
A Language-Based Approa
h to theDis
rete Control of Adaptive Resour
e Management ∗Gwenaël Delaval, Eri
 RuttenINRIA Grenoble Rh�ne-Alpes, Fran
e{�rstname.lastname}@inria.frAbstra
tWe present a novel te
hnique for designing dis
rete
ontrol loops for adaptive systems. They automat-i
ally enfor
e safety properties on the intera
tionsbetween tasks, 
on
erning, e.g., mutual ex
lusions,forbidden or imposed sequen
es. We use a new re-a
tive programming language, with a me
hanism ofbehavioural 
ontra
ts. Its 
ompilation involves dis-
rete 
ontroller synthesis, whi
h automati
ally gen-erates the 
orre
t appropriate adaptation 
ontrollers.We apply our approa
h to the problem of adaptiveressour
e management, illustrated by the example ofa HTTP server.1 Motivation: dis
rete 
ontroland resour
e managementAdaptive systems and resour
e managementThe management of dynami
al adaptivity 
an be 
on-sidered as a 
losed 
ontrol loop, on 
ontinuous or dis-
rete 
riteria. Figure 1(a) shows how, on the basis ofthe monitored information and of an internal repre-sentation of the system, a 
ontrol 
omponent enfor
esthe adaptation poli
y, by taking de
isions w.r.t. there
on�guration a
tions to be exe
uted. The design of
ontrol loops with known behaviour and properties isthe 
lassi
al obje
t of 
ontrol theory. Appli
ations of
ontinuous 
ontrol theory to 
omputing systems havebeen explored quite broadly [10℄. In 
ontrast, logi
alaspe
ts, as addressed by dis
rete 
ontrol theory, havebeen 
onsidered only re
ently for adaptive 
omputingsystems [15℄.Adaptation me
hanisms 
an be used for the dy-nami
al management of resour
es, in a variety ofways. It is a way to handle the 
oordination of the
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shared a

ess to 
onstrained resour
es, whi
h 
an beex
lusive or have a bounded 
apa
ity, or have 
on-straints in the sequen
es in whi
h they 
an be used.Su
h 
oordination 
an be very intri
ate to programin an imperative way, due to multipli
ation of sharedresour
es and their independent uses by 
omponents.We will show how the BZR language, by providinghidden use of dis
rete 
ontroller synthesis (DCS) asshown in Figure 1(b), 
an help su
h 
oordination de-sign by means of mixed imperative/de
larative state-ments. We 
on
entrate on logi
al aspe
ts of the adap-tation 
ontrol, with abstra
t modelling of levels ofquantitative 
onsumption.Dis
rete, rea
tive 
ontrollers One level of adap-tive systems is related to events and states, de�n-ing exe
ution modes or 
on�gurations of the system,with 
hanges in the ar
hite
ture, and in the a
tivationof 
omponents. Rea
tive languages based on �nitestate automata, like StateCharts [9℄, or StateFlow inMatlab/Simulink, are widely used for these aspe
ts.Their underlying model, transition systems, is alsothe basi
 formalism for dis
rete 
ontrol theory, whi
hstudies 
losed-loop 
ontrol of dis
rete-event and log-i
al aspe
ts of 
ontrol systems [4℄. Di�erent rea
tivelanguages exist, like StateCharts mentioned before,
representationsystem
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hite
ture.and the languages of the syn
hronous approa
h [2℄:Lustre, Esterel or Lu
id Syn
hrone. They are usedindustrially in avioni
s and safety-
riti
al embeddedappli
ations design [14℄. They o�er a 
oherent frame-work for spe
i�
ation languages, their 
ompilers, withfun
tionalities for distributed 
ode generation, testgeneration and veri�
ation.In the framework of dis
rete 
ontrol, a basi
 te
h-nique used for the design of 
ontrol loops is Dis
reteController Synthesis (DCS) [13, 4℄. It 
onsists in,from a 
ontrollable system, and a behavioural prop-erty, 
omputing a 
onstraint on this system so thatthe 
omposition of the system and this 
onstraint sat-is�es the property. An automated DCS tool exists[11℄, 
on
retely 
onne
ted to rea
tive languages. Ithas been applied to the automati
 generation of taskhandlers [12℄, and integrated in a domain-spe
i�
 lan-guage [8℄.More re
ently the BZR language has been de�nedwith a 
ontra
t me
hanism, whi
h is a language-levelintegration of DCS [1, 7℄. The user spe
i�es pos-sible behaviours of a 
omponent, as well as safety
onstraints, and the 
ompiler synthesises the ne
es-sary 
ontrol to enfor
e them. The programmer doesnot need to design it expli
itly, neither to know aboutthe formal te
hni
alities of the en
apsulated DCS (seeSe
tion 3).Contributions The intention of the work is to 
on-sider the adaptive management of resour
es as a dis-
rete 
ontrol problem. The 
urrent status of the workis a language-based solution, to generate 
ontrollersfor the dis
rete loop; they are 
orre
t by 
onstru
-tion, and handle safety properties on the intera
tionsof tasks around resour
es. In the event and state-based aspe
ts where it is appli
able, the DCS formalmethod is made usable by non-experts, as it is en-
apsulated in a programming language and 
ompiler.

The generated 
ode (C or Java) 
an be 
on
retely in-tegrated in the run-time exe
utives. We make a studyof the example of a 
omponent-based HTTP server,modeled with patterns inspired from [8℄. Prospe
tiveresults expe
ted from ongoing work are the integra-tion of our te
hnique with several targets: the Fra
tal
omponent-based framework [3℄, FPGA-based re
on-�gurable ar
hite
tures, and the Or

ad 
ontrol sys-tems design environment.2 Example of a HTTP serverAs an example appli
ation of our te
hniques, we 
on-sider a HTTP server, illustrated in Figure 2, with itsadaptation requirements. It is a variation [5℄ of theComan
he HTTP server used as an example in tu-torials1 for the Fra
tal 
omponent-based middlewareplatform [3℄. In
oming requests are read by the Re-questRe
eiver 
omponent, whi
h transmits them tothe RequestAnalyser 
omponent. The latter 
an for-ward them to the RequestHandler 
omponent, whi
hqueries a farm of �le servers to solve the request,through a RequestsDispat
her. RequestAnalyzer 
analso 
onsult a 
a
he in the Ca
heHandler 
omponent,in order to master the response time and keep it asshort as possible. A Logger 
omponent enables log-ging of transa
tions, and 
an be 
onne
ted to theRequestsAnalyser.The available degrees of dynami
al re
on�gurationare that the File Servers, Ca
heHandler and Logger
omponents 
an be a
tivated or dea
tivated. Theresour
es involved in the system and its dynami
almanagement are the 
onsumption in energy, and anex
lusive resour
e shared by the Ca
heHandler andLogger. Requirements for these evolutions de�ne theadaptation poli
y:1 http://fractal.ow2.org/tutorial/

http://fractal.ow2.org/tutorial/
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f(x1, . . . , xn) = (y1, . . . , yp)

assume eA

enforce eG

with c1, . . . , cq

y1 = f1(x1, . . . , xn, c1, . . . , cq)
· · ·

yp = fp(x1, . . . , xn, c1, . . . , cq)(b) BZR 
ontra
t node.Figure 3: Example of programs in graphi
al syntax.1. the Ca
heHandler 
omponent should be a
ti-vated if there is a high number of similar re-quests;2. the number of deployed �le servers must beadapted w.r.t to the overall load;3. when logging is required by the system adminis-trator, then it should not be denied.4. logging and 
a
he handling should be ex
lusive,due to the a

ess to some other resour
e.These rules must be enfor
ed in the adaptive systemby the 
ontroller as illustrated in Figure 1(a).3 Programming rea
tive sys-tems in BZRIn this se
tion we �rst brie�y introdu
e the basi
s ofthe Heptagon language, to program data-�ow nodesand hierar
hi
al parallel automata [6℄. We then de-�ne the BZR language, whi
h extends Heptagon witha new 
ontra
t 
onstru
t [1, 7℄. As for the rea
tivelanguages introdu
ed in Se
tion 1, the basi
 exe
utions
heme is that at ea
h rea
tion a step is performed,taking input �ows as parameters, 
omputing the tran-sition to be taken, updating the state, triggering theappropriate a
tions, and emitting the output �ows.Data-�ow nodes and mode automata Fig-ure 3(a) shows a simple example of a Heptagon node,for the 
ontrol of a task that 
an be a
tivated by arequest r, and a

ording to a 
ontrol �ow c, put ina waiting state; input e signals the end of the task.Its signature is de�ned �rst, with a name, a list ofinput �ows (here, simple events whi
h 
an be seen asBoolean �ows), and outputs (here: the Boolean a
t),whi
h is true when the task is a
tive. In the bodyof this node we have a mode automaton : upon o
-
urren
e of inputs, ea
h step 
onsists of a transition

a

ording to their values; when no transition 
ondi-tion is satis�ed, the state remains the same. In theexample, Idle is the initial state. From there tran-sitions 
an be taken towards further states, upon the
ondition given by the expression on inputs in thelabel. Here: when r and c are true then the 
on-trol goes to state Active, until e be
omes true, uponwhi
h it goes ba
k to Idle; if c is false it goes to-wards state Wait, until c be
omes true. This is amode automaton [6℄ in the sense that to ea
h statewe asso
iate equations to de�ne the output �ows. Inthe example, the output act is de�ned by di�erentequation in ea
h of the states.We 
an build hierar
hi
al and parallel automata.In the parallel automaton, the global behaviour is de-�ned from the lo
al ones: a global step is performedsyn
hronously, by having ea
h automaton making alo
al step, within the same logi
al instant. In the 
aseof hierar
hy, the sub-automata de�ne the behaviourof the node as long as the upper-level automaton re-mains in its state.Contra
ts in the BZR language With this new
onstru
t, DCS is en
apsulated in the 
ompilation ofBZR. Models of the possible behaviours of the man-aged system are spe
i�ed in terms of mode automatawhere non-determinism 
an be introdu
ed by meansof 
ontrollable variables (�with� part of 
ontra
ts).These 
ontrollable variables are given free by the pro-grammer, and their value are given by the automat-i
ally 
omputed 
ontroller. Adaptation poli
ies arespe
i�ed in terms of 
ontra
ts, on invarian
e prop-erties to be enfor
ed by the 
ontroller. Compilationyields a 
orre
t-by-
onstru
tion 
ontroller, produ
edby DCS, as shown in Figure 1(b), in a user-friendlyway: the programmer does not need to know te
hni-
alities of DCS.As illustrated in Figure 3(b), we asso
iate a 
on-tra
t to a node. It is itself a program, with its internal
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(b) Development pro
ess for BZR, in the 
ase of Fra
tal.Figure 4: BZR 
ompilation and development.state, e.g., automata, observing tra
es, and de�ningstates (for example an error state where eG is false,to be kept outside an invariant subspa
e). It has twooutputs: eA, assumption on the node environment,and eG, to be guaranteed or enfor
ed by the node.A set C = {c1, . . . , cq} of lo
al 
ontrollable variableswill be used for ensuring this obje
tive. This 
ontra
tmeans that the node will be 
ontrolled, i.e., valueswill be given to c1, . . . , cq su
h that, given any inputtra
e yielding eA, the output tra
e will yield eG.Without giving details [7℄ out of the s
ope of this
ase study, we 
ompile su
h a BZR 
ontra
t node intoa DCS problem as in Figure 4(a). The body and the
ontra
t are ea
h en
oded into a state ma
hine withtransition fun
tion (resp. Trans and TrC), state(resp. State and StC) and output fun
tion (resp.
Out and OutC). The 
ontra
t inputs XC 
ome fromthe node's input X and the body's outputs Y , andit outputs eA, eC . DCS 
omputes a 
ontroller Ctrlr,assuming eA, for the obje
tive of enfor
ing eG (i.e.,making invariant the sub-set of states where eA ⇒ eGis true), with 
ontrollable variables c1, ...cq. The 
on-troller then takes the states of the body and the 
on-tra
t, the node inputs X and the 
ontra
t outputs
eA, eG, and it 
omputes the 
ontrollables Xc su
hthat the resulting behaviour satis�es the obje
tive.Integration of our target-independent language and
ompiler in a development pro
ess follows the gen-eral s
heme illustrated in Figure 4(b) in the 
ase ofFra
tal [3℄. The 
ontrol part is extra
ted from theadaptive system, in the form of a BZR program. Its
ompilation is made in derivation of the main sys-tem development pro
ess, and produ
es the synthe-sized 
onstraint on 
ontrollables, 
omposed with thesequential C 
ode for the automata. They are assem-bled and linked ba
k into the global exe
utive.

4 Solving adaptive resour
emanagement 
ontrolWe apply the BZR programming methodology: �rstdes
ribe possible behaviours with non-deterministi
imperative automata, then spe
ify 
ontrol obje
tivesin the de
larative 
ontra
t.Behaviours Lo
ally, ea
h 
omponent has its owna
tivity automaton but we show only the meaning-ful ones, in Figure 5, from left to right. The Re-questAnalyser has an observer automaton dete
tingperiods with a high number of similar requests (state
Dense) or not (state Norm); transitions are taken uponthe un
ontrollable d produ
ed by the analyser. In Re-questHandler, a re
on�guration automaton handlesthe File Servers that are deployed or shut down; in H2two are up, in H1 just one; transitions are 
ontrollableupon ch, server f2 is started/stopped on their o
-
urren
e. In Ba
kEnd, a re
on�guration automatonhandles logging and 
a
he, with three 
on�gurations:none of them a
tive (N), 
a
he a
tive (C), logging a
-tive (L). The fa
t that this automaton is programmedwith no state with both a
tive takes 
are of the ex-
lusion requirement 4 of Se
tion 2. Transitions are
onditioned by two variables: the un
ontrollable l(
oming from the environment: e.g., logging requestfrom a human administrator), and the 
ontrollable c.If l is true then the 
on�guration starting the loggeris taken, and if it is false, then the logger is stopped;the 
a
he 
an be a
tivated when c is true, only if thelogger is not. This programming also takes 
are ofthe priority in requirement 3.Other automata model the a
tivation state of 
om-ponents, with a standard pattern given in Figure 5,where i 
an be c for the 
a
he handler, l for the log-ger, f2 for the �le server 2. The starts and stops
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Figure 5: Behavior model of the example.lead respe
tively to state A, with power 
ost EA, andto the ina
tive state I, with no 
ost; they are re
eivedfrom the re
on�guration automata. Costs when a
-tive are EAc = 50, EAl = 30, EAf2 = 25.The global automaton, i.e., the 
omplete 
ontrolpart of the system as in Figure 1(b), is then obtainedby the parallel 
omposition of lo
al automata. Anadditional parallel equation de�nes the 
ompositionof the 
osts, here summed up at every instant.Contra
t It is in the upper part of Figure 5: it isitself a program, with its own equations. Two 
ontrol-lable variables, de�ned in the with part, will be usedfor ensuring two obje
tives. The poli
y de�ned bythe rules of Se
tion 2 is taken 
are of, for 4 and 3, byprogramming as above. The two remaining poli
iesare not expli
itely programmed (i.e., in the impera-tive part) but de
laratively stated:1. the 
a
he poli
y (requirement 1) is en
oded as :
pcache = (dense & not log) implies Ac2. load-related adaptation (requirement2 ) is 
oded:
pload = (energy_consumption ≤ 60)The 
ontra
t states that the 
onjun
tion of bothrequirements must be enfor
ed by 
ontrol.Simulation and typi
al s
enario The aboveBZR program 
an be 
ompiled and exe
uted, or sim-ulated with a 
hronogram-like graphi
al simulator 2as shown in Figure 6. The exe
utable 
ode generatedby the 
ompiler 
ana also be linked with a run-timeexe
utive as in Figure 4(b).2
ourtesy of Verimag

A typi
al s
enario showing the intervention ofthe 
ontroller on the system, so that 
ontrol ob-je
tives are preserved, is as follows. Starting from
(Norm, H2, N), when d o

urs (step 11), by requirement1 (�rst part of the 
ontra
t) the 
a
he is started, andby requirement 2 (se
ond part of the 
ontra
t) server
f2 is stopped (otherwise the available load is over-shot). Hen
e we go in state (Dense, H1, C). When lo

urs (step 17), then by requirements 3 and 4, pro-grammed in Ba
kEnd, the 
a
he is stopped, the logis started, and by requirement 2 (se
ond part of the
ontra
t) the server f2 
an be started again, and wego to (Dense, H2, L).5 Con
lusion and perspe
tivesWe propose a novel te
hnique to design dis
rete 
on-trol loops in adaptive systems, e.g., for the safe man-agement of resour
es. We use a programming lan-guage ensuring logi
al safety properties of the taskssequen
ings and mode 
hanges. We illustrate the ap-proa
h with a HTTP server example. Its 
ompilationperforman
e is subje
t to the natural 
omplexity ofthe algorithms, but we 
laim that it automati
allygenerates an exe
utable 
ontrol solution, whi
h is tobe 
ompared with manual programming, veri�
ationand debugging, whi
h is even more 
ostly. The exe-
ution 
ost of the 
ontroller is very small, as well asits 
omputation time by DCS (a few ms on a stan-dard Pentium, 2.33 GHz). Ongoing and further workin
ludes integration of Fra
tal and BZR, enri
hingthe models with optimization aspe
ts [12℄, and de�n-ing libraries of standard 
ontrol models and 
ontra
ts.
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