
Refinement of Chemical Programs using Strategies
Pascal Fradet

INRIA
Pascal.Fradet@inria.fr

Jean-Louis Giavitto
CNRS & IBISC

giavitto@ibisc.fr

Marnes Hoff
INRIA & IBISC

Marnes.Hoff@inria.fr

1 Introduction

The chemical reaction metaphor describes computation in terms of a chemical solution where molecules
interact freely according to reaction rules. Chemical solutions are represented by multisets of elements
and reactions by rewrite rules which consume and produce new elements according to conditions. In the
Gamma formalism [3], a program is a collection of reaction rules made of a condition and an action.
Execution proceeds iteratively by replacing elements satisfying the reaction condition by the elements
specified by the action. The result of a Gamma program is obtained when a stable multiset is reached,
that is to say, when no reaction can take place anymore.

The reaction primes below computes the prime numbers lower or equal to a given number N when
applied to the multiset of all numbers from 2 to N:

primes = replace x,y by y if multiple(x,y)

where multiple(x,y) is true if and only if x is a multiple of y. The execution is non deterministic and
potentially highly parallel: if several disjoint tuples of elements satisfy the condition of one or several
rules, the corresponding reactions can be performed in parallel.

The unconstrained data structure and reduction strategy permit to express algorithms without any
artificial sequentiality. It confers a very high level nature to the language and makes Gamma suitable as
an intermediate language in the program derivation process.

A major drawback is that a reasonably efficient implementation of the language is not straightfor-
ward. For example, a naive implementation for a single rule (like primes) consists in choosing a tuple of
elements not yet processed and testing the reaction condition; if the condition is satisfied then the tuple is
replaced by the result of the action; this process is iterated until no tuple can react. Such a blind approach
of selection of elements and ordering of reactions is usually very inefficient. Assuming a multiset of size
n, detecting the termination of a single k-ary reaction alone takes O(nk) steps. The sources of inefficiency
are the selection of elements and the ordering of reactions which are left completely unspecified. Further,
the lack of structured data makes it difficult to specify them. The approach sketched in this abstract aims
at refining gamma programs by:

• structuring the multiset using a data type defining neighborhood relations between elements;

• describing the selection of elements according to their neighborhood and the previous selection;

• specifying the evaluation strategy (i.e., the application of rules and termination).

If these three implementation aspects are written by the programmer using domain-specific languages,
the final refined program is generated automatically. It consists in transforming the gamma program
(representing the functionality) into a low-level program using the data structure, selection and strategy
aspects. The crucial methodological advantage is that logical issues are decoupled from efficiency issues.

Due to space limitations, we do not present data refinement here. Our starting point is a Gamma
program acting on an already structured multiset. That intermediate language is described in section 2.
The refinement of control (i.e., represented by the selection and strategy) and implementation issues are
described in section 3 on a simple example. We conclude by outlining some related and future work.

1

Pascal.Fradet@inria.fr
giavitto@ibisc.fr
Marnes.Hoff@inria.fr


Refinement using Strategies Fradet, Giavitto & Hoff

2 Structured Gamma

After the data refinement step, programs act on a multiset equipped with a data structure. To express
such programs, we use an extension of Gamma called Structured Gamma [8]. This extension is based on
structured multisets which can be seen as a set of addresses satisfying specific relations and associated
with a value. For example, the list [5; 2; 7] is represented by a structured multiset whose set of addresses
is {a1, a2, a3} and associated values (written ai) are a1 = 5, a2 = 2, a3 = 7. Let begin and end be unary
relations and next be a binary relation, the addresses satisfy

begin a1, next a1 a2, next a2 a3, end a3

A new notion of type is introduced in order to characterize precisely the structure of the multiset.
A type is defined in terms of a context-free graph grammar [9]. A structured multiset belongs to a type
T if its underlying set of addresses satisfies the invariant expressed by the grammar defining T . As an
example, doubly-linked lists can be defined by the following context-free graph grammar:

Doubly = begin x, L x
L x = next x y, prev y x, L y
L x = end x

Any multiset which can be produced by this grammar belongs to the Doubly type. The variables in
the rules are instantiated with addresses in the multiset. The non terminal L x can be seen as standing
for a doubly-linked list starting at address x. A singleton list will be represented as beginx,endx. This
grammar ensures that next and prev are partial functions (i.e., each address has at most a single next and
prev address).

A reaction in Structured Gamma can test and modify the relations on addresses as well as the values
of addresses. The following Structured Gamma programs manipulate doubly-linked lists. The reaction
iota takes a singleton doubly-linked list [n] and yields the doubly-linked list [1; 2; . . . ; n] and sort sorts a
doubly-linked list by exchanging ill-sorted adjacent elements.

iota : Doubly = replace begin a by begin b, next b a, prev a b, b := a−1 if a > 1
sort : Doubly = replace next a b by next a b, (a,b) := (b,a) if a > b

Actions must also state explicitly how the relations (which can be seen as pointers) are modified. New
addresses can be added to the multiset with their value and relations, like b in the iota reaction. On
the other hand, a selected address which does not occur in the result of the action disappears from the
multiset.

The formalism is expressive enough to define complicated pointer-like structures (e.g., circular or
skip lists, red-black trees, etc..). Reactions can be statically checked according to the type definitions [8].
For example, type checking ensures that the above reactions preserve the Doubly type.

3 Refinement of Control through Strategies

The refinement of control is achieved by the specification of the selection of elements and the scheduling
of rules. We present these steps on an example: the refinement of the previous sort program. We show
how the same reaction rule can be refined in several sorting programs depending on selection and strategy.
As the reaction sort, these programs operate by swapping ill-sorted adjacent elements.

A preliminary step is to parametrize the original reaction rule:

sort(a) = replace next a b by next a b, (a,b) := (b,a) if a > b

2



Refinement using Strategies Fradet, Giavitto & Hoff

Parameters should be sufficient to select all the addresses involved by following relations/pointers (here
next). Parameter a will serve to apply the rule to selected elements. The application of a parameterized
reaction to its arguments is considered as one-shot. When the reaction sort is applied to an address, it
either performs the swap or fails (depending on the condition a > b) then, in both cases, stops. It is a
one-shot rule whereas the original sort reaction is n-shot (i.e., it is applied until the multiset becomes
stable). Considering the parameterized and one-shot version of reaction rules is crucial to control their
application to specific (selected) elements as well as their application ordering.

Gnome sort We describe the selection and strategy languages corresponding to gnome sort, a simple
exchange type of sort. The algorithm finds the first place where two adjacent elements are in the wrong
order, and swaps them. It proceeds by taking into account that a swap can introduce a new out-of-order
adjacent pair right before or after the two swapped elements.

The selection is described by the following functions:

Init = x | begin x
Test(x) = | begin x or prev x y , x≥ y
Succ(x) = y | next x y
Pred(x) = y | prev x y

A selection function takes zero or more address arguments and returns zero or more addresses as result.
Like a reaction rule, a selection can succeed or fail depending of its condition (occurring after |). In
our example, Init returns the address of the first element of a list; Test checks whether its parameter x is
the first element of the list or is well-ordered compared to its predecessor; Succ (resp. Pred) returns the
next (resp. previous) address in the list. If its condition is false, Test fails. Similarly, Pred will fail if its
parameter is the first element of the list (i.e., has no predecessor). Note that if a selection function may
test relations and values, it cannot modify the multiset.

Our scheduling language was inspired from Chaudron’s schedules [5]. A schedule is a collection of
recursive functions made of calls to selection and one-shot reactions composed with sequential, parallel
and conditional operators. A call to a selection function Sel is of the form (a, . . .) = Sel(b, . . .); it binds
the names a, . . . to the addresses returned by Sel. The conditional schedule (E then S1 else S2) executes
the rule/selection E and proceeds with S1 if it succeeds or S2 if it fails. We write (E→ S) as a shorthand
for (E then S else skip). If E succeeds it proceeds with the schedule S or terminates with the empty
schedule skip otherwise. The sequential composition S1;S2 executes S1 and proceeds with S2 (even if S1
is a reaction that failed). The schedule for gnome sort is:

Gnome = a = Init→ G(a)
G(a) = Test(a) then a′ = Succ(a) → G(a′)

else a′ = Pred(a) → sort(a′); G(a′)

The schedule G is called with the address of the first element of the list. Initially, Test(a) succeeds
and the then-branch is executed. If there is a successor a′ the schedule proceeds with that new address,
otherwise the schedule ends. The predicate Test(a) fails when a and its predecessor are ill-ordered. The
schedule selects the predecessor, calls the reaction sort (which will swap values) and proceeds with the
predecessor. So, gnome sort follows the next relation until it finds a ill-ordered element; it places it at its
right place following the prev relation and then resume its traversal using next. It ends when Succ fails
i.e., when the end of the list is reached.

Note that if gnome sort follows n prev pointers to put a value at its place, it will have to traverse at
least n next pointers before encountering new ill-ordered elements. An optimized version of gnome sort
memorizes the current address when ill-ordered elements are first encountered and, when the element

3



Refinement using Strategies Fradet, Giavitto & Hoff

has been put at its right place, proceeds directly from that address. This optimization is expressed by
changing the schedule to:

Gnome = a = Init→ G(a,a)
G(a,b) = Test(a) then a′ = Succ(b) → G(a′,a′)

else a′ = Pred(a) → sort(a′); G(a′,b)

The schedule G(a,b) now memorizes the address b to proceed after the value of a is put at its right place.
Reaction rules (here sort) remain the only mean to modify the multiset. The selection and schedule

make the next elements to try and the termination explicit. There is no hidden implementation costs any-
more. Here, we have chosen to specify deterministic and sequential strategies. Nevertheless, the schedule
language is expressive enough to describe parallel and non deterministic strategies. The selection and
schedules for two versions of bubble sort are described in the appendix.

Program generation After the specification of the base functionality by reactions, the data structures
by a graph grammar and the control by a selection and schedule, the next step is to combine these
components to generate a low-level, efficient C-like program. Unary relationships are implemented by
global pointers. An address in a structured multiset is represented by a record, each field corresponding
to a given binary relationship and pointing to the related address. With this representation, selection
and reactions are translated into pointers dereferencing, predicate evaluation, address (de)allocation,
expresion evaluation and assignments.

This compilation process is meant to be completely automatic. To this aim, several conditions must
be checked beforehand: (i) the type can be represented by standard pointer structures; (ii) the parame-
terized reactions and selection functions can be translated directly into imperative commands; (iii) the
schedule is deterministic and sequential.

Most of these conditions have already been considered in the context of Shape-C [7]. Shape-C was an
extension of C with graph types and pointer manipulations expressed as Structured Gamma reactions. In
particular, Shape-C had constraints to ensure that each reaction could be implemented as a constant-time
C command. For example, the constraints on types enforce that relations are either unary or binary and
that binary relations are functions. The constraints on reactions (and selection) enforce that all addresses
involved can be obtained in constant time from the parameters of the reaction (resp. selection). These
conditions, as well as the last one on schedules, can be checked using simple syntactic and static analyses.

4 Conclusion

With the growing complexity of software, programming would benefit from a clear separation of basic
computations from their coordination. Functionality and correctness issues are expressed by the former
while efficiency issues are addressed by the latter. We sketched an approach where Gamma is used to
express the basic functionality of a program without artificial constraints on data structures or the control
of execution. This enables the programmer to address efficiency issues separately in a second stage of
the design process. Efficiency is achieved by adding structure to the multiset and by refining the chaotic
behavior of Gamma into a sequential, deterministic one. In our simple examples, the basic functionality
is represented by a single rule. As a consequence, the most complex part of the program lies in the
scheduling. This would be more balanced with complex programs expressed as a collection of reaction
rules.

Reflexivity (e.g., in Maude [6] or the ρbio-calculus [1]) and strategies (e.g., in Elan [4], TOM [2]
or Stratego [11]) have been used to control the application of rules. In systems like Elan, elementary
strategies (e.g., applying a rewriting rule) are composed through Sequence or Choice operators. This

4



Refinement using Strategies Fradet, Giavitto & Hoff

is the “classical approach of strategies” [10]. We got inspiration from a language proposed by Chaudron
to improve the implementation of Gamma [5]. In that proposal, no data structure was considered and the
selection of elements was encoded within the schedule language using integers. Furthermore, the goal
was to improve the implementation not to produce a refined program. In our approach, refinement is
expressed through data types, selection and schedule. Different refinements can be expressed using the
same data type or selection functions. This kind of modularity is not possible in the classical approach
of strategies. Selection and schedule enable the specification of sophisticated traversals of structured
multisets which are much more closer to standard pointer structures than terms (e.g., they can represent
circular or doubly-linked lists).

We are currently working on the implementation of the automatic program generation process. Even
if the main lines are clear, some analyses and the translation itself have not been completely formalized
yet. As future work, we have to study the correctness issues of the approach. Clearly, all the steps
(data refinement, selection and schedules) only serve to select a correct sequence of reactions among
the set of possible executions. So, a partial correctness property can be shown to hold for all programs
and refinements. However, since the schedule also encodes termination, it is not guaranteed that the
refined program will terminate with a multiset stable for the initial rules (it may end prematurely). The
correctness of this termination is likely to be too difficult to be proven in general. However, we hope
to be able to generate the proof obligations needed to ensure total correctness. A longer term goal is to
consider parallel strategies and the automatic generation of the corresponding parallel programs.

Acknowledgments This work is partially funded by the AutoChem ANR project.

References
[1] O. Andrei and H. Kirchner. Graph Rewriting and Strategies for Modeling Biochemical Networks. In Inter-

national Workshop on Natural Computing and Applications-NCA, 2007.
[2] E. Balland, P. Brauner, R. Kopetz, P. Moreau, and A. Reilles. Tom: Piggybacking rewriting on java. Lecture

Notes in Computer Science, 4533:36–47, 2007.
[3] J.-P. Banâtre and D. Le Métayer. Programming by multiset transformation. Communications of the ACM,

36(1):98–111, Jan. 1993.
[4] P. Borovanskỳ, C. Kirchner, and H. Kirchner. Controlling rewriting by rewriting. Electronic Notes in Theo-

retical Computer Science, 4:169–189, 1996.
[5] M. Chaudron. Schedules for multiset transformer programs. In Coordination Programming: Mechanisms,

Models and Semantics. Imperial College Press, 1996.
[6] M. Clavel and J. Meseguer. Reflection and strategies in rewriting logic. Electronic Notes in Theoretical

Computer Science, 4:126–148, 1996.
[7] P. Fradet and D. Le Métayer. Shape types. In Proc. of Principles of Programming Languages, Paris, France,

Jan. 1997. ACM Press.
[8] P. Fradet and D. Le Métayer. Structured Gamma. Science of Computer Prog., 31(2–3):263–289, 1998.
[9] J.-C. Raoult and F. Voisin. Set-theoretic graph rewriting. In Proceedings of the International Workshop on

Graph Transformations in Computer Science, pages 312–325, London, UK, 1994. Springer-Verlag.
[10] E. Visser. A survey of rewriting strategies in program transformation systems. Electronic Notes in Theoretical

Computer Science, 57:109–143, 2001.
[11] E. Visser. Stratego: A language for program transformation based on rewriting strategies. System description

of Stratego 0.5. Rewriting Techniques and Applications (RTA’01), LNCS, volume 2051, 2001.

5



Refinement using Strategies Fradet, Giavitto & Hoff

Appendix

The same reaction sort can be refined in other kinds of exchange sort. These algorithms must, like the
sort reaction, exchange only adjacent elements. Besides gnome sort, only two other classical algorithms
satisfy this constraint: bubble sort and cocktail sort. Here, we describe the selection and strategies for
two versions of bubble sort. Cocktail sort can be specified in a very similar fashion.

The selection for bubble sort uses the following functions:

OuterLoop0 = z | begin x, end z, x 6= z
OuterLoop(z) = z | begin x, x 6= z
InnerLoop0 = x | begin x
InnerLoop(x,z) = y | next x y, y 6= z

The schedule for bubble sort is:

Bubble = l = OuterLoop0 → a = InnerLoop0 → B(a, l)
B(a, l) = sort(a); a′ = InnerLoop(a, l)

then B(a′, l) else l′ = OuterLoop(a) → a′ = InnerLoop0 → B(a′, l′)

Bubble sort starts by selecting the first element (a) and the last one (l). The inner loop traverses the list
from a to l swapping adjacent elements when they are ill-ordered. When a comes next to the limit (end) l
(i.e., InnerLoop(a, l) fails) the process is repeated starting from the two first elements but setting the limit
to its predecessor (a). The limit l represents the last element that still has to be considered in sorting. All
elements after l are already sorted and in their final position. The process ends when the limit reaches
the beginning of the list (i.e., OuterLoop(a) fails).

Bubble sort can be optimized by terminating as soon as a pass (an inner loop) does not entail any
swap. In such a case, the list is known to be sorted and the program may stop. That optimization is
performed by the following schedule (the selection functions remain the same):

Bubble = l = OuterLoop0 → a = InnerLoop0 → B0(a, l)
B0(a, l) = sort(a) then B1(a, l) else a′ = InnerLoop(a, l) → B0(a′, l)
B1(a, l) = a′ = InnerLoop(a, l) then sort(a); B1(a′, l)

else l′ = OuterLoop(a) → a′ = InnerLoop0 → B0(a′, l′)

The schedule work along the same lines as B except that it is made of two schedules B0 and B1. The
schedule B0 is used as long as a swap does not occur in the current inner loop and B1 is used as soon as
a swap occurs in the current inner loop. When an inner loop ends in B0, it means that no swap occurred;
the schedule just skips and terminates. When B1 ends, the limit is changed and another inner loop is
started with B0.

Both versions of bubble sort operate on doubly-linked lists but, as they do not use the prev relation,
they would also work with simply-linked lists. Starting from a more general reaction exchanging not
only adjacent but any ill-sorted elements, other exchange sort algorithms (like quicksort) can also be
obtained by refinement.

6


	Introduction
	Structured Gamma
	Refinement of Control through Strategies
	Conclusion

