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Combining Control and Data Abstraction in the
Verification of Hybrid Systems

Xavier Briand and Bertrand Jeannet

Abstract—This paper addresses the verification of hybrid
systems built as the composition of a discrete software controller
interacting with a physical environment exhibiting a continuous
behavior. The goal is to attack the problem of the combinatorial
explosion of discrete states that may happen if a complex software
controller is considered. It proposes as a solution to extend an
existing abstract interpretation technique, namely dynamic par-
titioning, to hybrid systems described in a symbolic formalism.
Dynamic partitioning allows us finely tune the tradeoff between
precision and efficiency in a reachability analysis. It shows the
effectiveness of the approach by a case study that combines
a nontrivial controller specified in the synchronous dataflow
programming language Lustre with its physical environment.

Index Terms—Abstract interpretation, hybrid systems, logico-
numerical properties, synchronous languages verification.

I. Introduction

HYBRID SYSTEMS have the particularity to combine
a discrete behavior, specified with traditional test and

assignment operations, with a continuous behavior, specified
by the mean of differential equations or inclusions. They
primarily allow us to model a physical environment ruled
by physical laws, which may be either purely continuous,
or mixing discrete and continuous aspects (like a bouncing
ball). Hybrid systems are also particularly well-suited to model
the behavior of a software controller that exhibits a discrete
behavior, interacting with a physical environment ruled by
physical laws. Such systems have recently been given the name
of cyberphysical systems.

This paper targets specifically this latter case, and is mo-
tivated by the problem of analysing a Lustre synchronous
program interacting with a physical environment. Lustre
[23] is a domain-specific dataflow language for programming
control-command systems that periodically sample inputs from
their environment, compute outputs and move to a new internal
state. When verifying properties on such programs, it is
mandatory to take into account a reasonably accurate model of
their physical environment, as these programs make assump-
tions on their environment. For instance, a speed regulation
system implicitly assumes that when it orders an acceleration,
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the speed should increase. The resulting combination of a
program and its environment is a hybrid system, that has
usually the specificity of having a large discrete state-space,
inherited from the state-space of the controller program.

Verification of hybrid systems focuses, however, mainly
on the analysis of the continuous behavior; the values of
non-numerical variables are encoded in the control structure.
Invariants for numerical variables are then defined for each
corresponding control point, as illustrated in Fig. 1(a). This
may result in a combinatorial explosion of the number of
control points, a well-known problem in the verification of
finite-state systems. Moreover, compared to the case of purely
discrete systems, hybrid systems make this combinatorial
explosion even more difficult to tackle because invariants are
more complex properties (e.g., convex polyhedra) rather than
a boolean value (indicating that a state is or is not reachable).

The aim of this paper is to tackle this combinatorial explo-
sion problem by extending the principle of dynamic partition-
ing to hybrid systems [29], [30]. The initial motivation for this
technique, based on abstract interpretation, was to apply linear
relation analysis [16], [25] to dataflow synchronous programs
manipulating Boolean and numerical variables. The idea is
to consider more general and less detailed control structures,
such as the one depicted in Fig. 1(b). Fig. 1 illustrates the
less precise invariants obtained by the analysis if we merge
the locations according to the property b0 = b1.

The term “dynamic” refers to the ability of incrementally
refining such a control structure in order to reach a sufficient
precision for the verification goal. The refinement is performed
in conjunction with a combination of forward and backward
analyses, so that only states that potentially belong to a
counter-example are considered in the refinement process.

A. Existing Approaches for Verifying Hybrid Systems

Since the first papers on the verification of such systems
[2], [24], [27], the approaches based on the use of convex
polyhedra and on the resolution of fixpoint computations are
still of interest. Convex polyhedra are indeed able to infer
subtle relationship between the variables of a system [15]. An
obvious limitation of convex polyhedra is that they cannot
provide good approximations of non convex invariants. The
HyTech tool [26] solves this problem by using unions of
convex polyhedra, but it results a possibly non-terminating
(and more costly) analysis, unlike the abstract interpretation
approach of [25]. As an alternative, [5] and [6] suggest
approximating subsets of Rn with unions of hypercubes, using
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Fig. 1. Associating invariants to control location. The boxes formula give
the invariant computed for each location with a linear relation analysis.
(a) Fully explicit control structure. (b) Partially explicit control structure.

efficient algorithms. A strength of this method is the ability to
have canonical representation of non-convex sets and to handle
more complex differential equations. However, a combinato-
rial explosion of the numbers of hypercubes quickly arises.
Ellipsoid methods have also been proposed [32]. Presented as
a successor of HyTech, the PHAver tool offers sophisticated
refinement techniques for representing non-convex invariants
by unions of polyhedra and for approximating on-the-fly linear
differential equations by simpler piecewise-constant polyhe-
dral inclusions that can be treated directly with convex polyhe-
dra. Convergence of computations can be achieved by various
heuristics.

As mentioned in [17], HyTech and PHAver fail when deal-
ing with large discrete space because only continuous behav-
iors are treated symbolically. [17] proposes a fully symbolic
technique based on backward (greatest) fixpoint computation,
in which sets of states are represented exactly with a vari-
ant of Boolean circuits mixing Boolean variables and linear
constraints. The technique does not guarantee termination (on
unbounded time intervals), and relies on a sophisticated semi-
canonical representation rather than on approximations to ad-
dress the efficiency issue. In the case of discrete systems, [11]
adopts a similar approach by combining binary decision dia-
grams (BDDs) and Presburger formulas in disjunctive normal
forms.

Methods based on predicate abstraction will be discussed
later in Section IV.

All the above-mentioned methods are based on reachable
state exploration. Another approach, mostly applied to discrete
systems until recently, exploits the power of modern satisfia-
bility (SAT) and satisfiability modulo theory (SMT) solvers to
perform two different tasks:

1) finding counter-examples of some length k ≤ K, by
encoding this problem as a (generalized) SAT problem;

2) proving properties by induction of order k, which con-
sists of proving that if a property is true for any k

consecutive execution steps, it is true for the step k + 1
(in addition to the corresponding base case that considers
the initial states).

Reference [18] applies (1), in the particular case of hybrid
systems with rectangular constant inclusion, which is less
general than our model. Technique (2) is not complete, in
particular because it does not take into account reachability
information, but it can be very efficient in practice (see [22]
for its application to discrete Lustre programs). We are not
aware of an application of k-induction to hybrid systems.1

B. Contribution

We present here a reachable state analysis that combines
efficiently discrete and continuous behavior for the verification
of hybrid systems obtained as the composition of a physi-
cal environment and a software controller, as illustrated in
Section II.

To implement our idea, we need a higher-level model for
hybrid systems.

1) We should be able to embed dataflow Lustre program
in our model.

2) We also need a more symbolic model, as a key point of
our technique is to handle symbolically both the discrete
and the continuous part of the state-space.

From a specification point of view, we thus propose in Section
III a flexible model for hybrid systems which is more symbolic
in a number of aspects. Some usual constraints are relaxed,
like the requirement that invariants and guards should be
convex. One can also combine freely numerical and non-
numerical variables in formulas, as in Lustre programs,
and we propose an original way to specify more concisely
continuous behaviors, in particular by specifying with a sin-
gle formula both continuous invariants and constraints on
derivatives.

Section IV reminds the principles of dynamic partitioning
developed in [29]. In this context, Section V extends these
principles to hybrid systems, by defining a suitable method
for computing continuous post and preconditions induced in
a partitioned abstract domain. Integrated in our tool NBac,
this extension allows us to inherit the features of dynamic
partitioning for hybrid systems.

We last illustrate in Section VI with experiments the po-
tential of our approach. We first performed various analyses
on the example presented in Section II, and we then tackled a
very detailed model of the famous steam-boiler specification
of Abrial [1]. Such a system could hardly be handled with-
out treating symbolically the discrete state-space, due to the
complexity of its discrete behavior.

Our original contributions are located in Sections III, V,
and VI. This paper is a journal version of [10], with some
material considered as not essential removed and other mate-
rial explained with more details and examples.

1Unless they are abstracted as discrete systems.
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II. Connecting a LUSTRE Program to a Hybrid
Environment

Fig. 2 shows a model of a system composed of a Lus-
tre disk controller interacting with its physical environment,
namely a disk motor device (hybrid system). Fig. 2(a) depicts
the behavior of the disk motor. It emits its speed on the input
channel, and obeys to the command received with the output
channel, but may diverge slightly from the ideal behavior
(parameter ε).

Fig. 2(b) depicts the disk controller. It receives the speed
of the disk and emits appropriate signals plus and minus
to maintain the motor speed within a specified range (here
the interval [8, 12]). This program is embedded in a hybrid
automaton which receives the speed on the channel input,
computes the reaction of the Lustre controller and stores the
computed outputs in internal variables, before emitting them
on channel output.

The process of Fig. 2(c) forces the synchronizations on
channels input and output to take place in the right order,
within specific time intervals. We model thus the reaction time
of the controller, and variations in the sampling period and the
reaction time. The parameters are ε, m, M, IM ,Om,OM . t is
a local clock used for measuring delays, and pc is the implicit
program counter that encodes the three locations (we dot not
have explicit control location in our formal model presented in
Section III, although we use them in graphical descriptions).

Fig. 2(d) depicts the property observer. d is the time during
which the speed has been outside the interval [8, 12]. We want
to check if d ≤ 8 always holds. As initially the speed is 0,
the controller should put the motor speed in the desired range
quickly enough, and control it properly afterward.

III. Symbolic Hybrid Automata (SHA)

We introduce in this section a symbolic model for hybrid
systems, which allows us to manipulate symbolically locations
and location invariants, and which is actually used in Fig. 2.
Thus, we can avoid the state-explosion problem in the speci-
fication and delay this issue to the analysis.

From a computational point of view, the expressiveness of
SHA is identical to linear hybrid automata. However, from a
specification language point of view, SHA are more expressive
in so far as they allow much more compact descriptions.

A. SHA Model

A SHA H = (V, Init,"H, DH ) is defined by a set V

of variables evolving from initial state Init according either
to discrete and instantaneous changes (with assignments)
specified by "H , or to continuous evolutions specified with a
global, conditional differential inclusion DH . More precisely:

1) V is a finite set of variables partitioned into variables of
any type in VQ (subject to discrete behaviors only) and
real-valued variables in VX. Q (resp. X) denotes the set
of valuations of variables in VQ (resp. VX). S = Q×X

is the set of states of the system and Init ⊆ S the initial
states.

Fig. 2. Disk controller connected to its environment, and a property observer.
(a) Environment: disk motor device emits the speed of the disk on channel
input and reacting to the controller (channel output). (b) LUSTRE controller
embedded in a process. It emits plus and minus commands to the physical
device. (c) Scheduler defining the scheduling above. (d) Property observer on
the physical environment: d counts the delay for which the speed s has been
outside the desired range.
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Fig. 3. Formal definition of the SHA of Fig. 2(a).

2) Discrete changes of the system are defined by a finite
set "H of transitions. In a discrete transition δ =
(σ, p, G, A) ∈ "H :

a) σ is a channel carrying a tuple of communication
parameters p = 〈p1, . . . , pk〉;

b) the guard G ⊆ S × Pσ is a predicate on the
variables and the communication parameters (Pσ

denotes the set of valuations of parameters);
c) the assignment A : S × Pσ → S defines the

evolution of the values of variables during the
discrete transition.

For instance, in Fig. 2(a) the transition labeled by the
output channel is defined by σ = output, p = 〈pp, mm〉,
G = true, and A assigns the variable mode depending
on the communication parameters pp, mm, and leaves the
other state variables unchanged.

3) The continuous evolution is defined by a function DH :
Q×X → 2X that associates with each discrete state q ∈
Q a differential inclusion ẋ(t) ∈ DH (q, x(t)). Examples
of differential inclusions DH are [if b then dx = dy + 1
else dx = dy] or [if x> = 2 then dx = dy + 1 else dx =
dy].

For instance, Fig. 3 gives the formal definition of the SHA
depicted in Fig. 2(a).

We detail some key differences of our model compared to
the “classical” model of hybrid automata most often consid-
ered in the verification community [2], [19].

1) It does not restrict a priori the types of the discrete
variables in VQ, as the software controller part may
manipulate variables of various types (integers, floating-
point numbers, and so on).

2) It does not use explicit locations or control points; these
need to be encoded with program counter variables. This
enables us to play with the control structure, as shown
in Fig. 1.

3) The constraints DH on the derivatives of continuous
variables are a function on all state variables rather than
a function on discrete locations only.

4) The classical model uses the notion of location invariant
to partially solve the non-determinism between the time
elapse and the firing of a discrete transition. A location
invariant is a predicate on continuous variables that
must be true for the time to elapse, and that forces a
discrete transition to be taken when it becomes false.
For instance, in Fig. 5(a) the constraint 1 ≤ x ≤ 3 is
a location invariant that must be true for x to evolve
according to the differential equation ẋ = x. In our model
location invariants are implicitly defined by (the guards

of) the differential inclusion function DH , as explained
below.

Let us illustrate by a few examples points 3 and 4. The
differential inclusion [if b then dx = dy + 1 else dx =
dy] uses the Boolean variable b to encode two traditional
locations with the universe as invariant [see also Fig. 2(a)].
The differential inclusion [if x> = 2 then dx = dy +
1 else dx = dy] specifies two traditional locations with
invariants x≥2 (resp. x<2) and differential inclusions ẋ = ẏ+1
(resp. ẋ = ẏ), with an implicit discrete transition between them
when x = 2; trajectories may cross the frontier of the two
connex regions. [if x <= 3 then dx = 1 else empty] is our
way to specify a traditional location with differential equation
ẋ = 1 and invariant x≤ 3; when x > 3, there are no possible
valuations for the derivatives (DH = ∅), hence the time cannot
elapse any more.

SHAs can be composed in parallel and communicate by
rendez-vous on valued channels. When a synchronization
takes place on a channel σ(p), all the involved SHAs should
agree on the value of the communication parameters p. The
corresponding product, used in Fig. 2, is classical and is
not detailed here. Notice that once SHAs are composed in
parallel, in the resulting product SHA the synchronizations on
valued channels are still meaningful, because they introduce
“input” communication parameters that may be constrained by
the guard and used in the assignment of a transition. Stated
differently, they allow us to model opened systems receiving
(possibly constrained) inputs from their environments.

1) Syntax of Expressions: In our verification tool, functions
involved in the definition of hybrid automata are functions that
can be put under the form defined by the grammar of Fig. 4.
For instance

dx1 = (if b1 then 1 else 0) and dx2 = (if b2 then 1 else
0)

can be rewritten as
if b1
then (if b2 then dx1 = dx2 = 1 else dx1 = 1 and dx2 =
0)
else (if b2 then dx1 = 0 and dx2 = 1 else dx1 = dx2 =
0)

which belongs to this grammar.
Such functions are internally represented with binary de-

cision diagrams (multiterminal BDDs, MTBdds, [9]) built on
atomic decisions (Boolean variables or linear constraints) and
elementary functions, as in [28]. For elementary differential
inclusions, denoted in Fig. 4 by the non-terminal “〈diffcons〉,”
in this paper we consider only linear hybrid automata, that is,
hybrid systems with constant and closed differential inclusion
(conjunction of non-strict linear constraints on derivatives, like
1 ≤ ẋ + 2ẏ ≤ 3). This excludes affine differential equations
of the form ẋ = x. They can however be approximated by
piecewise constant differential inclusions. Notice that a few
tools like PHAVer internally perform such approximations.

B. Behavior of SHA

The run of a SHA H is composed of a succession of discrete
and continuous transitions. The global transition relation is
→=→c ∪ →d is defined as follows.



BRIAND AND JEANNET: COMBINING CONTROL AND DATA ABSTRACTION IN THE VERIFICATION OF HYBRID SYSTEMS 1485

Fig. 4. Syntax of normalized expressions in SHA.

1) Discrete Transition Relation: The discrete transition
relation →d⊆ S × S induced by "H is defined by

(σ, p, G, A) ∈ "H, vp ∈ Pσ, (s, vp) ∈ G ∧ s′ = A(s, vp)
s →d s′

.

2) Continuous Transition Relation: We denote by FT the
set of functions f : [0, T ] → X piecewise C1, i.e., there is a
finite sequence T0 = 0 < T1 < . . . < Tn = T such that f is
continuously differentiable on ]Ti, Ti+1[ and has a left limit in
Ti and a right limit in Ti+1. The continuous transition relation
→c⊆ S × S induced by the conditional differential inclusion
DH is defined by

q ∈ Q, T ≥ 0, f ∈ FT , f (0) = x ∧ f (T ) = x′

∀i < n, ∀t ∈]Ti, Ti+1[: ḟ (t) ∈ DH (q, f (t))
s = (q, x) →c s′ = (q, x′)

. (1)

Remark that if DH (s) = ∅, there is no possible continuous
transition from s, so the time cannot elapse any more, and
only discrete transitions can possibly be taken. This allows
to implement the traditional notion of invariants as explained
in Section III-A. The linear hybrid automata defined in [2]
are SHA where the valuations of discrete variables Q are the
locations, and where DH (q, x) = if x ∈ Iq then Cq else ∅,
with the invariant Iq and condition on derivatives Cq are
convex polyhedra.

We introduce also few additional notations, used below
for reachability analysis. Given a discrete state q we call T -
trajectories the functions ν : [0, T ] → S such that ν(t) =
[q, f (t)] and we denote by TT the set of T -trajectories. The
postcondition and precondition operators post, pre : 2S → 2S

are defined as

post(X) = {s′ | s ∈ X ∧ s → s′} (2)
pre(X) = {s | s′ ∈ X ∧ s → s′}. (3)

For a monotone function F : L → L where L is a lattice,
lfp(F ) denotes the least solution of the fixpoint equation X =
F (X). States reachable for an initial set I ⊆ S or coreachable
from a final set F ⊆ S can be characterized by the following
fixpoint equations on the lattice (2S,⊆):

reach(I) = lfp(λX.I ∪ post(X)) (4)
coreach(F ) = lfp(λX.F ∪ pre(X)). (5)

As we focus in this paper only on (co)reachability proper-
ties, we are not concerned with some pathological behavior

Fig. 5. Hybrid automaton and its abstraction in two different models.
(a) Automaton. (b) Classical abstraction [26]. (c) Abstraction with SHA.

w.r.t. liveness properties such as deadlocks or Zeno runs (i.e.,
runs with an unbounded number of discrete transitions within
a bounded time interval). Our analysis method still returns
sound results in such cases.

C. Discussion

Although the primary motivation for our symbolic model
is to implement the ideas developed in the introduction re-
garding symbolic verification techniques, we think it is a very
interesting model for its expressiveness and compactness.

For instance, the automaton of Fig. 5(a) can be abstracted
by the automaton of Fig. 5(b). This requires however the
duplication of discrete transitions, sometimes with guards
modifications (incoming transitions), whereas our model en-
ables a more straightforward specification of the abstraction
[Fig. 5(c)]. In the same way, in Fig. 2(a), we do not need to
specify explicitly the discrete transitions between the different
continuous modes defined according to the value of variable
mode. Fig. 2(d) illustrates the ability to specify with the same
formula both the location invariant and the constraints on
derivatives, and the possibility to have non-convex invariants.

In this respect, our SHA model is higher-level than the
classical models considered in [2] and in the HyTech or the
PHAver verification tools. However, it is still a mathematical
model in the sense that it remains automaton-based and it does
not offer modeling constructs such as the χ hybrid process
algebra [8], [38].

If we look now to models mainly dedicated to simulation,
like Simulink [35] or Modelica, [34] the picture is different.
On the one hand, in those models both the discrete and the
continuous behavior may be specified in a very general way,
using for instance C functions. On the other hand, simulation
models forbid (implicit) non-deterministic choices between
leaving the time elapse or firing discrete transitions. They
thus replace the notion of (location) invariant by the notion
of zero-crossings, which are numerical expressions given to
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the numerical integration solver. The solver will stop the
integration process as soon as one of these expressions crosses
zero from below and changes its sign. When this happens, the
solver gives the hand back to the discrete simulator, which
then fires the discrete transition guarded by the activated zero-
crossing.

For verification purposes however, location invariants or
guarded differential inclusions as in our case are more ade-
quate for symbolically computing the effect of time elapse.

IV. Abstract Interpretation and Dynamic
Partitioning

We want to check an invariance property on a hybrid system,
or equivalently to show that some states cannot be reached. If
BAD ⊆ S denotes such states, we expect

reach(Init) ∩ BAD = ∅ or coreach(BAD) ∩ Init = ∅.

As the sets reach and coreach are not computable for the
considered systems, we will use approximation techniques of
[29] based on abstract interpretation [14].

A. Base Abstract Domain

The idea of abstract interpretation is to replace the powerset
of states (2S,⊆) partially ordered by inclusion [on which (4)
and (5) are defined] by a simpler abstract lattice (A,/) in
order to achieve reasonable performance of the resulting ab-
stract analysis, without being too imprecise either. An abstract
domain may be seen as a class of geometrical shapes that enjoy
nice properties w.r.t. their expressiveness and the complexity
of the operations on them. The meaning of an abstract value
a ∈ A is given by a concretization function γ : A → 2S such
that a1 / a2 ⇔ γ(a1) ⊆ γ(a2).

For instance, if S = Rm, one can replace 2S by the convex
polyhedra abstract domain Pol(Rm). As convex polyhedra
are just specific subsets of Rm, γ is just the identity. The
abstraction comes from the fact that the set union ∪ which is
the least upper bound of the lattice (2S,⊆) is approximated
by the convex hull 1C which is the least upper bound of the
lattice (Pol(Rm),⊆).

In our particular case, a concrete value is a subset of the
state-space S 2 Bn × Rm (enumerated variables × numerical
variables). Here we make the choice that an abstract value

a = (B, P) ∈ A = 2B
n × Pol(Rm) (6)

is the conjunction of a Boolean formula B (represented with
a BDD) and an m-dimensional convex polyhedron P . The
concretization function γ : A→ 2S and the least upper bound
1 are defined by

γ(B, P) = {(b, x) ∈ S | b ∈ B ∧ x ∈ P} (7)

(B1, P1) 1 (B2, P2) = (B1 ∨ B2, P1 1C P2). (8)

Such an abstract domain forgets the relations between vari-
ables of different types, which is a quite rough approximation.

For instance, one cannot represent the relation (b0 ⇔ x0≥0),
because (b0, x0 ≥ 0) 1 (¬b0, x0 < 0) = (true,R) according
to (8).

An alternative could be to consider the much more precise
abstract domain

A′ = Bn → Pol(Rm) (9)

with

γ ′(f ∈ A′) = {(b, x) | x ∈ f (b)} (10)

f1 1′ f2 = λb . f1(b) 1C f2(b) (11)

in which a convex polyhedra is associated with each discrete
state, which allows us to represent accurately a relation like
(b0 ⇔ x0 ≥ 0). This solution does not address however the
combinatorial explosion problem. More generally, none of
these two solutions can represent non-convex invariants for
numerical variables.

1) Solving Fixpoint Equations on an Abstract Domain:
We remind that we want to solve the fixpoint (4) and (5). The
transfer fixpoint theorem says that if Fα : A→ A is a correct
approximation of F : 2S → 2S , which means that γ◦Fα ⊇ F ◦
γ , then γ◦lfp(Fα) ⊇ lfp(F ). In other words, a fixpoint equation
X = F (X), X ∈ 2S can be abstracted by Y = Fα(Y ), Y ∈ A,
and the least solution Y0 = lfp(Fα) overapproximates the exact
set X0 = lfp(F ).

If Fα is continuous and A is a complete lattice that contains
no infinitely increasing sequences, the most classical way to
compute lfp(Fα) is to compute the sequence

Y (0) = ⊥ , Y (n+1) = Fα(Y (n)) (12)

which converges in a finite number of steps to lfp(Fα) ac-
cording to Kleene’s theorem. Otherwise, if A is not com-
plete and/or contains infinitely increasing sequences (as for
instance the convex polyhedra lattice), in addition to the static
approximation induced by the abstract lattice, one introduces
a dynamic approximation by using an extrapolation operator
∇ : A×A→ A called widening [14]. Equation (12) is replaced
by

Y (0) = ⊥ , Y (n+1) = Y (n)∇Fα(Y (n)) (13)

which converges in a finite number of steps to a post-fixpoint
Y 8 Fα(Y ) 8 lfp(Fα) thanks to technical properties of ∇.2

The aim of abstract interpretation framework is thus to
generalize the intuitive approximation of geometrical shapes
(for instance by bounding boxes or convex polyhedra) to
the approximation of more complex objects encountered in
program analysis. An important point to be noticed is that in
numerical analysis, the notion of approximation is based on
the notion of topological neighborhoods, whereas in program
analysis and abstract interpretation, it is based on set inclusion.

2The use of widening solves in particular problems related to Zeno behavior
in timed and hybrid systems.
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B. Partitioned Abstract Domain

We already mentioned the shortcomings of the two abstract
domains A and A′ we defined for 2S [(6) and (9)] w.r.t.
precision and efficiency.

A flexible solution to these problems is to partition the
efficient but not very precise abstract domain A in order to
improve its expressiveness. Intuitively, partitioning allows us
to introduce case reasoning by distinguish different situations
and by manipulating disjunctions. For instance, if we partition
A according to an inequality x ≥ 10, we can represent exactly
an invariant like

⊆ x≥10︷ ︸︸ ︷
(b, x≥20) ∪

⊆ x<10︷ ︸︸ ︷
(true,−10≤x≤0) (14)

whereas a single abstract value in A can only approximate the
above invariant with (true,−10≤x).

More formally, if π = {A1, . . . , An} ⊆ A is a finite set such
that {Sk = γ(Ak) | 1≤ k ≤ n} defines a finite partition of S,
then we can define the abstract domain Aπ = {(a1, . . . , an) ∈
An | ak / Ak}. Its concretization function and least upper
bound are defined as

γπ(a1, . . . , an) = γ(a1) ∪ . . . ∪ γ(an)
(a1, . . . , an) 1π (a′1, . . . , a′n) = (a1 1 a′1, . . . an 1 a′n).

This allows us to manipulate bounded and canonical unions
of abstract values, and in particular to represent non-convex
numerical invariants, as in (14).

To reflect the partition π in (4), we first exploit the isomor-
phism 2S ≈ 2S1 × . . .× 2Sn to rewrite the reachability fixpoint
equation X = I ∪ post(X) as

Xk = Ik ∪
⋃

k′

postk′,k

︷ ︸︸ ︷
(post(Xk′ ) ∩ Sk)(Xk′ ) (15)

with Xk, Ik ⊆ Sk and 1 ≤ k ≤ n. We then abstract it with

Yk = Y
(0)
k 1

⊔

k′

postk
′,k

α (Yk′ ) (16)

where γ(Y (0)
k ⊇ Ik and postk

′,k
α : A → A is a correct

approximation of postk
′,k : Sk′ → Sk. The abstract interpre-

tation framework ensures that we can compute iteratively the
reachability set in the partitioned abstract domain Aπ using
widening. We obtain an overapproximation reach+ ⊇ reach
of the concrete reachability set. Fig. 1 illustrates two possible
partitioning of S = B2×R2, according either to all the Boolean
variables, or to the condition b0 = b1, and the corresponding
reachability analyses.

C. Partition Refinement

The more the partition π is detailed, the more the abstraction
Aπ is precise, but also costly. The idea of [29], illustrated in
Fig. 6, is then to start with a simple partition, to perform
reachability and coreachability analysis, and to intersect their

Fig. 6. Analysis on partitioned domain and partition refinement. (a) Reach-
ability analysis. (b) Coreachability analysis. (c) Refinement.

results in order to focus on states and transitions that possibly
belong to a counter-example [Fig. 6(b)].

If this set is empty, the property is proved. Otherwise, we
refine the partition and start a new analysis cycle. Contrary
to most predicate abstraction refinement techniques, that are
based on the search of concrete counter-examples [3], our
refinement technique can be viewed as based on abstract
counter-examples, that is, it tries to remove paths from initial
to bad states. In a partition member, a condition [like the
condition c in Fig. 6(b)] that separates different behaviors (in
terms of abstract transitions) is a good candidate for partition
refinement, as it allows us to remove some transition paths in
the partition. For instance, the refinement depicted in Fig. 6(c)
makes clear that one cannot go in one step from the partition
member labeled by c̄ to the bad states, something which
appeared as possible in Fig. 6(a).

Reference [29] proposes several refinement heuristics on
this basis. Necessary conditions to jump from one partition
member to another one (like the condition c in Fig. 6) are
naturally obtained as a side effect of the technique described
in Section V for computing postconditions.

1) Dynamic Partitioning and Predicate Abstraction: Pred-
icate abstraction consists of abstracting a (hybrid) system with
an abstract finite automaton, by partitioning the state-space of
the original system according to a set of formulas, and then
abstracting accordingly its transition relation [21]. The abstract
system is then checked by classical finite-state exploration
techniques. As the choice of a suitable partition is of crucial
importance (as in dynamic partitioning), refinement techniques
have been developed, both for non-hybrid or hybrid cases
[3], [12], [27], based on concrete counter-examples or the
notion of interpolants [33]. Predicate abstraction can be seen
as an instance of dynamic partitioning, where the base abstract
domain is the simple lattice {⊥,;} with ⊥ ! ;; the fixpoint
computation on the abstract finite automaton can only show
that an abstract state is either non-reachable (⊥) or possibly
reachable (;). In contrast, dynamic partitioning makes use
of more sophisticated abstract domains like convex polyhedra
[30], which allows a full range of properties lying between ⊥
and ; to be discovered by the fixpoint computation.
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In some intuitive way, the “cleverness” of predicate abstrac-
tion is mainly located in the generation of a detailed partition
by the refinement process, whereas dynamic partitioning relies
less on a detailed partitioning and more on propagation of
symbolic properties during fixpoint computations. In particu-
lar, in our method we forbid the refinement process to split
the state-space according to a condition (Boolean variable or
numerical constraint) that does not appear in the program. The
main motivation is that we do not want to start enumerating the
value of a counter i = 0, i = 1, . . . in the partition, something
which can happen with some predicate abstraction refinement
techniques, and which is much less useful in our case, as our
fixpoint computations can discover new facts in a non-finite,
more expressive abstract domain.

As a side-effect, our refinement process is guaranteed to
terminate, leading to a finite partition such that the transition
functions partially evaluated on each partition member do
not contain conditions any more (according to the syntax of
Fig. 4). However, there is no guarantee that the property is
provable on the corresponding partitioned abstract domain.

V. Computing Continuous Postconditions

Section III presented our SHA model and Section IV
presented our general approach to compute reachable states
of such systems. To instantiate it, we need to compute the
operator postk′,k

α appearing in (16), which is a correct approx-
imation of the operator λX ⊆ Xk′ .

(
post(X) ∩ Xk

)
. As the

transition relation of a SHA has been defined in Section III-B
as the union of a discrete and continuous transition relations,
we can decompose the postcondition operator post defined by
(2) as the union of a discrete and a continuous postcondition
operators. A method for efficiently computing the discrete
postcondition operator is described in [28], so we will focus
only on the computation of continuous postconditions.

In classical linear hybrid automata defined in [2], computing
a continuous postcondition is quite straightforward; a change
of mode requires a discrete transition, and in each mode
the constraints on derivatives are constant; only trajectory
segments that are line segments need to be considered. Our
framework introduces two difficulties.

1) In the SHA model a change of mode can occur during
continuous evolutions; the trajectory segments to con-
sider are more complex and the induced postcondition
should sometimes be approximated. Moreover, the topo-
logical aspects on the frontier separating two partition
members have to be taken into account carefully.

2) We must take into account the interactions between
the discrete and the continuous part of the state-space,
especially in the context of general partitions of the
state-space, which are more complex that the partition
induced by the control structure of a classical hybrid
automaton.

To address these difficulties, we first focus in Section V-A
to the case where the state-space is purely continuous, and we
then consider the general case in Section V-B. In each case,
we first consider the easy subcase for which we can compute
the exact postcondition operator, and then for the general case

Fig. 7. Decomposing trajectory segments into simple ones and straightening
them.

we propose approximation techniques similar to the techniques
developed for computing discrete conditions in [28].

A. Case of Purely Continuous State-Space

We consider a SHA H without discrete state-space: S = X =
Rm. We fix a partition X =

⋃
k∈K Xk of the state-space into

convex polyhedra, that defines a partitioned abstract domain.
We denote by Fi,j the frontier (Xi ∩ X̄j) ∪ (X̄i ∩ Xj), where
X̄ denotes the topological closure of a set X.

We first decompose general trajectories into sequences of
simple trajectories, that are included in pairs of connected
regions in the partition, and “crosses” only once the frontier
(see Fig. 7).

Definition 1 (Simple Trajectories): We denote by S i,j
T the

subset of T -trajectories f ∈ TT (see Section III-B2), named
simple (T, i, j)-trajectories, such that

∃Tf : f ([0, Tf [) ⊆ Xi ∧ f (Tf ) ∈ Fi,j ∧ f (]Tf , T ]) ⊆ Xj.

We define a timed postcondition operator induced by such
simple trajectories

posti,j(Z) =
{

f (T ) | T ≥ 0, f ∈ S i,j
T , f (0) ∈ Z

}
. (17)

Full trajectories will be taken into account by iterating the
application of posti,j for i, j ∈ K, during the iterative solving
of (16).

1) Exact Postcondition in a Particular Case: We give now
an exact value of posti,j in a particular case, where D : X →
2X is defined as

D(x) =
{

Di if x ∈ Ii

∅ if x ∈ (Xi \ Ii) (18)

with Ii ⊆ Xi: D can only have one non-empty value Di on
each partition member. Moreover, we assume that Di is closed
and convex and Ii is convex. These assumptions are satisfied
by the hybrid automata model considered in [2].

In order to compute posti,j , we show below that only trajec-
tories composed of two line segments need to be considered
(or 1 if i = j) (see Fig. 7).

Definition 2 (2-Line Trajectories): We denote by Li,j
T the

subset of f ∈ S i,j
T , named 2-line (T, i, j)-trajectories, such

that

∃di ∈ Di, ∃dj ∈ Dj

ḟ (]0, Tf [) = {di} ∧ ḟ (]Tf , T [) = {dj}.
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Fig. 8. Three examples of postcondition posti,j .

Proposition 1 (Straightening Trajectories): Suppose f ∈
S i,j

T . Then there exists g ∈ Li,j
T such that Tf = Tg, f (0) = g(0),

f (Tf ) = g(Tf ) and f (T ) = g(T ).
Hence, (17) can be rewritten as

posti,j(Z) =
{

f (T ) | T ≥ 0, f ∈ Li,j
T , f (0) ∈ Z

}
. (19)

Proof: As f ∈ S i,j
T is a trajectory, for all t ∈]0, T [, ḟ (t) ∈

D(f (t)) and then for all t ∈]0, T [, D(f (t)) == ∅. Therefore
f (t) ∈ Ii ∧ ḟ (t) ∈ Di if t ∈]0, Tf [, and f (t) ∈ Ij ∧ ḟ (t) ∈ Dj

if t ∈]Tf , T [. As ḟ is piecewise continuous, it is summable
and its sum can be approached by a Riemann sum f (Tf ) −
f (0) =

∫ Tf

0 ḟ (t)dt = Tf limP→∞
∑P−1

k=0
1
P

ḟ
(

k+1/2
P

Tf

)
. As for

any 1 ≤ k < P , ḟ ( k+1/2
P

Tf ) ∈ Di, the sum belongs to Di,
because Di is convex. As it is also closed, the limit is also
a vector belonging to Di. So there exists di ∈ Di such that∫ Tf

0 ḟ (t)dt = Tf di. For the same reason, there exists dj ∈ Dj

such that
∫ T

Tf
ḟ (t)dt = (T − Tf )dj . It is now easy to build a

function g satisfying the proposition.
We can now give a formulation of posti,j with the time

elapse operator [25] in the case where Ii and Ij are convex
polyhedra.

Theorem 1: Let Z ↗Di

be the set {z + dt | z ∈ Z, d ∈
Di, t ≥ 0}. Then posti,j(Z) =

[(

first segment
extended to +∞

︷ ︸︸ ︷[
(Z ∩ Ī i) ↗Di ]

∩

intersection with
frontier and invariants
︷ ︸︸ ︷[
Ī i ∩ Fi,j ∩ Īj

] )

︸ ︷︷ ︸
end of first segment = start of second segment

↗Dj

]
∩ Īj ∩Xj.

(20)

If the sets Z, Di and Dj are convex polyhedra (rather than
general convex sets), all the operations are implemented with-
out approximation by standard convex polyhedra operations, as
described in [25]. Fig. 8 gives examples. Notice the influence
of the configuration at the frontier on the result [Fig. 8(b) and
(c)].

Proof: Let Gi,j = Ī i ∩ Fi,j ∩ Īj .
(⊆) Suppose y ∈ posti,j(Z) as defined by (19). Then there

exists x ∈ Z, T ≥ 0, f ∈ Li,j
T with f (0) = x, f ([0, Tf [) ∈ Ii ⊆

Xi, ḟ ([0, Tf [) = di ∈ Di, f (]Tf , T ]) ⊆ Ij ⊆ Xj , ḟ (]Tf , T ]) =
dj ∈ Dj . We have

f (t) = f (0) + tdi for t ∈ [0, Tf ]
f (Tf ) + (t − Tf )dj for t ∈ [Tf , T ].

1) x = f (0) ∈ Z ∩ Ii and f (Tf ) ∈ (Z ∩ Ii) ↗Di

.
2) As f ([0, Tf [) ∈ Ii, f (]Tf , T ]) ⊆ Ij , and f is continu-

ous, f (Tf ) ∈ Ī i ∩ Īj .
3) By definition 1, f (Tf ) ∈ Xi ∪ Xj; if f (Tf ) ∈ Xi, as

f (]Tf , T ]) ⊆ Xj , by continuity f (Tf ) ∈ X̄j; conversely
if f (Tf ) ∈ Xj then f (Tf ) ∈ X̄i; thus f (Tf ) ∈ Fi,j and
together with 2 f (Tf ) ∈ Gi,j .

4) By 1 and 3, f (Tf ) ∈ , = [(Z ∩ Ii) ↗Di

] ∩Gi,j .
5) f (T ) = f (Tf ) + (T −Tf )dj ∈ ,↗Dj

, and by hypothesis
f (T ) ∈ Ij . Thus y ∈ (,↗Dj

) ∩ Ij .
(⊇) Let y ∈ posti,j(Z) as defined by (20). Then there exists

x ∈ Z ∩ Ii, ti, tj ≥ 0, di ∈ Di, dj ∈ Dj such that{
x + tidi ∈ Gi,j

y = x + tidi + tjdj ∈ Ij .

Let us define the function
f (t) = x + tdi for t ∈ [0, ti]

f (ti) + (t − ti)dj for t ∈]ti, ti + tj].
We have to show that f ∈ Li,j

ti+tj and that ḟ (t) ∈ D(f )(t) for
t ∈ [0, ti + tj]:

1) ḟ ([0, ti[) = di ∈ Di and ḟ (]ti, ti + tj]) = di ∈ Di;
2) f (0) ∈ Ii, f (ti) ∈ Gi,j ⊆ Ī i; as Ī i is convex, f ([0, ti]) ∈

Ī i; similarly, f ([ti, ti + tj]) ∈ Īj . To conclude we have
to check that f ([0, ti[) ⊆ Ii ⊆ Xi and f (]ti, ti + tj]) ⊆
Ij ⊆ Xj .

We first show that f ([0, ti[) ⊆ Ii. If f (ti) ∈ Ii, we have by
convexity f ([0, ti[) ⊆ f ([0, ti]) ⊆ Ii. Otherwise, assume that
f (ti) ∈ Ī i \ Ii. We prove that ∃t ∈]0, ti[: f (t0) =∈ Ii leads to a
contradiction. Let t0 be such a t. As Ii is a convex polyhedra
and f (t0) ∈ Ī i \ Ii, this means that there exists a constraint
a·x+b<0 satisfied by Ii but not by Ī i, such that a·f (t0) + b = 0.
As f (0) ∈ Ii, a · f (0) + b < 0. But this implies that for any
t > t0, a · f (t) + b > 0, so that in particular f (ti) =∈ Ī i, which
violates the hypothesis. Thus f ([0, ti[) ⊆ Ii.

The proof of f (]ti, ti + tj]) ⊆ Ij is similar.
2) Approximating the Postcondition in the General Case:

If we remove the assumption that D is constant on each par-
tition member, it is hopeless to give an exact and computable
formulation of posti,j . This indeed reduces to the computation
of post in a non-partitioned system, which has been shown
to be computable only if X = R2 [7]. Nevertheless, we can
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Fig. 9. Different approximations of post1,2
α (D)(Z). D↓c denotes the function D partially evaluated on the condition c. The hatched zones correspond to the

result obtained by splitting according to the condition n ≥ 0, the light grey zone corresponds to the result obtained without any splitting. Both techniques take
into account that any trajectory going from S1 to S2 satisfies b1 ∧ b2 ∧ b3, which allows us to remove the corresponding conditions in the function D(Ab, n, Ax).
Notice also that the discrete numerical variable n is related in the invariants to the continuous variables Ax. (a) D(Ab, n, Ax). (b) Splitting or not w.r.t. n ≥ 0 in
postcondition.

consider two solutions.
1) Refine the partition and go back to the situation of the

previous section.
2) Replace the function D : S → 2X by a suitable

overapproximation.
For the first case, remark that D is expressed by a condi-
tional function (see Fig. 4) and then, such a finite partition
exists. Nevertheless, this solution may require a very detailed
partition, which induces an expensive analysis. The second
solution we will describe is more flexible and more general; if
the partition is not detailed enough, it induces approximations,
however those can be controlled and improved by refining the
partition.

Let Convex (X) denote the smallest convex set containing
X, and

Supp(D) = {x | D(x) == ∅}
D(X) = {D(x) | x ∈ X}.

We suggest the following approximation; we define an opera-
tor posti,jα obtained by applying (20) with, for k ∈ {i, j}:

Ik = Convex (Supp(D) ∩Xk)

Dk = Convex (D(Xk)).

If D is constant and has a convex support on each partition
member, we fall back to the previous case post i,j

α = post i,j .
Thus, the approximations in posti,jα will be controlled by the
fineness of the partition and will be improved during the
partition refinement process. Algorithmically, if D is defined
by a conditional functions (Fig. 4), we just have to compute
the convex hull of a finite set of convex polyhedra.

B. Integrating the Discrete State-Space

Now we consider the general case where S = Q×X. We fix
a partition S =

⋃
k Sk of S into abstract values, i.e., such that

for any k, Sk = γ(Ak) is the conjunction of a Boolean formula
and a convex polyhedra. For the sake of simplicity, we assume
that there is no real variable in Q, so that an abstract value Z

can be decomposed as Z = 〈ZQ, ZX〉 ∈ A.
1) Exact Postcondition in a Particular Case: We assume

here a hypothesis similar to (18)

D(q, x) =
{

Di if (q, x) ∈ Ii

∅ if (q, x) ∈ (Si \ Ii) (21)

with Ii ⊆ Si an abstract value and Di a convex polyhedra.
We adapt (20) by taking into account the fact that the discrete
state-space does not evolve when the time elapses, that is, a
trajectory which belong to Si ∪ Sj is necessarily included in
(Si

Q ∩ S
j
Q)× (Si

X ∪ S
j
X). We obtain

posti,j(Z) =
〈

ZQ ∩ Ii
Q ∩ I

j
Q[([

(ZX ∩ Ii
X) ↗Di ] ∩

[
Ii
X ∩ Fi,j ∩ I

j
X

])
↗Dj

]
∩ I

j
X

〉
.

(22)

2) Approximating the Postcondition in the General Case:
If D is not constant on each partition member, we approximate
it as for the purely numeric case. We again take into account
the fact that the discrete state-space does not evolve when the
time elapses, but in a more subtle way. We define an operator
posti,jα obtained by applying (22) with

Ii
Q =

[
Supp(D) ∩ Si

]
Q

Ii
X = Convex

([
Supp(D) ∩ Si ∩ (Ij

Q ×X)
]
X

)

Di = Convex
(
D

(
Si ∩ (Ij

Q ×X)
))

and conversely for Dj , I
j
Q, and I

j
X. The resulting operator is

denoted by posti,jα (D)(Z) and is illustrated in Fig. 9 by the
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TABLE I

Disk Controller’s Analysis (See Fig. 2) With m = M = 2 and ε = 0.8

Statistics About the Example
State Variables Input Variables Num. Constraints Cond. Derivative Function
9 bool + 3 num 5 bool + 1 num 16 7 diff. inclusions, guarded by 66 minterms

[0, IM ] [Om,OM ] Options Success ? Partition Size Comments
loc/trans

1 [0, 0] [0, 0] No refinement No 7/13 Ideal instantaneous reaction
2 [0, 0] [0, 0] Guided ref. w.r.t. oplus, ominus, mode No 20/70
3 [0, 0] [0, 0] As 2 + automatic ref. Yes 57/149 Ref. w.r.t. s ≥ 8 and s ≤ 12 (mainly)
4 [0, 0] [0.6, 0.7] As 3 Yes 58/233
5 [0, 0.59] [0.6, 0.7] As 3 Yes 86/304
6 [0, 0] [0.9, 0.9] As 3 No 21/42 Partition simplified at the end
7 [0, 0] [k, k] As 3 (Yes) 24/52 k<0.8 inferred necessary condition
8 [0, 0] [0.0, 0.0] Only automatic ref. Yes 40/119 To be compared to 3
9 [0, 0.59] [0.6, 0.7] Only automatic ref. Yes 235/850 To be compared to 4

light grey region, with i=1, j =2, and

I1 = 〈b1 ∧ b2 ∧ b3, x1≤0〉 D1 = {ẋ1 =3 ∧ −1≤ ẋ2≤1}
I2 = 〈b1 ∧ b2 ∧ b3, x1 >0〉 D2 = {ẋ1 =4 ∧ −1≤ ẋ2≤1}.

3) Opening Tests on Discrete Conditions: On the discrete
state-space we can also reason by cases, by splitting the
argument Z according to discrete conditions which do not
depend on variables involved in continuous evolution. If such
a condition c appears in the conditional function D, we
decompose the postcondition as follows:

posti,jα

(
ite(c, D+, D−)

)
(Z) =

posti,jα (D+)
(
Z ∩ !c"

)
1 posti,jα (D−)

(
Z ∩ !¬c"

)

where !c" is the set of states satisfying c. This operator is
more precise, as illustrated in Fig. 9 by the hatched region;
here we split the argument Z and the function D according to
the constraint n≥0, which results in

(I1)+ = (I1)− = I1 (I2)+ = (I2)− = I2

(D1)+ = {ẋ1 =3 ∧ ẋ2 =−1} (D2)+ = {ẋ1 =4 ∧ ẋ2 =−1}
(D1)− = {ẋ1 =3 ∧ ẋ2 =1} (D2)− = {ẋ1 =4 ∧ ẋ2 =1}.

We can control the tradeoff between precision and efficiency
by the depth of such decomposition. Moreover, if now the
partition member S2 is refined according to the constraint x2≥
0 into S2

+ and S2
−, splitting the argument Z according to the

constraint n≥0 allows us to discover that n≥0 is a necessary
condition to reach S2

− from Z, and to use this information for
a further partition refinement.

VI. Experiments

A. Implementation

The technique presented in Section V for computing contin-
uous postconditions (and preconditions) has been implemented
in the NBac tool [29]. NBac implements the principles of

dynamic partitioning and is connected to an input automaton
language (implementing the SHA model) and to the Lustre
compiler. It exploits the CUDD BDD library [36] and the
APRON numerical abstract domain library [31]. NBac works
as follows.

1) It takes a system together with the property to prove, and
builds the BDDs and multi-terminal BDDS (MTBDDs)
corresponding to the transition functions and the con-
ditional derivative functions.

2) It then perform reachability analysis (from initial states)
and coreachability analysis (from final or bad states) on
the Boolean abstraction of the system. This corresponds
to standard model-checking, with the difference that the
numerical constraints appearing in Boolean transition
functions are treated as additional Boolean inputs, taking
into account some (easy) implication between them. This
process can typically infer that transition functions of the
form b1’ = (x + 2y > 1); b2’ = (x + 2y > 0) implies that
b′1 ⇒ b′2.
BDDs and MTBDDs are then partially evaluated on
the resulting restricted state-space using a generalized
cofactor operator [13].

3) For some properties, step 2 is powerful enough to prove
the property. Otherwise, the tool starts a full analysis
on both Boolean and numerical variables. It begins
with a rough initial partition and alternates analysis and
automatic partition refinement steps until proving the
property, as described in Section IV.

Compared to the purely discrete version of NBac, we made
two adaptations to the refinement process; first, we took into
account the results of continuous postcondition operations
when gathering the necessary conditions to jump from one
partition member to another one (see Section IV). We also
prevented the splitting of a partition member satisfying x≥0
according to the constraint x ≤ 0. This situation happened
very easily with an automaton like the scheduler depicted in
Fig. 2(c), and leads to useless refinements; the case x = 0
should usually remain merged with either the case x < 0 or
the case x > 0 in the partition (it remains separated when
computing postconditions).
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TABLE II

Analysis of the Steamboiler Case Study of [1]. Depending on the Assumption on the Environment, Many Boolean Variables

Remain Constant. The LUSTRE Code Has About 500 LOC, and Makes a Large Use of LUSTRE Arrays

Statistics About the Example

Assumpt State Variables Input Variables Numerical
Constraints Cond. Derivative Function

1, 2, 3 85 bool + 8 num 10 bool + 2 num 27 9 inclusions guarded by 268 minterms
3 87 bool + 9 num 11 bool + 2 num 30 17 inclusions guarded by 162 minterms

Assumptions Success Max Alternative
Partition Size (Time, Max. Partition Size)

1min No failure Yes, 44 s 218/751 33 s + 105 s, 1212/3809
1max – Yes, 81 s 338/1188
2min Possible failure of pump 0 Yes, 235 s 879/3297 3 m + 14 m, 4964/20 122
2max – Yes, 138 s 557/2083
3min Possible failure of steam flow device Yes, 43 s 218/751 33 s + 105 s, 1212/3809
3max – Yes, 82 s 338/1188
4 min Possible failure of water level device, during at most 20 s separated by at least 40 s Yes, 24 m 314/1157 25 m + >60 m, >6201/28 209
4max – Yes, 91 m 296/1137

B. Disk Controller Example

We first illustrate the usefulness of partitioning according
to numerical constraints (similar observations have been made
in the context of predicate abstraction [3]). We analyzed the
system described in Section II and Fig. 2.

We verify that the disk motor speed never stays more than
8 consecutive time units outside the desired range. Thus,
we already need to partition the state-space according to a
numerical constraint (d ≥ 8) in order to separate “good” and
bad sets of states.

We start all analyses with the control structures of the
scheduler and the property observer process made explicit in
the partitioned abstract domain. Table I gives some statistics
about the example, and details our experimental results for
various parameters and options. Concerning the statistics about
the derivative function, notice that the number of distinct
differential inclusions does not correspond to the number of
modes in classical model. For instance, if one considers the
conditional derivative function of the scheduler of Fig. 2(c), it
contains only two inclusions ∅ and ṫ = 1, but this corresponds
to four modes. A timed automaton [4] generates in our model
a derivative function with only two inclusions: ∅ (when outside
the global invariant), and the set

∧
i ċi = 1 which specifies that

all clocks have a rate of 1.
In Table I, lines 1–3 show that we need to refine the partition

w.r.t. numerical constraints in order to prove the property. In
particular, line 3 shows that we need to partition according
to s ≥ 8 and s ≤ 12 to make the invariants of Fig. 2(d)
convex. Lines 3–5 illustrate that more nondeterminism in the
scheduler requires more partition refinement steps. We fail to
show the property if Om = OM = 0 .9 (line 6). We then find a
necessary condition, k < 0.8, on the parameter k = Om = OM

(line 7) for the property to hold. Thus, we are able to analyze
the influence of the reaction delay between input and output
of the discrete controller. Lines 8–9 show the analysis without
initial guided refinement; the results are comparable (line 8)
or worse (line 9).

C. Steamboiler Case-Study

We now show that if we treat the discrete part symbolically,
we can scale up w.r.t. the complexity of the discrete controller.
The case-study is the steam-boiler controller of Abrial [1].
We implemented faithfully the original specification of [1]
in Lustre (with three instead of four pumps and without
initialization phase). Hybrid automata model the behavior of
physical quantities and the scheduler depicted in Fig. 2(c)
(with IM = Om = OM = 0 as in [1]). The controller can
enable or disable 0, 1, 2, or 3 pumps at each step, and
takes into account detected failures. It needs some kind of
anticipation, as there is a delay when switching up a pump.
Moreover, the controller has to maintain its own view of the
environment, and to exploit this simulated view in order to
take adequate decision, for instance in case of water-level
device failure. The first versions of the controller were wrong
and required some refinements to be correct (limit cases were
detected using a Lustre simulator and a discrete version of
the environment).

The property to be verified is that the water level q stays in
[M1, M2]. This property is decomposed into two properties
(minimal and maximal bound). We check it for various as-
sumptions on the environment, modeling different fault mod-
els. Indeed, if all the devices silently fail, the property on the
water level cannot be ensured by the controller. We considered
thus four fault models on the environment. The top table
of Table II gives statistics about the global model obtained,
in terms of number of variables, numerical constraints, and
derivative functions. It should be noted that depending on
the considered fault model, several Boolean variables may
be constant, so we give below other means if evaluating the
complexity of the global model.

Table II presents our experimental results. “Max partition
size” refers to the maximal size of the partition in the course
of the refinement process. We used the control structure of
the hybrid part of the system as the initial partition, and we
then relied on the automatic refinement heuristics described
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in [29] [except for assumption 4, where we guided the first
refinement step according to the state of the pumps (on
or off)]. Assumption 4 corresponds to the most complex
fault model: the controller has to use its own simulation of
the water level to take decisions, and the property is true
only if the failure does not last too much, and if there is
enough time between two failures to allow the system to go
back to a “normal” state. For this assumption, the number
of refinement steps is comparable to the other experiments,
but the analysis time is much higher. This is essentially
due to more complex BDDs and convex polyhedra compu-
tations.

As the other verification tools for hybrid systems accept
only lower-level non-symbolic automata, which manipulates
only numerical variables, making a direct comparison would
have required non-trivial translators and would have been very
involving. We make here a comparison with the following
alternative analysis method, consisting of:

1) performing a reachability analysis of the Boolean ab-
straction of the system, and restricting the initial parti-
tion to the computed state-space;

2) refining incrementally the partition according to all
Booleans;

3) and last analyzing and further refining the partition until
success.

The column “Alternative” gives the time and max. partition
size obtained by this method. The time is decomposed in the
time of steps 1 + 2 and the time of step 3. The max. partition
size first gives an idea of the size of the reachable part of
a non-symbolic automaton model, and also shows that our
automatic refinement is quite good, as our method succeeds
to prove the property on a much smaller partition. Regarding
time, the alternative technique is always more expensive (by
factors of 3–4), or even fails for assumption 4.

Regarding the level of automation, the initial partition we
provide is reasonable; it is the explicit control structure of
the hybrid environment. The very first refinement steps are
guided and further partition according to the state of the three
pumps. Then we rely only on automatic refinement heuristics
described in [29]. For assumption 4, we added a few more
guided refinement steps, by considering some state variables
of the Lustre controller that corresponds to state variables of
the environment.

More details can be found at http://pop-art.inrialpes.fr/people/
bjeannet/nbachybrid/nbachybrid.html.

VII. Conclusion

We first proposed a symbolic model for hybrid systems,
SHA, that allowed us to embed directly higher-level Lus-
tre program in a hybrid automaton and also to implement
an analysis technique which can combine symbolically both
the discrete and the continuous behavior. We then defined the
abstract postcondition induced by this symbolic setting, in the
context of a partitioned domain.

We implemented the proposed method and we succeeded to
prove the global safety property of a very faithful implemen-
tation of the steamboiler case study, for various assumptions

on the environment and possible failures (occurrences and/or
duration). The alternative technique that enumerates all reach-
able Boolean valuations before analyzing numerical variables
proved to be much slower, or impractical in complex cases.

We insist on the fact that previous attempts to verify hybrid
models of this case study focused on the physical model
of the devices and considered a very simplified version of
the software controller. Besides the limitations of the used
verification methods, they could hardly specify a detailed
model without relying on a real programming language like
Lustre.

Our experiments also raised some issues. First, we made the
classical observation that guiding the refinement process by
providing some (obvious) control structure [like the scheduler
of Fig. 2(c)] helps a lot. Related to this is that the refinement
process performs only partition refinement, and does not have
criteria to group back partition members when it seems that the
refinement did not really improve the precision. It also appears
that the widening in some cases loses important information,
which causes further refinement steps. The guided widening
technique of [20] improves the precision, but makes the analy-
sis much more expensive. Another point is that it is difficult to
manually inspect on the examples how the refinement proceeds
w.r.t. the original Lustre program, because our tool exploits
a lower-level representation of the Lustre program that loses
its structure. As a consequence, we plan to connect our tool
directly to the Lustre language in order to implement more
sophisticated refinement techniques, to identify more easily
performance bottlenecks, and to experiment a larger set of
examples.

It would be also very interesting to adapt and experiment the
k-induction approach (see [22]) in the case of hybrid systems,
and to compare it to this approach. The two approaches
are indeed quite complementary; the k-induction approach
ignores reachability information and performs only bounded
propagation of properties, but in a exact way; our abstract in-
terpretation based approach performs unbounded propagation
at the cost of approximations.
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