
A Language-Based Approah to theDisrete Control of Adaptive Resoure Management ∗Gwenaël Delaval, Eri RuttenINRIA Grenoble Rh�ne-Alpes, Frane{�rstname.lastname}@inria.frAbstratWe present a novel tehnique for designing disreteontrol loops for adaptive systems. They automat-ially enfore safety properties on the interationsbetween tasks, onerning, e.g., mutual exlusions,forbidden or imposed sequenes. We use a new re-ative programming language, with a mehanism ofbehavioural ontrats. Its ompilation involves dis-rete ontroller synthesis, whih automatially gen-erates the orret appropriate adaptation ontrollers.We apply our approah to the problem of adaptiveressoure management, illustrated by the example ofa HTTP server.1 Motivation: disrete ontroland resoure managementAdaptive systems and resoure managementThe management of dynamial adaptivity an be on-sidered as a losed ontrol loop, on ontinuous or dis-rete riteria. Figure 1(a) shows how, on the basis ofthe monitored information and of an internal repre-sentation of the system, a ontrol omponent enforesthe adaptation poliy, by taking deisions w.r.t. thereon�guration ations to be exeuted. The design ofontrol loops with known behaviour and properties isthe lassial objet of ontrol theory. Appliations ofontinuous ontrol theory to omputing systems havebeen explored quite broadly [10℄. In ontrast, logialaspets, as addressed by disrete ontrol theory, havebeen onsidered only reently for adaptive omputingsystems [15℄.Adaptation mehanisms an be used for the dy-namial management of resoures, in a variety ofways. It is a way to handle the oordination of the
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shared aess to onstrained resoures, whih an beexlusive or have a bounded apaity, or have on-straints in the sequenes in whih they an be used.Suh oordination an be very intriate to programin an imperative way, due to multipliation of sharedresoures and their independent uses by omponents.We will show how the BZR language, by providinghidden use of disrete ontroller synthesis (DCS) asshown in Figure 1(b), an help suh oordination de-sign by means of mixed imperative/delarative state-ments. We onentrate on logial aspets of the adap-tation ontrol, with abstrat modelling of levels ofquantitative onsumption.Disrete, reative ontrollers One level of adap-tive systems is related to events and states, de�n-ing exeution modes or on�gurations of the system,with hanges in the arhiteture, and in the ativationof omponents. Reative languages based on �nitestate automata, like StateCharts [9℄, or StateFlow inMatlab/Simulink, are widely used for these aspets.Their underlying model, transition systems, is alsothe basi formalism for disrete ontrol theory, whihstudies losed-loop ontrol of disrete-event and log-ial aspets of ontrol systems [4℄. Di�erent reativelanguages exist, like StateCharts mentioned before,
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Figure 2: The Comanhe HTTP server arhiteture.and the languages of the synhronous approah [2℄:Lustre, Esterel or Luid Synhrone. They are usedindustrially in avionis and safety-ritial embeddedappliations design [14℄. They o�er a oherent frame-work for spei�ation languages, their ompilers, withfuntionalities for distributed ode generation, testgeneration and veri�ation.In the framework of disrete ontrol, a basi teh-nique used for the design of ontrol loops is DisreteController Synthesis (DCS) [13, 4℄. It onsists in,from a ontrollable system, and a behavioural prop-erty, omputing a onstraint on this system so thatthe omposition of the system and this onstraint sat-is�es the property. An automated DCS tool exists[11℄, onretely onneted to reative languages. Ithas been applied to the automati generation of taskhandlers [12℄, and integrated in a domain-spei� lan-guage [8℄.More reently the BZR language has been de�nedwith a ontrat mehanism, whih is a language-levelintegration of DCS [1, 7℄. The user spei�es pos-sible behaviours of a omponent, as well as safetyonstraints, and the ompiler synthesises the nees-sary ontrol to enfore them. The programmer doesnot need to design it expliitly, neither to know aboutthe formal tehnialities of the enapsulated DCS (seeSetion 3).Contributions The intention of the work is to on-sider the adaptive management of resoures as a dis-rete ontrol problem. The urrent status of the workis a language-based solution, to generate ontrollersfor the disrete loop; they are orret by onstru-tion, and handle safety properties on the interationsof tasks around resoures. In the event and state-based aspets where it is appliable, the DCS formalmethod is made usable by non-experts, as it is en-apsulated in a programming language and ompiler.

The generated ode (C or Java) an be onretely in-tegrated in the run-time exeutives. We make a studyof the example of a omponent-based HTTP server,modeled with patterns inspired from [8℄. Prospetiveresults expeted from ongoing work are the integra-tion of our tehnique with several targets: the Fratalomponent-based framework [3℄, FPGA-based reon-�gurable arhitetures, and the Orad ontrol sys-tems design environment.2 Example of a HTTP serverAs an example appliation of our tehniques, we on-sider a HTTP server, illustrated in Figure 2, with itsadaptation requirements. It is a variation [5℄ of theComanhe HTTP server used as an example in tu-torials1 for the Fratal omponent-based middlewareplatform [3℄. Inoming requests are read by the Re-questReeiver omponent, whih transmits them tothe RequestAnalyser omponent. The latter an for-ward them to the RequestHandler omponent, whihqueries a farm of �le servers to solve the request,through a RequestsDispather. RequestAnalyzer analso onsult a ahe in the CaheHandler omponent,in order to master the response time and keep it asshort as possible. A Logger omponent enables log-ging of transations, and an be onneted to theRequestsAnalyser.The available degrees of dynamial reon�gurationare that the File Servers, CaheHandler and Loggeromponents an be ativated or deativated. Theresoures involved in the system and its dynamialmanagement are the onsumption in energy, and anexlusive resoure shared by the CaheHandler andLogger. Requirements for these evolutions de�ne theadaptation poliy:1 http://fractal.ow2.org/tutorial/
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yp = fp(x1, . . . , xn, c1, . . . , cq)(b) BZR ontrat node.Figure 3: Example of programs in graphial syntax.1. the CaheHandler omponent should be ati-vated if there is a high number of similar re-quests;2. the number of deployed �le servers must beadapted w.r.t to the overall load;3. when logging is required by the system adminis-trator, then it should not be denied.4. logging and ahe handling should be exlusive,due to the aess to some other resoure.These rules must be enfored in the adaptive systemby the ontroller as illustrated in Figure 1(a).3 Programming reative sys-tems in BZRIn this setion we �rst brie�y introdue the basis ofthe Heptagon language, to program data-�ow nodesand hierarhial parallel automata [6℄. We then de-�ne the BZR language, whih extends Heptagon witha new ontrat onstrut [1, 7℄. As for the reativelanguages introdued in Setion 1, the basi exeutionsheme is that at eah reation a step is performed,taking input �ows as parameters, omputing the tran-sition to be taken, updating the state, triggering theappropriate ations, and emitting the output �ows.Data-�ow nodes and mode automata Fig-ure 3(a) shows a simple example of a Heptagon node,for the ontrol of a task that an be ativated by arequest r, and aording to a ontrol �ow c, put ina waiting state; input e signals the end of the task.Its signature is de�ned �rst, with a name, a list ofinput �ows (here, simple events whih an be seen asBoolean �ows), and outputs (here: the Boolean at),whih is true when the task is ative. In the bodyof this node we have a mode automaton : upon o-urrene of inputs, eah step onsists of a transition

aording to their values; when no transition ondi-tion is satis�ed, the state remains the same. In theexample, Idle is the initial state. From there tran-sitions an be taken towards further states, upon theondition given by the expression on inputs in thelabel. Here: when r and c are true then the on-trol goes to state Active, until e beomes true, uponwhih it goes bak to Idle; if c is false it goes to-wards state Wait, until c beomes true. This is amode automaton [6℄ in the sense that to eah statewe assoiate equations to de�ne the output �ows. Inthe example, the output act is de�ned by di�erentequation in eah of the states.We an build hierarhial and parallel automata.In the parallel automaton, the global behaviour is de-�ned from the loal ones: a global step is performedsynhronously, by having eah automaton making aloal step, within the same logial instant. In the aseof hierarhy, the sub-automata de�ne the behaviourof the node as long as the upper-level automaton re-mains in its state.Contrats in the BZR language With this newonstrut, DCS is enapsulated in the ompilation ofBZR. Models of the possible behaviours of the man-aged system are spei�ed in terms of mode automatawhere non-determinism an be introdued by meansof ontrollable variables (�with� part of ontrats).These ontrollable variables are given free by the pro-grammer, and their value are given by the automat-ially omputed ontroller. Adaptation poliies arespei�ed in terms of ontrats, on invariane prop-erties to be enfored by the ontroller. Compilationyields a orret-by-onstrution ontroller, produedby DCS, as shown in Figure 1(b), in a user-friendlyway: the programmer does not need to know tehni-alities of DCS.As illustrated in Figure 3(b), we assoiate a on-trat to a node. It is itself a program, with its internal
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(b) Development proess for BZR, in the ase of Fratal.Figure 4: BZR ompilation and development.state, e.g., automata, observing traes, and de�ningstates (for example an error state where eG is false,to be kept outside an invariant subspae). It has twooutputs: eA, assumption on the node environment,and eG, to be guaranteed or enfored by the node.A set C = {c1, . . . , cq} of loal ontrollable variableswill be used for ensuring this objetive. This ontratmeans that the node will be ontrolled, i.e., valueswill be given to c1, . . . , cq suh that, given any inputtrae yielding eA, the output trae will yield eG.Without giving details [7℄ out of the sope of thisase study, we ompile suh a BZR ontrat node intoa DCS problem as in Figure 4(a). The body and theontrat are eah enoded into a state mahine withtransition funtion (resp. Trans and TrC), state(resp. State and StC) and output funtion (resp.
Out and OutC). The ontrat inputs XC ome fromthe node's input X and the body's outputs Y , andit outputs eA, eC . DCS omputes a ontroller Ctrlr,assuming eA, for the objetive of enforing eG (i.e.,making invariant the sub-set of states where eA ⇒ eGis true), with ontrollable variables c1, ...cq. The on-troller then takes the states of the body and the on-trat, the node inputs X and the ontrat outputs
eA, eG, and it omputes the ontrollables Xc suhthat the resulting behaviour satis�es the objetive.Integration of our target-independent language andompiler in a development proess follows the gen-eral sheme illustrated in Figure 4(b) in the ase ofFratal [3℄. The ontrol part is extrated from theadaptive system, in the form of a BZR program. Itsompilation is made in derivation of the main sys-tem development proess, and produes the synthe-sized onstraint on ontrollables, omposed with thesequential C ode for the automata. They are assem-bled and linked bak into the global exeutive.

4 Solving adaptive resouremanagement ontrolWe apply the BZR programming methodology: �rstdesribe possible behaviours with non-deterministiimperative automata, then speify ontrol objetivesin the delarative ontrat.Behaviours Loally, eah omponent has its ownativity automaton but we show only the meaning-ful ones, in Figure 5, from left to right. The Re-questAnalyser has an observer automaton detetingperiods with a high number of similar requests (state
Dense) or not (state Norm); transitions are taken uponthe unontrollable d produed by the analyser. In Re-questHandler, a reon�guration automaton handlesthe File Servers that are deployed or shut down; in H2two are up, in H1 just one; transitions are ontrollableupon ch, server f2 is started/stopped on their o-urrene. In BakEnd, a reon�guration automatonhandles logging and ahe, with three on�gurations:none of them ative (N), ahe ative (C), logging a-tive (L). The fat that this automaton is programmedwith no state with both ative takes are of the ex-lusion requirement 4 of Setion 2. Transitions areonditioned by two variables: the unontrollable l(oming from the environment: e.g., logging requestfrom a human administrator), and the ontrollable c.If l is true then the on�guration starting the loggeris taken, and if it is false, then the logger is stopped;the ahe an be ativated when c is true, only if thelogger is not. This programming also takes are ofthe priority in requirement 3.Other automata model the ativation state of om-ponents, with a standard pattern given in Figure 5,where i an be c for the ahe handler, l for the log-ger, f2 for the �le server 2. The starts and stops
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Figure 5: Behavior model of the example.lead respetively to state A, with power ost EA, andto the inative state I, with no ost; they are reeivedfrom the reon�guration automata. Costs when a-tive are EAc = 50, EAl = 30, EAf2 = 25.The global automaton, i.e., the omplete ontrolpart of the system as in Figure 1(b), is then obtainedby the parallel omposition of loal automata. Anadditional parallel equation de�nes the ompositionof the osts, here summed up at every instant.Contrat It is in the upper part of Figure 5: it isitself a program, with its own equations. Two ontrol-lable variables, de�ned in the with part, will be usedfor ensuring two objetives. The poliy de�ned bythe rules of Setion 2 is taken are of, for 4 and 3, byprogramming as above. The two remaining poliiesare not expliitely programmed (i.e., in the impera-tive part) but delaratively stated:1. the ahe poliy (requirement 1) is enoded as :
pcache = (dense & not log) implies Ac2. load-related adaptation (requirement2 ) is oded:
pload = (energy_consumption ≤ 60)The ontrat states that the onjuntion of bothrequirements must be enfored by ontrol.Simulation and typial senario The aboveBZR program an be ompiled and exeuted, or sim-ulated with a hronogram-like graphial simulator 2as shown in Figure 6. The exeutable ode generatedby the ompiler ana also be linked with a run-timeexeutive as in Figure 4(b).2ourtesy of Verimag

A typial senario showing the intervention ofthe ontroller on the system, so that ontrol ob-jetives are preserved, is as follows. Starting from
(Norm, H2, N), when d ours (step 11), by requirement1 (�rst part of the ontrat) the ahe is started, andby requirement 2 (seond part of the ontrat) server
f2 is stopped (otherwise the available load is over-shot). Hene we go in state (Dense, H1, C). When lours (step 17), then by requirements 3 and 4, pro-grammed in BakEnd, the ahe is stopped, the logis started, and by requirement 2 (seond part of theontrat) the server f2 an be started again, and wego to (Dense, H2, L).5 Conlusion and perspetivesWe propose a novel tehnique to design disrete on-trol loops in adaptive systems, e.g., for the safe man-agement of resoures. We use a programming lan-guage ensuring logial safety properties of the taskssequenings and mode hanges. We illustrate the ap-proah with a HTTP server example. Its ompilationperformane is subjet to the natural omplexity ofthe algorithms, but we laim that it automatiallygenerates an exeutable ontrol solution, whih is tobe ompared with manual programming, veri�ationand debugging, whih is even more ostly. The exe-ution ost of the ontroller is very small, as well asits omputation time by DCS (a few ms on a stan-dard Pentium, 2.33 GHz). Ongoing and further workinludes integration of Fratal and BZR, enrihingthe models with optimization aspets [12℄, and de�n-ing libraries of standard ontrol models and ontrats.
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