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IRISA/INRIA Rennes, Campus de Beaulieu,
35042 Rennes cedex, France

Abstract. We address the verification of communication protocols or
distributed systems that can be modeled by Communicating Finite State
Machines (CFSMs), i.e. a set of sequential machines communicating via
unbounded FIFO channels. Unlike recent related works based on ac-
celeration techniques, we propose to apply the Abstract Interpretation
approach to such systems, which consists in using approximated rep-
resentations of sets of configurations. We show that the use of regular
languages together with an extrapolation operator provides a simple and
elegant method for the analysis of CFSMs, which is moreover often as
accurate as acceleration techniques, and in some cases more expressive.
Last, when the system has several queues, our method can be imple-
mented either as an attribute-independent analysis or as a more precise
(but also more costly) attribute-dependent analysis.

1 Introduction

Communicating Finite State Machines (CFSMs) [1, 2] is a simple model to de-
scribe distributed systems exchanging messages over an asynchronous network.
This model consists of finite state processes that exchange messages via un-
bounded FIFO queues. Indeed, unbounded queues provide a useful abstraction
that simplifies the semantics of specification languages, and frees the protocol de-
signer from implementation details related to buffering policies and limitations.
As a consequence, it is used to define the semantics of standardized protocol
specification languages such as SDL and Estelle [3]. Despite its simplicity, the
CFSM model cannot be easily verified: reachability is undecidable for CFSM [1],
since unbounded queues can be used to simulate the tape of a Turing Machine.

Analysis of communicating systems. Two fundamental approaches have been
followed for the analysis of communicating systems in general. One consists of
eliminating the need for analyzing FIFO queues contents by adopting a partial
order semantics or a so-called true concurrency model: when one process sends
a message to another process, one just records the information that the emission
precedes the reception. The seminal work about event structures [4] leads later
to scenario-based models like (High-level) Message Sequence Charts [5, 6] incor-
porated in UML. The second approach, on which this paper focuses, consists in
considering a model with explicit FIFO queues, namely the CFSM model de-
scribed above, and in analyzing their possible contents during the execution of
the system.
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The undecidability of the reachability of CFSM [1] does not prevent any ver-
ification attempt, but requires to give up with at least one of the following
properties of an ideal method: an ideal method should indeed be (i) general
(i.e. address any CFSM system), (ii) always terminate, and (iii) deliver exact
results. Two main directions have mainly been explored so far: the first one
abandon property (i) by simplifying the model or considering only a subclass of
it, whereas the second one prefer to abandon property (ii) by looking only for
efficient semi-algorithms that may not terminate but deliver exact results “often
enough”. Lossy channels systems illustrate both directions. They are CFSMs
where the channels can lose messages at any time. Those systems are easier to
verify than perfect channels systems [7]: the reachability problem is decidable,
but there is no effective algorithm to compute the reachability set. However, an
on-the-fly analysis semi-algorithm based on simple regular expressions is given
in [8]. This algorithm can “accelerate” loops, that is, it is able to compute the
effect of any meta transition (loops in the control transition systems). The ter-
mination problem remains because the number of loops is potentially infinite.
This acceleration approach has been generalized to standard CFSMs systems (cf.
section 3), leading to various semi-algorithms applying the acceleration principle
on different representations for queues contents.

We propose here an alternative tradeoff to face the undecidability problem,
which is to keep generality and termination (properties (i) and (ii)) and to give
up with the exactness of the results (property (iii)). When analyzing CFSMs,
this consists in replacing in dataflow equations, sets of FIFO channel configura-
tions by abstract properties belonging to a lattice. Such a transformation results
in conservative approximations: we will be able to prove a safety property, or
the non-reachability of a state, but not to prove that a property is false or that
a state is effectively reachable. The abstractions we propose in this paper are
all based on regular languages, which exhibit among nice properties the closure
under all Boolean operations, and a canonical representation with deterministic
and minimized finite automata.

Contributions. We show in this paper that our abstract-interpretation based
method presents several advantages: it is arguably technically less involving than
acceleration-based techniques, it often returns exact results on cases where the
acceleration techniques terminate, and relevant information in the other cases
where the acceleration techniques do not terminate and do not provide any result,
either because the control structure of the system is too intricate, or because
the reachable set cannot be represented with the chosen representation. Our
method can also be seen as complementary to acceleration techniques when they
fail. Last, although acceleration techniques have been applied to other infinite
datatypes (counters [9], etc), it is not clear whether they can be easily combined,
whereas general methods are available for combining different abstract domains.

Outline. We introduce in section 2 the model of communicating finite state ma-
chines, and the analysis problem we address, namely reachability analysis. We
discuss the related works in section 3. We then explain our approach for the
reachability analysis of CFSMs in the case of one FIFO channel (section 4).
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In section 5 we generalize it to the case of several FIFO channels. We imple-
mented our method and we present in section 6 a few case studies on which we
experimented it, and we compare it with other techniques.

2 Finite Automata and Communicating Finite State
Machines

Finite automata. A finite automaton is a 5-tuple M = (Q, Σ, Q0, Qf , →) where
Q is a finite set of states, Σ a finite alphabet, Q0, Qf ⊆ Q are the sets of initial
and final states, and →⊆ Q × Σ × Q is the transition relation. The relation →
is extended on words as the smallest relation ⇒⊆ Q × Σ∗ × Q satisfying: (i)
∀q ∈ Q : q

ε⇒ q and (ii) if q
a→ q′ and q′ w⇒ q′′, then q

a·w⇒ q′′. M is deterministic
if Q0 = {q0} and if → defines a function Q×Σ → Q. A word w ∈ Σ∗ is accepted
by M if ∃q0 ∈ Q0, ∃qf ∈ Qf : q0

w⇒ qf . The language L(M) accepted by M is
the set of accepted words. Conversely, given a regular language L ∈ ℘(Σ∗), the
unique (up to isomorphism) minimal deterministic automaton (MDA) accepting
L is denoted by M(L). The set of regular languages on alphabet Σ is denoted by
R(Σ). Given an automaton M = (Q, Σ, Q0, Qf , →) and an equivalence relation
� on its states, M/ � = (Q/ �, Σ, ˜Q0, ˜Qf , →̃) denotes the quotient automaton
defined in the usual way : the states of M/ � are the equivalence classes of �,
q ∈ Q/ � is an initial (resp. final) state if one state of this equivalence class is an
initial (resp. final) state of M, and (q, a, q′) ∈ →̃ if ∃q ∈ q, ∃q′ ∈ q′, (q, a, q′) ∈→.
For any equivalence relation �, we have L(M) ⊆ L(M/ �).

Definition 1 (CFSM). A Communicating Finite State Machine is given by a
tuple (C, Σ, c0, Δ) where:

– C is a finite set of locations (control states)
– Σ = Σ1 ∪ Σ2 ∪ · · · ∪ Σn is a finite alphabet of messages, where Σi denotes

the alphabet of messages that can be stored in queue i;
– c0 ∈ C is the initial location;
– Δ ⊆ C × A × C is a finite set of transitions, where A =

⋃

i{i} × {!, ?} × Σi

is the set of actions. An action can be
• either an output i!m: “the message m is sent through the queue i”;
• or an input i?m: “the message m is received from the queue i”.

In the examples, we define CFSMs in terms of an asynchronous product of finite
state machines (FSMs) reading and writing on queues.

Example 1. The connexion/deconnexion protocol between two machines is the
following (Fig. 1): the client can open a session by sending the message open to
the server. Once a session is open, the client may close it on its own by sending
the message close or on the demand of the server if it receives the message
disconnect. The server can read the request messages open and close, and ask for
a session closure.
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Fig. 1. The connexion/deconnexion protocol

Semantics. The semantics of a CFSM (C, Σ, c0, Δ) is given as a labelled transi-
tion system (LTS) 〈Q, Q0, A, →〉 where

– Q = C × Σ∗
1 × · · · × Σ∗

n is the set of states;
– Q0 = {〈c0, ε, . . . , ε〉} is the set of the initial states;
– A is the alphabet of actions (cf. Def. 1).
– → is defined by the two rules:

(c1, i!m, c2) ∈ Δ w′
i = wi · m

〈c1, w1, . . . , wi, . . . , wn〉 → 〈c2, w1, . . . , w
′
i, . . . , wn〉

(c1, i?m, c2) ∈ Δ wi = m.w′
i

〈c1, w1, . . . , wi, . . . , wn〉 → 〈c2, w1, . . . , w
′
i, . . . , wn〉

A global state of a CFSM is thus a tuple 〈c, w1, . . . , wn〉 ∈ C × Σ∗
1 × · · · × Σ∗

n

where c is the current location and wi is a finite word on Σi representing the
content of queue i. At the beginning, all queues are empty, so the initial state
is 〈c0, ε, . . . , ε〉. The reflexive transitive closure →∗ is defined as usual. A state
〈c, w1, . . . , wn〉 is reachable if 〈c0, ε, . . . , ε〉 →∗ 〈c, w1, . . . , wn〉. The reachability
set is the set of all states that are reachable. Computing this set is the purpose of
the reachability analysis. We can achieve this computation by solving a fix-point
equation, as shown in the next paragrah.

Forward collecting semantics and reachability analysis of a CFSM. The forward
collecting semantics defines the semantics of a system in terms of its reachable
set. A set of states X ∈ ℘(Q) = ℘(C × Σ∗

1 × · · · × Σ∗
n) can be viewed as a map

X : C → ℘(Σ∗
1 × · · · × Σ∗

n) associating a control state c with a language X(c)
representing all possible contents of the queues when being in the control state
c. The forward semantics of actions �a� : ℘(Σ∗

1 × · · · × Σ∗
n) → ℘(Σ∗

1 × · · · × Σ∗
n)

is defined as:

�i!m�(L) = {〈w1, . . . , wi · m, . . . , wn〉|〈w1, . . . , wi, . . . , wn〉 ∈ L} (1)
�i?m�(L) = {〈w1, . . . , wi, . . . , wn〉|〈w1, . . . , m · wi, . . . , wn〉 ∈ L} (2)
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�i!m� (resp. �i?m�) associates to a set of queues contents the possible queues
contents after the output (resp. the input) of the message m on the queue i,
according to the operational semantics of CFSM. Using the inductive definition
of reachability — a state is reachable either because it is initial, or because it
is the immediate successor of a reachable state —, the reachability set RS is
defined as the least solution of the fixpoint equation

∀c ∈ C, X(c) = Q0(c) ∪
⋃

(c′,a,c)∈Δ

�a�(X(c′)) (3)

where Q0 is the initial set of states. Although there is no general algorithm that
can compute exactly such a reachability set [1], a number of semi-algorithms that
compute the reachability set in some cases have been designed and are described
in the next section.

3 Related Works

Semi-algorithms based on the acceleration paradigm. The acceleration paradigm
is a popular paradigm for infinite state systems, which we describe in the specific
case of CFSM. Eq. (3) is difficult to solve in presence of cycles in the control
graph, because iterative solving using Kleene’s theorem will not converge. Now,
assuming a canonical representation L for queue contents, given a loop θ

�
= c =

c0
a1→ c1

a2→ . . .
ak→ ck = c and a language L ∈ L, we may compute in a single step

the effect of the loop θ, i.e. finding a language �θ∗�(L) ∈ L representing the set
of states that can be reached from a state in L following the loop θ an arbitrary
number of times. Then, when exploring the state space, we can substitute the
entire loop by the single meta-transition θ∗. However, even if each loop may be
accelerated, we still have to explore an infinite transition system since there is
an infinite number of loops. We may exploit some termination conditions [10]
or use heuristics that lead to semi-algorithms: for example, we may “flatten”
the transition system and find a proper exploration order [9]. In the cases of
systems with FIFO channels, this technique has been applied with different kind
of representations, depicted in Tab. 1. Usually only forward analysis has been
studied. Observe that when several channels are involved in a loop, with some
representations, the acceleration is not always possible. [11] provides a detailed
comparison of the cited references.

Algorithms based on transducer iterations. Instead of extrapolating sequences
of values, one may also extrapolate the full relations Li+1 = R(Li) linking two
successive terms, represented as a regular transducer R (in this case, the full
state is encoded as a regular word). The computation of the transducer R∗ allows
the computation of the reachability set. This regular model-checking paradigm
[14] has mainly been applied to networks of finite state machines. A method to
compute the transducer R∗ is given in [15], but will not work for any CFSM.
[16, 17] define extrapolation operators to compute an over-approximation of R∗,
but has experimented them only on one lossy FIFO system [17].



Verification of Communication Protocols 209

Table 1. Acceleration techniques on CFSMs

queue representation and typical example attr.a
dependent

acceleration with b

single/several queue ref.

lossy SRE1 :
P

(a + ε) + (a1 + . . . + am)∗ no always / always [8]
perfect SLRE2 :

P
a1a2(b1b2)∗a3(b3)∗(b4)∗ . . . no always / sometimes [11]

perfect QDD3 : n-dim regular expression yes always / sometimes [12]
perfect CQDD4:

P
ap1
1 ap2

2 xq1
1 xq2

2 | p1+2q1 ≤ p2+q2 yes always / always [13]
a yes if one expression for all queues, no if one expression for each queue
b ability to exactly compute the effect of meta-transition
1 Simple Regular Expressions 2 SemiLinear Regular Expressions
3 Queue Decision Diagrams 4 Constrained QDD, using Presburger formulas

Decidable subclasses of CFSMs. Reachability has been shown decidable for
monogeneous [18], linear [19] or half-duplex [20] CFSMs. Allowing the channels
to be lossy makes also the problem decidable [21, 7]. A recent research direction
focuses on probabilisitic lossy channels [22].

Approximated techniques. Besides techniques based on the generation of finite
abstract models that are then model-checked,

abstractions have also been experimented on FIFO queues using the classical
dataflow analysis framework, hence restricting to lattices of properties satisfying
the ascending chain condition (i.e. there is no infinite ascending chain). For
instance, [23] proposes an analysis that infers the emptiness property and the
possible values of the first element to be read in queues. [24] proposes a “widening
operator” for decreasing sequences of regular languages, in the same spirit as [16].
However it does not guarantee the convergence of the sequence.

4 Analyzing Systems with Only One Queue

In this section we consider the simple case of CFSMs with a single FIFO queue,
on which we describe our method based on abstract interpretation [25].

With a single queue, the concrete state-space has the structure C → ℘(Σ∗),
and it will be abstracted by the set C → A, where A is an abstract lattice
equipped with a meaning or concretization function γ : A → ℘(Σ∗) (i.e. γ is
monotone and γ(⊥) = ∅). We will consider for A the set of regular languages
R(Σ) over Σ, with γ : R(Σ) → ℘(Σ∗) being the identity. This simple solution
presents several interesting properties:

– R(Σ) is closed under union, intersection, negation and semantic transform-
ers �!m� (corresp. to concatenation) and �?m� (corresp. to the derivative
operator of [26]). Moreover, Q0 = {〈c0, ε〉} is regular, so that all operators
involved in Eq. (3) can be transposed to R(Σ) without loss of information.

– From a computational point of view, regular languages have as a standard
canonical representation the minimal deterministic automaton (MDA) recog-
nizing them.
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As a consequence, we only have to define a suitable widening operator to ensure
convergence of iterative resolution of Eq. (3). Indeed, the lattice R(Σ) does not
satisfy the ascending chain condition and is even not complete1: it is well-known
that the monotone sequence Ln = {akbk | k ≤ n} converges towards a context-
free language which is not regular.

Generally speaking, a widening operator is a binary operator ∇ : A × A → A
satisfying technical conditions (c.f. proposition 1) that ensure, in the context
of the iterative resolution of a fixpoint equation X = F (X), that the sequence
X0 = F (⊥), Xi+1 = Xi∇F (Xi) converges in a finite number of steps towards
a post-fixpoint of F . In general, a widening operator tries to capture and to
extrapolate the difference between its two arguments Xi and F (Xi), by mak-
ing the hypothesis that the difference will be repeated in the sequence Xi,
F (Xi), F (F (Xi)),. . . . The main difference with acceleration techniques is that
the widening, at least in its basic definition, does not exploit the semantic func-
tion F (which is defined by the analyzed system), but is defined solely on abstract
values. This is both a weakness — it is then more difficult to make a good or
even an exact guess, and a strength — a highly complex function F is not a
difficulty, whereas acceleration-based techniques may fail in such cases (non-flat
systems, nested loops, . . . ).

4.1 Widening Operator

In our case, the choice of ∇ is all the more important as all approximations
performed by the analysis will depend on its application. Because of the FIFO
operations, the widening operator should remain precise for both the begining
and the end of the queue. It also should induce intuitive approximations. In [27],
a widening operator for regular languages was mentioned. We will adapt this
operator to regular languages representing the content of a FIFO channel.

This widening operator will be based on an extensive and idempotent operator
ρk : R(Σ) → R(Σ) (i.e. ρk(X) ⊇ X and ρk ◦ ρk = ρk), where k ∈ N is a para-
meter. ρk will induce a widening operator defined by X1∇kX2 = ρk(X1 ∪ X2).
Thus, the proposed widening does not work by extrapolating a difference, but
by simplifying the regular languages generated during the iterative resolution.
The operator ρk is defined on a language L by considering the automaton M(L)
quotiented by a bisimulation up to depth k.

Definition 2 (Bisimulation of depth k). Let (Q, Σ, Q0, Qf , →) be a minimal
deterministic automaton and col : Q → [1..N ] a color function defining an
equivalence relation q1 ≈col q2 ⇔ col(q1) = col(q2). For k ≥ 0, the smallest
bisimulation of depth k finer than ≈col is defined inductively by: ∀q1, q2 ∈ Q,
q1 ≈col

0 q2 iff q1 ≈col q2

q1 ≈col
k+1 q2 iff

⎧

⎨

⎩

q1 ≈col
k q2

∀a ∈ Σ, ∀q′1 ∈ Q, q1
a→ q′1 =⇒ ∃q′2 ∈ Q : q2

a→ q′2 ∧ q′1 ≈col
k q′2

∀a ∈ Σ, ∀q′2 ∈ Q, q2
a→ q′2 =⇒ ∃q′1 ∈ Q : q1

a→ q′1 ∧ q′1 ≈col
k q′2

1 It is precisely because A = R(Σ) is not complete that we cannot define an abstraction
function α : ℘(Σ∗) → R(Σ) as it is usually done in abstract interpretation.
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In this section, we consider the standard color function, which uses N = 4 colours
for separating initial and final states from other states:

col(q) = 1 if q ∈ Q0 ∩ Qf , 2 if q ∈ Qf \ Q0, 3 if q ∈ Q0 \ Qf , 4 otherwise (4)

Definition 3 (Operator ρcol
k .). Given a bisimulation relation ≈col

k of depth k
the operator ρcol

k : R(Σ) → R(Σ) is defined by quotienting the MDA of L:

ρcol
k (L) = L(M(L)/ ≈col

k )

ρcol
k is extensive as being defined by a quotient automaton, and it is idempotent

as a consequence of ≈col
k being a bisimulation relation. As ≈col

k+1⊆≈col
k , we also

have ∀L ∈ R(Σ) : ρk+1(L) ⊆ ρk(L). However, ρk is not monotone, as shown by
the following example: a4 ⊆ a4 + a2b, but ρ1(a4) = a3a∗ is not comparable to
ρ1(a4 + a2b) = a4 + a2b.

Definition 4 (Widening operator ∇col
k ). Given an integer k ≥ 0 and a color

function col, we define a binary operator ∇col
k : R(Σ) × R(Σ) → R(Σ):

L1∇col
k L2

�
= ρcol

k (L1 ∪ L2)

Proposition 1. ∇col
k is a widening operator for R(Σ) in the sense of [25]:

1. L1 ∪ L2 ⊆ L1∇col
k L2;

2. For any increasing chain (L0 ⊆ L1 ⊆ . . . ), the increasing chain defined by
L′

0 = L0, L′
i+1 = L′

i∇col
k Li+1 is not strictly increasing (it stabilizes after a

finite number of steps).

This property ensures the global correctness of our analysis [25].

Proof. 1. The language recognized by a quotient automaton is a superset of
the language of the initial automaton. 2. Given a deterministic automaton
(Q, Σ, Q0, Qf , →) and a color function col : Q → [1..N ], we have |Q/ ≈col

k

| ≤ N |Σ|k+1 × 2|Σ|k (proved in [28]). Thus the set {ρcol
k (L) |L ∈ R(Σ)} is

finite.

4.2 Effects of the Widening Operator

We analyze here in detail the effect of the extensive operator ρk on a language,
using the color function of Eq. (4).

Sum of languages: If L = L1 ∪ L2, the widening operator may merge some
subwords of L1 with subwords of L2. For instance, ρ1(aax + bay) = (a +
b)a(x + y); we thus lose the property “ we have an ’a’ at the beginning of
the queue iff we have an ’x’ at the end”.

L = aax + bay ρ1(L) = (a + b)a(x + y)
a a x

b
a

y

a a x

b a y



212 T.L. Gall, B. Jeannet, and T. Jéron

Repetition: an important effect of ρk is to introduce Kleene closures in regu-

lar expressions. We have ρk(an) =
ak+2a∗ if k < n − 2
an otherwise : the repetition of a

letter beyond some number is thus abstracted by an unbounded repetition.
The same happens for the repetition of bounded-length words: for n ≥ 3,
ρk((a1 . . . ak)n) = (a1 . . . ak)(a1 . . . ak)∗. If the system allows arbitrarily-long
channel contents, this approximation can guess the limit of the fix-point com-
putation. If a letter is repeated at different places, the two Kleene stars may
be merged: for instance ρ1(ax3bx3c) = ax+(bx+)∗c, instead of the (prefer-
able) ax+bx+c:

L = ax3bx3c ρ1(L) = ax+(bx+)∗c

a x x x b x x x c a
x

x

b

x
c

One can improve the widening for the two previous situations, by considering
a color function col2 which also separates states according to the set of letters
already encountered from the initial states. One has ρcol2

1 (L) = ax+bx+c.
This allows to propagate non-local properties in the FIFO queue.

Suffixes and prefixes: we have the following properties:

Proposition 2. [28] L and ρk(L) have the same set of prefixes of length 1
and the same set of suffixes of length less or equal to k.

Thus, the k last messages written in a queue are not abstracted. As a con-
sequence, we wait enough before trying to capture some regularity with the
operator ρk. Notice than one can improve the result for prefixes by combining
forward with backward bisimulation relations.

Surprisingly, this simple widening has not yet been experimented for the analysis
of CFSMs. Our contribution here is to adapt for FIFO queues the widening
mentioned in [27], by choosing an appropriate color function, and to demonstrate
its practical relevance in this context (c.f. section 6).

4.3 Complexity of the Analysis

The operations we perform on finite automata are polynomial and rather efficient
in practice. The complexity of our analysis depends also on the number of steps
of the fixpoint computation. This number is quite small on the examples of
section 6 (≤ 12, with ρk≤2), but the theoretical bound is exponential in the size
of the alphabet and double-exponential in k. We conjecture than even on larger
examples, the practical complexity remains much below this bound.

5 Systems with Several Queues

We now come back to the general case where several queues are to be analyzed. In
this case, we must choose whereas we analyse each queue independently, using the
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method of the previous section, or we analyse all the queues together. In the first
case, according to the classification of [29], we obtain an attribute-independent
analysis based on a non-relational abstraction, because properties on different
queues are not inter-related. In the second case, we obtain an attribute-dependent
analysis based on a relational abstraction, in which one can represent properties
like “queue 1 contains ’a’ messages iff queue 2 contains ‘b’ messages”. We propose
both solutions.

Concrete representation. In the previous section, a configuration was a word.
Now a configuration is defined by n words w1, . . . , wn which can be represented:

1. as a vector of words 〈w1, . . . , wn〉
2. as a single word w1
 . . . 
wn obtained by concatenation and the addition of

a separation letter 

3. or as an “interleaved” word w0

1 . . . w0
nw1

1 . . . w1
n . . .

The third representation is used for representing sets of unbounded integer vec-
tors with NDDs [30], but it is not suited to the FIFO operations. We will consider
the two first representations that naturally define two different analyses.

5.1 Non-relational Abstraction

Here we adopt the view of a configuration as a vector of words, and we abstract
each component independently: we take

Anr = R(Σ1) × · · · × R(Σn)

as an abstract lattice, ordered component-wise. The meaning function γnr :
Anr → ℘(Σ∗

1 × · · · × Σ∗
n) is defined by

γnr (〈L1, . . . , Ln〉) = γ(L1) × · · · × γ(Ln)

The widening ∇k of section 4 is extended to Anr component-wise:
〈L1, . . . , Ln〉∇k〈L′

1, . . . , L
′
n〉 = 〈L1∇kL′

1, . . . , Ln∇kL′
n〉, which defines a proper

widening operator. Sending or receiving a message on the queue i consists in
modifying the component i of the abstract value. In this lattice, the least upper
bound (“the union”) is no longer exact, because of the cartesian product. For ex-
ample, the upper bound of the values 〈a, x〉 and 〈b, y〉 is the language 〈a+b, x+y〉.
Hence, the loss of information is no longer only due to the widening operator.

5.2 Relational Abstraction

If we adopt instead the view of a configuration as a concatenated word, we obtain
the QDD representation of [12], to which we apply the principles of section 4:

Ar = R(Σ ∪ {
}) (5)
γr(X) = {〈w1, . . . , wn〉 ∈ Σ∗

1 × . . . × Σ∗
n | w1
 . . . 
wn ∈ X} (6)

We implicitly restrict Ar to sets of concatenated words of the form described
above. The only difference with [12] is the use of widening instead of accelera-
tion. This representation allows to represent relations or dependencies between
queues. For instance the language L of Fig. 2 encodes the relation “the queue 1
starts with an ’a’ iff the queue 2 contains an ’x’ ”.
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Order 1 L = aa3�x + ba3�y ρ2(L) = (a + b)a3�(x + y)

a a a a �
x

b a a a �
y

a a a a �
x

b a

�
y

x
�

a
a a a

y
� b

Order 2 L = x�aa3 + y�ba3 ρ2(L) = L

Fig. 2. Widening and ordering of queues in concatenated words

Operations. The union, intersection and inclusion test operations are the natural
extensions of their counterpart for an automaton representing a single queue.
However, we have to adapt the operations �i!m�, �i?m� and ∇k. As each word
recognized by a MDA M = M(L) with L ∈ R(Σ ∪ {
}) is a concatenated
word separated by 
 letters, each state q ∈ Q of M can be associated to one
queue-content by a function η : Q → [1..n], and can be characterized as initial,
and/or final for this queue [12, 28]. Given such a partition, the operations �i!m�
and �i?m� are easily implemented. Concerning the widening operator, it should
avoid to merge the different queue contents, and preserve the invariant that each
word has n − 1 
 letters. We thus adapt the standard color function, which uses
now N = 4n colours:

col(q)=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

4 ∗ η(q)−3 if q is both an initial and a final state for the queue η(q)
4 ∗ η(q)−2 if q is a final (but not initial) state for the queue η(q)
4 ∗ η(q)−1 if q is an initial (but not final) state for the queue η(q)
4 ∗ η(q) otherwise

(7)
Impact of the ordering. A natural question arises: to which extent is our re-
lational analysis dependent on the chosen ordering for queues ? All the exact
operations, which do not lose information, do not depend on it. However, the
widening is dependent on the ordering of queues, as shown by the example of
Fig. 2. Consequently, our analysis depends on the ordering. A widening operator
which would be independent of the ordering would have been more satisfactory,
but we did not find out yet such a widening operator, with good properties w.r.t.
precision and efficiency (see the discussion in [28]).

6 Experiments and Comparisons

The approach we followed for the analysis was to sacrifice exactness for uni-
versality of the analyzed model and convergence guarantee. Of course such an
approach is relevant only if the approximations introduced are not too strong,
and if they still allow to obtain interesting results. In order to perform this exper-
imental evaluation, we implemented both the non-relational and the relational
abstractions, and we connected them to a generic fixpoint calculator, that takes
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0 1

23

Sender

K!0

L?1

C!m

C!m

L?1

K!1

L?0

L?0

0 1

23

Receiver

K?1

L!1
K?0

C?mC?m

K?1
K?0

L!0

Sender/ Contents
Receiver K#L#C

0/0 1∗#1∗#ε
0/1 ∅
0/2 ∅
0/3 ∅
1/0 1∗0∗#1∗#m
1/1 0∗#1∗#m
1/2 0∗#1∗0∗#ε
1/3 ∅
2/0 ∅
2/1 ∅
2/2 0∗#0∗#ε
2/3 ∅
3/0 1∗#0∗1∗#ε
3/1 ∅
3/2 0∗1∗#0∗#m
3/3 1∗#0∗#m

Fig. 3. The alternating bit protocol

care of the iterative resolution of fixpoint equations and applies widening follow-
ing the principles of [31]. All our experiments used the ∇1 widening operator
based on the standard color function, and returned their result in less than 1
sec. on a 2 GHz IntelTM Pentium computer. The fixpoint was obtained in 7 to
12 iteration steps, depending on the examples.

The Alternating Bit Protocol (ABP) is a data-transmission protocol, between a
sender S and a receiver R. S transmits some data package m through a FIFO
channel C and R and S exchange some information (one-bit messages) through
two channels K and L (Fig. 3). We performed a relational analysis of the CFSM
modeling this protocol (Fig. 3). It shows that some control states are not reach-
able and that there is at most one message in data channel C. As in [12, 32], we
obtain the exact result. Notice that in this case, a simpler non-relational analysis
delivers the same results.

The connexion/deconnexion protocol, defined in Example 1, demonstrates the
usefulness of a relational analysis:

Relational Analysis Non-Relational Analysis
Client/ Queue 1 # Queue 2
Server
0/0 (co)∗(oc)∗#ε + c(oc)∗#d

1/0 (co)∗(oc)∗o#ε + (co)∗#d

0/1 c(oc)∗#ε

1/1 (co)∗#ε

Client/ Queue 1 Q.2
Server
0/0 o∗ + (o∗c)+(ε + o+ + o+c) d∗

1/0 (o∗c)∗o+ d∗

0/1 o∗ + (o∗c)+(ε + o+ + o+c) d∗

1/1 o+ + o∗(co+)+ d∗

The result given by the relational analysis happens to be the exact reachability
set, unlike the non-relational one. The non-relational analysis misses the fact that
there is at most one d in the second queue, which induces many approximations.

A non-regular example. Our abstraction can deal with cases where the reach-
ability set is not regular. Let us consider the CFSM depicted in Fig. 4. Each
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process can send a message a or c, and a synchronisation is guaranteed by the
messages b and d.

0

1 2

1!a

2!b

4?d
0

1 2

2?b

3!c

4!d

Fig. 4. A non-regular protocol

In location (0/0), the content of the
queues will be an
ε
cn
ε with n ≥ 0. This
set is non-regular, and thus cannot be repre-
sented by a regular expression. Our method
will find an over-approximation of the ex-
act reachability set. In location (0/0) the
queue-content we found is represented by
the language :

L(0/0) = ε
ε
ε
ε + a
ε
c
ε + aaa∗
ε
ccc∗
ε

This example shows that our method may give a good over-approximation of a
non-regular reachability set.

A protocol with nested loops is depicted in Fig. 5, which is an abstraction of
systems exchanging frames composed of several packets.

0 1
!start

!end

!a

0
?a

?start

?end
Sender Receiver

Fig. 5. Nested loop

The sender first sends a start message, then
sends any number of a messages and ends the
frame with an end message. The receiver can
read any message at any time.

Our analysis shows that, when the sender
is in location 0, the content of the queue is :

L0 = ε + (s + ε)a∗e(sa∗e)∗

Here the ability of representing regular expressions with nested Kleene closures
is important; in this case we even obtain the exact reachability set.

Comparison with acceleration techniques. In Tab. 2 we compare the techniques
mentioned in Tab. 1 with our non-relational and relational analysis, on the 4
previous examples. We did not consider the method of [8], which assumes lossy
channels.
– yes means that the reachability analysis gives the exact result.
– no means that the reachability analysis does not terminate.
– approx means that the reachability analysis gives an over-approximation of

the reachability set.
The only case where our relational method gives less satisfactory result than
another method, which is also the only case where the result is not exact, is the
Non-Regular protocol. On this protocol, the CQDD method can compute the
exact reachability set

⋃

n≥0 an
ε
cn
ε, whereas we approximate it, using ∇k, by
⋃

0≤n≤k+2 an
ε
cn
ε ∪ ak+2a∗
ε
ck+2c∗
ε, which is not so bad. On the other
hand, none of the other methods delivers results for all the examples.

This comparison is experimental, and should be completed in the future with
larger examples. However, it is very difficult to prove the superiority of an analy-
sis that uses a widening operator, as pointed out by [33]. From a theoretical point
of view, we can make two statements. First, we can partially order the expressive-
ness of the representations (which does not necessarily induce a corresponding
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Table 2. Comparison of acceleration techniques with our 2 analysis

Acceleration techniques Regular languages with widening
Example SLRE [11] QDD [12] CQDD [13] non-relational relational

(1) ABP protocol yes yes yes yes yes
(2) Conn./deconn. approxa yes yes approxa yes
(3) Non-regular noa,b,c nob,c yes approxa,c approxc

(4) Nested loops noc yes noc yes yes
a non-relational representation b counting loops [12] that cannot be accelerated
c exact set not representable

ordering of the analyses in terms of accuracy). Following Tab. 1, we have that
SLRE is the less expressive, QDD and our relational method are equivalent, and
are uncomparable to CQDD. Second, proposition 2 implies a (modest) partial
completeness result: if in a CFSM the length of the FIFO queues is bounded by
l, then taking k ≥ n · l for the widening ∇k lead to exact results.

7 Conclusion

In this paper, we showed how to perform reachability analysis of CFSMs using
an Abstract Interpretation approach and the notion of relational/non-relational
analysis [29]. Our method can be applied to any CFSM and always terminates. It
is technically simple, based on standard Abstract Interpretation technique and
well-known concepts like regular languages and bisimulation of depth k. Despite
of its simplicity, that we see as a strength, our method is often as accurate as ac-
celeration techniques on standard examples, and it can deal with counting loops
[12]. It is however unable to certify by itself whether the obtained result is exact
or not (which is a limitation common to abstract interpretation techniques). Last
but not least, we think that our approach is more amenable to the combination
of FIFO channels with other unbounded datatypes, like counters, in the spirit
of [34]. Indeed, it seems very difficult to accelerate loops where FIFO operations
are guarded by numerical tests on counters and where counters are conversely
updated depending on the FIFO queues contents.

For CFSMs, our method is a good alternative to acceleration based techniques.
The two approaches may actually be seen as complementary. Typically, one can
first try to get the exact reachability set using acceleration techniques and then
apply our method in case of failure. A more interesting combination consists
in using acceleration techniques to add meta-transitions in the original model,
when possible, and to apply our method to the augmented system.

In the future we plan to explore two directions: the first one is to combine
the abstraction for FIFO queues with abstractions for numerical variables, in
order to attack the verification of more realistic models. The second one is to
consider CFSM with infinite alphabets. This is required for the many protocols
that use “tokens” to uniquely identify different frames. These tokens are typically
assumed to belong to an infinite set.
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