A Language-Based Approach to the

Discrete Control of Adaptive Resource Management *

Gwenagl Delaval, Eric Rutten
INRIA Grenoble Rhone-Alpes, France
{firstname.lastname}@inria. fr

Abstract

We present a novel technique for designing discrete
control loops for adaptive systems. They automat-
ically enforce safety properties on the interactions
between tasks, concerning, e.g., mutual exclusions,
forbidden or imposed sequences. We use a new re-
active programming language, with a mechanism of
behavioural contracts. Its compilation involves dis-
crete controller synthesis, which automatically gen-
erates the correct appropriate adaptation controllers.
We apply our approach to the problem of adaptive
ressource management, illustrated by the example of
a HTTP server.

1 Motivation: discrete control
and resource management

Adaptive systems and resource management
The management of dynamical adaptivity can be con-
sidered as a closed control loop, on continuous or dis-
crete criteria. Figure 1(a) shows how, on the basis of
the monitored information and of an internal repre-
sentation of the system, a control component enforces
the adaptation policy, by taking decisions w.r.t. the
reconfiguration actions to be executed. The design of
control loops with known behaviour and properties is
the classical object of control theory. Applications of
continuous control theory to computing systems have
been explored quite broadly [10]. In contrast, logical
aspects, as addressed by discrete control theory, have
been considered only recently for adaptive computing
systems [15].

Adaptation mechanisms can be used for the dy-
namical management of resources, in a variety of
ways. It is a way to handle the coordination of the

*This work is partially supported by the Minalogic MIND
project.

shared access to constrained resources, which can be
exclusive or have a bounded capacity, or have con-
straints in the sequences in which they can be used.
Such coordination can be very intricate to program
in an imperative way, due to multiplication of shared
resources and their independent uses by components.
We will show how the BZR language, by providing
hidden use of discrete controller synthesis (DCS) as
shown in Figure m can help such coordination de-
sign by means of mixed imperative/declarative state-
ments. We concentrate on logical aspects of the adap-
tation control, with abstract modelling of levels of
quantitative consumption.

Discrete, reactive controllers One level of adap-
tive systems is related to events and states, defin-
ing execution modes or configurations of the system,
with changes in the architecture, and in the activation
of components. Reactive languages based on finite
state automata, like StateCharts [9], or StateFlow in
Matlab/Simulink, are widely used for these aspects.
Their underlying model, transition systems, is also
the basic formalism for discrete control theory, which
studies closed-loop control of discrete-event and log-
ical aspects of control systems [4]. Different reactive
languages exist, like StateCharts mentioned before,

policy / strategy BZR program

={decision =DCS ctrl
V V
system automaton
représentation model
monitor execute monitor execute
managed managed
system system

(a) Adaptive system. (b) BZR controller.

Figure 1: Adaptation control and BZR programming.

Comanche
Cache RequestHandler i
Logger File
Handler
? Server 1
Requests Requests Requests File
|
Receiver Analyser ispatcher Server 2
BackEnd

Figure 2: The Comanche HTTP server architecture.

and the languages of the synchronous approach [2]:
Lustre, Esterel or Lucid Synchrone. They are used
industrially in avionics and safety-critical embedded
applications design [14]. They offer a coherent frame-
work for specification languages, their compilers, with
functionalities for distributed code generation, test
generation and verification.

In the framework of discrete control, a basic tech-
nique used for the design of control loops is Discrete
Controller Synthesis (DCS) [13, 4]. It consists in,
from a controllable system, and a behavioural prop-
erty, computing a constraint on this system so that
the composition of the system and this constraint sat-
isfies the property. An automated DCS tool exists
[11], concretely connected to reactive languages. It
has been applied to the automatic generation of task
handlers [12], and integrated in a domain-specific lan-
guage [8].

More recently the BZR language has been defined
with a contract mechanism, which is a language-level
integration of DCS [1, 7]. The user specifies pos-
sible behaviours of a component, as well as safety
constraints, and the compiler synthesises the neces-
sary control to enforce them. The programmer does
not need to design it explicitly, neither to know about
the formal technicalities of the encapsulated DCS (see
Section [3).

Contributions The intention of the work is to con-
sider the adaptive management of resources as a dis-
crete control problem. The current status of the work
is a language-based solution, to generate controllers
for the discrete loop; they are correct by construc-
tion, and handle safety properties on the interactions
of tasks around resources. In the event and state-
based aspects where it is applicable, the DCS formal
method is made usable by non-experts, as it is en-
capsulated in a programming language and compiler.

The generated code (C or Java) can be concretely in-
tegrated in the run-time executives. We make a study
of the example of a component-based HTTP server,
modeled with patterns inspired from [8]. Prospective
results expected from ongoing work are the integra-
tion of our technique with several targets: the Fractal
component-based framework [3], FPGA-based recon-
figurable architectures, and the Orccad control sys-
tems design environment.

2 Example of a HTTP server

As an example application of our techniques, we con-
sider a HTTP server, illustrated in Figure[2, with its
adaptation requirements. It is a variation |5] of the
Comanche HTTP server used as an example in tu-
torials! for the Fractal component-based middleware
platform [3]. Incoming requests are read by the Re-
questReceiver component, which transmits them to
the RequestAnalyser component. The latter can for-
ward them to the RequestHandler component, which
queries a farm of file servers to solve the request,
through a RequestsDispatcher. RequestAnalyzer can
also consult a cache in the CacheHandler component,
in order to master the response time and keep it as
short as possible. A Logger component enables log-
ging of transactions, and can be connected to the
RequestsAnalyser.

The available degrees of dynamical reconfiguration
are that the File Servers, CacheHandler and Logger
components can be activated or deactivated. The
resources involved in the system and its dynamical
management are the consumption in energy, and an
exclusive resource shared by the CacheHandler and
Logger. Requirements for these evolutions define the
adaptation policy:

1 http://fractal.ow2.org/tutorial/

http://fractal.ow2.org/tutorial/

delayable(r,c,e) = act ‘

act — true

(a) Mode automaton node.

f(l'l,...,.’L'n) = (yl,---;yp)
assume e
enforce e¢
withci,...,¢cq
y1 = fi(x1,...,&n,C1,...,¢q)
Yp = fp($17"'7xn7cl7“~7CQ)

(b) BZR contract node.

Figure 3: Example of programs in graphical syntax.

1. the CacheHandler component should be acti-
vated if there is a high number of similar re-
quests;

2. the number of deployed file servers must be
adapted w.r.t to the overall load;

3. when logging is required by the system adminis-
trator, then it should not be denied.

4. logging and cache handling should be exclusive,
due to the access to some other resource.

These rules must be enforced in the adaptive system
by the controller as illustrated in Figure |1(a).

3 Programming reactive

tems in BZR

Sys-

In this section we first briefly introduce the basics of
the Heptagon language, to program data-flow nodes
and hierarchical parallel automata [6]. We then de-
fine the BZR language, which extends Heptagon with
a new contract construct [1}[7]. As for the reactive
languages introduced in Section[1} the basic execution
scheme is that at each reaction a step is performed,
taking input flows as parameters, computing the tran-
sition to be taken, updating the state, triggering the
appropriate actions, and emitting the output flows.

Data-flow nodes and mode automata Fig-
ure 3(a) shows a simple example of a Heptagon node,
for the control of a task that can be activated by a
request r, and according to a control flow c, put in
a waiting state; input e signals the end of the task.
Its signature is defined first, with a name, a list of
input flows (here, simple events which can be seen as
Boolean flows), and outputs (here: the Boolean act),
which is true when the task is active. In the body
of this node we have a mode automaton : upon oc-
currence of inputs, each step consists of a transition

according to their values; when no transition condi-
tion is satisfied, the state remains the same. In the
example, Idle is the initial state. From there tran-
sitions can be taken towards further states, upon the
condition given by the expression on inputs in the
label. Here: when r and c are true then the con-
trol goes to state Active, until e becomes true, upon
which it goes back to Idle; if c is false it goes to-
wards state Wait, until ¢ becomes true. This is a
mode automaton [6] in the sense that to each state
we associate equations to define the output flows. In
the example, the output act is defined by different
equation in each of the states.

We can build hierarchical and parallel automata.
In the parallel automaton, the global behaviour is de-
fined from the local ones: a global step is performed
synchronously, by having each automaton making a
local step, within the same logical instant. In the case
of hierarchy, the sub-automata define the behaviour
of the node as long as the upper-level automaton re-
mains in its state.

Contracts in the BZR language With this new
construct, DCS is encapsulated in the compilation of
BZR. Models of the possible behaviours of the man-
aged system are specified in terms of mode automata
where non-determinism can be introduced by means
of controllable variables (“with” part of contracts).
These controllable variables are given free by the pro-
grammer, and their value are given by the automat-
ically computed controller. Adaptation policies are
specified in terms of contracts, on invariance prop-
erties to be enforced by the controller. Compilation
yields a correct-by-construction controller, produced
by DCS, as shown in Figure[1(b), in a user-friendly
way: the programmer does not need to know techni-
calities of DCS.

As illustrated in Figure |3(b), we associate a con-
tract to anode. It is itself a program, with its internal

contract

Fractal

spec.

extract BZR compiler
=

components
automata

& contract

|| synchronous
compiler

T (s *—|

body

|

5 X

Out

Middleware|link
Yy executive
(C, Java)

seq. C code
generated code

.) 4
B — T
resolution) constraint

(a) DCS problem.

(b) Development process for BZR, in the case of Fractal.

Figure 4: BZR compilation and development.

state, e.g., automata, observing traces, and defining
states (for example an error state where eq is false,
to be kept outside an invariant subspace). It has two
outputs: ea, assumption on the node environment,
and eg, to be guaranteed or enforced by the node.
A set C ={c1,...,cq} of local controllable variables
will be used for ensuring this objective. This contract
means that the node will be controlled, i.e., values
will be given to ci, ..., ¢4 such that, given any input
trace yielding e 4, the output trace will yield eq.

Without giving details [7] out of the scope of this
case study, we compile such a BZR contract node into
a DCS problem as in Figurew The body and the
contract are each encoded into a state machine with
transition function (resp. Trans and TrC), state
(resp. State and StC) and output function (resp.
Out and OutC). The contract inputs XC come from
the node’s input X and the body’s outputs Y, and
it outputs e 4, ec. DCS computes a controller Ctrir,
assuming e4, for the objective of enforcing eg (i.e.,
making invariant the sub-set of states where e4 = eq
is true), with controllable variables ci, ...cq. The con-
troller then takes the states of the body and the con-
tract, the node inputs X and the contract outputs
ea,eq, and it computes the controllables X. such
that the resulting behaviour satisfies the objective.

Integration of our target-independent language and
compiler in a development process follows the gen-
eral scheme illustrated in Figure ’m in the case of
Fractal [3]. The control part is extracted from the
adaptive system, in the form of a BZR program. Its
compilation is made in derivation of the main sys-
tem development process, and produces the synthe-
sized constraint on controllables, composed with the
sequential C code for the automata. They are assem-
bled and linked back into the global executive.

4 Solving adaptive resource

management control

We apply the BZR programming methodology: first
describe possible behaviours with non-deterministic
imperative automata, then specify control objectives
in the declarative contract.

Behaviours Locally, each component has its own
activity automaton but we show only the meaning-
ful ones, in Figure [5, from left to right. The Re-
questAnalyser has an observer automaton detecting
periods with a high number of similar requests (state
Dense) or not (state Norm); transitions are taken upon
the uncontrollable d produced by the analyser. In Re-
questHandler, a reconfiguration automaton handles
the File Servers that are deployed or shut down; in H2
two are up, in H1 just one; transitions are controllable
upon cy, server f2 is started/stopped on their oc-
currence. In BackEnd, a reconfiguration automaton
handles logging and cache, with three configurations:
none of them active (N), cache active (C), logging ac-
tive (L). The fact that this automaton is programmed
with no state with both active takes care of the ez-
clusion requirement { of Section [2. Transitions are
conditioned by two variables: the uncontrollable 1
(coming from the environment: e.g., logging request
from a human administrator), and the controllable c.
If 1 is true then the configuration starting the logger
is taken, and if it is false, then the logger is stopped;
the cache can be activated when c is true, only if the
logger is not. This programming also takes care of
the priority in requirement[3.

Other automata model the activation state of com-
ponents, with a standard pattern given in Figure |5,
where i can be c for the cache handler, [for the log-
ger, f2 for the file server 2. The starts and stops

httpserver (d, 1) = ...

pcache = ((dense & not log) implies
pload = (energy_consumption < 60)
assume true
enforce (pcache & pload)

with ¢, ¢, energy_consumption =), e

T - _ -~ - - - - - -TT TS T T TT T T T T T T T T T T T T T TT L |
! ! c & not 1 / start, ! ie{cl, f2}
| | | act; = false
1 | ! —_
; ; not c & not 1 / stop, ; e =0

not d d | c, / cn / | 1 / stop.,start stop; start;
I I 1 / start |
i starty stopsz i
. . . act; = true
! ! not 1 & not c ! e; = FA;
} } / stop, / stop;,start.!

Figure 5: Behavior model of the example.

lead respectively to state A, with power cost EA, and
to the inactive state I, with no cost; they are received
from the reconfiguration automata. Costs when ac-
tive are EA. = 50, EA; = 30, EAfy = 25.

The global automaton, i.e., the complete control
part of the system as in Figure W, is then obtained
by the parallel composition of local automata. An
additional parallel equation defines the composition
of the costs, here summed up at every instant.

Contract It is in the upper part of Figure [5} it is
itself a program, with its own equations. Two control-
lable variables, defined in the with part, will be used
for ensuring two objectives. The policy defined by
the rules of Section [2/is taken care of, for[4]and [3] by
programming as above. The two remaining policies
are not explicitely programmed (i.e., in the impera-
tive part) but declaratively stated:

1. the cache policy (requirement(1) is encoded as :
pcache = (dense & not log) implies A,

2. load-related adaptation (requirement2) is coded:
pload = (energy_consumption < 60)

The contract states that the conjunction of both
requirements must be enforced by control.

Simulation and typical scenario The above
BZR program can be compiled and executed, or sim-
ulated with a chronogram-like graphical simulator
as shown in Figure[6l The executable code generated
by the compiler cana also be linked with a run-time
executive as in Figure [4(b).

2courtesy of Verimag

A typical scenario showing the intervention of
the controller on the system, so that control ob-
jectives are preserved, is as follows. Starting from
(Norm, H2,N), when d occurs (step 11), by requirement
[L (first part of the contract) the cache is started, and
by requirement 2 (second part of the contract) server
f2 is stopped (otherwise the available load is over-
shot). Hence we go in state (Dense,H1,C). When 1
occurs (step 17), then by requirements (3] and [4], pro-
grammed in BackFEnd, the cache is stopped, the log
is started, and by requirement [2 (second part of the
contract) the server f2 can be started again, and we
go to (Dense, H2,L).

5 Conclusion and perspectives

We propose a novel technique to design discrete con-
trol loops in adaptive systems, e.g., for the safe man-
agement of resources. We use a programming lan-
guage ensuring logical safety properties of the tasks
sequencings and mode changes. We illustrate the ap-
proach with a HTTP server example. Its compilation
performance is subject to the natural complexity of
the algorithms, but we claim that it automatically
generates an executable control solution, which is to
be compared with manual programming, verification
and debugging, which is even more costly. The exe-
cution cost of the controller is very small, as well as
its computation time by DCS (a few ms on a stan-
dard Pentium, 2.33 GHz). Ongoing and further work
includes integration of FRACTAL and BZR, enriching
the models with optimization aspects [12], and defin-
ing libraries of standard control models and contracts.

[X O httpserver - commands —
Inputs

Outputs

Step

request logger | true ‘I

dense_requests ‘

add cache
remove_cache
add_logger
remove_|logger
add _fileserverz
remove_fileserver2
active_cache
active_logger
active_fileserver2
energy_consumption

HHDOoOOoDOoOOoDO

L
(W]

Step: 30

| Autostep | Randem step I Quit

TUE s 15 16 17 18 19 20 el
o S T P

124

o

remnove_cache!

Y S e e e TR gy s ey ey sy

add_logger, |~

remove_logzer! |

(-

S S P T NN S T
'

il _t
Mo M1 M2 M3 e B ME a7 e e lap lm

‘ close || config H

Figure 6: Simulation.

References

(1]

2]

(3]

[4]
[5]

[6]

[7]

S. Aboubekr, G. Delaval, and E. Rutten.
gramming language for adaptation control: Case
study. In Proc. of the 2nd Workshop on
Adaptive and Reconfigurable Embedded Systems,
APRES’09, 2009. Special Issue of SIGBED Review
http://sigbed.seas.upenn.edu/vol6_num3.html.

A. Benveniste, P. Caspi, S. Edwards, N. Halbwachs,
P. Le Guernic, and R. de Simone. The synchron-
ous languages twelve years later. Proc. of the IEEE,
91(1), January 2003.

E. Bruneton, T. Coupaye, M. Leclercq, V. Quema,
and J.-B. Stefani. The fractal component model and
its support in java. Software — Practice and Ezperi-
ence (SP&E), 36(11-12), sep 2006.

C. Cassandras and S. Lafortune. Introduction to Dis-
crete Event Systems. Kluwer Acad. Publ., 1999.

Franck Chauvel, Olivier Barais, Isabelle Borne,
and Jean-Marc Jézéquel. Composition of qualita-
tive adaptation policies. In 28rd IEEE/ACM Int.
Conf. on Automated Software Engineering - ASE’08,
L’Aquila, Italy, sep 2008.

J.-L. Colago, B. Pagano, and M. Pouzet. A Con-
servative Extension of Synchronous Data-flow with
State Machines. In ACM Int. Conf. on Embedded
Software (EMSOFT’05), September 2005.

G. Delaval, H. Marchand, and E. Rutten. Con-
tracts for modular discrete controller synthesis. In
Proc. of the ACM Conf. on Languages, Compil-
ers and Tools for Embedded Systems, LCTES, 2010.
http://hal.inria.fr/inria-00436560.

A pro-

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

Gwenagl Delaval and Eric Rutten. A domain-specific
language for multi-task systems, applying discrete
controller synthesisd. Journal on Embedded Systems
(special issue on Synchronous Paradigm in Embed-
ded Systems), 2007(84192):17, January 2007.

D. Harel and A. Naamad. The statemate semantics
of statecharts. ACM TOSEM, 5(4), 1996.

J. Hellerstein, Y. Diao, S. Parekh, and D. Tilbury.
Feedback Control of Computing Systems. Wiley-
IEEE, 2004.

H. Marchand, P. Bournai, M. Le Borgne, and P. Le
Guernic. Synthesis of discrete-event controllers based
on the Signal environment. Discrete Event Dynamic
System: Theory and Applications, 10(4), October
2000.

H. Marchand and E. Rutten. Managing multi-mode
tasks with time cost and quality levels using opti-
mal discrete control synthesis. In Proc. of the 14th
Euromicro Conf. on Real-Time Systems, ECRTS’02,
2002.

P.J. Ramadge and W.M. Wonham. Supervisory con-
trol of a class of discrete event processes. STAM J.
on Control and Optimization, 25(1), January 1987.

Esterel technologies. Scade: model-based
development environment dedicated to
safety-critical embedded software, 2010.

http://www.esterel-technologies.com/.

Y. Wang, T. Kelly, and S. Lafortune. Discrete control
for safe execution of IT automation workflows. In
Proc. of the 2007 EuroSys Conf., 2007.

http://sigbed.seas.upenn.edu/vol6_num3.html
http://hal.inria.fr/inria-00436560
http://www.esterel-technologies.com/

	Motivation: discrete control and resource management
	Example of a HTTP server
	Programming reactive systems in BZR
	Solving adaptive resource management control
	Conclusion and perspectives

