector_is_positivity_constraint.

is_strictness_constraint: \(t \rightarrow \text{bool} \)
Function
Tell whether the vector is the strictness constraint as does vector_is_strictness_constraint.

is_dummy_constraint: \(t \rightarrow \text{bool} \)
Function
Tell whether the vector is the positivity or the strictness constraint, as does vector_is_dummy_constraint.

6.3.7 Input & Output of OCaml vectors

These functions use the pretty input/output facilities described in module Polka.

Printing and output functions take as first parameter a function of type \((\text{int} \rightarrow \text{string})\) associating variable names to variable *ranks*. By definition, \(\text{variable index} = \text{polka_dec} + \text{variable rank}\).

print_constraint: \((\text{int} \rightarrow \text{string}) \rightarrow \text{Formatter} \rightarrow t \rightarrow \text{unit}\)
Function
Pretty-print on the given formatter the vector considered as a constraint.

print_frame: \((\text{int} \rightarrow \text{string}) \rightarrow \text{Formatter} \rightarrow t \rightarrow \text{unit}\)
Function
Pretty-print on the given formatter the vector considered as a generator. The output has the following meaning:
- \(V:0\) represents the origin vertex;
- \(V:3x+4y\) represents the vertex defined by \(x = 3, y = 4\);
- \(V:(3x+4y)/2\) represents the vertex defined by \(x = 3/2, y = 2\);
- \(R:3x+4y\) represents the ray \(3.i.x+4.i.y\);
- \(L:3x+4y\) represents the line whose direction is given by \(3.i.x+4.i.y\).

print_expr: \((\text{int} \rightarrow \text{string}) \rightarrow \text{Formatter} \rightarrow t \rightarrow \text{unit}\)
Function
Pretty-print on the given formatter the vector considered as an affine expression.
The next functions are input functions: they converts strings to vectors. They as first parameter a function of type \((\text{string} \to \text{int})\) associating variable ranks to variable names, and as second parameter the \textit{dimension} of the returned vector. By definition, \texttt{length = polka_dec + dimension}.

\textbf{of_expr} : \((\text{string} \to \text{int}) \to \text{int} \to \text{string} \to \text{t}) \quad \text{Function}
Make a vector from a string parsed as an affine expression.
The syntax of an expression is
\((+|-)\ a_x/b_x \ x\ (+|-)\ ...\ (+|-)\ a_y/b_y \ y\)
where the \(a\)'s are numerators, \(b\)'s are \textit{optional} denominators, and \(x, y, \ldots\) are variable names. If there is no name, then the constant coefficient is concerned, and if there is no numerator, 1 is assumed. An example is \(x+2y-1/2z-1/3w\). There is no way to reference the special dimension \(\epsilon\) (and it is unnecessary in this case any way).

\textbf{of_constraint} : \((\text{string} \to \text{int}) \to \text{int} \to \text{string} \to \text{t}) \quad \text{Function}
Make a vector from a string parsed as a constraint.
The syntax of a constraint is \(<\text{expr}\> \ (>||=|=|<=|<) \ <\text{expr}\>\).

\textbf{of_frame} : \((\text{string} \to \text{int}) \to \text{int} \to \text{string} \to \text{t}) \quad \text{Function}
Make a vector from a string parsed respectively as a constraint or as a generator.
The syntax of a generator is the following one:
\begin{itemize}
 \item \(V:0\) represents the origin vertex.
 \item \(V:(+|-)a_x/b_x \ x\ (+|-)\ ...\ (+|-)\ a_y/b_y \ y\) represents the vertex defined by \(x=(+|-)a_x/b_x, \ldots, y=(+/-)a_y/b_y;\)
 \item \(R:(+|-)a_x/b_x \ x\ (+|-)\ ...\ (+|-)\ a_y/b_y \ y\) represents the ray \((+|-)a_x/b_x.i_x\ (+|-)\ ...\ (+|-)\ a_y/b_y.i_y;\)
 \item \(L:(+|-)a_x/b_x \ x\ (+|-)\ ...\ (+|-)\ a_y/b_y \ y\) represents the line whose direction is given by \((+|-)a_x/b_x.i_x\ (+|-)\ ...\ (+|-)\ a_y/b_y.i_y.\)
\end{itemize}
Non-zero constants have no sense such expressions. There is unfortunately no way to specify vertices with non-zero \(\epsilon\) components. However, the meaning of such vertices is difficult to get!
6.4 Matrix

t
 Abstract datatype for matrices.

equation
 Datatype for parallel assignements/substitutions.

 type equation = {
 var: int;
 expr: Vector.t;
 }

6.4.1 Basic Operations on OCaml matrices

make : int -> int -> t
 make nbrows nbcols
 Return a matrix of size nbrows * nbcolumns with all coefficient initialized to 0. A null value for any parameter is accepted.

copy : t -> t
 Return a copy of the matrix.

_print : t -> unit
 Print in a unformatted way on the C standard output the matrix.

get : t -> int -> int -> int
 get vec row col
 Return the corresponding coefficient of the matrix; in case of overflow during the conversion from pkint_t to int, raise exception Polka.Overflow.

get_str10 : t -> int -> int -> string
 get vec row col
 Return the string representation in base 10 the corresponding coefficient of the matrix.

set : t -> int -> int -> int -> unit
 set vec row col val
 Store the value val in the corresponding coefficient of the matrix.

set_str10 : t -> int -> int -> string -> unit
 set vec row col val
 Store the value val represented in base 10 in the corresponding coefficient of the matrix.

get_row : t -> int -> Vector.t
 get_row mat row
 Return a vector corresponding to the row row of the matrix mat. There is no sharing in memory between the result and the argument matrix.
set_row: \(t \rightarrow \text{int} \rightarrow \text{Vector.t} \rightarrow \text{unit} \)

\[\text{set}_\text{row} \ \text{mat} \ \text{row} \ \text{vec} \]

Store in the row \(\text{row} \) of the matrix \(\text{mat} \) the vector \(\text{vec} \). The coefficients are copied (no sharing memory).

nbrows: \(t \rightarrow \text{int} \)

Return the number of rows of the matrix.

nbcolumns: \(t \rightarrow \text{int} \)

Return the number of columns of the matrix.

6.4.2 Comparison & Hashing of OCaml matrices

compare: \(t \rightarrow t \rightarrow \text{int} \)

compare_sort: \(t \rightarrow t \rightarrow \text{int} \)

Compare the two matrices, as does respectively \text{matrix_compare} and \text{matrix_compare_sort}.

hash: \(t \rightarrow \text{int} \)

hash_sort: \(t \rightarrow \text{int} \)

Compute a hash key for the matrix, as does respectively \text{matrix_hash} and \text{matrix_hash_sort}.

6.4.3 Sorting & Merging of OCaml matrices

sort_rows: \(t \rightarrow \text{unit} \)

Sort in place the rows of the matrix.

merge_sort: \(t \rightarrow t \rightarrow t \)

Merge the matrices as does \text{matrix_merge_sort}.

6.4.4 Linear transformations on matrices

Be cautious: unlike the C version, dimensions are here referenced by their rank (from 0 up to the number of dimensions) and not their index in vectors and matrices (we have the relationship \(\text{index} = \text{rank} + \text{polka_dec} \)).

assign_var: \(t \rightarrow \text{int} \rightarrow \text{Vector.t} \rightarrow t \)

assign_vars: \(t \rightarrow \text{equation array} \rightarrow t \)

Linear transformation of a dimension (resp. a set of dimensions) by linear expression(s).

The array of equations is supposed to be sorted w.r.t. the field .\text{var}.

substitute_var: \(t \rightarrow \text{int} \rightarrow \text{Vector.t} \rightarrow t \)

substitute_vars: \(t \rightarrow \text{equation array} \rightarrow t \)

Substitution of a dimension (resp. a set of dimensions) by linear expression(s). The array of equations is supposed to be sorted w.r.t. the field .\text{var}.

6.4.5 Change of dimension of OCaml matrices

At the end

\[\text{add_dims : t -> int -> t} \]
Same as C function \text{matrix_add_dimensions}.

Anywhere

\[\text{add_dims_multi : t -> Polka.dimsup array -> t} \]
Same as C function \text{matrix_add_dimensions_multi}.

\[\text{del_dims_multi : t -> Polka.dimsup array -> t} \]
Same as C function \text{matrix_remove_dimensions_multi}.

Change of dimensions together with permutation

\[\text{add_permute_dims : t -> int -> int array -> t} \]
Same as C function \text{matrix_add_permute_dimensions}.

\[\text{permute_del_dims : t -> int -> int array -> t} \]
Same as C function \text{matrix_permute_remove_dimensions}.

6.4.6 Miscellaneous on OCaml matrices

\[\text{is_row_dummy_constraint : t -> int -> bool} \]
\[\text{is_row_dummy_constraint mat row} \]
Tell wether the row \text{row} of the matrix \text{mat} represents the positivity or the strictness constraint.

6.4.7 Input & Output of OCaml matrices

This functions use the pretty input/output facilities described in module \text{Vector}. See Section 6.3 [Vector], page 42, for more details.

\[\text{print_constraints : (int -> string) -> Format.formatter -> t -> unit} \]
\[\text{print_frames : (int -> string) -> Format.formatter -> t -> unit} \]
Pretty-print on the given formatter the matrix considered as respectively as a constraint or as a generator matrix.

\[\text{of_lconstraints : (string -> int) -> int -> string list -> t} \]
\[\text{of_lframes : (string -> int) -> int -> string list -> t} \]
Make a matrix from respectively a list of constraints or a list of generators, each string being parsed as does \text{Vector.of_constraint} or \text{Vector.of_frame}.
6.5 Poly

t
Abstract datatype for convex polyhedra.

equation
Datatype for parallel assignements/substitutions.

\[
\text{type equation} = \text{Matrix.equation} = \{
 \text{var: int;},
 \text{expr: Vector.t;}
\}
\]

6.5.1 Constructors for OCaml polyhedra

empty : int -> t
Function

universe : int -> t
Function
Return respectively the empty and the universe polyhedron of the given dimension.

of_constraints : Matrix.t -> t
Function

of_frames : Matrix.t -> t
Function
Makes a non-minimized polyhedron from respectively a constraint matrix and a generator matrix. There is no sharing of values, unlike in the C functions.

minimize : t -> unit
Function
Minimizes in place the polyhedron.

canonicalize : t -> unit
Function
Canonicalizes in place the polyhedron (see C function).

6.5.2 Access functions for OCaml polyhedra

dim : t -> int
Function

nbequations : t -> int
Function

nblines : t -> int
Function

nbconstraints : t -> int
Function

nbframes : t -> int
Function
Same semantics as the corresponding C functions.

constraints : t -> Matrix.t option
Function
If the constraint matrix mat is available, return Some(mat), otherwise return None. There is no sharing of elements in memory. The constraints are not necessarily in a minimal form.

frames : t -> Matrix.t option
Function
Same as the previous function for generator matrix.
6.5.3 Predicates on OCaml polyhedra

- `is_minimal : t -> bool`
 Function

- `is_empty : t -> bool`
 Function

- `is_universe : t -> bool`
 Function

- `is_empty_lazy : t -> bool`
 Function

- `is_universe_lazy : t -> bool`
 Function

 Same semantics as the corresponding C functions.

- `constraints_available : t -> bool`
 Function

 Is the constraint matrix available?

- `frames_available : t -> bool`
 Function

 Is the generator matrix available?

- `poly_versus_constraint : t -> Vector.t -> tbool`
 Function

- `is_generator_included_in : Vector.t -> t -> tbbool`
 Function

- `is_included_in : t -> t -> bool`
 Function

 Same semantics as the corresponding C functions.

6.5.4 Change of dimension of OCaml polyhedra

At the end

- `add_dims_and_embed : t -> int -> t`
 Function

 Same as C function `poly_add_dimensions_and_embed`.

- `add_dims_and_project : t -> int -> t`
 Function

 Same as C function `poly_add_dimensions_and_project`.

- `del_dims : t -> int -> t`
 Function

 Same as C function `poly_remove_dimensions`.

Anywhere

- `add_dims_and_embed_multi : t -> Polka.dimsup array -> t`
 Function

 Same as C function `poly_add_dimensions_and_embed_multi`.

- `add_dims_and_project_multi : t -> Polka.dimsup array -> t`
 Function

 Same as C function `poly_add_dimensions_and_project_multi`.

- `del_dims_multi : t -> Polka.dimsup array -> t`
 Function

 Same as C function `poly_remove_dimensions_multi`.
Change of dimensions together with permutation

\textbf{add_permute_dims_and_embed} : \(t \to \text{int} \to \text{int array} \to t \)

Same as C function \text{poly_add_permute_dimensions_and_embed}.

\textbf{add_permute_dims_and_project} : \(t \to \text{int} \to \text{int array} \to t \)

Same as C function \text{poly_add_permute_dimensions_and_project}.

\textbf{permute_del_dims} : \(t \to \text{int} \to \text{int array} \to t \)

Same as C function \text{poly_permute_remove_dimensions}.

\subsection*{6.5.5 Intersection & Convex Hull of OCaml polyhedra}

\textbf{inter_array} : \(t \text{ array} \to t \)

\textbf{inter} : \(t \to t \to t \)

\textbf{add_constraints} : \(t \to \\text{Matrix} . t \to t \)

\textbf{add_constraint} : \(t \to \\text{Vector} . t \to t \)

\textbf{inter_array_lazy} : \(t \text{ array} \to t \)

\textbf{inter_lazy} : \(t \to t \to t \)

\textbf{add_constraints_lazy} : \(t \to \\text{Matrix} . t \to t \)

\textbf{add_constraint_lazy} : \(t \to \\text{Vector} . t \to t \)

Same as C functions \text{poly_intersection_XXX} and \text{poly_add_constraintXXX}.

\textbf{union_array} : \(t \text{ array} \to t \)

\textbf{union} : \(t \to t \to t \)

\textbf{add_frames} : \(t \to \\text{Matrix} . t \to t \)

\textbf{add_frame} : \(t \to \\text{Vector} . t \to t \)

\textbf{union_array_lazy} : \(t \text{ array} \to t \)

\textbf{union_lazy} : \(t \to t \to t \)

\textbf{add_frames_lazy} : \(t \to \\text{Matrix} . t \to t \)

\textbf{add_frame_lazy} : \(t \to \\text{Vector} . t \to t \)

Same as C functions \text{poly_convex_hull_XXX} and \text{poly_add_frameXXX}.

\textbf{inter_list} : \(t \text{ list} \to t \)

\textbf{union_list} : \(t \text{ list} \to t \)

\textbf{inter_list_lazy} : \(t \text{ list} \to t \)

\textbf{union_list_lazy} : \(t \text{ list} \to t \)

Versions taking lists instead of arrays.

\subsection*{6.5.6 Linear transformations on OCaml polyhedra}

\textbf{assign_var} : \(t \to \text{int} \to \\text{Vector} . t \to t \)

\textbf{assign_vars} : \(t \to \\text{equation array} \to t \)

Same as C functions \text{poly_assign_variable} and \text{poly_assign_variables}. The array of equations is supposed to be sorted w.r.t. the field \text{.var}.
Chapter 6: OCAML Library

Function substitute_var : t -> int -> Vector.t -> t
Function substitute_vars : t -> equation array -> t
Same as C functions poly_substitute_variable and poly_substitute_variables.
The array of equations is supposed to be sorted w.r.t. the field .var.

6.5.7 Widening operators on OCaml polyhedra

These two operations are parametrized by the widening mode, see Section 6.2 [Widening mode], page 40.

Function widening : t -> t -> t
Function limited_widening : t -> t -> Matrix.t -> t
Same as C functions

6.5.8 Closure operation on OCaml polyhedra

Function closure : t -> t
Function closure_lazy : t -> t
Same as C functions

6.5.9 Input & Output of OCaml polyhedra

This functions use the pretty input/output facilities described in module Polka.

Function print_constraints : Format.formatter -> t -> unit
Print "empty" if the polyhedron is empty, the constraints of the polyhedron if they are available, "constraints not available" otherwise.

Function print_frames : Format.formatter -> t -> unit
Print "empty" if the polyhedron is empty, the generators of the polyhedron if they are available, "generators not available" otherwise.

Function print : Format.formatter -> -> t -> unit
Combine the two previous functions.

Function of_lconstraints : string list -> t
Function of_lframes : string list -> t
Construct a polyhedron respectively from a list of constraint and from a list of generators (see the same functions in module Matrix).
6.6 PolkaIO

This module is a front-end to Polka and maintain a database about a set of declared variables and their rank. It is useful for an interactive use of Polka. See Section 6.7 [Example of interactive use], page 54.

\texttt{initialize} : bool -> string list -> int -> unit
 \texttt{initialize strict lnames maxrows}
 Initializes the library and sets up the correspondence between variables names and ranks.
 The relative order of variables in vectors respects the order of names in the parameter list.

\texttt{initialize} sets up among others the following values.

\texttt{nbdims} : int ref
 Number of variables in database. All the objects created by this module will be of this dimension.

\texttt{in_assoc} : string -> int
\texttt{out_assoc} : int -> string
 Association between variable names and ranks.

The following I/O functions makes use of the previous correspondance functions.

\texttt{vector_of_constraint} : string -> Vector.t
\texttt{vector_of_frame} : string -> Vector.t
\texttt{vector_of_expr} : string -> Vector.t
 Conversion from strings to vectors.

\texttt{matrix_of_lconstraints} : string list -> Matrix.t
\texttt{matrix_of_lframes} : string list -> Matrix.t
 Conversion from list of strings to matrices.

\texttt{poly_of_lconstraint} : string list -> Poly.t
\texttt{poly_of_llframe} : string list -> Poly.t
 Conversion from list of strings to polyhedra.

\texttt{vector_print_constraint} : Format.formatter -> Vector.t -> unit
\texttt{vector_print_frame} : Format.formatter -> Vector.t -> unit
\texttt{vector_print_expr} : Format.formatter -> Vector.t -> unit
\texttt{matrix_print_constraints} : Format.formatter -> Matrix.t -> unit
\texttt{matrix_print_frames} : Format.formatter -> Matrix.t -> unit
\texttt{poly_print_constraint} : Format.formatter -> Poly.t -> unit
\texttt{poly_print_frame} : Format.formatter -> Poly.t -> unit
\texttt{poly_print} : Format.formatter -> Poly.t -> unit
 Printing functions.
6.7 Example of interactive use

Here is an example of interactive use. First build a custom toplevel: `make polkatopg` in the ‘caml’ directory of the distribution. Then enter it by typing `polkatopg`. The following program:

```ocaml
#load "polka.cma";;
open Format;;
open PolkaIO;;

#install_printer vector_print_constraint;;
#install_printer matrix_print_constraints;;
#install_printer poly_print;;

initialize true ["x","y","z","w"] 1000;;
let p = Poly.universe 4;;

let c1 = vector_of_constraint "2x>y";;
let p1 = Poly.add_constraint p c1;;

let m1 = matrix_of_lconstraints ["2x>=y";"3y>=z";"5z>w";"2y>7z"];;
let p2 = Poly.add_constraints p m1;;

let pu = Poly.union p1 p2;;
let pi = Poly.inter p1 p2;;
```

will give this output:

```
Objective Caml version 3.04

# #load "polka.cma";;
# open Format;;
# open PolkaIO;;
# #install_printer vector_print_constraint;;
# #install_printer matrix_print_constraints;;
# #install_printer poly_print;;
# initialize true ["x","y","z","w"] 1000;;
- : unit = ()
# let p = Poly.universe 4;;
val p : Poly.t = ({$>=0,1>=0},
{L:w,L:z,L:y,L:x,R:$,V:0})
# let c1 = vector_of_constraint "2x>y";;
val c1 : Vector.t = 2x>y
# let p1 = Poly.add_constraint p c1;;
val p1 : Poly.t = ({$>=0,1>=0,2x>y},
{L:w,L:z,L:-x-2y,R:-y,R:$-y,V:0})
# let m1 = matrix_of_lconstraints ["2x>=y";"3y>=z";"5z>w";"2y>7z"];;
val m1 : Matrix.t = {2x>=y,3y>=z,5z>w,2y>7z}
# let p2 = Poly.add_constraints p m1;;
val p2 : Poly.t =
({$>=0,1>=0,2x>=y,3y>=z,5z>=w,2y>7z},
{R:-x-2y-6z-30w,R:-w,R:7x+14y+4z+20w,R:x,R:38$-x-2y-6z-68w,V:0})
# let pu = Poly.union p1 p2;;
```
val pu : Poly.t = ({1>=0,$>=0,2x>=y},
 {L:w,L:z,L:x+2y,R:x,R:$,V:0})
let pi = Poly.inter p1 p2;;
val pi : Poly.t =
 ({$>=0,1>=0,5z>w,2y>7z,3y>=z,2x>y},
 {R:7x+14y+4z+20w,R:-x-2y-6z-30w,R:-w,V:0,R:x,R:19$+9x-y-3z-34w})
#
Appendix A Appendices

A.1 C Datatype Index

B
bitindex_t... 25
bitstring_t... 25
bool... 14

D
dimsup... 40
dimsup_t.. 14

E
equation... 46, 49
equation_t.. 14

M
matrix_t... 21

O
Overflow... 40

P
pkint_t... 11

S
satmat_t... 27

T
t... 42, 46, 49
tbool.. 14

V
vector_t... 17
A.2 C Variable Index

B
- bitstring_msb 25
- bitstring_size 25

D
- dec ... 41

I
- int ... 15

N
- nbdims ... 53

P
- polka_dec .. 15
- polka_maxcolumns 15
- polka_maxnbdims 15
- polka_maxnbrows 15
- polka_strict 15

S
- strict .. 41
A.3 C Function Index

- _print 42, 46

A

add_constraint 51
add_constraint_lazy 51
add_constraints 51
add_constraints_lazy 51
add_dims 43, 48
add_dims_and_embed 50
add_dims_and_embed_multi 50
add_dims_and_project 50
add_dims_and_project_multi 50
add_dims_multi 43, 48
add_expr 43
add_frame 51
add_frame_lazy 51
add_frames 51
add_frames_lazy 51
add_permute_dims 44, 48
add_permute_dims_and_embed 51
add_permute_dims_and_project 51
assign_var 47, 51
assign_vars 47, 51

B

bitindex_dec 25
bitindex_inc 25
bitindex_init 25
bitindex_size 25
bitstring_alloc 25
bitstring_clear 26
bitstring_clr 26
bitstring_cmp 26
bitstring_free 25
bitstring_get 26
bitstring_print 26
bitstring_set 26

C

canonicalize 49
closure 52
closure_lazy 52
cmp_equations 16
compare 42, 47
compare_expr 42
compare_sort 47
constraints 49
constraints_available 50
copy 42, 46

del_dims 50
del_dims_multi 43, 48, 50
dim 43

E

empty 49

F

finalize 40
frames 49
frames_available 50

G

get 42, 46
get_row 42, 46
get_str10 42, 46

H

hash 43, 47
hash_sort 47

I

in_assoc 53
initialize 40, 53
inter 51
inter_array 51
inter_array_lazy 51
inter_lazy 51
inter_list 51
inter_list_lazy 51
is_dummy_constraint 44
is_empty 50
is_empty_lazy 50
is_equal 50
is_generator_included_in 50
is_included_in 50
is_minimal 50
is_positivity_constraint 44
is_row_dummy_constraint 48
is_strictness_constraint 44
is_universe 50
is_universe_lazy 50

L

length 42
limited_widening 52
<table>
<thead>
<tr>
<th>Function</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>vector_compare_expr</td>
<td>18</td>
</tr>
<tr>
<td>vector_copy</td>
<td>17</td>
</tr>
<tr>
<td>vector_free</td>
<td>17</td>
</tr>
<tr>
<td>vector_hash</td>
<td>18</td>
</tr>
<tr>
<td>vector_is_dummy_constraint</td>
<td>20</td>
</tr>
<tr>
<td>vector_is_null_strict</td>
<td>20</td>
</tr>
<tr>
<td>vector_is_positivity_constraint</td>
<td>20</td>
</tr>
<tr>
<td>vector_is_strictness_constraint</td>
<td>20</td>
</tr>
<tr>
<td>vector_normalize_expr</td>
<td>18</td>
</tr>
<tr>
<td>vector_normalize</td>
<td>18</td>
</tr>
<tr>
<td>vector_of_constraint</td>
<td>53</td>
</tr>
<tr>
<td>vector_of_expr</td>
<td>53</td>
</tr>
<tr>
<td>vector_of_frame</td>
<td>53</td>
</tr>
<tr>
<td>vector_permute_remove_dimensions</td>
<td>20</td>
</tr>
<tr>
<td>vector_print</td>
<td>17</td>
</tr>
<tr>
<td>vector_print_constraint</td>
<td>53</td>
</tr>
<tr>
<td>vector_print_expr</td>
<td>53</td>
</tr>
<tr>
<td>vector_print_frame</td>
<td>53</td>
</tr>
<tr>
<td>vector_product</td>
<td>18</td>
</tr>
<tr>
<td>vector_product_strict</td>
<td>18</td>
</tr>
<tr>
<td>vector_remove_dimensions_multi</td>
<td>19</td>
</tr>
<tr>
<td>vector_scale</td>
<td>19</td>
</tr>
<tr>
<td>vector_sub</td>
<td>18</td>
</tr>
</tbody>
</table>

W

widening .. 52
Table of Contents

POLKA ... 1

1 Introduction to POLKA 2

2 POLKA and the other polyhedra libraries 3
 2.1 Comparison with Polylib library 3
 2.2 Inspiration coming from Cdd library 3
 2.3 Other libraries 3

3 Installing POLKA 4
 3.1 Requested tools 4
 3.2 Configuration 4
 3.3 Building the libraries 4

4 Using POLKA .. 6
 4.1 Convex polyhedra and their representation 6
 4.1.1 Basic facts about polyhedra 6
 4.1.2 Working with strict inequalities 6
 4.1.3 Representation of constraints, generators and affine expressions 6
 4.2 Using C library 8
 4.3 Using OCaml library 8

5 C Library .. 10
 5.1 Organization of the C library 10
 5.2 Module pkint 11
 5.3 Module Polka 14
 5.3.1 Datatypes 14
 5.3.2 Initialization and finalization functions 14
 5.3.3 Global variables 15
 5.3.4 Functions on equation 16
 5.4 Module Vector 17
 5.4.1 The type vector_t 17
 5.4.2 Basic Operations on vectors 17
 5.4.3 Comparison & Hashing on vectors 17
 5.4.4 Normalization of vectors 18
 5.4.5 Algebraic Operations on vectors 18
 5.4.6 Change of dimension of vectors 19
 5.4.7 Miscellaneous on vectors 20
 5.5 Module Matrix 21
 5.5.1 The type matrix_t 21
5.5.2 Access functions on matrices 21
5.5.3 Basic Operations on matrices 21
5.5.4 Comparison & Hashing on matrices 22
5.5.5 Operations on rows of matrices 22
5.5.6 Sorting & Merging matrices 23
5.5.7 Linear transformation of matrices 23
5.5.8 Change of dimension of matrices 24

5.6 Module Bit .. 25
5.6.1 Type bitindex_t: accessing bits in bitstrings 25
5.6.2 Type bitstring_t: bitstrings 25

5.7 Module Satmat ... 27
5.7.1 The type satmat_t ... 27
5.7.2 Basic Operations on saturation matrices 27
5.7.3 Bit manipulations on saturation matrices 27
5.7.4 Matrix manipulations 28

5.8 Module Poly .. 29
5.8.1 Basic Operations on polyhedra 29
5.8.2 Basic Constructors for polyhedra 29
5.8.3 Access functions for polyhedra 30
5.8.4 Predicates on polyhedra 31
5.8.5 Intersection and Convex Hull of polyhedra 31
5.8.6 Change of dimension of polyhedra 33
5.8.7 Linear transformations on polyhedra 34
5.8.8 Widening operators on polyhedra lattice 35
5.8.9 Closure operation .. 36

5.9 C Example ... 36

6 OCAML Library ... 39

6.1 Organization of the OCaml interface 39
6.2 Polka .. 40
6.3 Vector ... 42
6.3.1 Basic Operations on OCaml vectors 42
6.3.2 Comparison & Hashing of OCaml vectors 42
6.3.3 Normalization of OCaml vectors 43
6.3.4 Algebraic Operations on OCaml vectors 43
6.3.5 Change of dimensions on OCaml vectors 43
6.3.6 Miscellaneous on OCaml vectors 44
6.3.7 Input & Output of OCaml vectors 44

6.4 Matrix .. 46
6.4.1 Basic Operations on OCaml matrices 46
6.4.2 Comparison & Hashing of OCaml matrices 47
6.4.3 Sorting & Merging of OCaml matrices 47
6.4.4 Linear transformations on matrices 47
6.4.5 Change of dimension of OCaml matrices 48
6.4.6 Miscellaneous on OCaml matrices 48
6.4.7 Input & Output of OCaml matrices 48

6.5 Poly .. 49
6.5.1 Constructors for OCaml polyhedra 49
6.5.2 Access functions for OCaml polyhedra 49
6.5.3 Predicates on OCaml polyhedra 50
6.5.4 Change of dimension of OCaml polyhedra 50
6.5.5 Intersection & Convex Hull of OCaml polyhedra 51
6.5.6 Linear transformations on OCaml polyhedra 51
6.5.7 Widening operators on OCaml polyhedra 52
6.5.8 Closure operation on OCaml polyhedra 52
6.5.9 Input & Output of OCaml polyhedra 52

6.6 PolkaIO ... 53
6.7 Example of interactive use 54

Appendix A Appendices 56
A.1 C Datatype Index ... 56
A.2 C Variable Index ... 57
A.3 C Function Index ... 58