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Abstract. We present a technique for designing reconfiguration con-
trollers in the Fractal component-based framework. We obtain discrete
control loops that automatically enforce safety properties on the inter-
actions between components, concerning, e.g., mutual exclusions, forbid-
den or imposed sequences. We use a reactive programming language,
with a new mechanism of behavioural contracts. Its compilation involves
discrete controller synthesis, which automatically generates the correct
adaptation controllers. We apply our approach to the problem of adaptive
ressource management, illustrated by the example of a HTTP server.
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1 Motivation and example application

1.1 Model-based control for Fractal

The Fractal component-based approach Fractal [4] is a modular compo-
nent model that can be used with various programming languages, to design,
implement, deploy and reconfigure systems and applications, from operating
systems to middleware platforms and to graphical user interfaces. It is equipped
with a hierarchical structure, and puts an emphasis on reflexivity, in order to
support adaptation and reconfiguration. Components are the basic construct en-
abling the separation of interface and implementation. They support the explicit
representation of the software architecture, which is essential for adaptivity and
manageability. It is the basis for performing run-time software reconfiguration
and system supervision.

Management of components then consists of monitoring, control and dynami-
cal reconfiguration of the architecture. The composite structure offers a uniform
construct for this: introspection functionalities enable monitoring the state of
system, while re-configuration actions allow to change it. A whole range of levels
of control is supported, from black box with no control, to full fledged introspec-
tion. A lifecycle controller defines the adaptive behavior of components.

⋆ This work is partially supported by the Minalogic MIND project.



Adaptive systems and resource management Computing systems are pro-
liferating, in a great variety of environments, typically embedded systems. They
have to be more and more adaptive: they must perform reconfigurations in re-
action to changes in their environment concerning e.g., power supply, commu-
nication bandwidth, quality of service, or also typically dependability and fault
tolerance for a safe execution. Another motivation for adaptative and autonomic
systems is the complexity of administration, and the need for automated tech-
niques replacing manual or ad hoc management [16]. The run-time management
of this dynamical adaptivity is the object of research on ways to design and imple-
ment adaptation strategies. One approach is autonomic computing [15], where
functionalities are defined at operating system or middleware level, for sensing
the state of a system, deciding upon and performing reconfiguration actions.

The management of dynamical adaptivity can be considered as a closed con-
trol loop, on continuous or discrete criteria. Figure 1(a) shows how, on the basis
of monitor information and of an internal representation of the system, a control
component enforces the adaptation policy, by taking decisions w.r.t. the recon-
figuration actions to be executed [16]. The design of control loops with known
behaviour and properties is the classical object of control theory. Applications
of continuous control theory to computing systems have been explored quite
broadly [14]. In contrast, logical aspects, as addressed by discrete control theory,
or even by hybrid systems combining continuous and discrete dynamics, have
been considered only recently for adaptive computing systems [23]. Even if qual-
itative aspects are considered for long e.g., in quality of service issues (QoS) [17],
the technical approach did not involve the benefits of control techniques.
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Fig. 1. Adaptation control and its BZR programming.

We address this with the BZR programming language [10] as shown in Fig-
ure 1(b). The class of dynamical changes addressed is the run-time switching
between configurations characterized by stable states, in which a given comput-
ing activity is executed. As an example of application, adaptation mechanisms
can be used for the dynamical management of resources, in a variety of ways. It
is a way to handle the coordination of the shared access to constrained resources,
which can be exclusive or have a bounded capacity, or have constraints in the



sequences in which they can be used. We concentrate on logical aspects of the
adaptation control, with abstract modelling of discrete levels of consumption of
quantitative resources.

Control based on reactive models One level of adaptive systems is related
to events and states, defining execution modes or configurations of the system,
with changes in the architecture, and in the activation of components. Reactive
languages based on finite state automata are widely used for these aspects, like
StateCharts [13], or StateFlow in Matlab/Simulink , or UML variants. Their un-
derlying model, transition systems, is also the basic formalism for discrete control
theory, which studies closed-loop control of discrete-event and logical aspects of
systems [6]. Different reactive languages exist, like StateCharts mentioned be-
fore, and the languages of the synchronous approach [3]: Lustre, Esterel or Lucid
Synchrone [8]. They are used industrially in avionics and safety-critical embed-
ded applications design [22]. They offer a coherent framework for specification
languages, their compilers, with distributed code generation, test generation and
verification.

In this framework, a basic technique used for the design of control loops is
Discrete Controller Synthesis (DCS) [21,6]. It consists in, from a controllable
system, and a behavioural property, computing a constraint on this system so
that the composition of the system and this constraint satisfies the property. An
automated DCS tool exists [18], connected to reactive languages. It has been
applied to the automatic generation of task handlers [19], and integrated in a
domain-specific language [11]. It was also applied to fault-tolerance, in an ap-
proach where fault recovery is seen as the reconfiguration of computing activities
from a given placement on the execution architecture, by exploiting its redun-
dancy, and switching and migrating to another one where the faulty processor is
not used any more [12]. More recently the BZR language has been defined with
a contract mechanism, which is a language-level integration of DCS [1,10]. The
user specifies possible behaviours of a component, as well as safety constraints,
and the compiler synthesises the necessary control to enforce them. The pro-
grammer does not need to design it explicitly, neither to know about the formal
technicalities of the encapsulated DCS. It is briefly explained in (see Section 3),
with more detail in Appendix A.

Contributions We present an integration of reactive model-based techniques
for the control of reconfiguration, in the Fractal component-based framework.
We concentrate on the lifecycle control, and present a structural association with
reactive nodes in the BZR language. It is a language-based solution, to generate
correct by construction controllers for the discrete loop, for safety properties on
the interactions of components. In the event and state-based aspects where it
is applicable, the DCS formal method is made usable by non-experts, as it is
encapsulated in a programming language and compiler. The generated code (C
or Java) can be concretely integrated in the run-time executives. We make a
study of the example of a component-based HTTP server. This way, designers



can benefit from, on the one hand, the Fractal approach to component-based
systems, and on the other hand, the BZR language for the automated synthesis
of reactive control.

In the following, the example application is presented in Section 1.2. Brief
background on the Fractal component-based model and on reactive models and
DCS is given in Sections 2 and 3. The structural integration of reactive control in
Fractal is described in Section 4, illustrated with the application, and Section 5
sketches execution-level integration.

1.2 Example of a HTTP server

We consider a HTTP server, illustrated in Figure 2, with its adaptation require-
ments. It is a variation [7] of the Comanche HTTP server used as an example in
tutorials1 for the Fractal component-based middleware platform [4]. Incoming re-
quests are read by the RequestReceiver component, which transmits them to the
RequestAnalyser component. The latter can forward them to the RequestHandler

component, which queries a farm of file servers to solve the request, through a
RequestsDispatcher. RequestAnalyzer can also consult a cache in the CacheHan-

dler component, in order to master the response time and keep it as short as
possible. A Logger component enables logging of transactions, and can be con-
nected to the RequestsAnalyser. The latter can monitor e.g., a high number of
similar requests.
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Fig. 2. The Comanche HTTP server architecture.

The available degrees of dynamical reconfiguration are that the File Servers,
CacheHandler and Logger components can be activated or deactivated.

The resources involved in the system and its dynamical management are the
consumption in energy, and an exclusive resource shared by the CacheHandler

and Logger. Requirements for these evolutions define the adaptation policy:

1. the CacheHandler is activated in case of high number of similar requests;

1 http://fractal.ow2.org/tutorial/

http://fractal.ow2.org/tutorial/


2. the number of deployed file servers must be adapted w.r.t to the overall load;
3. a logging request by the system administrator, it should not be denied;
4. logging and cache handling should be exclusive, due to the access to some

other resource.

These rules must be enforced by the adaption controller as in Figure 1(a).

2 The Fractal component-based model

We briefly introduce the basics of the Fractal component model [4], in order to
define the structures to which we propose a behavioral extension.

server interfaces

control interfaces

membrane

content

client interface

Fig. 3. A Fractal component

2.1 Components and composites

A Fractal component, as shown in Figure 3, is equipped with an interface giv-
ing accesses to the component, of two kinds: server interfaces accept incoming
operations invocations, while client interfaces support outgoing operation invo-
cations. It has a content, which can consist of a finite set of sub-components.
Special interfaces concern control aspects, which are handled in the membrane.

The other mechanism in Fractal to define architectures is binding, which is
connecting interfaces of components: this is the only way to make them com-
municate. A primitive binding connects one client interface with one server in-
terface; composite bindings can be defined also: bindings are components them-
selves. Figure 4(a) gives an example for the BackEnd component of Section 1.2.
It features three sub-components, connected by appropriate bindings. Request-

Analyser and Logger are base components, while RequestHandler is a composite,
itself decomposed into binded sub-components.

A Fractal component is equipped with a membrane, which supports inter-
faces to introspect and reconfigure its internal features. It is composed of several
controllers, provides an explicit and causally connected representation of the
content, and performs control on the sub-scomponents, e.g., suspending, check-
pointing, resuming activities, installing bindings.



2.2 Reconfiguration control in Fractal

There are several levels of control, from base components (black boxes, with
no introspection or reconfiguration capability), to components exposing their
external structures (clients and servers available), and to components exposing
their internal structures, and providing for reconfiguration actions. Examples of
possible controllers are managing:

– attributes (through get and set operations),
– bindings (binding and unbinding client interfaces to server interfaces),
– contents (adding and removing subcomponents),
– and, most interestingly to us, lifecycle, where explicit control is given over

the main behavioral phases of a component.
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Fig. 4. Two configurations of the Back End component

Reconfiguration actions which we will consider in this work will be adding
and removing a component, and binding and unbinding primitive connections.

Implementations of Fractal exist in different contexts, academic and indus-
trial, and embedded in different host languages, namely C (with several variant,
like Cecilia, or Think targeted at embedded systems, or their industrialization
MIND2) or Java [4] (Julia). Concerning reconfiguration mechanisms, libraries
for introspection and actions have been proposed in Fscript3 [9].

Modelling the example of Section 1.2 in Fractal involves constructing a com-
ponent architecture simply following the informal drawing of Figure 2, for the
different configurations. For the case of the Back End component, Figure 4(a)
shows, in a classical Fractal graphical syntax, a configuration with the logger
active, while Figure 4(b) shows another configuration, where only the cache is
active. The reconfiguration themselves are described by giving the actions re-
quested in order to perform them. In this case, reconfiguring the Back End

2 http://mind.ow2.org
3 http://fractal.ow2.org/fscript/

http://mind.ow2.org
http://fractal.ow2.org/fscript/


component from configuration 4(a) to configuration 4(b) involves the follow-
ing sequence: remove the Logger, unbind it from the RequestAnalyser, add the
CacheHandler, bind it with the RequestAnalyser.

Fractal and adaptive systems, and behavioral models have been associated in
the litterature, following a variety of approaches e.g. parallel frameworks [5] or
formal models [2,20]. Our work is specific in that it concentrates on reconfigura-
tion control, and proposes to relate this aspect of Fractal with the synchronous
approach to reactive systems and particularly DCS techniques, which we present
next, in order to design correct by construction control loops.

3 Programming reactive systems in BZR

In this section we first briefly introduce the basics of the Heptagon language,
to program data-flow nodes and hierarchical parallel automata [8]. We then de-
scribe the BZR language, which extends Heptagon with a new contract construct
[1,10]. As for all reactive languages introduced in Section 1.1, the basic execu-
tion scheme is that at each reaction a step is performed, taking input flows as
parameters, computing the transition to be taken, updating the state, triggering
the appropriate actions, and emitting the output flows.

3.1 Data-flow nodes and mode automata

Figure 5(a) shows a simple example of a Heptagon node, for the control of
a task that can be activated by a request r, and according to a control flow
c, put in a waiting state; input e signals the end of the task. Its signature is
defined first, with a name, a list of input flows (here, simple events coded as
Boolean flows), and outputs (here: the Boolean act). In the body of this node
we have a mode automaton : upon occurrence of inputs, each step consists of
a transition according to their values; when no transition condition is satisfied,
the state remains the same. In the example, Idle is the initial state. From there
transitions can be taken towards further states, upon the condition given by the
expression on inputs in the label. Here: when r and c are true then the control
goes to state Active, until e becomes true, upon which it goes back to Idle;
if c is false it goes towards state Wait, until c becomes true. This is a mode
automaton [8] in the sense that to each state we associate equations to define
the output flows. In the example, the output act is defined by different equation
in each of the states, and is true when the task is active.

We can build hierarchical and parallel automata. In the parallel automaton,
the global behaviour is defined from the local ones: a global step is performed
synchronously, by having each automaton making a local step, within the same
global logical instant. In the case of hierarchy, the sub-automata define the be-
haviour of the node as long as the upper-level automaton remains in its state.



Idle Wait

c

delayable(r,c,e) = act

r and c

act = false

e

Activeact = true

act = false
r and not c

(a) Mode automaton node.

f(x1, . . . , xn) = (y1, . . . , yp)
(eA, eG) = cf (x1, . . . , xn, y1, . . . , yp)

assume eA

enforce eG
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y1 = f1(x1, . . . , xn, c1, . . . , cq)
· · ·

yp = fp(x1, . . . , xn, c1, . . . , cq)
(b) BZR contract node.

Fig. 5. Example of programs in graphical syntax.

3.2 Contracts in the BZR language

This new contract construct encapsulates DCS in the compilation of BZR [1,10].
Models of the possible behaviours of the managed system are specified in terms
of mode automata, and adaptation policies are specified in terms of contracts,
on invariance properties to be enforced. Compiling BZR yields a correct-by-
construction controller, produced by DCS, as illustrated in Figure 1(b), in a
user-friendly way: the programmer does not need to know technicalities of DCS.

As illustrated in Figure 5(b), we associate a contract to a node. It is itself a
program cf , with its internal state, e.g., automata, observing traces, and defining
states (for example an error state where eG is false, to be kept outside an in-
variant subspace). It has two outputs: eA, assumption on the node environment,
and eG, to be guaranteed or enforced by the node. A set C = {c1, . . . , cq} of lo-
cal controllable variables will be used for ensuring this objective. This contract
means that the node will be controlled, i.e., that values will be given to c1, . . . , cq

such that, given any input trace yielding eA, the output trace will yield the true
value for eG. This will be obtained automatically, at compilation, using DCS.
Also, one can define several such nodes with instances of the same body, that
differ in assumptions and enforcements.

Without giving details [10] out of the scope of this paper, we compile such
a BZR contract node into a DCS problem as in Figure 6. The body and the
contract are each encoded into a state machine with transition function (resp.
Trans and TrC), state (resp. State and StC) and output function (resp. Out

and OutC). The contract inputs XC come from the node’s input X and the
body’s outputs Y , and it outputs eA, eC . DCS computes a controller Ctrlr,
assuming eA, for the objective of enforcing eG (i.e., making invariant the sub-
set of states where eA ⇒ eG is true), with controllable variables c1, ...cq. The
controller then takes the states of the body and the contract, the node inputs
X and the contract outputs eA, eG, and it computes the controllables Xc such
that the resulting behaviour satisfies the objective.

The BZR compiler is implemented on top of the Heptagon compiler and the
Sigali DCS tool [18]. Its performance is subject to the natural complexity of
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Fig. 6. BZR contract node as DCS problem

the algorithms, which is exponential just as the model checking algorithms are,
but there are arguments in favor of its scalable use:

– the technique is applied to a relatively small fragment of the complete system,
which is only its reactive, state-based control part; all the data-oriented
code of the system, which is usually its vast majority, is not taking part in
this controller synthesis, thanks to the separation of concerns offered by the
components structure;

– state space exploration algorithms used in model-checking as well as in DCS
have known notable progress, due to years of research on efficient codings,
such as symbolic techniques and BDDs (Binary Decision Diagrams); as a
result the size of systems amenable to these techniques has grown substan-
tially; this point, related to the previous one, makes us claim that we can
handle the specialized control part extracted from large systems;

– it automatically generates an executable control solution, correct by con-
struction, which is to be compared with manual programming, verification
and debugging, which would be extremely difficult, as soon as the system is
too large to be designed by a small team. It is then even more costly in time,
and can involve days or weeks of engineering time.

Moreover, the use of modular DCS can help to reduce significantly this cost [10].

The execution cost of the controller is very small. Integration of our target-
independent language and compiler in a development process follows the general
scheme as in Figure 12 in the case of Fractal [4], as explained in Section 5.
The control part is extracted from the adaptive system, in the form of a BZR
program. Its compilation is made in derivation of the main system development
process, and produces the synthesized constraint on controllables, composed with
the sequential C code for the automata. They are assembled and linked back into
the global executive.

More detail on the BZR language is given in examples in the next sections,
illustrated with nodes and contracts, and in Section 5.1 for its implementation.
Essentials on DCS are given in Appendix A, and a concrete BZR syntax example
in Appendix B.



4 Associating reactive control with a Fractal model

4.1 General approach

Our extension to Fractal consists of the addition of elaborate behavioral con-
trollers, in the form of labelled transition systems and contracts, which were not
present previously in Fractal, where only an informal life cycle was defined.

We follow the Fractal hierarchical components structure, and describe the
way we associate, at each level of component, automata-based models of the be-
havior of the part relevant for reconfiguration in this control scope i.e., the activa-
tion and deactivation, and binding and unbinding of the direct sub-components.
The simple principle is illustrated for base components in Figure 7(a): the control
defined in the membrane is modelled with automata, which can be composed in
parallel when they describe different aspects of the behavior. In particular, there
is an explicit representation even of sub-components that are not activated but
could be. In order for a predictive control to be applied, the behavioral model
must feature a representation of absence. For composites, which can be dynam-
ical or not, Figure 7(b) sketches the composition of the behaviors of the compo-
nent itself, with the parallel composition of behaviors of sub-components. It can
be noted that the synchronous composition is associative and commutative.

control interfaces

membrane

content

client interface

server interfaces

(a) Behavior of a base component. (b) Behavior of a composite.

Fig. 7. Automata modelling the behavior of Fractal components.

4.2 Base components

Every component has a lifecycle controller, which indicates its activation state,
as shown in Figure 8(a). The adds and removes, received from the reconfiguration
automata, lead respectively to state Active and to the inactive state Idle. For
optimisation, this is useful essentially if the upper level composite is dynamic,
i.e., does perform activations and deactivations of this component.

Other aspects of the component behavior, even if they are not distinguished
in Fractal component architecture, can be meaningfully modelled in automata or
equations. In our example, Figure 8(a) features equations associated to the states
of the mode automaton, defining cons, which indicates the level of consumption
of a resource (here, it is related to energy); in the active state it is defined by a
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Fig. 8. Models of base components behaviors.

constant cons_act, whereas in the inactive state it is null. In the application ex-
ample, costs when active are given the following values, for the cache: 50, for the
logger: 30, and for the file server 2: 20. This lifecycle node will be instanciated for
each of the components, as shown in the case of the CacheHandler in Figure 9 in
concrete BZR textual syntax. This is done similarly for requests_dispatcher,
logger, file_server1, file_server2, and requests_receiver.

The RequestAnalyser component can detect phases with a high number of
similar requests: it has a second automaton shown in Figure 8(b), which distin-
guishes the two states Norm and Dense, upon input d.

node cache_handler(add,remove:bool) returns (active:bool;cons:int)

let (active,cons) = lifecycle(add,remove,50);

tel

Fig. 9. Instanciation of the lifecycle node for CacheHandler.

4.3 Composites

Static composites. Composites can be associated with the same behavioral
information as base components. The transitions of their lifecycle controller, have
to be propagated to the sub-components, for them to be added and removed,
according to the composition semantics chosen for Fractal.

Behavior models of sub-components are composed in parallel, as in the right
part of Figure 10 for the example of the RequestHandler, where sub-nodes are
invoked for the requests dispatcher, file servers and request analyser. Additional
equations and automata can be defined as well. Typically, in our example, the
costs of sub-components are summed up in order to define the composite cost,
with the equation defining cons in terms of values coming from sub-nodes.



request_handler(up, down) = cons

H2

H1

down /up /
add_fs2 remove_fs2

(active_rd, cons_rd) =
requests_dispatcher();

(active_fs1, cons_fs1) = file_server1();
(active_fs2, cons_fs2) =

file_server2(add_fs2, remove_fs2);
cons = cons_rd + cons_fs1 + cons_fs2;

Fig. 10. Model of the Request Handler composite.

Reconfigurable composites. If the composite is static i.e., not reconfigur-
ing explicitely its sub-components architecture, then its behavior is sufficiently
defined by the elements described above. For a dynamically reconfigurable com-
ponent, we associate an additional explicit automaton where, basically, states
correspond to configurations, and transitions describe which reconfigurations
are possible. Parallel automata can handle independent aspects or dimensions
of the configurations. Exchanges of events between parallel automata can define
synchronizations between allowed reconfigurations. We apply the BZR program-
ming methodology: first describe possible behaviours with imperative automata,
then specify control objectives in the declarative contract. In the framework of
Fractal, we can have several levels of specification for a reconfiguration policy

Reconfiguration policy by automata. This consists simply in programming in
terms of automata i.e., specifying explicitely the requested behavior. The left
part of Figure 10 shows the reconfiguration automaton for RequestHandler, that
handles two configurations for the file servers that are deployed or shut down;
in H2 two are up, in H1 just one; transitions are taken w.r.t. inputs up and down,
and the file server 2 is added or removed accordingly. There is no contract at
this level, but we will see later that up and down will be used as controllables.

Another example is in Figure 11 for BackEnd. The concrete code for this
part of the example can be seen in appendix B. Possible behaviors are described
in a reconfiguration automaton, handling logging and cache with three config-
urations: cache active (C), logging active (L), or none (N). The fact that this
automaton is programmed with no state with both active takes care of the ex-

clusion requirement 4 of Section 1.2. Transitions are conditioned by two variables:
the uncontrollable l (coming from the user), and c, which will be used as a con-
trollable. If l is true then the configuration starting the logger is taken, and if
it is false, then the logger is stopped; the cache can be activated when c is true,
only if the logger is not. This programming takes care of requirement 3.

Such programming, not making use of contracts, or DCS, can be validated
with the classical methodology of verification, typically with model-checking.

Reconfiguration policy by logical contract. More originally, specifications with
contracts amount to specify declaratively the control objective, and to have an
automaton describing possible behaviors, rather than writing down the complete



correct control solution. The basic case is that of contracts on logical properties
i.e., involving only Boolean conditions on states and events.

In the upper part of Figure 11, the contract is itself a program, with three
controllable variables, defined in the with part, used for enforcing the objec-
tives, and its own equations. One of them, the cache policy (requirement 1 of
Section 1.2), is an example of simple logical property, and is encoded as :

pcache = (dense and not active_logger) implies active-cache

which can be encoded in primitive Boolean operators as4:
pcache = not (dense and not active_logger) or active_cache

back_end(l, dense_req) = cons

pcache = not (dense and not active_logger) or active_cache;
pload = (cons <= 60);
assume true

enforce (pcache and pload)

with up, down, c : bool

not l & cnot l & not c
/ remove_l

not c & not l / remove_c

c & not l / add_c

l / remove_c, add_l
l / add_l

L

CN

(cons_rh) = requests_handler(up, down);
(active_cache, cons_cache) =

cache_handler(add_c, remove_c);
(active_logger, cons_l) =

logger(add_l, remove_l);
(dense, active_ra, cons_ra) =

requests_analyzer(dense_req);
cons = cons_cache + cons_l + cons_ra;

Fig. 11. The BZR node for the Back end component.

The control objective then consists in making this predicate invariantly true

i.e., constraining behaviors to stay invariantly within the states where this pred-
icate is true. There is no special assumption made in the environment, on the
expected value of inputs. This is simply stated as:

assume true

enforce pcache

Here, BZR compilation and DCS produce the dynamical, state-dependent
constraint on c such that the cache will be controlled following the requirement 1.

Reconfiguration policy by contract with weights. A more elaborate form of con-
tract can be used, involving weight functions associated to states. This technique
is less powerful than timed or hybrid automata, but also less costly w.r.t. the
synthesis algorithms, and it has the benefit of allowing for some expression of
quantitative aspects of a system, in terms of static constant values and expres-
sions on them. They are transformed back into logical properties, in the sense
that we consider invariants on the respect of bounds.

4 a ⇒ b ≡ ¬a ∨ b



An example of a weights contract is seen in the upper part of Figure 11. One
equation of the contract program encodes the load-related adaptation aspect of
the requirements of Section 1.2 (requirement 2):

pload = (cons ≤ 60)

This control objective concerns quantitative weights, but is actually also a
logical invariance, so it can be treated as above:

assume true

enforce pload

Here, BZR compilation and DCS will produce the constraint on up and down

such that the file server will be controlled according to requirement 2.

4.4 Structural control of Fractal components

This shows how a controller for adaptation policies defined by the requirements
above, involving mutual exclusion and insertion of reconfiguration tasks, can be
obtained with our mixed imperative / declarative method and language. Behav-
iors are described locally, structurally following the hierachy of components in
Fractal. Their composition is made by the compilation. The adaptation policy
can be programmed in the automata, but it can also be described declarativly,
and the controller is derived automatically and correctly by DCS. Improvements
in user-friendly useability could be the definition of a library of predefined pat-
terns for reconfiguration automata and objectives; further in that direction, they
could serve to define a domain-specific language, where BZR would be hidden
as an internal format [11]. On the side of control techniques, exploiting weights
for optimal control, is not yet covered in BZR compilation, but the tools and
models exist and could be integrated [19].

5 Execution-level integration

Figure 12 describes the development process of our method. The complete BZR
program, comprising both automata and contracts, is first extracted from the
Fractal specification. The BZR compiler then produces both sequential C code,
and Boolean equations (modelling the BZR program) and synthesis objectives.
These equations and objectives allow the DCS tool to produce a constraint on
free controllable variables. These constraints are resolved at execution time by a
resolver embedded in the C code. This C code is then linked back with the one
generated by the Fractal compilation.

5.1 BZR code and compilation

As we saw before, each Fractal component is given a BZR node. The modular
compilation of this language allow then to obtain, through the process exposed
in Figure 12, one C function “step” for each Fractal component. It handles the
lifecycle of its associated component, calling in turn the “step” functions of the
active sub-components. The DCS is performed on the synchronous composition,
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Fig. 12. Development process for BZR, in the case of Fractal.

performed at compilation time, of automata of all sub-nodes. The semantics of
the language guarantees the equivalence of the compilation towards executed C
code, and the one towards Boolean equations for DCS.

Concerning performance aspects, the synthesis time is clearly the bottleneck
of our approach, and the final controller size is, for the same reasons as the syn-
thesis time, exponential in the size of the initial program, but, as we mentioned
in Section 3.2, we can handle non-trivial systems in practice. T This controller
consists of sequences of conditionals (translation of binary decision diagrams),
and its online evaluation is polynomial in the size of the initial program. For the
example of this paper, both DCS and on-line resolution of the controller take
only few ms (standard Pentium, 2.33 GHz).

5.2 Linking executable codes

The step function obtained by BZR compilation handles the lifecycle by:

1. keeping a persistent local state, modelling the life cycle of the actual com-
ponent, to help the decisions of the synthesized controller,

2. actuating, on each call, on the actual state of the component via the outputs
of the node, e.g, by means of calls of reconfiguration scripts, so as to keep
this actual state coherent with the internal state of the BZR node.

This second point can be fullfilled, e.g., by associating to outputs of each local
node reconfiguration actions programmed in FScript [9]. We give the action
associated to the output add_logger of the back_end node in Figure 13.

5.3 Simulation and typical scenario

Our BZR program can be compiled and executed, or simulated with a chrono-
gram graphical simulator5 as shown in Figure 14. In the left part, on top, the user
interface comprises buttons where the user clicks inputs (true or false values
for the two variables). Outputs of the current step are displayed just below, as
well as the current step number since the initial state. The lower part shows the

5 courtesy of Verimag.



action addFS2(root) {

logger = new("Logger");

set-name($logger,"logger");

add($root,$logger);

bind($root/child::analyzer/interface::logger,

$logger/interface::logger);

start($logger);

}

Fig. 13. Reconfiguration actions programmed in FScript.

simulation control panel, with a button triggering one step. The right part shows
the graphical chronogram display of execution traces, with values at each step.

A typical scenario illustrates the intervention of the controller on the system,
so that control objectives are preserved. Starting from (Norm, H2, N), when d oc-
curs (step 11), by requirement 1 (first part of the contract) the cache is started,
and by requirement 2 (second part of the contract) server f2 is stopped (other-
wise the available load would be overshot). Hence we go in state (Dense, H1, C).
When l occurs (step 17), then by requirements 3 and 4, programmed in Back-

End, the cache is stopped, the log is started, and by requirement 2 (second part
of the contract) the server f2 can be started again, and we go to (Dense, H2, L).

Fig. 14. Simulation.

6 Conclusion

Contributions We propose a technique to design reactive model-based controllers
for reconfiguration in the Fractal component-based framework. We consider them



in terms of a discrete controller synthesis problem, solved in the compilation of
a programming language ensuring logical safety properties. We obtain discrete
control loops for adaptive systems, that can be used e.g., for the safe management
of resources: we illustrate the approach with a HTTP server example.

Discussions It can be noted that in the current Fractal, there seems to be no
other way to describe reconfiguration than by enumerations the sequences of
actions performing them, rather than having a higher-level formalim to describe
the reconfiguration (what to reconfigure) independently of their implementation
of actions (how to do it). We believe that a Mode Automata formalism [8] might
be an interesting, well structured way to define configurations as graphs encapsu-
lated in states of automata, that can be composed hierarchically and in parallel;
but this perspective is out of the scope of this paper.

As DCS is a costly algorithmic operation by nature, typically exponential
in the number of state variables, it is important to consider techniques to face
the combinatorial explosion. It can be noted however that modern symbolic
techniques are able to handle in short computation times, in the order of minutes,
state spaces of millions of states. Still, scaling up involves specific efforts, and
our language is defined in such a way that when a contract node is decomposed
into sub-nodes, themselves equipped with sub contracts, DCS is decomposed
modularly into local DCS problems, which can be solved independently [10].
At each level, sub-contracts serve as an abstracted model of sub-components in
the computation of the local controller. Although not explicitely exploited in
this paper, this modularity support is expected to fit particularly well in the
hierarchical component-based architectures of Fractal.

Perspectives Ongoing work on the integration of Fractal and BZR includes
building a more elaborate and refined behavioral model of Fractal components,
implementing a concrete integration at the ADL level with the C implementation
of Fractal, exploiting hierarchy and modularity in BZR [10], treating concrete
case-studies in cooperation with industrial partners in the MIND project, and
enriching the models with e.g., reachability or optimization aspects [19].

Perspectives concern ongoing work on the integration of our technique with
several targets, other than Fractal [4] object of this paper: FPGA-based recon-
figurable architectures, administration loops in a Java virtual machine, and the
Orccad control systems design environment.
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A The BZR language, and Discrete controller Synthesis

Behavior of BZR programs can be represented by a transition system, as illustrated in
the inside box of Figure 15: a transition function Trans takes as inputs X as well as
the current state value, and produces the next state value. The latter is memorized by
State for the next step. The output function Out takes the same inputs as Trans, and
produces the outputs Y . Discrete controller synthesis (DCS) allows to use constructive
methods, that ensure, off-line, required properties on the system behavior. DCS is an
operation that applies on a transition system (originally uncontrolled), where inputs X

are partitioned into uncontrollable (Xu) and controllable variables (Xc). It is applied
with a given control objective: a property that has to be enforced by control. In this
work, we consider essentially invariance of a subset of the state space. The purpose of
DCS is to obtain a controller, which is a constraint on values of controllable variables
Xc, function of the current state and the values of uncontrollable inputs Xu, such that
all remaining behaviors satisfy the property given as objective. The synthesized con-
troller is maximally permissive, it is therefore a priori a relation; it can be transformed
into a control function. Figure 15 shows the transition system of the inside box, as
yet uncontrolled, composed with the synthesized controller Ctrlr, which is fed with
uncontrollable inputs Xu and the current state value from State, in order to produce
the values of controllables Xc which are enforcing the control objective. The transition
system then takes X = Xu

∪ Xc as input and performs a step.

Ctrlr Trans StateXu
Xc

Out
YX

Fig. 15. Controlled transition system

B BZR model of the control of the HTTP server

The node in Figure 16 illustrates the concrete syntax of the BZR language, by showing
the code for Figure 11. After the input/output signature, the contract part is based on
local Boolean variables, and defines, in the with part, the controllable variables that will
be used in the body. The body has its own local variables e.g., integers used to compute
the cumulated cost for consumption management. It begins with invocations of sub-
nodes for the controllers of the sub-components. An equation defines consumption at
this level in the component architecture simply as the sum of consumptions underneath.
Then an automaton is programmed in the textual syntax: each state is named, and it

http://www.esterel-technologies.com/


node back_end (request_logger,dense_requests:bool)

returns (add_cache,remove_cache,add_logger,remove_logger,add_fs2,

remove_fs2,active_fs2,active_cache,active_logger:bool; cons:int)

contract var pcache,pload:bool;

let pcache = not ((false fby dense_requests)

& not (false fby request_logger)) or active_cache;

pload = cons <= 60;

tel

assume true

enforce (pcache & pload)

with (up,down,c:bool)

var cons_rh,cons_cache,cons_logger,cons_ra:int; active_ra:bool;

let (cons_rh,add_fs2,remove_fs2,active_fs2) = requests_handler(up,down);

(active_cache,cons_cache) = cache_handler(add_cache,remove_cache);

(active_logger,cons_logger) = logger(add_logger,remove_logger);

(active_ra,cons_ra) = requests_analyzer();

cons = cons_rh + cons_cache + cons_logger + cons_ra;

automaton

state Nothing do add_cache = not request_logger & not c;

remove_cache = false; add_logger = request_logger;

remove_logger = false;

until request_logger then Logger | not c then Cache

state Logger do add_cache = not request_logger & not c;

remove_cache = false; add_logger = false;

remove_logger = not request_logger;

until not request_logger & c then Nothing

| not request_logger & not c then Cache

state Cache do add_cache = false;

remove_cache = request_logger or c;

add_logger = request_logger; remove_logger = false;

until request_logger then Logger | c then Nothing

end tel

Fig. 16. Concrete BZR code for the controller of the BackEnd component.

is associated with equations executed at each step as long as the control is in the state.
The until part specifies the transition conditions and targets: when the condition
evaluates to value true, the then part gives the name of the state where the control
will be from next step; several transitions going out of a state are separated by |.
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